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Abstract

This paper proposes a recursive interval-valued estimation framework for identifying the parameters of linearly parameterized
systems which may be slowly time-varying. It is assumed thatthe model error (which may consist in measurement noise or model
mismatch or both) is unknown but lies at each time instant in aknown interval. In this context, the proposed method relieson
bounding the error generated by a given reference point-valued recursive estimator, for example, the well-known recursive least
squares algorithm. We discuss the trade-off between computational complexity and tightness of the estimated parametric interval.
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1. Introduction

In system identification, the estimation problem refers to the
task of finding the parameters of a given parametrized model
family in such a way that the resulting model matches (in some
sense) a set of data. The main challenge with this task is most
presumably how to deal with the uncertainty affecting the data
with regards to the assumed model structure (e.g., in the form
of model error or measurement noise). To hope for good esti-
mates when the uncertainty is not negligible, it is important to
model somehow the uncertainty. Probabilistic distributions are
probably the most common models for describing uncertainties
in many engineering fields. Such a modelling, when accurate,
can lead to the design of better estimation schemes. A prob-
lem however is that a fine probabilistic modeling of the uncer-
tainty may require a strong prior knowledge of the process be-
ing modelled. While such a reliable knowledge is rarely avail-
able, probabilistic models of the uncertainty may be severely
wrong hence damaging the performance of the estimator. An al-
ternative approach to the probabilistic one is to assume that the
uncertain variables (e.g., the noise component) of the model,
although unknown, live in bounded and predefined sets. This
corresponds to the so-called set-membership representation of
the uncertainty. In this latter setting the underlying ideaof the
parameter estimator design is to characterize the entire set of
parameters which, through the induced models, are consistent
with the data samples and the uncertainty sets. The literature
of system identification abounds in such set-memberships ap-
proaches, see e.g., [11, 13, 8, 12, 5, 18, 19]. Various predefined
geometrical forms can be considered for representing the pa-
rameter sets but we restrict our attention here to the case of
intervals [8, 14]. Assuming that the model error (uncertainty)
takes values in a known sequence of intervals, one can esti-
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mate intervals containing all the parameters which are consis-
tent with the data, the model and its uncertainty. Among the
existing methods which have tackled this question we can cite
[10, 17] for batch mode of estimation and [15, 7] for recursive
(online) mode of learning.

In this paper, we consider the problem of deriving a recur-
sive interval-valued estimator for linearly parameterized mod-
els subject to a bounded uncertainty. The data model is as-
sumed to be linear with respect to the parameters (although
the input-output map may indeed be nonlinear). Then, under
the assumption that the model error sequence is only known to
lie in some interval bounds, we first construct a tight interval-
valued estimator based on the error generated by the recursive
least squares (RLS) algorithm [6, 16, 4]. However, this (tight)
interval-valued estimator suffers from a level of computational
complexity which is not affordable in practice when the esti-
mation horizon grows towards infinity. We therefore turn to a
family of approximate implementations whose complexity can
be calibrated in function of the desired level of performance
(measured here in term of tightness of the interval-valued esti-
mate). That is, the proposed family of estimators offer the user
the possibility to tie the size of the desired interval-valued es-
timate to the available computational resources. The proposed
estimation framework applies to both stationary systems and
slowly time-varying ones.
Closely related works to the current paper are the ones reported
in [15] and [7]. The former solves at each time a linear program
on a sliding window of constant length. The latter bounds the
error generated by a bank of RLS identifiers. The current pa-
per proposes a complementary development of this latter idea
by considering a more general framework with regards to the
model error representation. Moreover, our design method ap-
pears to be more systematic as it leads to a family of parametriz-
able interval-valued estimators. Also, it applies to both time-
invariant and time-varying models with bounded change rate.
In particular, it is shown in the time-invariant case that byap-
plying an appropriate intersection operation, the size of the es-
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timate is guaranteed to decrease monotonically.

Outline. Section 2 states the problem of recursive interval-
valued estimation and outlines some necessary preliminaries
on interval set-membership representation of uncertainty. Our
method for designing interval-valued estimators relies onthe
error generated by a reference point-valued recursive estima-
tor. Hence, Section 3 discusses one possible candidate for such
a reference point-valued estimator, the recursive least squares
(RLS) estimator with exponential forgetting factor. In Section
4, we present the main estimator and its variants. In Section
5, we consider the more general estimation setting where the
to-be-estimated model is no longer constant but slowly time-
varying. Section 6 reports some simulation results to illustrate
and analyze the performance of the proposed estimation frame-
work. Finally, Section 7 presents some conclusions.

Notation. R (resp. R+) is the set of real (resp. nonnegative
real) numbers;Z (resp. Z+) is the set of (resp. nonnegative)
integers. For a real numberx, |x| will refer to the absolute value
of x. For x = [x1 · · · xn]⊤ ∈ R

n, ‖x‖p will denote thep-
norm of x defined by‖x‖p = (|x1|p + · · · + |xn|p)1/p, for p ≥ 1.
In particular forp = ∞, ‖x‖∞ = maxi=1,...,n |xi |. For a matrix
A ∈ Rn×m, ‖A‖F is the Frobenius norm ofA defined by‖A‖F =
tr(A⊤A)1/2 (with tr referring to the trace of a matrix).

If A = [ai j ] and B = [bi j ] are real matrices of the same
dimensions, the notationA ≤ B will be understood as an ele-
mentwise inequality on the entries, i.e.,ai j ≤ bi j for all (i, j).
|A| corresponds to the matrix [|ai j |] obtained by taking the ab-
solute value of each entry ofA. In caseA andB are real square
matrices,A � B (resp. A ≻ B) means thatA − B is positive
semi-definite (resp. positive definite).In will denote the iden-
tity matrix of dimensionn.

2. Problem statement

We consider a linearly parameterized1 discrete-time dynamic
system defined by

y(t) = x(t)⊤θ◦ + v(t), (1)

wherey(t) ∈ R is the measured output at the discrete timet ∈
Z+, x(t) ∈ Rn is the (known) regressor andv(t) ∈ R denotes an
(unknown) noise component or a modeling error. The regressor
x(t) may, among other possibilities, assume a structure of the
form

x(t) =
[

y(t − 1) · · · y(t − na) u(t)⊤ u(t − 1)⊤ · · · u(t − nb)⊤
]⊤

whereu(t) ∈ R
nu is the input of the system and the integersna

and nb are the model orders.θ◦ ∈ R
n in (1) is an unknown

constant parameter vector which is to be estimated from data.
The problem we consider in this paper is the following: given
data points{(y(k), x(k))}tk=1 generated by the system (1) up to

1Note that the considered system may indeed be nonlinear in term of input-
output relation. For example,x(t) may be of the formx(t) = φ(z(t)) with φ
being a known nonlinear map andz(t) is formed from measurements.

time t, we want to infer an estimate of the parameter vector
θ◦. However, since the sequence{v(t)} is unknown here we can
hardly hope for an exact recovery ofθ◦. Hence we consider the
scenario wherev(t) is componentwise bounded for allt ∈ Z+

with known bounds and setup as our objective to characterize
a set-valued estimate which is guaranteed to containθ◦ while
being consistent with the observed data.

