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Abstract
In Lamb Waves based Structural Health Monitoring (LWSHM) of compos-
ite aeronautic structures, Deep Learning (DL) methods have proven to be10

promising to monitor damage using the signals collected by piezoelectric
sensors (PZTs). However, those data driven algorithms are strongly problem
dependent: any structural change dramatically impacts the accuracy of the
predictions and the generalization of the learnt algorithms to other structures
within the fleet is impossible. Transfer Learning (TL) promises to face that15

issue by capitalizing on the knowledge acquired on a given structure to transfer
it on another from the fleet. An original TL approach based on the Optimal
Transport (OT) theory is proposed here to handle this issue. OT provides a
rigorous mathematical framework for TL that can be practically implemented
using Input Convex Neural Networks modelling Kantorovich potentials but20

that has never been used for LWSHM. Using OT, the knowledge acquired
on a rich LW database is transferred to poorer LW databases collected on
different structures with rising structural divergences. A Structural Index (SI)
is defined and used to compute the gap between those different structures
and can be used to estimate a priori the necessity of the use of TL methods.25

The proposed OT based TL method for LWSHM manages to reduce by
almost 50% the predictions errors between numerical structures with strong
differences (bias in mechanical properties and erroneous PZT position) in
comparison with standard approaches. That leads to a promising approach to
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combine rich numerical database with poorer database in order to build robust30

algorithms for LWSHM of a fleet of aeronautical composite structures.

Keywords: Data-driven Lamb Waves SHM; CNN; Monge-Kantorovich dual-
ity; Deep Transfer Learning; Fleet monitoring

Acronym Definition
LW Lamb Waves
SHM Structural Health Monitoring
NDE Non Destructive Evaluation
PZT Piezoelectric element
DI Damage Index
SI Structural Index
DL Deep Learning
TL Transfer Learning
OT Optimal Transport
CNN Convolutional Neural Network
ICNN Input Convex Neural Network
DA Domain Adaptation
JDA Joint Domain Adaptation
JDOT Joint Distribution Optimal Transport
TCA Transfer Component Analysis
ARTL Adaptive Regularization based Transfer Learning
MMD Maximum Mean Discrepancy
MSE Mean Square Error

Table 1: Table of acronyms

1 Introduction

1.1 Lamb Waves based Structural Health Monitoring (LWSHM)35

Structural Health Monitoring (SHM) is a powerful tool for the deployment of condition-
based maintenance in many industrial sectors [1]. SHM promises to reach cost and weight
reductions, design optimizations, and increased durability. SHM and Non Destructive
Evaluation (NDE) share the same objective which is to ensure that the structure under
study is not damaged but with one major difference. In the case of NDE, there is a40
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human operator handling a NDE instrument who is carrying the interrogation procedure
and who is deciding whether the structure is damaged or not. In SHM, the actuators and
sensors are permanently installed within the host structure and algorithms are deciding
whether the structure is damaged or not. SHM can thus be seen as an automated version
of NDE relying on permanently installed transducers. New kind of structures, called smart45

structures are thus equipped with sensors and actuators to give them new functionalities.
We focus here on the health monitoring of a fleet of smart composite structures based on
Lamb Waves (LW) generated and measured by a network of piezoelectric patches (PZT)s
implemented on the structures. The reversibility of the piezoelectric effect allows using
the patches alternatively as sensors or actuators. LWs propagate at high velocity with50

low attenuation in thin layers [2–4], thus an inspection of large parts can be achieved
with a relatively low number of PZTs and very rapidly. However, LWs propagation in
the host structure is hard to analyze: several symmetric and antisymmetric modes can
propagate simultaneously in the composite structures at the same frequency, LWs interact
with the interfaces, they reflect on the borders, etc. LW based SHM thus relies on55

advanced signal processing tools, physics-based models, as well as data-driven models
to extract information about a potential damage from the measured data [5, 6]. The
information to be gathered for damage monitoring should handle the four levels of SHM
proposed by Rytter regarding damage knowledge [7] : (i) Detection, (ii) Localization,
(iii) Classification and (iv) Quantification.60

Damage detection using Lamb waves is a task that can be easily performed and
there exists numerous algorithms able to do so [8, 9]. Damage localization is more
delicate to achieve, and even if Lamb waves based algorithms exist, there is still room for
improvement in that area [10–12]. Damage classification, is harder to achieve and to
test in practice as several damage types are needed, which is complicated to manage in65

practice for composite materials [9, 13]. Finally, the damage quantification step is the
most delicate one and is a current area of research [14, 15]. Consequently, the focus is
here put on the damage localization and severity quantification steps of the LWSHM
process.

1.2 Deep learning based LWSHM intrinsic limitations70

Deep Learning (DL) great successes in image processing [16] or sound analysis [17]
encourage its use to achieve the four SHM tasks mentioned previously. The damage
detection based on DL has been successfully proposed by many papers [18–26]. Damage
classification is more difficult because of the large diversity of damages that can be
encountered in practice in composite structures, however anomaly classification was75

achieved successfully in [19, 24–28]. The damage localization step is achieved easily
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when one kind of damage is generated in the dataset [18, 22, 23, 29, 30]. Damage
quantification strongly depends of the damage classification step, but if the damage type
is known, DL methods estimate properly its size [21, 28, 30, 31].

Most of the previous papers trains their models with experimental data obtained80

on simple case studies such as plates [20, 21, 26, 27, 30–32], gearboxes [24, 25], or
storey structures [18, 28, 33]. Those approaches are trained on large dataset impossible
to acquire practically in an industrial context because of their cost and the lack of
information on the damage. Numerical dataset are easier to generate [19, 23, 29] but
there is still an existing gap between the numerical models and the experimental reality85

that prevents their use in practice as the simuated numerical models do not exactly
correspond to the actual reality. As input data format, some papers use the temporal
signals directly [20, 30], others transform the data in 2D images (for example using
time-frequency transforms) [26, 34], and others compute specific SHM features such as
Damage Indexes (DIs) [21], Time Varying Damage Indexes [32] or localization figures90

[31]. The architecture of the DL networks strongly influence the accuracy of the model.
It must be adapted to the data format and the dataset size. Most of the papers uses
Convolutional Neural Networks (CNNs) [18–27, 29–31] but other types of architecture
present good results in [29] or [18] .

