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Abstract. The goal of this paper is twofold. First, a logic-based argu-
mentation framework is introduced in the context of conditional logic, as
conditional logic is often regarded as an appealing setting for knowledge
representation and reasoning. Second, a concept of conditional contrari-
ety is defined that covers usual inconsistency-based conflicts and puts in
light a specific form of conflicts that often occurs in real-life: when an
agent asserts an If then rule, it can be argued that additional conditions
are actually needed to derive the conclusion.

Keywords: Conditional Logic, Logical Argumentation Theory, Conditional Con-
trariety.

1 Introduction

Argumentation has long been a major topic in A.I. (see e.g., [1, 2] and for more
recent accounts e.g., [3]) that has concerned a large variety of application do-
mains for more than a decade, like e.g., law [4, 5], medicine [6], negotiation [7],
decision making [8] and multiagent systems [9, 10]. Two main families of compu-
tational models for argumentation have been proposed in the literature: namely,
the abstract and the logic-based argumentation frameworks. Following the sem-
inal work of [11], the first family is based on graph-oriented representations and
focuses mainly on the interaction between arguments without taking the possi-
ble internal structure of the involved arguments into account. On the contrary,
the logic-based approaches (e.g., [12–19]) exploit the logical internal structure of
arguments and adopt inconsistency as a pivotal paradigm: any pair of conflicting
arguments must be contradictory. Consequently, no conflicting arguments can
be found together inside a same consistent set of formulas.

However, many natural real-life arguments and counter-arguments do not
necessarily appear mutually inconsistent in usual knowledge representation modes.
For example, consider the assertion If there is a match tonight then John will
go to the stadium encoded through a (material) implicative formula in standard
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logic as MatchTonight → JohnGoesToStadium, so that in case MatchTonight is
true, JohnGoesToStadium can be deduced. Now, the following objection can be
raised against that argument through the sentence If there is a match tonight
and if John has got enough money then John will go to the stadium, which re-
quires an additional condition for John to go the stadium if there is a match
tonight. The latter sentence is a deductive consequence of the first one and tak-
ing both of them does not yield an inconsistent set. This paper aims to extend
the logic-based approaches by encompassing this specific form of contrariety.

It is possible to represent the above example as a case of inconsistency-based
conflict by using e.g. a modal logic of necessity and possibility, and more informa-
tion: when the first sentence is augmented so that it excludes the possibility that
John does not go to the stadium tonight if there is a match, whereas the other
sentence allows this possibility to happen. Such an alternative representation re-
quires all this additional or implicit information to be asserted and represented
in some way. On the contrary, we provide a representation framework where the
motivating example can be modeled in way close to natural language implica-
tions and without resorting to logical inconsistency; moreover, the framework
allows a form of contrariety to be recognized between the implicative formulas.

To this end, we resort to conditional logic, which allows an additional spe-
cific implicative connective to be used, in addition to standard-logic material
implication. Conditional logic is actually rooted in the formalization of hypo-
thetical or counterfactual reasonings of the form If α were true then β would
be true and attempts to avoid some pitfalls of material implication to represent
patterns of conditional or hypothetical reasonings. Actually, the conditional im-
plication connective is often regarded as a very suitable connective to encode
many implicative reasoning patterns from real-life; accordingly, conditional logic
has long been investigated in many A.I. areas [20] like belief revision [21], data
base and knowledge update [22] natural language semantics for handling hypo-
thetical and counterfactual sentences [23], non-monotonic and prototypical rea-
sonings [24, 25], causal inference [26] and logic programming [27], just to mention
some seminal works.

The goal of this paper is thus twofold. First, we revisit frameworks à la [15,
28] to lay down the main foundations of a logic-based argumentation framework
based on conditional logic. Second, we introduce a concept of conditional contra-
riety that encompasses both the conflicts through inconsistency and a generaliza-
tion of the conflict illustrated in the motivating example. One intended benefit
is that when an agent represents If then rules using the conditional connective,
the framework allows one to argue against this rule by stating that additional
conditions are required in order for the conclusion of the rule to hold. Accord-
ingly, in this framework, the conditional implication connective is intended to
be used to represent hypothetical reasonings and other implications that can be
questioned within an argumentation process.

The paper is organized as follows. In the next section, the user is provided
with basic elements of conditional logic MP. In section 3, conditional contrariety
is motivated and introduced. Section 4 revisits the main foundational concepts
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of Besnard and Hunter’s framework so that conditional contrariety is covered.
The last section discusses some promising paths for further research. For the
clarity of presentation, all proofs are given in an appendix.

2 Conditional logics

Conditional logics are rooted in the formalization of counterfactual or hypothet-
ical reasonings of the form ”If α were true then β would be true”, for which an
additional connective, called conditional connective and denoted ⇒, is gener-
ally introduced. Roughly, a conditional formula α ⇒ β is valid when β is true
in the possible worlds where α is true. Clearly, this diverges from the (material)
implicative standard-logic formula α → β, since this latter one is equivalent to
¬α ∨ β which is also satisfied when α is false. In the paper, we consider the
well-known conditional logic MP, which can be extended to yield many of the
other popular conditional logics (see e.g., [29]).

MP is an extension of the language and inference system of classical Boolean
logic. It is a language of formulas, denoted Lc. We use α, β, γ, δ, . . . to denote
formulas of Lc and ∆, Φ, Ψ , Θ, . . . to denote sets of formulas of Lc. Formulas are
built in the usual way from the standard connectives ¬, ∧, ∨, → and ↔: they
accommodate the conditional connective ⇒ through the additional formation
rule: if α and β are formulas, so is α⇒ β. > and ⊥ represent truth and falsity,
respectively. A concept of extended literal proves useful: an extended literal is of
the form α or ¬α such that α is either an atom or a formula with the conditional
connective as the main connective.