Assumption 1. There exist (known) bounded sequences
{

(v(t), v(t))
}

such that the noise sequence
{

v(t)
}

in (1) satisfies
v(t) ≤ v(t) ≤ v(t) for all t ∈ Z+.

2.1. Some preliminaries on interval representation

Consider two vectorsx andx in R
n such thatx ≤ x with the

inequality holding componentwise. An interval [x, x] of Rn is
the subset ofRn defined by

[x, x] =
{

x ∈ Rn : x ≤ x ≤ x
}

. (2)

An interval [x, x] of Rn can be equivalently represented by

I (cx, rx) ,
{

cx + diag
(

rx
)

α : α ∈ Rn, ‖α‖∞ ≤ 1
}

(3)

where

cx =
x+ x

2
, rx =

x− x

2
(4)

The notation diag(v) for a vectorv ∈ R
n refers to the diagonal

matrix whose diagonal elements are the entries ofv. We will
call the so-definedcx the center or mid-pointof the interval
[x, x] and rx its radius (a half of the width). To sum up, the
interval set can be equivalently represented by the pairs (x, x) ∈
R

n×Rn and (cx, rx) ∈ Rn×Rn
+ so that [x, x] = I (cx, rx). Finally,

it will be useful to keep in mind for the rest of the paper that
x = cx − rx andx = cx + rx.

Definition 1 (Parametric interval estimator).
Consider the system (1) under Assumption 1 and letVt =
(

(v(0), v(0)), . . . , (v(t), v(t))
)

andYt =
(

y(1), . . . , y(t)
)

.
Consider a dynamical system defined by

θ(t) = Ft
(

Vt,Yt, θ(0), θ(0)
)

θ(t) = Gt
(

Vt,Yt, θ(0), θ(0)
)

(5)

whereFt andGt are some functions indexed by time, (θ(t), θ(t))
denote the output (or the state) of the system for anyt ∈ Z+. The
system (5) is called a (parametric)interval-valued estimatorfor
the parameter vectorθ◦ of system (1) if:

(a) θ(t) ≤ θ◦ ≤ θ(t) for all t ∈ Z+, wheneverθ(0) ≤ θ◦ ≤ θ(0)
(b) (5) is Bounded Input-Bounded Output (BIBO) stable i.e.,

if the signalsv andy and the initial state (θ(0), θ(0)) are
all bounded then so is (θ, θ).

Now we recall from [2, 3] a lemma that will play a central role
in the design of interval-valued estimators.

Lemma 1. Let M ∈ Rn×m and(z, z) ∈ Rm×Rm such that z≤ z.
Consider the setI defined byI = {

Mz : z ≤ z ≤ z
}

. Define the
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vectors(c, r) by
c = Mcz

r = |M| rz,
(6)

with cz = (z+ z)/2 and rz = (z− z)/2.
Then[c− r, c+ r] is the tightest interval containingI.

We now state formally the estimation problem.
Problem. Given the data(y(k), x(k))1≤k≤t generated by sys-

tem (1) up to an arbitrary timet ∈ Z+, the uncertainty bounds
{

(v(t), v(t))
}

1≤k≤t
on the noise sequence as defined in Assump-

tion 1 and a prior (initial) interval setI (cθ(0), rθ(0)) containing
the true parameter vectorθ◦ from (1), we are interested in find-
ing an interval-valued estimate of the formI (cθ(t), rθ(t)) ⊂ R

n

(in the sense of Definition 1), of the parameter vectorθ◦ in (1)
which is consistent with data. Moreover, it is desirable that the
estimate (cθ(t), rθ(t)) at time t be obtained by a simple update
mechanism from the measurements (x(t), y(t), v(t), v(t)) at time
t and a finite numberm of past estimates (cθ(t − i), rθ(t − i)),
i = 1, . . . ,m.

We will describe in Section 4 a framework for deriving a
solution to this problem. Our method for constructing a recur-
sive set-valued estimator requires three ingredients: (a)a refer-
ence adaptive point-valued identifier; (b) a characterization of
the stability of the associated error dynamics ; (c) an appropri-
ate mechanism for deducing the set-valued estimate from the
point-valued one. Many recursive identifiers may be suitable
for the role (a) mentioned above. Here however we choose to
discuss only the RLS algorithm.

3. A reference adaptive identifier

For the purpose of designing the recursive interval-valued
estimator as stated above, we first study a reference adaptive
point-valued identifier.

3.1. Recursive least squares (RLS)

A candidate adaptive identifier for point (a) above is the ex-
ponentially weighted recursive least squares (RLS) algorithm
which returns a point-valued estimateθ(t) of θ◦, selected at
each timet to be the minimizing point of an objective function
θ 7→ Vt(θ),

θ(t) = arg min
θ∈Rn

Vt(θ), (7)

with Vt(θ) defined by

Vt(θ) =
1
2

t
∑

k=1

λt−k(y(t)− x(t)⊤θ)2+
λt

2
(

θ− θ0
)⊤P−1

0
(

θ− θ0
)

. (8)

In Eq. (8),θ0 refers to a prior guess for the parameter vector,
P0 ≻ 0 is a symmetric positive-definite weighting matrix re-
flecting the uncertainty related to the guessθ0, andλ ∈ ]0,1[
is a forgetting factor which intends to downweight the informa-
tion contained in the oldest data with respect to timet.
Note that the objective function in (8) is continuous, coercive
and strictly convex, hence implying that the minimizer in (7)
exists and is unique. It can be shown that there exists a sequence

of symmetric matrices2 {P(t)} such that the solutionθ(t) to the
optimization problem (7) can be recursively expressed as [6]:

θ(t) = θ(t − 1)+ q(t)(y(t) − x(t)⊤θ(t − 1)) (9)

q(t) =
P(t − 1)x(t)

λ + x(t)⊤P(t − 1)x(t)
(10)

P(t) =
1
λ

(

P(t − 1)− q(t)x(t)⊤P(t − 1)
)

(11)

whereθ(0) = θ0, P(0) = P0. Eqs (9)-(11) define the well-known
recursive least squares (point-valued) identifier with exponen-
tial forgetting factor [9].
For the purpose of the analysis to be presented in the sequel,
define the parametric error̃θ(t) = θ(t) − θ◦. Then it follows
from the system equation (1) and theθ-update equation (9) that
the error has the following dynamics

θ̃(t) = A(t)θ̃(t − 1)+ q(t)v(t), (12)

with A(t) = In− q(t)x(t)⊤. Eq. (12) together with (10)-(11) rep-
resents a dynamic system with input{v(t)} and state{θ̃(t)}. For
future use in the paper, we can further expressθ̃(t) in function
of the initial errorθ̃(0) and the noise sequence{v(k)}1≤k≤t up to
time t,