This brief overview shows that despite the difficulties inherent to data acquisition in95

LWSHM, CNN and others DL architectures obtain interesting results and deserve to be
deployed to solve the SHM tasks. These data-driven methods however inevitably depends
on training data that are difficult and costly to collect: in SHM there is rarely enough
experimental data to train a DL model. The learning obtained also depends on the
structure that produced the data: any structural, geometrical, sensor or environmental100

variation modifies the propagation of the waves and risks to degrade the predictions
accuracy. Training the models with numerical data is thus mandatory because of the
experimental cost, but the gap between the numerical models and the reality strongly
degrades the performances of the trained DL models and their use is impossible in many
cases. Furthermore, two similar aeronautic structures to be monitored (as would be105

expected for fleet monitoring) are not identical: there exists variability on piezoelectric
elements positions and material properties or differences in service history, just to name a
few. A DL algorithm trained on such a structure may thus not be generalized directly
to another structure if it is too different and must be retrained or adapted to the new
target structure. These various drawbacks thus strongly impact the practical usefulness110

of DL approaches for LWSHM despite promising initial results.
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1.3 Transfer Learning

Transfer Learning (TL) seeks to capitalize on the knowledge acquired in solving a
problem to apply it to another relatively close problem [35, 36], and appears to be a
solution to the issues mentioned before. TL relies on the concepts of domain and task.115

A domain D consists of a feature space X associated with the marginal probability
distribution µ(X), a finite sample of features data X = x1, ..xn ∈ X and the labels
y ∈ Y. A task T associates a label space Y with a decision function f : X → Y such
that T = {Y , f(·)}. It aims to associate to a new data x ∈ X a label y ∈ Y using the
function f . In supervised learning, this task is learned from a set of data and label pairs120

xi, yi with xi ∈ X and yi ∈ Y .
The source domain is denoted Ds = {Xs, µs(X)} with ns labels Ys and the source

task Ts = {Y , fs}. On this domain, the amount of data is sufficient to learn easily the
task Ts. The target domain Dt = {Xt, µt(X)} with the nt labels Yt and the task
Tt = {Yt, ft} is defined in a similar way. The TL aims to improve the performance of the125

function ft(.) to learn the task Tt by discovering and transferring the latent knowledge
from Ds to Dt, where Ds , Dt and/or Ts , Tt. Moreover, in most cases, the size of Ds
is much larger than that of Dt, i.e. ns ≫ nt.

Fig. 1: Simple illustration of TL: the source task seeks to distinguish hollow squares from
hollow circles. The target task seeks to distinguish solid circles from solid squares with the help
of the knowledge acquired on the source task.

The approaches combining DL strategies with TL can be grouped in 4 categories [37]
briefly discussed in the following.130

1.3.1 Instances-based

Instances-based TL selects some instances from the source domain as supplements to
the training set in the target domain. A distance computes the gap between the instances
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of both domains. Only close samples are preserved via a weighting strategy to impose
similar distributions between the two domains.135

1.3.2 Mapping-based

Mapping-based TL maps the data from the source and the target domain into a
new common space of representation. A probabilistic error is generally used during
the training of the DL models to find features with aligned distributions between both
target and source domains. The Joint Distribution Adaptation (JDA) proposed by140

[38] seeks to simultaneously align the marginal and conditional distributions of the
source and target domains with a penalization strategy based on the Maximum Mean
Discrepancy (MMD). The JDA is used to transfer the knowledge between two gearboxes
monitored by accelerometers [39], to quantify damage in different structures in [40].
In the Joint Distribution Optimal Transport (JDOT) [41], a distance coming from the145

optimal transport theory is used to constrain a CNN to compute common features in
both domains. Outside the framework of DL, many TL methods based on Domain
Adaptation (DA) map manual features into a new space of representation. An exemple,
the Population Based SHM defined in [33] maps features between a population of storey
structures. Following the same concepts, DA methods compensate the effects of repairs150

in a composite aircraft wing in [42]. The Transfer Component Analysis (TCA) introduced
in [43] is used in [44] to calibrate a digital twin of a drilling process without any prior
label on the target domain. In [45], the TCA bridges the gap between the numerical
model and the real storey structure to estimate a damage location with bayesian model
updating.155

1.3.3 Network-based

Network-based TL re-uses a fully trained model on the source domain to partially
re-train it on the target domain data. During the re-training (or fine tuning), only a
part of the weights is modified (generally the weights of the deepest layers) and the
learning rate is deliberately kept low to slightly modify the model without forgetting the160

knowledge learned in the first phase. This approach is applied in [46] to compensate
some variations in sensor positions in the monitoring of a dam. In [47], a CNN is partially
re-trained by minimizing the MMD between the features extracted in rail monitoring. A
CNN trained for image classification is retrained to detect damages with a camera filming
a dam in [48].165

6 | Hadrien Postorino et. al



Journal of Structural Dynamics, For Review, (pp. 1-40)
1.4.2

1.3.4 Adversarial-based

Two adversarial models are trained simultaneously to find common representations
between the source and target domains [49, 50]. A first model solves the tasks by giving
labels to the data. A second model analyses the features extracted on an intermediate
layer to determine whether the data is coming from the source or target domain. By170

penalizing the first model by the performance of the second, it becomes possible to
constrain the computation of common representations for both domains.

1.4 Achieving efficient TL for LWSHM

In LWSHM, the source domain comes from an initial structure under known operating
conditions or from a numerical model and the target domain comes from a structure175

with different properties (geometry, sensor positions, operating conditions, mechanical
properties, etc.). Two similar structures to monitor, or a real structure and its numerical
counterpart, can be considered as relatively close problems. The TL methods can be
useful to compensate the structural and environmental variability that reduces the model’s
accuracy and facilitate the generalization ability of DL models. They give the possibility to180

use the knowledge acquired on a rich numerical dataset to transfer it to an experimental
dataset with fewer labelled data. They also give the possibility to reduce the size of the
training dataset and thus the cost of new DL models for SHM.

1.4.1 Mapping-based TL approaches in SHM and existing limitations

Mapping-based TL has already shown interesting results in LWSHM, especially to185

follow a population of similar coupons [28, 33, 51]. The tools currently developed to
address this issue are looking for a new mathematical space in which the marginal
probabilites, the conditional probabilities, or both of these distributions are similar and
thus where it is possible to perform the desired adaptation task. In the context of SHM,
three methods have been explored for this purpose. Transfer Component Analysis (TCA)190

proposes to learn a nonlinear transformation of the initial space that makes the marginal
probabilities close in this new space. Joint Domain Adaptation (JDA) seeks to learn a
nonlinear transformation of the initial space that approximates the marginal probabilities
and the conditional probabilities. Rather than first searching for a new space and then
learning the task in this new space, the Adaptive Regularization based Transfer Learning195

(ARTL) method proposes to couple the two actions within the same optimization. Those
methodologies are potentially relying on known predictions and the choice of the nonlinear
transformation to apply to move to the desired space remains empirical. They furthermore
rely on large amounts of data to achieve their learning phases.
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1.4.2 Optimal Transport advantages to achieve TL for LWSHM200

The theory of optimal transport looks for the most economical solution to move
objects from a set of starting points to a set of destination points [52]. The idea behind
optimal transport is therefore to seek the best transformation to perform this operation
through a function evaluating the cost of this transport. This idea is close to domain
adaptation in the sense that is exactly a question of defining how to transform the205

marginal distribution associated to the target space so that it is similar to the marginal
distribution associated to the source space through a dedicated cost function. Recent
mathematical developments associated with this theory have proven that: i) the existence
of a minimum of the cost function associated with the optimal transport is guaranteed,
ii) this minimum can be found in the form of a convex function, iii) this convex function210

is accessible in practice, and iv) Input Convex Neural Networks (ICNN) can learn this
convex function for optimal transport.