The inferential apparatus of MP consists of the following axioms schemas
and inference rules [29], enriching standard Boolean logic to yield an inference
relation denoted `c.

RCEA.
`c α↔ β

`c (α⇒ γ)↔ (β ⇒ γ)

RCEC.
`c α↔ β

`c (γ ⇒ α)↔ (γ ⇒ β)

CC. `c ((α⇒ β) ∧ (α⇒ γ))→ (α⇒ (β ∧ γ))

CM. `c (α⇒ (β ∧ γ))→ ((α⇒ β) ∧ (α⇒ γ))

CN. `c (α⇒ >)

MP. `c (α⇒ β)→ (α→ β)

In the paper, an expression of the form α ≡ β will be a shortcut for α `c β and
β `c α. We make use of the disjunctive form of conditional formulas, defined as
follows.

Definition 1. The disjunctive form of a formula α of Lc, denoted DF (α), is
the first (according to the lexicographic order) formula of the form α1 ∨ . . .∨ αn

that is logically equivalent with α under `c and such that each αi is a conjunction
of extended literals.
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3 Conditional contrariety

Conditional contrariety (in short, contrariety) is the cornerstone concept in this
paper. It is intended to encompass both logical inconsistency in MP and a form
of contrariety involving a pair of conditional implicative formulas where the first
one would entail the other one in standard logic if the material implication were
used. Let us introduce the concept progressively and refer to items of the next
formal definition through their numbering like e.g., (I), (II.a) or (II.2.).

Let α and β be two formulas of Lc s.t. DF (α) = α1 ∨ . . .∨αn and DF (β) =
β1 ∨ . . . ∨ βm.

α contraries β, denoted α ./ β, in any of the following situations.

(I.) First, α and β are mutually inconsistent in MP. Note that this also covers
the standard-logic occurrences of inconsistency. Formally, whenever {α, β} `c ⊥
we have α ./ β. Taking into account the DF of α and β, this amounts to ∀αi,∀βj
{αi, βj} `c ⊥. Let us note that if β is itself inconsistent then any formula α
contraries β, in particular β contraries β.

(II.) Second, we need to address the case that requires α of the form φ∧ε⇒ ψ
to contrary β of the form φ ⇒ ψ, just as in the motivating example from the
introduction. Actually, we can be more general and consider the cases where a
similar situation occurs with respect to a more general class of pairs of “con-
trarying” formulas of the form γ = γ1 ⇒ γ2 and δ = δ1 ⇒ δ2, provided that δ
and γ would be “derivable” in some sense from α and β. The class of pairs of
formulas is defined through specific inferential links between their elements γ1,
γ2, δ1 and δ2. First, γ and δ must be two conditionals about the same conclu-
sion: hence, γ2 ≡ δ2 (II.d). Generalizing the motivating example, we require the
antecedent of the first conditional to entail the antecedent of the second one (but
not conversely), formally γ1 `c δ1 (II.a) and δ1 0c γ1 (II.b). Another condition is
required to prevent valid formulas from being in a contrariety position: γ1 0c γ2
(II.c). Indeed, consider e.g. the two following Boolean tautologies: a ∧ b → >
and b→ >. Applying the RCEA and RCEC rules plus the CM axiom schema
yields (a ∧ b ⇒ a ∧ b) → (a ∧ b ⇒ >) and (b ⇒ b) → (b ⇒ >), respectively.
This entails a ∧ b ⇒ > and b ⇒ >, i.e., two valid formulas that we would thus
inappropriately consider as being in a contrariety position.

Then, we need to make clear the inferential links between the pair of formulas
α and β for which we explore a contrariety situation, and the above γ and δ
formulas that are themselves in contrariety (II.1 and II.2). First, a contrariety
situation occurs when β conditionally entails the last two formulas, i.e. β `c γ∧δ
(or equivalently, taking the DF of β, this occurs when taking βj as premisses, ∀βj)
(II.2). The motivation is as follows. Remember that whenever β was inconsistent,
any α contraried β. Likewise, if β allows by itself the derivation of both γ and
δ that are in a contrariety position, then β is in some way self-contraried, and
any α is contrarying β.

Finally, α `c γ while {α, β} `c γ ∧ δ naturally covers the last α ./ β case. In
the definition, this condition is expressed taking the DF of both α and β into
account (II.1).



A Conditional Logic-Based Argumentation Framework 5

It is important to stress that the contrariety concept that is defined is
deductively-based in all of the following senses. First, inconsistency is reached
through deduction. Second, the inferential relations between elements of the pair
(α, β) with elements of (γ, δ) are also of a deductive nature. Finally, the condi-
tion γ1 `c δ1 is also deductive. Accordingly, we will see that contrariety is not
symmetric in the general case.

Definition 2. Let α and β be two formulas of Lc s.t. DF (α) = α1 ∨ . . . ∨ αn

and DF (β) = β1 ∨ . . . ∨ βm.

α contraries β, denoted α ./ β,
iff ∀αi,∀βj

(I.) {αi, βj} `c ⊥, or

(II.) There exist γ1, γ2, δ1 and δ2 in Lc s.t.

(II.a) γ1 `c δ1 and
(II.b) δ1 0c γ1 and
(II.c) γ1 0c γ2 and
(II.d) γ2 ≡ δ2

where

(II.1) {αi, βj} `c (γ1 ⇒ γ2) ∧ (δ1 ⇒ δ2)
s.t. αi `c γ1 ⇒ γ2, or

(II.2) βj `c (γ1 ⇒ γ2) ∧ (δ1 ⇒ δ2).