θ̃(t) = Φ(t,0)θ̃(0)+
t

∑

j=1

Φ(t, j)q( j)v( j), (13)

whereΦ is the state transition matrix defined by

Φ(t, t0) =

{

In t = t0
A(t) · · ·A(t0 + 1) t > t0

(14)

An interesting property of the state transition matrix is that for
any triplet (t, t1, t0) of nonnegative integers satisfyingt ≥ t1 ≥
t0,

Φ(t, t0) = Φ(t, t1)Φ(t1, t0). (15)

Now we recall the stability concept which is of interest in the
following developments. For this purpose, consider the ho-
mogenous part of system (12) (i.e., the one obtained when the
input v satisfiesv ≡ 0), which we may generically describe by

ξ(t) = A(t)ξ(t − 1), ξ(0) = ξ0 (16)

whereA : Z+ → R
n×n is a matrix-valued function andξ(t) ∈ Rn

is the state of the system (16) at timet ∈ Z+. For any (t, t0) ∈ Z+
with t ≥ t0, ξ(t) can be related toξ(t0) by ξ(t) = Φ(t, t0)ξ(t0).
Using the generic LTV system (16), we now define the notion
of exponential stability.

Definition 2. The LTV system (16) is said to be exponentially
stable if there exist some constantsγ > 0 andρ ∈ [0,1[ such
that

‖ξ(t)‖2 ≤ γρt−t0 ‖ξ(t0)‖2 (17)

for all (t, t0) ∈ Z+ such thatt ≥ t0. Indeed (17) is equivalent to

2Indeed we haveP(t) =
[

∑t
k=1 λ

t−kx(t)x(t)⊤ + λtP−1
0

]−1
so thatP−1(t) =

λP−1(t − 1)+ x(t)x(t)⊤.
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‖Φ(t, t0)‖2 ≤ γρt−t0.

Finally, note that the non-homogenous system (12) is stablein
the BIBO sense if (16) is (exponentially) stable and the gain
sequence{q(t)} is bounded. We will see in the next section that
such a property is guaranteed for the error system (12) provided
that the regressor{x(t)} from the system (1) is bounded and en-
joys some richness condition.

3.2. A stability property for the RLS
We first recall a definition of the concept of (uniform) per-

sistence of excitation [9].

Definition 3. A vector-valued sequence{x(t)} ⊂ R
n is said to

be persistently exciting (PE) if there exist some strictly positive
constantsα andβ (called excitation levels) and a time horizon
T such that

αIn �
t+T
∑

k=t+1

x(k)x(k)⊤ � βIn ∀t ∈ Z+ (18)

The lower bound of (18) requires that the matrix of regressor
Xt , [x(t + 1) · · · x(t + T)] be full rank on any time horizon
of lengthT. Additionally, the smallest eigenvalue ofXtX⊤t must
be larger than a minimum levelα > 0. The upper bound in (18)
expresses uniform boundedness of the sequence{x(t)}.

Lemma 2. Consider the RLS algorithm(9)-(11) under the as-
sumptions that P(0) ≻ 0 andλ ∈ ]0,1[. Then the matrices P(t)
defined by(11) are invertible for all t ∈ Z+ and the sequence
{

P−1(t)
}

of their inverses satisfy

P−1(t) = λP−1(t − 1)+ x(t)x(t)⊤. (19)

Moreover, if{x(t)} is PE in the sense of Definition 3 with hori-
zon T and excitation levels(α, β), then

{

P−1(t)
}

is uniformly
bounded as follows

γ1In � P−1(t) � γ2In ∀t ≥ 0 (20)

with

γ1 = min
(

δ1, αλ
2T−1

)

(21)

γ2 = max
(

δ2, λ
Tσmax(P

−1(0))+ β
2− λ
1− λ

)

(22)

andδ1 = mint=0,...,T−1σmin[P−1(t)], δ2 = maxt=0,...,T−1σmax[P−1(t)],
σmin[·] and σmax[·] standing for the minimum and maximum
eigenvalues respectively.

A proof of this lemma can be found in [1].
Next we derive an input-to-state-stability (ISS) propertyfor the
error dynamics (12) subject to (10)-(11).

Theorem 1. Consider the RLS algorithm applied to the data
generated by system(1). If the regressor sequence{x(t)} is PE,
then

∥

∥

∥θ̃(t)
∥

∥

∥

2

2
≤ 1
γ1

[

λtσmax[P
−1(0)]

∥

∥

∥θ̃(0)
∥

∥

∥

2

2
+

t
∑

k=1

λt−kv(k)2
]

(23)

whereθ̃(t) = θ(t)− θ◦ is the parametric estimation error at time
t andγ1 is any positive number satisfying(20).

Proof. Let V(t) = θ̃(t)⊤P−1(t)θ̃(t). By subtracting the true pa-
rameter vectorθ◦ from each side of (9) and invoking the equa-
tion of the data-generating system (1), it is easy to see that
θ̃(t) = θ̃(t − 1) + q(t)ε(t), whereε(t) = y(t) − x(t)⊤θ̂(t − 1) =
v(t) − x(t)⊤θ̃(t − 1). On the other hand, we know from Lemma
2 that

{

P−1(t)
}

obeys the recursive relation (19). Now by direct
algebraic calculations it can be seen that

V(t) =
(

θ̃(t − 1)+ q(t)ε(t)
)⊤(
λP−1(t − 1)+ x(t)x(t)⊤

) × . . .
. . . × (

θ̃(t − 1)+ q(t)ε(t)
)

= λV(t − 1)+ 2λθ̃(t − 1)⊤P−1(t − 1)q(t)ε(t)

+ 2(x(t)⊤θ̃(t − 1))(x(t)⊤q(t))ε(t) + (x(t)⊤θ̃(t − 1))2

+ λq(t)⊤P−1(t − 1)q(t)ε(t)2 + (x(t)⊤q(t))2ε(t)2

Note now that by posings(t) = λ + x(t)⊤P(t − 1)x(t), we have

q(t)⊤P−1(t − 1)q(t) =
1

s(t)
− λ

s(t)2

x(t)⊤q(t) = 1− λ
s(t)

P−1(t − 1)q(t) =
x(t)
s(t)

Substituting these formulas in the above expression ofV(t) gives

V(t) = λV(t − 1)− λ
s(t)
ε(t)2 + v(t)2.

It follows thatV(t) ≤ λV(t−1)+v(t)2. Iterating this last equation
and invoking the property (20) of

{

P−1(t)
}

yields

γ1

∥

∥

∥θ̃(t)
∥

∥

∥

2

2
≤ V(t) ≤ λtV(0)+

t
∑

k=1

λt−kv(k)2

which, by using the fact thatP−1(0) � σmax[P−1(0)]In, implies
that

γ1

∥

∥

∥θ̃(t)
∥

∥

∥

2

2
≤ λtσmax[P

−1(0)]
∥

∥

∥θ̃(0)
∥

∥

∥

2

2
+

t
∑

k=1

λt−kv(k)2.

Hence the claim of the theorem is established.