Thus, the solution of the optimal transport problem can be achieved by machine
learning and is based on sound mathematical foundations that guarantee the minimization
of a relevant cost function. The use of optimal transport theory in machine learning is215

relatively recent and has not yet been applied to SHM. Compared to the TCA, JDA and
ARTL methods, the optimal transport based methods do not make any assumption about
the underlying nonlinear transformation to be applied but discovers it via learning an
ICNN network. This potentially leads to better generalization properties and potentially
relies on much less data than traditional mapping based TL approaches.220

Furthermore, as the proposed strategy relies on an ICNN, it integrates naturally
within any ML frameworks or algorithms. However, the approach proposed here can be
applied on any set of features, being extracted using machine learning algorithms, or more
classically being empirically manufactured. Indeed, the proposed OT TL approach can
transport any features set and do not necessary rely on a ML algorithm. However, as it225

has been emphasized previously, the implementation proposed here rely on ICNN and thus
can be very naturally integrated with in a ML framework. Finally, in [9] the classification
performances using empirically defined features or raw LW signals have been compared.
The results have shown that using the raw LW signals leads to the best performances.
This explains why it has been chosen here to illustrate the proposed approach on the230

basis of an initial CNN algorithm fed by raw LWs signals.

1.4.3 Contributions

As a first contribution of this work, we define an index called Structural Index (SI)
allowing to evaluate quantitatively the proximity between different similar structures
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equiped with PZT elements and to be monitored using LWs. The SI computed with235

healthy measurements on structures is a relevant index to determine the proximity between
two structures and can be used to estimate a priori the necessity of the use of Transfer
Learning (TL) methods.

Fig. 2: Illustration of Deep Transfer Learning through Kantorovich potentials for the transporta-
tion of LWSHM features. An initial CNN built up with a feature extractor f and a classifier g
is first learnt on source signals. Then, the Kantorovich potential ∇ϕ implemented using ICNN
and allowing to perform optimal transport is learnt on the basis of very few target signals. Using
the initial CNN (i.e. the previously learnt f and g) and the Kantorovich potential (i.e. ∇ϕ,
learnt on very few signals), it is thus possible to perform classification on the target domain on
the basis of f and g learnt on the source domain.

The second contribution of the manuscript is to make a proof of concept of the
application of OT and ICNN to LWSHM. Our approach aims to transport the LWSHM240

features computed at a deep layer of a CNN from the target domain to the source
domain by applying the Optimal Transport (OT) theory to correct the misalignment
between the two domains. This approach belongs to two categories mentioned above: it
is both Mapping-based and Adversarial-based. Similarly with the JDOT [41] method, the
OT cost quantifies the gap between the features distributions in the target and source245

domains and constrains the CNN to learn common features. Moreover, in our approach,
the transport cost is computed using neural networks trained in parallel, leading to an
adversarial-based approach.

An initial CNN is designed to estimate the position and severity of a damage on the
source dataset. It is duplicated into two networks (Figure 2): the first one called source250

model Ms
θ is a simple composition of the convolutional part fθ and the fully connected

part gθ. The target model shares the same convolutional and fully connected parts
with the source model, but at the L-th layer, another model φω is inserted to apply the
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optimal transport. Thus, we have by a simple composition of the relations:

Ms
θ = gθ ◦ fθ

Mt
θ,ω = gθ ◦ ∇φω ◦ fθ

(1)

with Ms
θ the source model, Mt

θ,ω the target model, fθ the features extraction part, gθ255

the discriminative part, ∇φω the gradient of the Kantorovich potential which corresponds
to the transport operator. We choose here to use a supervised approach: we use labels
in the target domain. The proposed approach can simply be adapted in the case of an
unsupervised or semi-supervised transfer with some assumptions on the distributions of
the labels of both domains. One of the advantages of our approach is that the transport260

is not only penalizing the discrepancy between the features of the two domains but also
correcting this discrepancy by applying the transportation.

1.4.4 Organization of the paper

The Section 2 defines the different numerical case study that will be tested and
highlights the need of TL in SHM. The Section 3 briefly summarizes the results of OT265

theory that are necessary within the manuscript. The Section 4 describes the algorithms
used in the proposed approach. The results of the method are presented in the Section
5 to transfer knowledge between relatively close structures. Finally a discussion on the
results and the future works are proposed in Section 6.

2 Candidate datasets for Transfer Learning270

2.1 Finite-element modelling of composite structures

We use the software SDTools [53] to run the simulations corresponding to the
numerical cases that will be used here to assess transfer learning. The structures are
modeled with shell elements with a linear elastic orthotropic behavior and meshed by
a regular grid of 1mm length. The damping introduced in the model is proportional275

to the stiffness matrix with a coefficient β = 1.5e − 8 and free mechanical boundary
conditions are chosen. The model of the healthy state of the first structure has been
fitted with Lamb waves measures on an equivalent experimental structure to ensure the
production of realistic data (Figure 3). More precisely, this means that experimental
measurements on rectangular panels made of the same composite material and equiped280

with PZTs have been performed. A finite-element model corresponding to that case
study have then been built and updated in order to ensure a correct agreement between
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Fig. 3: Fitting of the numerical structure with its equivalent experimental structure with the
PZT 2 as actuator at healthy state

the numerical predictions and the experimental measurements. These precautions have
been taken in order to ensure that the numerical models used here provide numerical
results representative of actual measurements. On Figure 3 it can be seen that a good285

correspondance between the numerical and experimental signals is indeed achieved.