Example 1. a∧ b⇒ c contraries a⇒ c. a∧ (a∧ c⇒ f) contraries both formulas
a → (a ⇒ f) and ¬a ∨ c ⇒ f . Also, ¬a ∧ b and a ∧ (a ∧ c ⇒ b ∨ ¬d) contrary
each other.

The concept of contrarying a formula is naturally extended into a concept of
contrarying a set of formulas.

Definition 3. Let Φ and α be a subset and a formula of Lc, respectively. α
contraries Φ, denoted α ./ Φ, iff there exists β in Lc s.t. Φ `c β and α ./ β.

Example 2. Let Φ = {a⇒ b, a∨ d⇒ b∧ c, a⇒ c}. Let α = a⇒ b∧ c. Note that
Φ `c α. However, α ./ Φ because α ./ a ∨ d⇒ b ∧ c.

Obviously, ./ is neither symmetric, nor antisymmetric, nor antireflexive. How-
ever, it is monotonic and syntax-independent.

Proposition 1. Let Φ, Ψ and α be two subsets and a formula of Lc, respectively.
If α ./ Φ then α ./ Φ ∪ Ψ .

Proposition 2. Let Φ, α and β be a subset and two formulas of Lc, respectively.
If α ≡ β then α ./ Φ iff β ./ Φ.
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4 A conditional-logic argumentation framework

Having defined the pivotal concept of contrariety, we are now ready to revisit [15,
28]’s framework and lay down the foundations of a conditional-logic argumen-
tation framework based on contrariety. Accordingly, we revisit and extend the
following concepts, successively: arguments, conflicts, rebuttals, defeaters and
argumentation trees.

In the following, we assume a subset ∆ of Lc that can be inconsistent. All
concepts will be implicitly defined relatively to ∆. Membership of formulas and
inclusion of sets of formulas to Lc will also be implicit from now on.

4.1 Arguments

After Besnard-Hunter, an argument is made of a set formulas together with a
conclusion that can be derived from the set. The usual non-contradiction condi-
tion expressed by Φ 0 ⊥ is naturally extended and replaced by a non-contrariety
requirement (second item).

Definition 4. An argument A is a pair 〈Φ, α〉 s.t.:

1. Φ ⊆ ∆
2. ∀β s.t. Φ `c β, β 6./ Φ
3. Φ `c α
4. ∀Φ′ ⊂ Φ, Φ′ 6`c α

A is said to be an argument for α. The set Φ and the formula α are the
support and the conclusion of A, respectively.

Example 3. Let ∆ = {(a⇒ ¬d)∧¬b, a⇒ c,¬a}. In view of ∆, some arguments
are:

〈{¬a},¬(a ∧ b)〉,
〈{a⇒ c}, a⇒ c〉,

〈{(a⇒ ¬d) ∧ ¬b, a⇒ c}, a⇒ ¬d ∧ c〉.

Note that CC is used to obtain the conclusion of the last argument.

The following result shows that the revisited concept of argument still pre-
serves coherence, such a coherence concept being in some sense extended to ./.

Proposition 3. If 〈Φ, α〉 is an argument then α 6./ Φ and ¬α ./ Φ.

A notion of quasi-identical arguments is now introduced as follows. It is
intended to capture situations where two arguments can be said to make the
same point on the same grounds.

Definition 5. Two arguments 〈Φ, α〉 and 〈Ψ, β〉 are quasi-identical iff Φ = Ψ
and α ≡ β.
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Not surprisingly, provided one argument, its quasi-identical ones form an
infinite set.

Proposition 4. Let 〈Φ, α〉 be an argument. There is an infinite set of arguments
of the form 〈Ψ, β〉 s.t. 〈Φ, α〉 and 〈Ψ, β〉 are quasi-identical.

Arguments are not necessarily independent. The definition of more conserva-
tive arguments captures a notion of subsumption between arguments, translating
situations where an argument is in some sense contained within another one.

Definition 6. An argument 〈Φ, α〉 is more conservative than an argument 〈Ψ, β〉
iff Φ ⊆ Ψ and β `c α.

Example 4. The argument 〈{a}, a∨ b〉 is more conservative than 〈{¬a∨ b, a}, b〉.
Also, 〈{(a ⇒ b) ∧ c, c → d}, (a ⇒ b) ∧ d〉 is more conservative than 〈{(a ⇒
b) ∧ c, c→ d}, (a⇒ b) ∧ c ∧ d〉.

Proposition 5. If 〈Φ, α〉 is more conservative than 〈Ψ, β〉, then β 6./ Φ, α 6./ Ψ
and ¬α ./ Ψ .

In this last result, it is worth noting that ¬β ./ Φ does not hold in full
generality. A counter-example consists of the two arguments 〈{a}, a ∨ b〉 and
〈{a, b}, a∧b〉; 〈{a}, a∨b〉 is more conservative than 〈{a, b}, a∧b〉 but ¬(a∧b) 6./ a.

Actually, the concept of being more conservative induces the concept of quasi-
identical arguments, and conversely.

Proposition 6. Two arguments 〈Φ, α〉 and 〈Ψ, β〉 are quasi-identical iff each
one is more conservative than the other.

Example 5. 〈{a⇒ b, a⇒ c}, (a⇒ b) ∧ (a⇒ c)〉 and 〈{a⇒ b, a⇒ c}, a⇒ b ∧ c〉
are quasi-identical as each one is more conservative than the other. In fact, the
proof of equivalence between (a ⇒ b) ∧ (a ⇒ c) and a ⇒ b ∧ c is obtained by
applying the CC and CM axioms schemas.

