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Abstract

This paper proposes a recursive interval-valued estimdtebmework for identifying the parameters of linearly pasterized
systems which may be slowly time-varying. It is assumedti@imodel error (which may consist in measurement noise aleino
mismatch or both) is unknown but lies at each time instant km@vn interval. In this context, the proposed method reties
bounding the error generated by a given reference poinedatecursive estimator, for example, the well-known rsigarleast
squares algorithm. We discuss the tradiebetween computational complexity and tightness of theregéd parametric interval.

Keywords: adaptive estimation, interval-valued estimator

1. Introduction mate intervals containing all the parameters which areisens
) o o tent with the data, the model and its uncertainty. Among the
In system identification, the estimation problem referfito t existing methods which have tackled this question we can cit

task of finding the parameters of a given parametrized mode[ho, 17] for batch mode of estimation and [15, 7] for recugsiv
family in such a way that the resulting model matches (in somegp|ine) mode of learning.

sense) a set of data. The main challenge with this task is most |, this paper, we consider the problem of deriving a recur-
presumably how to deal with the uncertaintjeating the data  gjye interval-valued estimator for linearly parametedizeod-
with regards to the assumed model structure (e.g., in the for g|5 subject to a bounded uncertainty. The data model is as-
of model error or measurement noise). To hope for good estisymed to be linear with respect to the parameters (although
mates when the uncertainty is not negligible, it is impartan  {he input-output map may indeed be nonlinear). Then, under
model somehow the uncertainty. Probabilistic distribugiare  the assumption that the model error sequence is only known to
probably the most common models for describing uncertsnti jie in some interval bounds, we first construct a tight ingrv
in many engineering fields. Such a modelling, when accuratgg|yed estimator based on the error generated by the reeursi
can lead to the design of better estimation schemes. A prolagst squares (RLS) algorithm [6, 16, 4]. However, thishilig
lem however is that a fine probabilistic modeling of the uncer jnterval-valued estimator §iers from a level of computational
tainty may require a strong prior knowledge of the process becomplexity which is not fiordable in practice when the esti-
ing modelled. While such a reliable knowledge is rarely avail mation horizon grows towards infinity. We therefore turn to a
able, probabilistic models of the uncertainty may be sdyere family of approximate implementations whose complexity ca
wrong hence damaging the performance of the estimator. -An ahe caliprated in function of the desired level of perfornmanc
ternative approach to the probabilistic one is to assuntetiea (measured here in term of tightness of the interval-valistid e
uncertain variables (e.g., the noise component) of the mOdemate). That is, the proposed family of estimatoffeothe user
although unknown, live in bounded and predefined sets. Thig,e possibility to tie the size of the desired interval-ealies-
corresponds to the so-called set-membership represem@tti  (jimate to the available computational resources. The Eepo
the uncertainty. In this latter setting the underlying id¢she  astimation framework applies to both stationary systents an
parameter estimator design is to characterize the entirefse slowly time-varying ones.
parameters which, through the induced models, are con‘sistec|ose|y related works to the current paper are the onestegpor
with the data samples and the uncertainty sets. The literatu j, [15] and [7]. The former solves at each time a linear progra
of system identification abounds in such set-memberships ap, 3 sliding window of constant length. The latter bounds the
proaches, see e.g., [11, 13, 8, 12, 5, 18, 19]. Various pregtefi error generated by a bank of RLS identifiers. The current pa-
geometrical forms can be considered for representing the P&er proposes a complementary development of this latter ide
rameter sets but we restrict our attention here to the case «gfy considering a more general framework with regards to the
intervals [8, 14]. Assuming that the model error (uncetigin  model error representation. Moreover, our design methed ap
takes values in a known sequence of intervals, one can esfipars to be more systematic as it leads to a family of parametr
able interval-valued estimators. Also, it applies to bathet
Email address: invaria_nt and_time-varyin_g mod(_als With b_ounded change. rate
laurent.bako@ec-lyon.fr,eric.blanco@ec-lyon.fr (Laurent Bako, In particular, it is shown in the time-invariant case thatepy
Seydi Ndiaye, Eric Blanco) plying an appropriate intersection operation, the sizénefds-
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timate is guaranteed to decrease monotonically.
Outline.