2.2 Candidate Numerical Cases

(a) C0 : Source (b) C1 : Bias and uncer-
tainties

(c) C2 :Bad PZT posi-
tion

(d) C3 : Bias, uncertain-
ties and erroneous PZT
position

Fig. 4: Studied structures

We consider four curved composite smart structures represented by their finite element
models (see Figure 4 and Table 2). For the four models, the damage is modeled by
a reduction of stiffness on cylinder crossing the structure thickness with a diameter of290

10 mm. What is called “severity” here corresponds to a stiffness reduction within the
damaged area. A severity of 0 % is associated with no stiffness degradation whereas a
severity of 100 % corresponds to a null stiffness in the damaged area. The input signal
is a 5 cycles burst with a central frequency of 100 kHz. To illustrate the influence of
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bias and uncertainties in the predictions of a DL model in SHM, we introduce variations295

between the four models :

C0 The first one named C0 has a balanced stacking with 8 layers [02/902/+452/−452]s.
100 damage configurations with 3 parameters (two for position and one for severity)
are simulated according to Latin Hypercube Sampling.

C1 A bias and uncertainties on mechanical and geometric properties are introduced300

in the model of the second structure (Table 2). The unbalanced stack with
10 layers [02/902/ + 452/ − 452/02]s induces a global anisotropic behavior and
uncertainties are added on the mechanical properties, the position of the PZTs
and the geometry in order to simulate a batch of coupons in real experimental
conditions. The uncertainties take the form of random values added to the values305

of some geometric or mechanical properties (See Table 2 where Na,b stands for a
gaussian law with mean value a and variance b). The database then contains 80
damage configurations with varying position and severity.

C2 Imposing strict positioning of the transducers during the fabrication of the structure
is not always easy and significant discrepancies can occur between the planned310

and actual placement. Furthermore, during its lifetime, the transducers network
may be damaged or lose some of its elements and be replaced. The third model
reproduces that kind of events : the third transducer is positioned differently than
in the model C0 which induces strong variations on the measured signals. The
database is composed of 100 damage configurations with varying position and315

severity.

C3 The fourth model is similar to the second but the third transducer is also moved.
The database then contains 80 damage configurations with varying position and
severity.

The labels C0, C1, C2, and C3 will thus be used throughout the manuscript and320

will refer to the above defined models. As previously stated, the objectives are here
to achieve damage localization and damage severity quantification. Consequently, the
damage location over the structure surface will be denotd as x and y and the damage
severity will be denoted s in the following in the manuscript.

2.3 Quantification of the difference between cases325

To estimate the difference between the previously defined numerical structures, we
propose to define Structural Indexes (SI). These SI are defined on the basis of Damage
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Table 2: Geometric and mechanical properties of the studied structures

Param. C0 C1 C2 C3 Unit
L 500 500 +N0,2 500 500 +N0,2 mm
H 200 200 +N0,1 200 200 +N0,1 mm

PZT 1 [100, 160] [100, 160] +N02,I2 [100, 160] [100, 160] +N02,I2 mm
PZT 2 [100, 40] [100, 40] +N02,I2 [100, 40] [100, 40] +N02,I2 mm
PZT 3 [400, 160] [400, 160] +N02,I2 [400, 40] [400, 40] +N02,I2 mm

E1 150 150 +N0,0.5 150 150 +N0,0.5 GPa
E2 9 9 +N0,0.5 9 9 +N0,0.5 GPa
G12 4.7 4.7 4.7 4.7 GPa
ν12 0.33 0.33 0.33 0.33 -
ν23 0.48 0.48 0.48 0.48 -
ρ 1594 1594 1594 1594 kg/m3

SNR 0 30 0 30 dB
Stacking ISO ANISO ISO ANISO -

Ntr 80 20 20 20 -
Ntest 20 60 80 60 -

Indexes (DIs), widely used in SHM to detect damages, but here they compare the healthy
signals between different structures instead of signals corresponding to different damage
states on a given structure. The underlying idea is that the LWs propagation in healthy330

structural conditions strongly depends on the structure properties and geometry, so any
change (geometry, mechanical properties, sensor positions, etc.) will be caught by those
Structural Indexes (SIs). We choose for SI an average of two DIs computed over all the
available signals: the Normalized Residual Error (NRE) and the Cross-Correlation (CC)
presented in Table 3. The NRE focuses on the energy of the signals while the CC focus335

on their temporal behavior. For the structures with uncertainties (C1 and C3), the SI is
the mean of the SIs computed with all the available healthy signals from all coupons.

DI Definition

CC 1−max
(
IFFT [FFT [xij(t)]FFT [yij(t)]∗]√

(ExijEyij )

)

NRE
∫ 0
T

(xij(t)− yij(t))2dt

2×
(∫ 0

T
xij(t)2dt+

∫ 0
T
yij(t)2dt

)
Table 3: Damage Indexes (DIs) used for the computation of Structural Index (SI) with
respectively xsij(t) and xtij(t) the source and target signals for the path between actuator i and
sensor j

The resulting SIs are provided in Tab. 4. As expected, the SI obtained by comparing
the structure C0 to itself is equal to 0. When comparing C0 to C1 which is the same
except that some anisotropy as well as some noise have been added, it can be seen that340

the resulting SI is rising. C2 is more different from C0 as one PZT element is positioned
at a slightly different location which results in a increasing value of SI. Finally C3 is a
combination of C1 and C2 and consequently exhibits the highest SI value among the
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Fig. 5: Healthy signals used to compute the SI (here only signals from actuator 1 to sensor 3
are shown). For structures C1 and C3, one different healthy signal for each coupon is present
due to the model uncertainties.

four tested numerical cases.

Table 4: Structural Index (SI)

C0 → C0 C0 → C1 C0 → C2 C0 → C3
SI 0.0 0.12978 0.5977 0.7466

3 Background on Optimal Transport Theory345

The following Section presents the essential results of the optimal transport theory
necessary to understand the TL algorithm proposed in this paper. Interested readers may
refer to [54] and [52] for more advanced developments as well as further details. Readers
interested in the application to LWSHM can jump directly to Section 3.7 for a digest
summary of the exposed mathematical developments.350

3.1 The Monge problem

The optimal transport problem was described as early as the 18th century by Monge
who looked for the most economical solution to move objects from a set of departure
points to a set of arrival points. To describe this problem, we consider the source
probability measure µ ∈ Zs and the target probability measure ν ∈ Z t with the features355
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Fig. 6: Transport between two sampled distributions (µ, ν) by the Kantorovich potentials φ
and φ.

spaces Zs and Z t. A map T transports the measure µ over the measure ν if for any
positive measurable map f we have

∫
f (T (x)) dµ(x) =

∫
f(y)dν(y). The transport

is then noted T#µ = ν. The cost function c : Zs × Z t → R+ represents the energy
required to move one unit of mass from µ to ν, the total cost to transport with the map
T is then given by :360

C(T ) =
∫

Zs
c (x, T (x)) dµ(x) (2)

The minimization of the cost C(T ) among all the possible maps T under the constraint
T#µ = ν provides the Optimal Transport Map.