Corollary 1. Under the conditions of Theorem 1, if the noise v
of model(1) is identically equal to zero, then

∥

∥

∥θ̃(t)
∥

∥

∥

2
≤

(

λtσmax[P−1(0)]
γ1

)1/2
∥

∥

∥θ̃(0)
∥

∥

∥

2
(24)

that is, the sequence{θ(t)} generated by the RLS algorithm con-
verges toθ◦ exponentially fast regardless of the initial point
θ(0).

Lemma 3. Consider the state transition matrix-valued func-
tion Φ defined in(14) from the RLS error system(12). If the
regressor sequence{x(t)} ⊂ R

n is PE, then there exist constant
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real positive numbersγ1 andγ2 such that for all(t, t0) obeying
t ≥ t0,

‖Φ(t, t0)‖F ≤ cρt−t0 (25)

where c = (nγ2γ
−1
1 )1/2 and ρ = λ1/2, λ being the forgetting

factor of the RLS algorithm.

Proof. Consider the error system (12) under the assumption
that the noise sequence{v(t)} is equal to zero. Then for any
(t, t0) such thatt ≥ t0, we haveθ̃(t) = Φ(t, t0)θ̃(t0). Moreover,
Corollary 1 can be applied by replacing the time origin for an
arbitraryt0 ∈ Z+ such thatt ≥ t0 ≥ 0. This gives

∥

∥

∥θ̃(t)
∥

∥

∥

2
≤

(

λt−t0σmax[P−1(t0)]
γ1

)1/2
∥

∥

∥θ̃(t0)
∥

∥

∥

2

for any value ofθ̃(t0) ∈ R
n. Since the PE condition holds here

for {x(t)}, we know by Lemma 2 that there exists a constant
numberγ2 > 0 such thatσmax[P−1(t0)] ≤ γ2 (see Eq. (20)). We
can hence write

∥

∥

∥θ̃(t)
∥

∥

∥

2
≤

(

γ2

γ1

)1/2

ρt−t0
∥

∥

∥θ̃(t0)
∥

∥

∥

2
.

This implies that

‖Φ(t, t0)‖2 = sup
θ̃(t0),0

∥

∥

∥Φ(t, t0)θ̃(t0)
∥

∥

∥

2
∥

∥

∥θ̃(t0)
∥

∥

∥

2

≤
(

γ2

γ1

)1/2

ρt−t0.

Finally, the result follows by recalling that
‖Φ(t, t0)‖F ≤

√
n‖Φ(t, t0)‖2.

4. Interval-valued estimator

In this section we present the main contributions of the pa-
per concerning the development of an adaptive interval-valued
parametric estimator. As explained at the end of Section 2, our
method relies on the error sequence generated by a point-value
adaptive estimator. Considering the special case of the RLS, we
obtain the error dynamics expressed in (13) which is directly re-
lated to the noise. Applying Lemma 1 to this equation gives an
interval estimate of the errorθ̃(t) = θ̂(t) − θ◦, which can then be
modified to get an estimate ofθ◦.

4.1. Derivation of an interval-valued estimator
Assume now that we are given a recursive point-valued es-

timator (say the RLS algorithm dicussed earlier) generating a
sequence of estimates{θ(t)} for θ◦ in (1). To derive an interval-
valued estimator forθ◦, we first find an interval-valued esti-
mate for the error̃θ(t) defined in (12). We do so by applying
Lemma 1 to (13) which, for convenience, can be rewritten as
θ̃(t) = M(t)z(t) with

M(t) =
[

Φ(t,0) Φ(t,1)q(1) · · · Φ(t, t)q(t)
]

z(t) =
[

θ̃(0)⊤ v(1) · · · v(t)
]⊤
.

We hence obtain immediately from Lemma 1 that the smallest
interval set containing the parametric errorθ̃(t) can be expressed

in term of its center-radius pair (cθ̃, r θ̃) given by

cθ̃(t) = Φ(t,0)cθ̃(0)+
t

∑

j=1

Φ(t, j)q( j)cv( j) (26)

r θ̃(t) = |Φ(t,0)|r θ̃(0)+
t

∑

j=1

|Φ(t, j)q( j)|rv( j) (27)

where (cv, rv) is the pair of signals defining the intervals of the
noise sequence{v(t)} andcθ̃(0) = cθ(0) − θ◦ andr θ̃(0) = rθ(0).
Recalling now thatθ◦ = θ(t) − θ̃(t), an interval-valued estimate
of theθ◦ can be obtained as proposed in the following proposi-
tion.

Proposition 1. Consider the system(1) and assume that the re-
gressor sequence{x(t)} is PE in the sense of Definition 3 and
that the noise{v(t)} is bounded and admits an interval repre-
sentation(cv(t), rv(t)). Then the pair(cθ(t), rθ(t)) given by











cθ(t) = θ(t) − cθ̃(t)

rθ(t) = r θ̃(t)
(28)

with (cθ̃(t), r θ̃(t)) as in (26)-(27), defines an interval estimator
for the parameter vectorθ◦.

Proof. To begin with, let us recall thatθ◦ = θ(t) − θ̃(t) and
(26)-(27) is such that̃θ(t) ∈ [cθ̃(t) − r θ̃(t), cθ̃(t) + r θ̃(t)] for all
t ∈ Z+. It follows, as an immediate consequence, thatθ◦ ∈
[cθ(t) − rθ(t), cθ(t) + rθ(t)] with (cθ, rθ) defined as in (28). To
reach the conclusion of the proposition, it remains to prove
that the dynamical systems (operators) (cθ(0), cv) 7→ cθ and
(rθ(0), rv) 7→ rθ are BIBO stable. By relying on (26)-(27), it
is immediate to see that, under the PE condition, both proper-
ties follow indeed from (25) which in turn is a consequence of
Theorem 1.

4.2. Computational aspects

Implementing numerically the estimator (28) requires com-
puting (cθ̃(t), r θ̃(t)) defined in (26)-(27) for any timet. A prob-
lem however is that these convolutional formulas become in-
feasible in practice whent grows towards infinity. Therefore
it is desirable to find an efficient implementation of this esti-
mator for example, in the form of a one-step-ahead state-space
recursive realization. In this perspective, note thatcθ(t) can be
computed recursively through the following equation

cθ(t) = A(t)cθ(t − 1)+ q(t)
(

y(t) − cv(t)
)

. (29)

Unfortunately, there is, in general, no simple recursive imple-
mentation for the interval radiusrθ as defined (27)-(28). Hence,
a strategy would be to search for a more pessimistic estimaterθ
but which would be implementable. That is, the computational
constraint introduces a dose of pessimism in the estimation, re-
sulting in a less tight interval-valued estimate ofθ◦. A possible
solution is to replacerθ with a truncated version ˆrθ,m defined,
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for a given integerm> 0, by

r̂θ,m(t) =



























































|Φ(t,0)| rθ(0)+
t

∑

k=1

|Φ(t, k)q(k)|rv(k)

if t = 0, . . . ,m

|Φ(t, t −m)| r̂θ,m(t −m) +
t

∑

k=t−m+1

|Φ(t, k)q(k)|rv(k),

if t > m
(30)

Intuitively r̂θ,m is all the smaller asm is large. On the other
hand the computational complexity grows withm. Note that
in the extreme case wherem = t, we get ˆrθ,m(t) = rθ(t) for all
t ∈ Z+. The simplest version (but also the most pessimistic) of
the family (30) of estimates is obtained form= 1,

r̂θ,1(t) = |A(t)| r̂θ,1(t − 1)+ |q(t)|rv(t) (31)

However, as we will see shortly, such an estimate is unlikelyto
satisfy the BIBO condition of Definition 1. As a consequence
it will not qualify in general as an interval-valued estimator

The result below formally shows that for any timet, the
intervalI (cθ(t, rθ(t)) is included inI (cθ(t), r̂θ,m(t)).