The notions of quasi-identicality and of being more conservative will be used
in the next Subsection to avoid some redundancy when counter-arguments need
to be listed.

4.2 Conflicts between arguments

We now revisit conflicts-related concepts in light of conditional contrariety. Let
us start with rebuttals.

Definition 7. A rebuttal for an argument 〈Φ, α〉 is an argument 〈Ψ, β〉 s.t. β ./
α.

Example 6. A rebuttal for 〈{¬a∨ b,¬b},¬a∧¬b〉 is 〈{a},¬¬a〉. Also, 〈{a∧ e⇒
b, a∧e⇒ ¬c},¬f∨(a∧e⇒ b∧¬c)〉 is a rebuttal for 〈{a∨d⇒ b∧¬c, f}, (a∨d⇒
b ∧ ¬c) ∧ f〉.
Note that CC is used to obtain the conclusion ¬f ∨ (a ∧ e⇒ b ∧ ¬c).
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In classical-logic-based argumentation [15], if 〈Φ, α〉 is a rebuttal for 〈Ψ, β〉
then 〈Ψ, β〉 is also a rebuttal for 〈Φ, α〉. Consequently, the notion of rebuttal is
symmetric. However, this property does not hold with respect to the contrariety
paradigm. Let us return to Example 6, the argument 〈{a∨d⇒ b∧¬c, f}, (a∨d⇒
b∧¬c)∧ f〉 is not a rebuttal for 〈{a∧ e⇒ b, a∧ e⇒ ¬c},¬f ∨ (a∧ e⇒ b∧¬c)〉.
The notion of rebuttal defined here is thus asymmetric.

Another concept is captured by defeaters, which are arguments whose con-
clusion contraries the support of their targeted argument.

Definition 8. A defeater for an argument 〈Φ, α〉 is an argument 〈Ψ, β〉 s.t. β ./
Φ.

Example 7. Some defeaters for 〈{a∨¬d⇒ b∧ c, f ∨¬b, b}, f ∧ (a∨¬d⇒ b∧ c)〉
are listed below:
〈{¬b},¬b〉,
〈{¬b},¬(¬b→ b)〉,
〈{¬b,¬a→ b},¬b ∧ a〉,
〈{e ∧ ¬d⇒ b ∧ c}, e ∧ ¬d⇒ b ∧ c〉,
〈{a⇒ b, a⇒ c}, a⇒ b ∧ c〉,
〈{a⇒ b, a⇒ c},¬¬(a⇒ b ∧ c)〉,
〈{a⇒ b, a⇒ c}, (a⇒ b) ∧ (a⇒ c)〉.

Proposition 7. If 〈Ψ, β〉 is a rebuttal for 〈Φ, α〉 then 〈Ψ, β〉 is a defeater for
〈Φ, α〉.

Example 8. 〈{((a ∧ e) ⇒ b ∧ c) ∧ ¬d}, ((a ∧ e) ⇒ b ∧ c) ∧ ¬d〉 is a rebuttal for
〈{a⇒ b, a⇒ c}, (a⇒ b ∧ c) ∨ d〉.
Here {a ⇒ b, a ⇒ c} `c (a ⇒ b ∧ c) ∨ d, then (((a ∧ e) ⇒ b ∧ c) ∧ ¬d) ./ {a ⇒
b, a ⇒ c}. Consequently, 〈{((a ∧ e) ⇒ b ∧ c) ∧ ¬d}, ((a ∧ e) ⇒ b ∧ c) ∧ ¬d〉 is a
defeater for 〈{a⇒ b, a⇒ c}, (a⇒ b ∧ c) ∨ d〉.

An interesting special kind of defeaters are challenges. As the next propo-
sition shows, challenges capture some situations where the defeat relation is
asymmetric.

Definition 9. Let 〈Φ, α〉 and 〈Ψ, β〉 be two arguments. 〈Φ, α〉 is a challenge to
〈Ψ, β〉 iff α ./ Ψ and ∀γ s.t. Ψ `c γ, γ 6./ Φ.

Example 9. The argument 〈{a ∧ e⇒ b, a ∧ e⇒ c}, a ∧ e⇒ b ∧ c〉 is a challenge
to the argument 〈{a ∨ d⇒ b ∧ c}, a ∨ d⇒ b ∧ c〉.

Proposition 8. If 〈Φ, α〉 is a challenge to 〈Ψ, β〉 then 〈Φ, α〉 is a defeater for
〈Ψ, β〉 and 〈Ψ, β〉 is not a defeater for 〈Φ, α〉.

As intended, defeaters can exist even though there is no inconsistency in-
volved. The next result shows that the support of a challenge is consistent with
the support of the argument that it attacks.

Proposition 9. If 〈Φ, α〉 is a challenge to 〈Ψ, β〉 then Φ ∪ Ψ 0c ⊥.
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Definition 10. An argument 〈Ψ, β〉 is a maximally conservative defeater for
〈Φ, α〉 iff 〈Ψ, β〉 is a defeater for 〈Φ, α〉 such that no defeaters for 〈Φ, α〉 are
strictly more conservative than 〈Ψ, β〉.

We assume that there exists an enumeration which we call canonical enu-
meration of all maximally conservative defeaters for 〈Φ, α〉.

Example 10. Let us return to Example 7. Both of the following 〈{a ⇒ b, a ⇒
c}, a ⇒ b ∧ c〉, 〈{e ∧ ¬d ⇒ b ∧ c}, e ∧ ¬d ⇒ b ∧ c〉, 〈{¬b},¬b〉, 〈{a ⇒ b, a ⇒
c},¬¬(a ⇒ b ∧ c)〉, 〈{¬b},¬(¬b → b)〉, and 〈{a ⇒ b, a ⇒ c}, (a ⇒ b) ∧ (a ⇒ c)〉
are maximally conservative defeaters for the argument 〈{a ∨ ¬d ⇒ b ∧ c, f ∨
¬b, b}, f ∧ (a ∨ ¬d⇒ b ∧ c)〉.