3.2 The primal Monge-Kantorovich problem

The Monge’s problem is relaxed by introducing a joint distribution π ∈ Π(µ, ν) with
respectively µ and ν for the first and second marginals [55]. The problem is no longer365

described by a function but by a measure called the transport plan. The Wasserstein-2
distance W 2

2 is the optimal transport cost computed with c(x, y) = 1
2∥x − y∥

2
2 where

∥ · ∥2 denotes the Euclidean norm. The primal Monge-Kantorovich problem then amounts
to solve the following optimization:

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

[" 1
2∥x− y∥

2
2dπ(x, y)

]
(3)

This primal formulation is mathematically advantageous compared to the previous one370

[54], in particular the existence of a minimum is guaranteed with weak assumptions on
the cost function. In [56, 57] the primal problem is solved in a discrete form, leading in
that case to a simple linear optimization problem. The minimization of the Sinkhorn
distance is achieved very quickly with an entropy regularization exploited in the JDOT
[41, 58]. However, in order to transport new samples from one distribution to another -375

which is required in our approach - the transport plan must be a continuous map.
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3.3 The dual Monge-Kantorovich problem

The optimization theory has frequently described the difficulties to solve a problem
in its primal formulation and proposes dual formulations to relax it [59]. For the OT,
the commonly used Monge-Kantorovich duality introduces two potential functions such380

as [55]:

W 2
2 (µ, ν) = sup

ψ(y)−φ(x)⩽ 1
2 ∥x−y∥2

2

[∫
Zt
ψ(y)dν(y)−

∫
Zs
φ(x)dµ(x)

]
(4)

The Theorem 5.2 in [52] proves that the pair of potential functions (φ, ψ) ∈ (L1(µ)×
L1(ν)) respecting the inequality ψ(y)−φ(x) ⩽ 1

2∥x−y∥
2
2 is a pair of a convex function φ

and its conjugate φ. The resolution is then achieved by finding only one convex function:
385

W 2
2 (µ, ν) = sup

φ∈CVX(µ)

[∫
φ dµ+

∫
φdν

]
(5)

with: φ(y) = sup
x

[1
2∥x− y∥

2
2 − φ(x)

]
the conjugate of φ.

The Theorem 3.3 in [60] shows that the W 2
2 distance is equal to :

W 2
2 (µ, ν) = Cµ,ν − inf

φ∈CVX(µ))

[∫
φ dµ+

∫
φ dν

]
(6)

with: φ(y) = sup
x

[⟨x, y⟩ − φ(x)] the conjugate (or Legendre transform) of φ,

Cµ,ν = 1
2

∫
∥x∥2

2dµ(x) + 1
2

∫
∥y∥2

2dν(y) a constant independent of (φ, φ).

3.4 Minimax formulation of the dual Monge-Kantorovich problem

In DL approaches, the densities are generally not accessible and the distributions390

are sampled. The problem formulated by Equation 6 takes the form of a stochastic
optimization on the weights of the model φ by computing the mean of losses with random
samples of µ and ν.

W 2
2 (µ, ν) = Cµ,ν − inf

φ∈CVX(µ)
[Ex∼µ[φ(x)] + Ey∼ν [φ(y)]] (7)

In practice, the constraint on the conjugate φ(y) = sup
x

[⟨x, y⟩ − φ(x)] is not easy to
apply. With the help of the Brenier’s theorem [61] that remarkably makes the link between395
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the optimal measure and the optimal convex potential function, the Theorem 3.3 in [60]
introduces another convex ψ function such that : φ(y) = sup

ψ
[⟨y,∇ψ(y)⟩ − φ(∇ψ(y))].

The problem is then reformulated as a MaxiMin optimisation used in this work:

W 2
2 (µ, ν) = Cµ,ν+ sup

φ∈CVX(µ)

[
inf

ψ∈CVX(ν)
[−Ex∼µ[φ(x)]− Ey∼ν [⟨y,∇ψ(y)⟩ − φ(∇ψ(y))]]

]
(8)

3.5 Input Convex Neural Network

Fig. 7: The Input Convex Neural Netword (ICNN) architecture

Input Convex Neural Networks (ICNNs) is a class of neural network whose output is400

convex with respect to their inputs. Proposed recently in [62], they have known a growing
interest thanks to their original properties. They have found applications for classification
problems [63], for new control strategies [64] and to approximate the convex functions
space [65]. For a given input x ∈ Rd, the output zL of the network with L layers of D
hidden neurons is defined recursively by the following expression for i ∈ [0, 1, .., L] :405

zi+1 = σi {Wizi + Aix+ bi} , h(x, ω) = zk (9)

with σi an activation function, A0:L−1 ∈ Rd × RD input weight matrices, W1:L−1 ∈
RD × RD output weight matrices and b0:L−1 ∈ RD bias terms. On the last layer, the
weigths are a vector AL ∈ Rd, a scalar WL ∈ R and a bias bL ∈ R. The function
x→ f(x, ω) is convex with respect to x if [62] : (i) all weights Wi are positive, (ii) the
activation function σ0 is convex and (iii) σi is convex and non-decreasing ∀i ∈ [1, .., L−1].410

This class of function is rich enough to represent the set of all convex functions [64], the
choice of ICNNs to solve the transport problem is then valid.

3.6 Uses of Neural Networks for Kantorovich potentials

The recent advances in DL invite to search the Kantorovich potentials in the form
of neural networks to integrate the optimal transport theory to DL methods leading to415

strong mathematical justifications in the choice of architectures and training loop. The
MaxiMin formulation in Equation 8 of the dual problem has been successfully studied
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several times. Two ICNN are used to compute simultaneously the potential and its
conjugate in [65]. Only one model is trained and the conjugate is computed with the
formula of Equation 6. The training can be complex in this approach, the algorithm has420

been then improved and relaxed in [60] by substituting the conjugate by another ICNN
following the results of Equation 8. This proposition is adopted in this work. In [66], the
MaxiMin problem is solved with an ICNN as potential and combine it with a generator
model inspired by GANs in order to compute the transport between distributions with
different dimensions. The MaxiMin problem can also be adapted for distributions with425

different dimensions and other distances [67].
The distance W 2

2 is particularly popular in a type of generative model, the Wasserstein
Generative Adversarial Network (WGAN) [68]. The MaxiMin formulation is used in [69]
to enrich a GAN: the Wasserstein distance is computed by solving the dual formulation
of the problem with an ANN as potential model. In order to obtain a mathematically430

explainable generative model, [70] incorporates Kantorovich potentials into the training
of a GAN where the discriminator error is the distance W 2

2 . The MaxiMin formulation is
also used to compute p, q-Wasserstein distances in GAN in [71, 72].