Lemma 4. Consider the interval radii rθ(t) and r̂θ,m(t) defined
in (27) and (30) respectively. For any fixed integer m, it holds
that rθ(t) ≤ r̂θ,m(t) for all t ∈ Z+.

Proof. We start by observing that ˆrθ,m(t) = rθ(t) for t = 0, . . . ,m.
Hence the inequality is true fort = 0, . . . ,m. If t > m, write
t = α(t)m+ β(t) for some positive integers (α(t), β(t)) such that
0 ≤ β(t) < m. By iterating the second equation of (30), we
ultimately get

r̂θ,m(t) =
(

α(t)
∏

ℓ=1

∣

∣

∣

∣

Φ
(

t − (ℓ − 1)m, t − ℓm)

∣

∣

∣

∣

)

r̂θ,m(β(t))

+

α(t)
∑

j=1

t−( j−1)m
∑

k=t− jm+1

(

j−1
∏

ℓ=1

∣

∣

∣

∣

Φ
(

t − (ℓ − 1)m, t − ℓm)

∣

∣

∣

∣

)

× . . .

. . . ×
∣

∣

∣

∣

Φ
(

t − ( j − 1)m, k
)

q(k)
∣

∣

∣

∣

rv(k)

Moreover, sinceβ(t) = t − α(t)m satisfies 0≤ β(t) < m, by the
definition (30) of ˆrθ,m(t) we know that

r̂θ,m(β(t))= |Φ(t − α(t)m,0)| rθ(0)+
t−α(t)m
∑

k=1

|Φ(t−α(t)m, k)q(k)|rv(k).

Plugging this in the above expression yields

r̂θ,m(t) =
(

α(t)+1
∏

ℓ=1

∣

∣

∣

∣

Φ
(

κ(t, ℓ − 1), κ(t, ℓ)
)

∣

∣

∣

∣

)

rθ(0)

+

α(t)+1
∑

j=1

κ(t, j−1)
∑

κ(t, j)+1

(

j−1
∏

ℓ=1

∣

∣

∣

∣

Φ
(

κ(t, ℓ − 1), κ(t, ℓ)
)

∣

∣

∣

∣

)

× . . .

. . . ×
∣

∣

∣

∣

Φ
(

κ(t, j − 1), k
)

q(k)
∣

∣

∣

∣

rv(k)

(32)

whereκ(t, j) = max(t− jm,0). Using the property|A||B| ≥ |AB|,
we observe, for example, that the matrix in the first term of (32)
can be bounded as follows

α(t)+1
∏

ℓ=1

∣

∣

∣

∣

Φ
(

κ(t, ℓ − 1), κ(t, ℓ)
)

∣

∣

∣

∣

=
(

α(t)
∏

i=1

∣

∣

∣

∣

Φ
(

t − (i − 1)m, t − im
)

∣

∣

∣

∣

)

|Φ(t − α(t)m,0)|

≥
∣

∣

∣

∣

Φ
(

t, t −m
)

Φ
(

t −m, t − 2m
) · · ·Φ(

t − α(t)m,0)
∣

∣

∣

∣

=
∣

∣

∣Φ
(

t,0
)

∣

∣

∣,

where the last equality follows from the property (15) of the
state transition matrix. Applying this property to the whole ex-
pression of ˆrθ,m(t) above leads to

r̂θ,m(t) ≥
∣

∣

∣Φ
(

t,0
)

∣

∣

∣rθ(0)+
α(t)
∑

j=1

t−( j−1)m
∑

k=t− jm+1

∣

∣

∣Φ
(

t, k
)

q(k)
∣

∣

∣rv(k)

+

t−α(t)m
∑

k=1

|Φ(t, k)q(k)|rv(k)

=
∣

∣

∣Φ
(

t,0
)

∣

∣

∣rθ(0)+
t

∑

k=1

∣

∣

∣Φ
(

t, k
)

q(k)
∣

∣

∣rv(k)

= rθ(t)

This concludes the proof.

Theorem 2. Consider the system(1) and assume that the re-
gressor sequence{x(t)} is PE in the sense of Definition 3 and
that the noise{v(t)} is bounded and admits an interval repre-
sentation(cv(t), rv(t)). Then there exists a number m⋆ > 0 such
that for all m≥ m⋆,

(

cθ(t), r̂θ,m(t)
)

defined in(28)and (30)con-
stitutes an interval estimator for the parameter vectorθ◦.

Proof. By Lemma 4, we know thatrθ(t) ≤ r̂θ,m(t). Hence it
is immediate by Proposition 1 thatθ◦ ∈ [cθ(t) − r̂θ,m(t), cθ(t) +
r̂θ,m(t)] ∀t ∈ Z+.We just need to establish the second condition
of Definition 1. More precisely, we need to show that the se-
quence of intervals [cθ(t)− r̂θ,m(t), cθ(t)+ r̂θ,m(t)] is bounded. For
this purpose we will show that the systems (cθ(0), cv) 7→ cθ and
(rθ(0), rv) 7→ r̂θ,m are stable.
Boundedness of{cθ(t)}. Recall that a state-space realization of
cθ is given in (29). Relying on this equation, it is clear that
(cθ(0), cv) 7→ cθ is BIBO state if and only if (̃θ(0), v) 7→ θ̃ de-
fined in (12) is BIBO stable. As already shown in the proof
of Theorem 1, the PE condition suffices to guarantee thatθ̃ is
bounded whenever (θ̃(0), v) is bounded. We hence conclude that
(cθ(0), cv) 7→ cθ is BIBO.
Boundedness of

{

r̂θ,m(t)
}

. We will rely on formula (32). Tak-
ing the Frobenius norm of ˆrθ,m(t) and applying the submul-
tiplicativity property of the Frobenius norm and the fact that
‖|A|‖F = ‖A‖F (i.e., Frobenius norm ofA equals Frobenius norm
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of |A|) for any matrixA, we can write

∥

∥

∥r̂θ,m(t)
∥

∥

∥

2
≤

(

α(t)+1
∏

i=1

∥

∥

∥

∥

Φ
(

κ(t, i − 1), κ(t, i)
)

∥

∥

∥

∥

F

)

‖rθ(0)‖2

+

α(t)+1
∑

j=1

κ(t, j−1)
∑

k=κ(t, j)+1

(

j−1
∏

ℓ=1

∥

∥

∥

∥

Φ
(

κ(t, ℓ − 1), κ(t, ℓ)
)

∥

∥

∥

∥

F

)

× . . .