Note that, like arguments, maximally conservative defeaters are in an infinite
number, as shown by the following results.

Proposition 10. Let 〈Ψ, β〉 be a maximally conservative defeater for 〈Φ, α〉.
〈Ψ, γ〉 is a maximally conservative defeater for 〈Φ, α〉 iff 〈Ψ, β〉 and 〈Ψ, γ〉 are
quasi-identical.

Corollary 1. Let 〈Ψ, β〉 be a maximally conservative defeater for 〈Φ, α〉. There
is an infinite set of maximally conservative defeaters for 〈Φ, α〉 of the form 〈Θ, γ〉
such that 〈Ψ, β〉 and 〈Θ, γ〉 are quasi-identical.

Now, it is possible to avoid some amount of redundancy among counter-
arguments by ignoring the unnecessary variants of maximally conservative de-
featers. To this end, we define a concept of pertinent defeaters as follows.

Definition 11. Let 〈Ψ1, β1〉, . . . , 〈Ψn, βn〉, . . . be the canonical enumeration of
all maximally conservative defeaters for 〈Φ, α〉.
〈Ψi, βi〉 is a pertinent defeater for 〈Φ, α〉 iff for every j < i, 〈Ψi, βi〉 and 〈Ψj , βj〉
are not quasi-identical.

Thus, a pertinent defeater can be interpreted as the representative of a set
of counter-arguments.

Example 11. Let us return to Example 10. Suppose that 〈{a ⇒ b, a ⇒ c}, a ⇒
b∧c〉, 〈{e∧¬d⇒ b∧c}, e∧¬d⇒ b∧c〉, 〈{¬b},¬b〉, 〈{a⇒ b, a⇒ c},¬¬(a⇒ b∧c)〉,
〈{¬b},¬(¬b → b)〉, 〈{a ⇒ b, a ⇒ c}, (a ⇒ b) ∧ (a ⇒ c)〉, . . . is the canoni-
cal enumeration of the maximally conservative defeaters. Both of the following
〈{a⇒ b, a⇒ c}, a⇒ b∧c〉, 〈{e∧¬d⇒ b∧c}, e∧¬d⇒ b∧c〉, 〈{¬b},¬b〉 are per-
tinent defeaters for the argument 〈{a∨¬d⇒ b∧c, f∨¬b, b}, f∧(a∨¬d⇒ b∧c)〉.

Clearly, an argument may have more than one pertinent defeater. The next
result shows how the pertinent defeaters for the same argument differ from one
another.

Proposition 11. Any two different pertinent defeaters for the same argument
have distinct supports.

Proposition 12. An argument cannot be its own pertinent defeater.
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4.3 Argumentation trees

A last basic bricks of logic-based argumentation theories that we revisit is the
notion argumentation trees and its related topics. From a set ∆ of formulas,
several possibly interconnected arguments can co-exist that should be assembled
to get a full understanding about the pros and cons conducting a conclusion to
be accepted or rejected. Argumentation trees are intended to collect and organize
those arguments.

Definition 12. An argumentation tree for α is a tree T whose nodes are argu-
ments s.t.:

1. The root of T is an argument for α
2. For every node 〈Ψ, β〉 whose ancestor nodes are 〈Ψ1, β1〉,. . . , 〈Ψn, βn〉, there

exists γ ∈ Ψ s.t. γ /∈ Ψi for i = 1..n,
3. Each child node is a pertinent defeater of its parent node.

An argumentation tree aims to exhaustively (but implicitly) capture the way
counter-arguments can take place as a dispute develops. Condition 2 requires
that each counter-argument involves extra information thereby precluding cycles.

Example 12. Let us return to Example 7. Let α = f ∧ (a ∨ ¬d⇒ b ∧ c).

〈{a ∨ ¬d⇒ b ∧ c, f ∨ ¬b, b}, α〉

〈{a⇒ b, a⇒ c}, a⇒ b ∧ c〉

〈{¬b},¬b〉

〈{e ∧ ¬d⇒ b ∧ c}, e ∧ ¬d⇒ b ∧ c〉

〈{e ∧ ¬d⇒ b ∧ c}, e ∧ ¬d⇒ b ∧ c〉

Fig. 1. Argumentation tree for f ∧ (a ∨ ¬d⇒ b ∧ c).

Proposition 13. An argumentation tree for a formula α is finite.

Proposition 14. For any α s.t. ∆ `c α, there is only a finite number of argu-
mentation trees for α.

Clearly, the last two properties are important in practice. They show that an
argumentation tree can indeed be an effective way of representing an argumen-
tation process.

In standard-logic argumentation [15], if ∆ is consistent then all argumen-
tation trees have exactly one node. This is not the case in contrariety-based
argumentation: from a consistent knowledge base, argumentation trees that do
not collapse into a single node exist.

Example 13 illustrates that attacks between arguments need not be inconsistency-
based but can indeed be rooted in contrariety in conditional logic.
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〈{a⇒ b, a⇒ c}, (a⇒ b ∧ c) ∨ ¬d〉

〈{¬d, (a ∧ (d ∨ ¬f)) ⇒ b ∧ c},¬d ∧ ((a ∧ (d ∨ ¬f)) ⇒ b ∧ c)〉

Fig. 2. Argumentation tree for (a⇒ b ∧ c) ∨ ¬d.