To avoid the difficult task of solving a MaxiMin problem, regularization approaches
are interesting alternatives. In [73], the L2 regularization is combined with an entropy435

regularization based on the values of the potentials. This approach is probably the first
to propose to model the Kantorovich potentials by ANNs. In [74], the Wasserstein−2
distance is minimized using a single ICNN combined with a new regularization: the
cycle-consistency from [75] based on the gradient values of the potentials. This same
proposal is exploited for the calculation of Wasserstein barycenters [76]. In [67] the dual440

problem is used to compute Wasserstein barycenters with ICNN.

3.7 Take away message regarding Optimal Transport

The idea behind optimal transport is therefore to seek the best transformation to
perform a mapping between two different spaces through the minimisation of a function
evaluating the cost of this transport. In summary, the mathematical developments445

exposed here are showing that:

• The existence of a minimum of the cost function associated with the optimal
transport is guaranteed by making very few assumptions (primal Monge-Kantorovich
problem).

• This minimum can be found in the form of a convex function satisfying certain450

constraints (dual Monge-Kantorovich problem).
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• This convex function is accessible in practice via the resolution of an optimization
problem of the type MiniMax.

• Input Convex Neural Networks (ICNN) can learn this convex function for optimal
transport by learning to solve the optimization problem mentioned in the previous455

step.

Thus, the solution of the optimal transport problem can be achieved by machine
learning and is based on sound mathematical foundations that guarantee the minimization
of a relevant cost function.

4 Deep Transfer Learning Implementation460

This section then describes the implementation carried out here to illustrate OT in
a LWSHM context. The reference CNN on which OT will be applied is first described.
Then the implementation of the ICCN performing OT is discussed.

4.1 Reference CNN and input data design

In a LWSHM context, the reference CNN is trained here to estimate the severity and465

the position of a damage (which corresponds to the task (ii) and (iv) of the SHM process)
on a composite structure. The architecture of the reference CNN is inspired from the
VGG16 network [16] but adapted for 1D signals. The architecture of the network (Figure
8) is composed of 4 pairs of convolutional layers followed each by a max pooling layer, a
normalization layer, a dropout layer and a ReLu activation layer. After the convolutional470

part of the network, the bottlenecks part is composed of 3 fully connected layers (Table
6). The signals of all the path of actuator-sensors are concatenated to form one input
vector (Figure 9) of size 6024. In practice, 3 PZT elements are available, wich leads to a
total of 2 possible paths when one of the PZT element is an actuator. This leads to a
total of 12 signals of 502 samples that are concatenated together in order to form the475

desired input vector. The input data are finally normalized between −1 and 1 before
being fed to the algorithm.

4.2 OT DT strategy architecture

The Table 6 summarizes the architecture of the OT TL strategy used in this work, as
shown inf Fig. 2, and the corresponding hyperparameters are presented Table 5. Two480

ICNNs of 4 layers of 64 neurons represent the Kantorovich potentials. The choice of
this architecture strongly influences the quality of the transport. The same architecture
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Fig. 8: Architecture of the initial CNN

Fig. 9: Inputs of the CNN with all actuator to sensor pathes concatenated in one vector before
normalization.

and set of hyperparameters have been used for every case. Their determination relies on
empirical knowledge acquired in previous works combined with a trial and error approach.

4.3 Feature extraction and Discriminator training485

Even though the ICNNs are theoretically able to transport very high dimension data,
the resolution of the transport problem is easier and numerically cheaper with a reduced
number of dimensions. The convolutional part fθ of the CNN in Figure 8 extracts relevant
and parsimonious information from the signals. The initial input data size is reduced to
576 after the convolutions. After some fully connected layers only 16 features describes490

the data. The architecture is summarized in the Table 6. The transport is applied at this
intermediate layer at depth N − 2 by inserting the gradient of the Kantorovich potential.
In the formulation of the Equation 6, the distributions are sampled at each iteration. In
practice, the densities are not accessible and the number of samples is limited by the

Table 5: Hyperparameters values

Hyperparam. α βs βt titer niter kiter jiter ns nt lr lrφ lrψ
Value 1e− 3 1 1 1000 1 1 4 80 20 1e− 4 0.25e− 4 0.25e− 4
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Table 6: Architectures of the features extractor fθ, the Kantorovich potential φω and the
regressor gθ

Model Layer Parameter Value

fθ

Input size 10040
Conv1D Number of filters and filter length 8x10

Activation Function ReLu
Conv1D Number of filters and filter length 8x10

Activation Function ReLu
MaxPool Window size 10
Dropout τ 0.05
Conv1D Number of filters and filter length 16x10

Activation Function ReLu
Conv1D Number of filters and filter length 16x10
MaxPool Window size 4
Activation Function ReLu
Dropout τ 0.05
Conv1D Number of filters and filter length 32x5

Activation Function ReLu
Conv1D Number of filters and filter length 32x5

Activation Function ReLu
MaxPool Window size 4
Conv1D Number of filters and filter length 32x5
Conv1D Number of filters and filter length 32x5
MaxPool Window size 4
Activation Function ReLu
Dropout τ 0.05
Dense Number of hidden neurons 64

Activation Function ReLu
Dense Number of hidden neurons 64

Activation Function ReLu

φω

Input Convex Layer Number of hidden neurons 256
Input Convex Layer Number of hidden neurons 64
Input Convex Layer Number of hidden neurons 64
Input Convex Layer Number of hidden neurons 64
Input Convex Layer Number of hidden neurons 1

∇

gθ

Activation Number of hidden neurons ReLu
Dense Number of hidden neurons 3

Activation Function SoftMax
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dataset. To overcome this, the use of dropout layers in the CNN adds variability to each495

prediction during training.
The Mean Square Error (MSE) between the predicted and the true labels is minimized

to train fθ and gθ. In addition to this error, the cost function is penalized by the transport
cost with the Wasserstein-2 distance W 2

2 to constrain fθ to extract features common
to both target and source domains. Coefficients are introduced to weight each of these500

errors : βs and βt respectively weight the MSE on the source data and on the target
data and α weights the influence of the transport cost.