. . . ×
∥

∥

∥

∥

Φ
(

κ(t, j − 1), k
)

∥

∥

∥

∥

F
‖q(k)‖2 ‖rv(k)‖2

Here, we have used the fact that‖x‖F = ‖x‖2 for any vectorx.
Since the PE condition holds, it follows from the analysis of
Section 3 (See Eq. (25)) that the transition matrixΦ satisfies
‖Φ(t, t0)‖F ≤ cρt−t0 with the constantsc > 0 andρ being defined
as in (25). Applying this in the above inequality gives
∥

∥

∥r̂θ,m(t)
∥

∥

∥

2
≤ (cρm)α(t)(cρt−α(t)m) ‖rθ(0)‖2

+

α(t)
∑

j=1

t−( j−1)m
∑

k=t− jm+1

(cρm) j−1(cρt−( j−1)m−k) ‖q(k)‖2 ‖rv(k)‖2

+

t−α(t)m
∑

k=1

(cρm)α(t)(cρt−α(t)m−k) ‖q(k)‖2 ‖rv(k)‖2

Under the PE condition of{x(t)}, we know by Lemma 2 that
{P(t)} is uniformly bounded as 1/γ2In � P(t) � 1/γ1In for all
t. From this, it is easy to see that the vectorq(t) defined in (10)
satisfies

‖q(k)‖2 ≤
1/γ1 supt ‖x(t)‖2
λ + 1/γ2 inf t ‖x(t)‖22

. (33)

This implies that{q(t)} is upper-bounded. On the other hand,rv

is bounded by assumption. Let therefore consider the bounds
ηq = supk∈Z+ ‖q(k)‖2 and ηv = supk∈Z+ ‖rv(k)‖2. Using these
notations and proceeding from above gives

∥

∥

∥r̂θ,m(t)
∥

∥

∥

2
≤ (cρm)α(t)c‖rθ(0)‖2 + cηqηv

1− ρm

1− ρ
1− (cρm)α(t)

1− cρm

+ cηqηv(cρ
m)α(t)

1− ρt−α(t)m

1− ρ

This inequality can be refined as
∥

∥

∥r̂θ,m(t)
∥

∥

∥

2
≤(cρm)α(t)c‖rθ(0)‖2

+
cηqηv

1− ρ

[

1− ρm

1− cρm
+ (cρm)α(t)(1− ρm−1)

]

.
(34)

Note thatα(t) = ⌊t/m⌋ → +∞ as t → +∞. The notation⌊·⌋
refers here to the floor function (integer part). Hence, ifcρm <

1, that is, ifm > m⋆ , − ln(c)
ln(r)

, then the sequence
{

r̂θ,m(t)
}

is

bounded.

A candidate for the constantc is the one expressed in (25).
By making use of it, a full expression ofm⋆ can be obtained as

m⋆ = −
ln

(

nγ2γ
−1
1

)

ln(λ)
(35)

This suggests that the richer the regressor sequence{x(t)} (that
is, the smaller the ratioγ1/γ2), the smaller the thresholdm⋆

will be. Note indeed thatγ1 andγ2 depend not only on the data
sequence{x(t)} but also on the forgetting factorλ and the initial
weighting matrixP−1(0). A few further comments can be made
concerning the behavior of ˆrθ,m. First, note that an asymptotic
bound on the estimated interval radius can be derived as follows

lim sup
t→+∞

∥

∥

∥r̂θ,m(t)
∥

∥

∥

2
≤

cηqηv

1− ρ
1− ρm

1− cρm
. (36)

Then we see that as the truncation orderm grows, the asymp-
totic bound on ˆrθ,m(t) gets closer tob⋆∞ , cηqηv/(1 − ρ). By
invoking Eq. (33) it is immediate to see that if we lethmin =

inf t ‖x(t)‖2 andhmax = supt ‖x(t)‖2, thenηq ≤ γ2

γ1

hmax

h2
min+λγ2

which,

by using the expressions ofc andρ given in (25), implies that

b⋆∞ ≤
ηvn1/2

1− λ1/2

(

γ2

γ1

)3/2 hmax

h2
min + λγ2

. (37)

What this shows is that the influencing parameters of the bound
b⋆∞ originates from three sources: (i) the parameters measuring
richness of the learning data:γ1, γ2,hmin,hmax; (ii) the design
parameters of the estimator:λ, P−1(0); (iii) the magnitudeηv of
the uncertainty associated with the mathematical representation
(1) of the data.

4.3. Further improvements

Due to the presence of noise in the data, the size of the in-
terval estimates (cθ, rθ) or (cθ, r̂θ,m) discussed above may oscil-
late over time instead of decreasing monotonically (See Figure
1 for a visual illustration of this phenomenon). This behav-
ior is undesirable in practice and should be mitigated as much
as possible. For this purpose, we discuss here a simple re-
cursive intersection operation for removing such possiblenon
monotonic trend of the interval-valued estimate for the estima-
tors proposed in the previous sections. To this end, consider a
pair (ξ, ξ) : Z+ → R

n × R
n such that the to-be-estimated pa-

rameter vectorθ◦ lies in [ξ(t), ξ(t)] for all t. Define the pair

of vector-valued functions (θ, θ) : Z+ → R
n × R

n such that
θ◦ ∈ [θ(0), θ(0)] and for allt ≥ 1,

θ(t) = max
(

θ(t − 1), ξ(t)
)

(38)

θ(t) = min
(

θ(t − 1), ξ(t)
)

, (39)

where the minimum/maximum operators apply componentwise,
i.e., whenx andy are vectors of the same dimension, min(x, y)
refers to the vector whose entries are given by min(xi , yi). We
will call (ξ, ξ) the input of the dynamic system (38)-(39) and

(θ, θ) its state. In fact (38)-(39) is equivalent to [θ(t), θ(t)] =
[θ(t − 1), θ(t − 1)] ∩ [ξ(t), ξ(t)].
We now state some basic properties of the estimator (38)-(39).

Lemma 5. Assumeθ(0) ≤ θ(0) andξ(t) ≤ ξ(t) for all t. Then
the following facts are true:

1. Boundedness:θ(0) ≤ θ(t) ≤ θ(t) ≤ θ(0) ∀t ≥ 0
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2. Monotonically decreasing widths:[θ(t), θ(t)] ⊂ [θ(k), θ(k)]
∀(k, t) such that k≤ t.

3. Convergence: The sequences
{

θ(t)
}

and
{

θ(t)
}

converge to

θ∗ andθ
∗

respectively with

θ∗ , max
(

θ(0),max
t
ξ(t)

)

θ
∗
, min

(

θ(0),min
t
ξ(t)

)

If maxt ξ(t) ≤ θ(0) and mint ξ(t) ≤ θ(0), then the input

sequence
{

ξ(t), ξ(t)
}

does not bring any information since

in this caseθ(t) = θ(0) andθ(t) = θ(0) for all t.
4. If θ◦ ∈ [θ(0), θ(0)] ∩ [ξ(t), ξ(t)] for all t, then

θ◦ ∈ ⋂∞
t=0[θ(t), θ(t)].