Example 13. Let ∆ = {a⇒ b,¬d, (a ∧ (d ∨ ¬f))⇒ b ∧ c, a⇒ c}.
Note that ∆ is consistent. Let α = (a⇒ b ∧ c) ∨ ¬d.

As several different argumentation trees for a given formula α can co-exist,
the following full argumentation tree concept aims to represent them in a global
manner by considering all pertinent defeaters and all possible attacks.

Definition 13. Let T be an argumentation tree for α. T is a full argumentation
tree for α if the children of any node A consists of all pertinent defeaters of A.

Example 14. Let ∆ = {a ⇒ b, a, a ∧ d ⇒ b ∧ c, c ∧ ¬a, a ⇒ c,¬c ∧ ¬a}. Let
α = a ∧ (a⇒ b ∧ c).

〈{a, a⇒ b, a⇒ c}, α〉

〈{¬c ∧ ¬a},¬c ∧ ¬a〉〈{c ∧ ¬a}, c ∧ ¬a〉

〈{¬c ∧ ¬a},¬c ∧ ¬a〉 〈{c ∧ ¬a}, c ∧ ¬a〉
〈{a ∧ d⇒ b ∧ c}, a ∧ d⇒ b ∧ c〉

Fig. 3. Full argumentation tree for a ∧ (a⇒ b ∧ c).

5 Perspectives and conclusion

Conditional logic is a widespread tool in A.I. This paper is an attempt to lay
down the basic bricks of logic-based argumentation in conditional logic. Interest-
ingly, it has allowed us to put in light and encompass a specific form of conflict
that often occurs in real-life argumentation: i.e., claims that additional condi-
tions are required for the conclusion of a rule to hold. In this respect and to some
extend, this paper targets some patterns of reasoning similar to those in [30, 31],
where preemption operators are investigated in the framework of standard logic:
preemption operators allow a logically weaker piece of information to replace
a stronger one. However, the problem that we have addressed in this paper is
different: the focus has been on confronting arguments, with a specific attention
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to comparing conditional formulas making use of the conditional connective, al-
lowing in some sense weaker formulas of that kind to be compared to stronger
ones.

In the future, we plan to investigate how to compare and rationalize argu-
mentation trees in conditional logic, consider audience and impact-related issues
on arguments and build various algorithmic tools for handling arguments and
reasoning about them.
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Appendix. Proofs.

Proof of Proposition 1. Let α ./ Φ. By Definition 3 there exists β such that
Φ `c β and α ./ β. Let Ψ be a set of formulas. Then, Φ∪ Ψ `c β and it happens
that α ./ Φ ∪ Ψ .

Proof of Proposition 2. Let α ≡ β where DF (α) = α1∨. . .∨αn and DF (β) =
β1∨. . .∨βm. Assume that α ./ Φ then there exists γ (where DF (γ) = γ1∨. . .∨γk)
such that Φ `c γ and α ./ γ. By Definition 2, ∀αi, γj (I) {αi, γj} `c ⊥ or (II)
there exist δ1, δ2, σ1, σ2 s.t. δ1 `c σ1, σ1 0c δ1, δ1 0c δ2 and δ2 ≡ σ2, where
(1) {αi, γj} `c (δ1 ⇒ δ2) ∧ (σ1 ⇒ σ2) s.t. αi `c δ1 ⇒ δ2, or (2) γj `c (δ1 ⇒
δ2) ∧ (σ1 ⇒ σ2). Let us first consider the case (I). {αi, γj} `c ⊥. As α ≡ β, we
have that α1 ∨ . . . ∨ αn ≡ β1 ∨ . . . ∨ βm. Then, for all αi ∈ {α1, . . . , αn}, there
exists βl ∈ {β1, . . . , βm} such that αi ≡ βl. Thus, {βl, γj} `c ⊥ (3). Turning now
to the case (II). By (1) {αi, γj} `c (δ1 ⇒ δ2) ∧ (σ1 ⇒ σ2) s.t. αi `c δ1 ⇒ δ2.
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Since for all αi ∈ {α1, . . . , αn}, there exists βl ∈ {β1, . . . , βm} such that αi ≡ βl,
it follows that {βl, γj} `c (δ1 ⇒ δ2) ∧ (σ1 ⇒ σ2) s.t. βl `c δ1 ⇒ δ2 (4).

As consequently, by the results (3), (4), and (2) β ./ γ holds. Lastly, that is
Φ `c γ and β ./ γ yields β ./ Φ.

Proof of Proposition 3. By definition of an argument, ∀β s.t. Φ `c β, β 6./ Φ
and Φ `c α. Then, α 6./ Φ.
As 〈Φ, α〉 is an argument, then Φ `c α. Thus, Φ∪{¬α} `c ⊥. Hence, there exists
β such that Φ `c β and {¬α, β} `c ⊥. Assume that DF (¬α) = α1 ∨ . . . ∨ αn

and DF (β) = β1 ∨ . . . ∨ βm. It then follows that ∀αi,∀βj , {αi, βj} `c ⊥. As a
consequence, ¬α ./ β. Accordingly, by Definition 3 ¬α ./ Φ holds.

Proof of Proposition 4. Let 〈Φ, α〉 be an argument, then Φ `c α. Also, there
exists an infinite number of formulas β s.t. α ≡ β. Since Φ is minimal to infer
α, it follows that Φ is also minimal to infer β. Then, 〈Φ, β〉 is an argument. By
Definition 5, 〈Φ, α〉 and 〈Φ, β〉 are quasi-identical. That is, there exists an infinite
number of arguments quasi-identical to 〈Φ, α〉.