Lθ = βs
ns

ns∑
i=1

MSE(Ms
θ(xsi ), ysi )+

βt
nt

nt∑
j=1

MSE(Mt
θ(xtj), ytj)+αW 2

2 (∇φω(fθ(xt), fθ(xs))

(10)

4.4 The Dual Monge-Kantorovich problem computation

The two Kantorovich potentials are represented by the ICNNs ψγ with weights γ and
φω with weights ω. To solve the MaxiMin problem of Equation 8, the training is done in505

two steps repeated at each iteration. The use of a two-step algorithm for the solution
of a MaxiMin problem is usual for the transport problem [60, 66, 73] but also for the
training of GAN [77]. Here the first step trains the model ψγ to ensure this model is the
conjugate of φω and the second step trains φω to compute the transportation between
the two domains.510

max
ω:Wl≥0,∀l∈[L−1]

min
γ:Wl≥0,∀l∈[L−1]

Jω,γ (11)

with :

Jω,γ = 1
nt

nt∑
j=1

φγ(∇ψω(ztj))− ⟨ztj,∇ψω(ztj)⟩ −
1
ns

ns∑
i=1

φγ(zsi ) (12)

4.5 Global Algorithm

The global training consists in achieving the MaxiMin optimization in 3 steps : first
the features extraction model and the discriminative model (fθ and gθ) are trained to
minimize the loss L from Equation 10 and then the optimal transport problem is solved515

by training φγ and ψω to minimize J from Equation 12. The training of φγ and ψω

follows the optimization loop proposed in Algorithm 1. The global algorithm is not always
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Algorithm 1: Dual Monge-Kantorovich problem optimization loop
Input: (µ, ν) source and target distributions; M batch size; T total iterations; φ and

ψ : ICNNs with their respective weights ω and γ ;
1 for n = 1, .., niter do
2 for k = 1, .., kiter do
3 Sample a batch {ztj}

nt
j=1 from ν ;

4 Update γ to minimize 1
nt

nt∑
j=1

φγ(∇ψω(ztj))− ⟨ztj ,∇ψω(ztj)⟩ ;

5 for l = 1, .., liter do
6 Sample a batch {zsi }

ns
i=1 from µ ;

7 Update ω to minimize 1
ns

ns∑
i=1

φγ(zsi )−
1
ns

nt∑
j=1

φγ(∇ψω(ztj)) ;

easy to train because of its MaxiMin formulation. The different errors and the MaxiMin
formulation of the transport problem sometimes make it unstable or do not allow it to
converge to an acceptable solution. Several hyperparameters must be optimized: the520

weights: α, βs and βt, the respective learning rates of (f, g), φ and ψ : lr ,lrφ,lrψ, the
iteration numbers: titer, niter, kiter and jiter, and the size of the batches: ns and nt.

Algorithm 2: Deep Transfer Learning with Kantorovich Potentials
Input: Mθ = gθ ◦ fθ : initial model with fθ feature model extraction model at layer l

and discriminative model gθ ;
(φω, ψγ) : ICNNs with their respective weights ω and γ;
Data: Set of source data Xs and target data Xt

Output: Ms
θ = gθ ◦ fθ and Mt

θ,ω = gθ ◦ ∇φω ◦ fθ
1 Ms

θ0
← gθ0 ◦ fθ0 Initialize source model ;

2 Mt
θ0,ω0

← gθ0 ◦ ∇φω0 ◦ fθ0 Initialize target model ;
3 for t = 1, .., titer do
4 Sample a batch (xsi , ysi )

ns
i=1 and (xtj , ytj)

nt
j=1 respectively from Xs and Xt ;

5 Update θ to minimize Lθ(Xs
batch, X

t
batch) from Equation 10;

6 ZSbatch = {zsi = fθ(xsi )}
ns
i=1;

7 ZTbatch = {ztj = fθ(xtj)}
nt
j=1;

8 Update ω and γ to minimize Jω,γ(ZSbatch, ZTbatch) from Equation 12 with Algorithm
1
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5 Application to LWSHM

5.1 Training and test datasets

We propose here to evaluate the added value of the transfer of the knowledge acquired525

on the source structure C0 to the target structures C1≤i≤3 in comparison with standard
methods which are not performing it. For each of these databases, a part of the samples
is used for training and another part is kept for testing the models (see Table 2). In each
case during training, 80 samples are used from the source structure C0 and 20 from the
target structures C1≤i≤3. Ntr represents the number of samples used for training and530

Ntest the number of samples kept for testing. For the source domain, this balance of
80 % of data used for training and of 20 % of data used for testing is rather standard
and should prevent overfitting. For the the target domain, relying only on 20 % of the
data for training and testing on 80 % of the data is much more challenging.

5.2 Performance evaluation535

To evaluate the relevance of our TL approach, 4 approaches are compared: a training
with only the source data, a training with only the target data and training with source
and target data mixed together. In order to quantify the performances of the various
methods an integrated Mean Square Error (MSE) has been used. This MSE is the sum
of the error in localization for x and y and of the error in severity estimation s. As the540

localization coordinates are depending on a reference frame and the severity can be null,
it was not possible to use here a normalized MSE.

5.2.1 C0 → C1

In this case, the model bias and uncertainties have a slight influence on the performance
of the model and the quality of the predictions is not strongly deteriorated. The proposed545

transfer learning strategy does not bring any clear benefit compared to a simple learning
on the source data (see 10 and Figure 11).

5.2.2 C0 → C2

In this case, Figure 13a clearly shows the inability of the model to predict on a
structure with a poorly positioned sensor. Figure 13b shows that the number of data in550

the target domain is insufficient to predict correctly with only target data. The simple
approach mixing the two domains does not yield satisfying results because of the strong
differences between Input data (Figure 13c). Our TL approach gives a clear improvement
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Fig. 10: MSE for the transfer C0 → C1

(a) Training with source data (b) Training with target data

(c) Training without transfert on target and
source data

(d) Training with transfer betwen source and
target data

Fig. 11: Evaluation of the transfer C0 → C1. The objectives are here to achieve damage
localization and damage severity quantification. The damage location over the structure surface
will be denoted as x and y and the damage severity is denoted s.
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Table 7: Evaluation of our TL methods

(a) MSE on test data from the target domain

C0 → C0 C0 → C1 C0 → C2 C0 → C3
Source only 0.047 0.047 0.161 0.165
Target only - 0.103 0.101 0.120
Mixed data - 0.057 0.083 0.121

Our Transfer - 0.053 0.033 0.051
(b) MSE on test data from the source domain

C0 → C0 C0 → C1 C0 → C2 C0 → C3
Source only 0.0163 0.0163 0.033 0.026
Target only - 0.063 0.150 0.151
Mixed data - 0.0195 0.0173 0.025

Our Transfer - 0.0194 0.0133 0.036

of the predictions with an reduction of more than 50% of the prediction error on the
target data (Figure 13d).555

5.2.3 C0 → C3

The results of this last case are very similar to those of the previous one, Figure 15a
shows the difficulties of the model to predict on a structure with a badly positioned sensor
and Figure 14 shows that the transfer learning approach proposed here decreases by more
than 50% the prediction error on the target data.560

5.3 Performances overview

Table 7b and Table 7a compare the different approaches evaluated respectively on the
source and target domain with test data. Our approach reduces the prediction error of
the structures by almost 50% when the differences between the structures are relatively
strong. For structures that are close with small SI, our approach does not bring any565

benefit. Figure 16 compares the evolution of the errors for the different methods as a
function of the SI. While the error of the approaches without transfer data rises with the
SI, our transfer approach maintains the error at a low level.