Proof. The facts 1, 2 and 4 are quite immediate. To see why
fact 3 holds, note that

{

θ(t)
}

is (componentwise) nondecreas-

ing and upper-bounded while
{

θ(t)
}

is nonincreasing and lower-
bounded. Hence by the monotone convergence theorem, both
sequences are convergent and their limits are the maximal ele-
mentθ∗ and minimal elementθ

∗
of the respective sequences as

expressed above.

Remark 1. In virtue of the properties stated in Lemma 5, the
estimator in(38)-(39) is naturally robust to potential outliers
in the sequence

{

(v(t), v(t))
}

of bounds on the equation errors in
(1).

5. Application to a time-varying system

We now consider the case where the true parameter vector
θ◦ in (1) is no longer constant but may be time varying with a
limited rate of change. Let us pose

θ◦(t) = θ◦(t − 1)+ δ(t), (40)

where{δ(t)} is unknown but assumed to be bounded in an in-
terval. More precisely, we assume that we know a sequence
{I (cδ(t), rδ(t))} of intervals such thatδ(t) ∈ I (cδ(t), rδ(t)) for
all t ∈ Z+. Let us still use the notatioñθ(t) to refer to the para-
metric error now defined bỹθ(t) = θ(t) − θ◦(t) with θ(t) gener-
ated as in (9) from the data. It can then be shown that the error
dynamics take the form

θ̃(t) = A(t)θ̃(t − 1)+ B(t)v̄(t) (41)

with A(t) = In − q(t)x(t)⊤ as in (12) and

B(t) = [q(t) −A(t)]

v̄(t) = [v(t) δ(t)⊤]⊤
(42)

Note in passing that one recovers the error dynamics (12) from
(41) whenδ(t) = 0 for all t, that is, whenθ◦(t) is assumed
constant. Now an interval representation of ¯v(t) in (41) is given
by















cv̄(t) = [cv(t) cδ(t)]⊤

r v̄(t) = [rv(t) rδ(t)]⊤.
(43)

The relation (41) is key for deriving an interval-valued esti-
mator. In effect, by relying on it and following the preced-
ing discussions, it is easy to obtain, under the PE condition,
an interval-valued estimator for the vector-valued sequence
{θ◦(t)}. More precisely, the complete form of the estimator is
I (c′

θ
(t), r ′

θ
(t)) = [c′

θ
(t) − r ′

θ
(t), c′

θ
(t) + r ′

θ
(t)], with centerc′

θ
de-

fined by the state-space equation

c′θ(t) = A(t)c′θ(t − 1)+ q(t)
(

y(t) − cv(t)
)

+ A(t)cδ(t), (44)

c′
θ
(0) = cθ(0), and radiusr ′

θ
given in convolution form by

r ′θ(t) = |Φ(t,0)|rθ(0)+
t

∑

j=1

|Φ(t, j)B( j)|r v̄( j). (45)

Recall that in (44),{θ(t)} still refers to the sequence gener-
ated by the point-valued RLS identifier (9)-(11). Likewise,
Φ is the RLS transition matrix expressed in (14). As to the
truncated form of the estimator, it now admits the expression
I (c′

θ
(t), r̂ ′

θ,m(t)) = [c′
θ
(t) − r̂ ′

θ,m(t), c′
θ
(t) + r̂ ′

θ,m(t)] with c′
θ

as in
(44) and ˆrθ,m(t) defined by

r̂ ′θ,m(t) =



























































|Φ(t,0)| rθ(0)+
t

∑

k=1

|Φ(t, k)B(k)|r v̄(k),

if t = 0, . . . ,m

|Φ(t, t −m)| r̂ ′θ,m(t −m) +
t

∑

k=t−m+1

|Φ(t, k)B(k)|r v̄(k),

if t > m
(46)

Finally, let us remark that it is possible, similarly as in Section
4.3, to derive improved versions of the above interval-valued
estimators for the case of time-varying systems. For this pur-
pose, consider any pair (ξ, ξ) of functions such thatξ(t) ≤ ξ(t)
andθ◦(t) ∈ [ξ(t), ξ(t)] for all t ≥ 0. Then by letting (p, p) be
defined by

p(t) = max
(

p(t − 1)+ δ(t), ξ(t)
)

(47)

p(t) = min
(

p(t − 1)+ δ(t), ξ(t)
)

, (48)

with δ(t) = cδ(t)−rδ(t) andδ(t) = cδ(t)+rδ(t), it holds thatθ◦(t) ∈
[p(t), p(t)] for all t ≥ 0 provided thatθ◦(0) ∈ [p(0), p(0)].

Moreover, (p, p) is bounded provided that (ξ, ξ) is bounded. Of

course the inputs (ξ, ξ) of (47)-(48) can be taken to be any of
the estimates

(

c′
θ
− r ′
θ
, c′
θ
− r ′
θ

)

in (44)-(45) or
(

c′
θ
− r̂ ′
θ,m, c

′
θ
− r̂ ′
θ,m

)

with r̂ ′
θ,m defined in (46).

6. Some simulation results

6.1. Linear Time Invariant system
To illustrate the performance of the proposed estimators, we

first consider a dynamical LTI system described by a model of
the form (1) whereθ◦ = [−1.40 0.75 0.60 −0.10]⊤ ∈ R

4

and x(t) = [−y(t − 1) −y(t − 2) u(t − 1) u(t − 2)]⊤ ∈ R
4

with the input{u(t)} being generated as the realization of a zero-
mean white Gaussian noise with unit variance. As to the noise
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sequence{v(t)}, it is uniformly sampled from an interval of the
form [−a,a] with a = 0.2. In these conditions, we consider an
estimation horizon of lengthN = 200 data points and compute
the interval-valued parameter estimates described in (28). The
initial parameter setI (cθ(0), rθ(0)) is selected such thatcθ(0) =
0 andrθ(0) = α01n with α0 = 4 andn = 4 here and1n being
a n-dimensional vector of ones. The reference RLS algorithm
(9)-(11) is run with initial valueθ(0) = 0, covariance matrix
P(0) = 103I4 and forgetting factorλ = 0.99.

Evaluations of the preliminary estimators. Considering the
truncated estimates (29)-(30), we start by recalling that,as es-
tablished by Theorem 2, there is a minimum value of the hori-
zonmbeyond which boundedness of the estimate can be hoped
for. With the experimental setting described above, a minimal
such value is empirically found to be about 10 for most realiza-
tions of the input-output data.