Proof of Proposition 5. Let 〈Ψ, β〉 be an argument, then β 6./ Ψ . That is, ∀γ
s.t. Ψ `c γ, β 6./ γ. As 〈Φ, α〉 is more conservative than 〈Ψ, β〉, Φ ⊆ Ψ . Then, ∀α
s.t. Φ `c α, Ψ `c α. As a consequence, ∀ α s.t. Φ `c α, β 6./ α. Thus, β 6./ Φ.
〈Φ, α〉 is an argument, then Φ `c α. As Φ ⊆ Ψ , Ψ `c α. Since 〈Ψ, β〉 is an

argument, then ∀γ s.t. Ψ `c γ, γ 6./ Ψ . Thus, α 6./ Ψ .
As 〈Φ, α〉 is an argument, then by Proposition 3 ¬α ./ Φ. Then, there exists

γ such that Φ `c γ and ¬α ./ γ. Since 〈Φ, α〉 is more conservative than 〈Ψ, β〉,
Φ ⊆ Ψ . Thus, Ψ `c γ. Hence, by Definition 3, ¬α ./ Ψ .

Proof of Proposition 6. We prove the nontrivial part. Consider two arguments
〈Φ, α〉 and 〈Ψ, β〉 s.t. each one is more conservative than the other. Of course,
Φ ⊆ Ψ and Ψ ⊆ Φ, then Φ = Ψ . Therefore, α `c β and β `c α, then α being
logically equivalent with β. Thus, 〈Φ, α〉 and 〈Ψ, β〉 are quasi-identical.

Proof of Proposition 7. Let 〈Ψ, β〉 be a rebuttal for 〈Φ, α〉. That is, β ./ α.
As 〈Φ, α〉 is an argument, we have Φ `c α. Accordingly, β ./ Φ. Thus, 〈Ψ, β〉 is a
defeater for 〈Φ, α〉.

Proof of Proposition 8. 〈Φ, α〉 is a challenge to 〈Ψ, β〉. By Definition 9, (1)
α ./ Ψ and (2) ∀γ s.t. Ψ `c γ, γ 6./ Φ. An immediate consequence from (1)
is 〈Φ, α〉 a defeater for 〈Ψ, β〉. In view of (2), β 6./ Φ because Ψ `c β (by the
definition of an argument). Thus, 〈Ψ, β〉 can not be a defeater for 〈Φ, α〉.

Proof of Proposition 9. Let 〈Φ, α〉 be a challenge to 〈Ψ, β〉. By Definition 9,
∀γ s.t. Ψ `c γ, γ 6./ Φ. Then, ∀δ s.t. Φ `c δ, γ 6./ δ. It then follows that there exist
γi, δj where DF (γ) = γ1 ∨ . . . ∨ γn and DF (δ) = δ1 ∨ . . . ∨ δm s.t. {γi, δj} 0c ⊥.
Then, {γ, δ} 0c ⊥. Thus, ∀γ, δ s.t. Ψ `c γ and Φ `c δ, {γ, δ} 0c ⊥. Consequently,
{Φ, Ψ} 0c ⊥.
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Proof of Proposition 10. (→) Let 〈Ψ, β〉 and 〈Ψ, γ〉 be maximally conservative
defeaters for 〈Φ, α〉. Then, β ./ Φ and γ ./ Φ. By Definition 3, there exist
δ, σ s.t. Φ `c δ and Φ `c σ, where (1) β ./ δ and (2) γ ./ σ. Assume that
DF (β) = β1 ∨ . . . ∨ βn, DF (γ) = γ1 ∨ . . . ∨ γm, DF (δ) = δ1 ∨ . . . ∨ δs and
DF (σ) = σ1∨ . . .∨σv. Now, DF (β∨γ) = ω1∨ . . .∨ωx where ωz = βi or ωz = γk
and DF (δ ∧ σ) = (δ1 ∧ σ1) ∨ . . . ∨ (δs ∧ σv). Let us first consider the first case.
By (1), {βi, δj} `c ⊥. Therefore, by (2) {γk, σt} `c ⊥. Thus, {ωz, δj ∧ σt} `c ⊥
(3) because {βj , δj ∧ σt} `c ⊥ and {γk, δj ∧ σt} `c ⊥. Turning to the second
case. By (1), there exist µ1, µ2, ρ1, ρ2 s.t. µ1 `c ρ1, ρ1 0c µ1, µ1 0c µ2 and
µ2 ≡ ρ2, where {βi, δj} `c (µ1 ⇒ µ2) ∧ (ρ1 ⇒ ρ2) s.t. βi `c µ1 ⇒ µ2 (4) 3. Also,
by (2) there exist µ3, µ4, ρ3, ρ4 s.t. µ3 `c ρ3, ρ3 0c µ3, µ3 0c µ4 and µ4 ≡ ρ4,
where {γk, σt} `c (µ3 ⇒ µ4) ∧ (ρ3 ⇒ ρ4) s.t. γk `c µ3 ⇒ µ4 (5) 4. From (4),
{βi, δj ∧ σt} `c (µ1 ⇒ µ2) ∧ (ρ1 ⇒ ρ2) s.t. βi `c µ1 ⇒ µ2. Also from (5),
{γk, σt ∧ δj} `c (µ3 ⇒ µ4) ∧ (ρ3 ⇒ ρ4) s.t. γk `c µ3 ⇒ µ4. Hence, there exist
µ5, µ6, ρ5, ρ6 s.t. µ5 `c ρ5, ρ5 0c µ5, µ5 0c µ6 and µ6 ≡ ρ6, where {ωz, δj ∧σt} `c
(µ5 ⇒ µ6) ∧ (ρ5 ⇒ ρ6) s.t. ωz `c µ5 ⇒ µ6 (6) 5; (note here that µ5 ⇒ µ6 is
µ1 ⇒ µ2 or µ3 ⇒ µ4 and ρ5 ⇒ ρ6 is ρ1 ⇒ ρ2 or ρ3 ⇒ ρ4). That is, by (3)
and (6) ∀ωz,∀δj ,∀σt {ωz, δj ∧ σt} `c ⊥ or there exist µ5, µ6, ρ5, ρ6 s.t. µ5 `c ρ5,
ρ5 0c µ5, µ5 0c µ6 and µ6 ≡ ρ6, where {ωz, δj ∧ σt} `c (µ5 ⇒ µ6) ∧ (ρ5 ⇒ ρ6)
s.t. ωz `c µ5 ⇒ µ6. Then, β ∨ γ ./ δ ∧ σ. As, Φ `c δ ∧ σ, then β ∨ γ ./ Φ.
Now, as Ψ `c β and Ψ `c γ there exists some minimal Ψ ′ ⊆ Ψ s.t. Ψ ′ `c β ∨ γ.
Moreover, Ψ ′ 0c ⊥ because Ψ 0c ⊥. Hence, 〈Ψ ′, β ∨ γ〉 is an argument. As we
have proven β∨γ ./ Φ, 〈Ψ ′, β∨γ〉 is a defeater for 〈Φ, α〉. Thus, 〈Ψ ′, β∨γ〉 is more
conservative than 〈Ψ, β〉 and 〈Ψ, γ〉 because Ψ ′ ⊆ Ψ , β `c β ∨ γ and γ `c β ∨ γ.
Since 〈Ψ, β〉 and 〈Ψ, γ〉 are maximally conservative defeaters for 〈Φ, α〉, we obtain
β ∨ γ `c β and β ∨ γ `c γ. As consequently, β ≡ γ and then 〈Ψ, β〉 and 〈Ψ, γ〉
are quasi-identical.
(←) Let 〈Ψ, β〉 be a maximally conservative defeater for 〈Φ, α〉. Then, β ./ Φ.
Assume that 〈Ψ, γ〉 is an argument s.t. 〈Ψ, γ〉 and 〈Ψ, β〉 are quasi-identical.
Hence, γ ≡ β. Then, by Proposition 2 γ ./ Φ. It follows that 〈Ψ, γ〉 is a defeater
for 〈Φ, α〉. Since, Ψ ⊆ Ψ and β `c γ, then 〈Θ, γ〉 is a maximally conservative
defeater for 〈Φ, α〉.