The blue curves in the Figure 16 shows that the accuracy of the CNN trained with
the C0 data decrease while the SI rise. With small variations on the structure such as570

uncertainties (C0 → C1), the Mean Squared Error (MSE) of the predictions is still low
but with a change in one PZT position in the model (C0 → C2 and C0 → C3) the
accuracy decreases strongly. The CNN is unable to characterize correctly a damage when
significant differences exist between the structures, a new approach based on TL is thus
required to generalize the knowledge of the DL models.575
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Fig. 12: MSE for the transfer C0 → C2

(a) Training on source data (b) Training with target data

(c) Trainig without transfert on target and
source data

(d) Training with transfer betwen source and
target data

Fig. 13: Evaluation of the transfer C0 → C2. The objectives are here to achieve damage
localization and damage severity quantification. The damage location over the structure surface
will be denoted as x and y and the damage severity is denoted s.
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Fig. 14: MSE for the transfer C0 → C3

(a) Training on source data (b) Training with target data

(c) Training without transfer on target and
source data

(d) Training with transfer between source and
target data

Fig. 15: Evaluation of the transfer C0 → C3. The objectives are here to achieve damage
localization and damage severity quantification. The damage location over the structure surface
will be denoted as x and y and the damage severity is denoted s.
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Fig. 16: Prediction error evolution with SI for the different tested TL approaches

6 Discussion

6.1 Advantages and limitations

It is shown here in a LWSHM context that the solution of the optimal transport
problem can be achieved by machine learning and is based on sound mathematical
foundations that guarantee the minimization of a relevant cost function. Compared to580

the TCA, JDA and ARTL methods, the optimal transport based methods do not make
any assumption about the underlying nonlinear transformation to be applied but discovers
it via learning an ICNN network. This potentially leads to better generalization properties
and potentially relies on much less data than traditional mapping based TL approaches.
Furthermore, as the proposed strategy relies on an ICNN, it integrates naturally within585

any ML frameworks or algorithms.
The CNN used here extracts automatically abstract features from the data. Only a

small SHM expertise is thus necessary and the proposed algorithm is relatively standard
for any type of data. Further works can focus on the integration of SHM knowledge in
the algorithm to facilitate the training and custom the architectures. Especially, only a590

few hypothesis are done on the cost function chosen here in the statement of the dual
Monge-Kantorovich problem. The research of a cost more specific to the SHM could be
an interesting perspective.

Nevertheless, the proposed approach is still a data-based approach and consequently,
a certain amount of data is still mandatory in order to train the various ML algorithms595

involved here. It is also important to mention that the training phase is particularly
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tricky and that finding hyperparameters providing correct results can be difficult. Con-
sequently, upcoming work dedicated to make the proposed approach more robust by
automatically finding adequate hyperparrameters, or at least by providing a range in
which hyperparameters should be selected, should be achieved.600

6.2 Closing the gab between academy and industry

Despite an important research effort on LWSHM, there is however relatively few routine
industrial applications. Reasons for the slow transfer include among other insufficient
attention to how the large data flows will be handled and the lack of performance
validation on real structures in industrial environments. The work presented here is thus605

a potential part of the solution to bridge the gap between academy and industry in the
LWSHM context. However, the damage model we used is very simple and reproduces
incompletely the effect of a real damage. The TL approach proposed here could also
be used to correct the effects of a poor damage modelling. The approach can indeed
now be applied more largely to open experimental datasets dedicated to LWSHM such610

as the OpenguidedWaves1 one or the REMAP one2 for example among others. Such
datasets contains measurements performed on similar composite structures equipped with
piezoelectric elements and monitored by LWs. Consequently, one of the experimentally
tested structure can be used to train the initial CNN. Afterwards OT DL strategy can be
tested by assessing how TL can be efficiently achieved between the structure used for615

training and the other experimental structures. This will help in demonstrating from an
industrial perspective the relevance of the proposed approach.

Furthermore, the SI defined here is a relevant index to determine the structural prox-
imity between two structures. Our choice of SI is based on empirical knowledge acquired
with the DIs used in damage detection. Further work will focus on the computation620

of other SIs to find the best formula and will apply it on other cases to determine an
adequate threshold. An ideal SI should be unique for any kind of structure in order to
determine in advance if a transfer strategy is necessary or not with a new dataset. The
previously mentioned databases can help in doing so and in transferring the proposed
approach toward industrial applications.625

6.3 Limiting the experimental needs

Finally, this work opens the way to hybrid models mixing large numerical dataset
with small and costly experimental dataset for LWSHM. Using the proposed approach,

1http://openguidedwaves.de/
2https://dataverse.nl/dataverse/ReMAP_H2020_SHM_data_repository
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real applications based on DL can be targeted faster with fewer data and the proposed
approach will naturally integrates the variability between aeronautic structures. The630

proposed approach indeed allows to use only a reduced number of simulations to train a
DL model on a new structure globally, but not exaclty, similar to a previous one. This
considerably reduces the computation time required for the generation of dataset and
for algorithms learning in LWSHM. The validity of such an approach still needs to be
demonstrated but theoretically, numerical models seem to be close enough to experimental635

data to guarantee that such an attempt would be successful.

7 Conclusion
In Lamb Waves based Structural Health Monitoring (LWSHM) of composite aeronautic

structures, Deep Learning (DL) methods have proven to be promising to monitor damage
using the signals collected by piezoelectric sensors (PZTs). However, those data driven640

algorithms are strongly problem dependent: any structural change dramatically impacts
the accuracy of the predictions and the generalization of the learnt algorithms to other
structures within the fleet is impossible. Transfer Learning (TL) promises to face that
issue by capitalizing on the knowledge acquired on a given structure to transfer it
on another from the fleet. An original TL approach based on the Optimal Transport645

(OT) theory is proposed here to handle this issue. OT provides a rigorous mathematical
framework for TL that can be practically implemented using Input Convex Neural Networks
modelling Kantorovich potentials but that has never been used for LWSHM. Using OT,
the knowledge acquired on a rich LW database is transferred to poorer LW databases
collected on different structures with rising structural divergences. A Structural Index650

(SI) is defined and used to compute the gap between those different structures and can
be used to estimate a priori the necessity of the use of TL methods. The proposed
OT based TL method for LWSHM manages to reduce by almost 50% the predictions
errors between numerical structures with strong differences (bias in mechanical properties
and erroneous PZT position) in comparison with standard approaches. That leads to a655

promising approach to combine rich numerical database with poorer database in order to
build robust algorithms for LWSHM of a fleet of aeronautical composite structures.
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