Figure 1 below presents the interval-valued parameter esti-
mates for this example when applying the estimators described
(29)-(30) form ∈ {20,50,N}. Note that the casem = N with
N being the entire estimation horizon generated an interval ra-
dius r̂θ,m such that ˆrθ,m = rθ (See Eq. (28)). The results confirm
that the estimateI (cθ(t), rθ(t)) defined in (28) is tighter than
the truncated formsI (cθ(t), r̂θ,m(t)) for m < N. Moreover, the
larger the truncation horizonm, the tighterI (cθ(t), r̂θ,m(t)).

50 100 150 200

-4

-2

0

2

4

6

m= 20
m= 50
m= N
True

Time

E
st

im
at

es

Figure 1: Interval-valued parameter estimates for the first entry of θ◦ (averaged
over 100 independent runs). Truncated estimates (cθ, r̂θ,m) with r̂θ,m as in (30)
for m = 20 (dotted red),m = 50 (dashed magenta),m = N (solid blue) and the
true (constant) parameterθ◦ (solid green).

Monotonically improved estimators. To illustrate the benefit
of the monotonic operators proposed in Section 4.3, we apply
them to the three previous estimators, that is, the estimates are
now computed by using (cθ, r̂θ,m) as input in Eqs (38)-(39), with
m ∈ {10,N}. Again recall that ˆrθ,N = rθ. The associated results
are plotted in Figure 2. As argued before, we can see that the
obtained estimates are smoother and tighter compared to those
of Figure 1. Moreover, they effectively generate intervals with
monotonically decreasing (nonincreasing) widths. For compar-
ison purpose, we have also represented estimates3 obtained by
the method described in [7]. As it turns out, our estimator gives
tighter estimates. We will see in the next paragraph that more
tightness can be gained by using a smaller forgetting factorλ.

3Note that no line is visible in the time interval [0,20] because the first 20
samples are used here to initialize the algorithm.

0 50 100 150 200
-5

0

5
m= 10
m= N
True
Ref [7]

Time

E
st

im
at

es
(θ,
θ
)

Figure 2: Interval-valued estimates (averaged over 100 independent runs) given
by the estimator (38)-(39) withξ = cθ + r̂θ,m, ξ = cθ − r̂θ,m and ˆrθ,m as in (30)
for m= 10 (dotted red),m= N (solid blue) : true (constant) parameterθ◦ (solid
green) and estimates given by the method of [7] (dashed black).

Influence of the RLS forgetting factor. As can be intuitively
guessed, the performance of the proposed interval-valued esti-
mators depends on the properties of the RLS reference iden-
tifier which in turn are determined by the richness of the data
and the user-defined parameters such asP(0) andλ. In partic-
ular, it is interesting to study the impact of the forgettingfac-
tor λ ∈ ]0,1]. In general, for point-valued estimation, such a
parameter is selected, to be close to 1 in order to smooth the
trajectories ofθ in (9). In contrast, the recursive interval-valued
estimator (38)-(39) tends to perform better whenλ is small. To
see this consider Figure 3 where we have plotted the final in-
terval widthθ(N) − θ(N) achieved by the estimator (38)-(39).
Again only the estimates related to the first component of the
parameter vector are represented. We consider the estimator
(38)-(39) withξ = cθ − r̂θ,m andξ = cθ + r̂θ,m as defined in (28)
and (30) form ∈ {20,50,N}. The results are indeed averages
over 100 independent simulations. What this reveals is that the
estimator’s asymptotic performance depends on the forgetting
factor in the sense that the width of the estimated interval is all
the smaller as the forgetting factorλ is small. This behavior can
be explained by the fact that a smallλ in the RLS may cause the
estimates (cθ, r̂θ,m) to fluctuate substantially hence favoring the
event that the associated interval jumps occasionally to a small
value. We can further observe that for small values of the for-
getting factor (e.g.,λ ≤ 0.6 in Figure 3), all truncation ordersm
tend to perform equally well. This suggests an important fea-
ture of the proposed estimation framework for practical imple-
mentation: provided the exciting input{u(t)} is sufficiently rich
andλ is then taken small enough, the computational complexity
of the estimators can be reduced to the minimum by selecting a
small truncation horizonm.

6.2. Linear Time Varying system

We now consider a model of the form (1) where the pa-
rameter vectorθ◦ is time-varying with dynamics defined as in
(40) where it is assumed thatδ(t) belongs to an interval given
by cδ(t) = 0 andrδ(t) = [0.10 0.05 0.04 0.01]⊤ for all t.
For the simulation, we generate a sequence{δ(t)} in this interval
such thatδ(t) = rδ(t) sin(2πt/30). The other settings remain the
same as previously defined in the beginning of Section 6 except

9



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

m= 20
m= 50
m= N

λ

E
rr

or
θ
(N

)−
θ
(N

)

Figure 3: Widthsθ(N)− θ(N) (averaged over 100 independent runs) of the esti-
mated parameter intervals versus forgetting factorλ. Only the first components
of the parametric (vector-valued) error are represented fortruncated estimators
of the form (30) form = 20 (dashed red),m = 50 (dashed magenta),m = N
(solid blue) and the true (constant) parameterθ◦ (solid green).

the forgetting factor which is now set to 0.1 (recall that as dis-
cussed earlier, the estimate is tighter whenλ is small). Consider
applying the estimator (47)-(48) with inputsξ = cθ − r̂θ,m and

ξ = cθ + r̂θ,m as defined in (28) and (30) form ∈ {5,N}. The out-
come of this experiment is depicted in Figure 4. For a value of
λ as small as 0.1, the estimated interval appears to be very tight.
Moreover, all values of the truncation horizonmgive almost the
same performance in this case.

0 50 100 150 200
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m= N
True

Time
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st

im
at
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p)

Figure 4: Interval-valued parameter estimates (averaged over 100 independent
runs) given by the estimator (47)-(48) on the time-varying example with ξ =
c′
θ
+ r̂′
θ,m, ξ = c′

θ
− r̂′
θ,m and ˆr′

θ,m as in (46) form = 5 (dashed red) andm = N
(solid blue). The true time-varying parameterθ◦ is in solid green.

7. Conclusion

In this paper, we have presented a recursive interval-
valued estimation framework for the identification of linearly
parametrized models. The main idea of the method is to care-
fully bound the error generated by a certain reference adaptive
algorithm, for example the recursive least squares. However
the smallest interval-valued estimator we discussed turnsout to
be computationally costly to implement in an online scenario.
We therefore turn to an alternative family of (over)-estimators
which exhibits a trade-off between the achievable performance
of and the price to pay for it in computational load. Two cases
have been studied: one where the to-be-estimated parameter
vector is constant and a more general situation where it is pos-
sibly time-varying. In the first case, we further show that the
estimated interval size can be made monotonically decreasing.

In the second, this monotonic property cannot be systematically
achieved (as this depends on the change rate of the parameters)
but the width of the estimated interval can be made very small
by an appropriate design of the reference point-value identifier.
For example, we have observed in simulation that when the ref-
erence identifier is the RLS algorithm, the performance of the
estimator improves if the forgetting factor is small.
Future work may concern the extension of the proposed
interval-valued estimation framework to systems whose mod-
els are nonlinear in the parameters.
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