Proof of Corollary 1. Let 〈Ψ, β〉 be a maximally conservative defeater for
〈Φ, α〉. By Proposition 10, every argument 〈Θ, γ〉, where 〈Θ, γ〉 and 〈Ψ, β〉 are
quasi-identical, is maximally conservative defeater for 〈Φ, α〉. Then, β ≡ γ. Due
to the existence of an infinite number of formulas γ s.t. γ ≡ β, there exists an
infinite number of maximally conservative defeaters for 〈Φ, α〉 which are quasi-
identical to 〈Ψ, β〉.

3 Here, we do not consider the case δj `c (µ1 ⇒ µ2) ∧ (ρ1 ⇒ ρ2) because δ 6./ δ by
Φ `c δ.

4 Here, we do not consider the case σt `c (µ3 ⇒ µ4) ∧ (ρ3 ⇒ ρ4) because σ 6./ σ by
Φ `c σ.

5 Here, we do not consider the case δj ∧ σt `c (µ5 ⇒ µ6) ∧ (ρ5 ⇒ ρ6) because
δ ∧ σ 6./ δ ∧ σ.
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Proof of Proposition 11. Suppose there exist two pertinent defeaters for 〈Φ, α〉
which have the same support. So 〈Ψ, β〉 and 〈Ψ, γ〉 are pertinent defeaters for
〈Φ, α〉. Since, Ψ `c β and Ψ `c γ, then Ψ `c β ∨ γ. Thus, there exists some
minimal subset Ψ ′ ⊆ Ψ such that 〈Ψ ′, β ∨ γ〉 is an argument. As proven in proof
of Proposition 10, if β ./ Φ and γ ./ Φ, then β ∨ γ ./ Φ. Thus, 〈Ψ ′, β ∨ γ〉 is a
defeater for 〈Φ, α〉. Therefore, 〈Ψ ′, β ∨ γ〉 is more conservative than 〈Ψ, β〉 and
〈Ψ, γ〉. It then follows that 〈Ψ ′, β ∨ γ〉 is maximally conservative defeater for
〈Φ, α〉 and this contradicts the assumption that 〈Ψ, β〉 and 〈Ψ, γ〉 are maximally
conservative defeater for 〈Φ, α〉.

Proof of Proposition 12. Let 〈Φ, α〉 be an argument. Suppose that 〈Φ, α〉 is
a defeater for itself. Then, α ./ Φ. Hence, there exists β s.t. Φ `c β and α ./ β.
This contradicts the condition 2 of Definition 4 because Φ `c α. Accordingly,
〈Φ, α〉 cannot be a pertinent defeater for itself.

Proof of Proposition 13. Since ∆ is finite, there is only a finite number of
pertinent defeaters for each argument. Then, by condition 3 of Definition 12, the
number of branches of the argumentation tree is finite. Also, by condition 2 of
Definition 12, no branch in an argumentation tree can then be infinite. Thus,
each argumentation tree is finite.

Proof of Proposition 14. Since ∆ is finite, there is only a finite number of
pertinent defeaters for each argument. Then, there exists a finite number of
nodes that can be used to construct an argumentation tree for α.