time t, we want to infer an estimate of the parameter vector

Section 2 states the problem of recursive interval-¢°- However, since the sequenist)} is unknown here we can

valued estimation and outlines some necessary prelingimari Nardly hope for an exact recovery @t Hence we consider the

on interval set-membership representation of uncertai@yr
method for designing interval-valued estimators reliestton
error generated by a reference point-valued recursivenasti
tor. Hence, Section 3 discusses one possible candidatadbr s
a reference point-valued estimator, the recursive leasirseg
(RLS) estimator with exponential forgetting factor. In Sec

4, we present the main estimator and its variants. In Sectio
5, we consider the more general estimation setting where the
to-be-estimated model is no longer constant but slowly 4ime

varying. Section 6 reports some simulation results totilate

and analyze the performance of the proposed estimatiorefram

work. Finally, Section 7 presents some conclusions.

Notation.
real) numbersZ (resp. Z,) is the set of (resp. nonnegative)
integers. For a real numbgr|x| will refer to the absolute value
of x. Forx =[x X]T € R, |Ix||, will denote thep-
norm of x defined by(|xl, = (x| + - - - + [X|?)"/P, for p > 1.

A € R™™ ||Al|e is the Frobenius norm ok defined byj|Alle =
tr(AT A)Y/2 (with tr referring to the trace of a matrix).

If A = [&;] and B = [by;] are real matrices of the same
dimensions, the notatioA < B will be understood as an ele-
mentwise inequality on the entries, i.ey; < by for all (i, j).
|Al corresponds to the matrixa[;|] obtained by taking the ab-
solute value of each entry & In caseA andB are real square
matrices,A > B (resp. A > B) means tha® — B is positive
semi-definite (resp. positive definitely, will denote the iden-
tity matrix of dimensiom.

2. Problem statement

We consider a linearly parameteriZatiscrete-time dynamic
system defined by
y(t) = X(®) 76" + (1), 1)

wherey(t) € R is the measured output at the discrete tine
Z, X(t) € R"is the (known) regressor amtt) € R denotes an

R (resp. R,) is the set of real (resp. nonnegative

scenario where(t) is componentwise bounded for ale Z.

with known bounds and setup as our objective to characterize
a set-valued estimate which is guaranteed to cortaimhile
being consistent with the observed data.

Assumption 1. There exist (known) bounded sequences
b(\_/(t),V(t))} such that the noise sequenfsft)} in (1) satisfies
() < v(t) <v(t)forallte Z,.

2.1. Some preliminaries on interval representation

Consider two vectorg andXx in R" such thatx < X with the
inequality holding componentwise. An intervad k] of R" is
the subset oR" defined by

[x,X] ={xeR": x< x<X}.

()

An interval [x, X] of R" can be equivalently represented by

F(Cx, 1y) £ e+ diag(ry)a : e e R, |lallo <1} (3)
where _ _
X + X X — X
Cc= 5 k=5 (4)

The notation diag( for a vectorv € R" refers to the diagonal
matrix whose diagonal elements are the entries. diVe will
call the so-definea the center or mid-pointof the interval
[x,X] andry its radius (a half of the width). To sum up, the
interval set can be equivalently represented by the pair €
R"xR"and €y, rx) € R"xR" sothat k, X] = .#(cx, rx). Finally,

it will be useful to keep in mind for the rest of the paper that
X=Cx—IyandX = Cx + Iy.

Definition 1 (Parametric interval estimator)
Consider the system (1) under Assumption 1 andMet=

((Y(0),%(0)), ..., (v(1), ¥(1))) andY" = (y(1),..., y(1)).
Consider a dynamical system defined by
6(t) = F«(V', Y',6(0), 6(0))

6(t) = Gu(V', Y1, 6(0), 6(0)) ©)

(unknown) noise component or a modeling error. The regresso _
x(t) may, among other possibilities, assume a structure of the&thereF; andG; are some functions indexed by time(tf, 6(t))

form
X(t) = [y(t=1) - Yt —na) u®T ut—1)7 -+ ut—np)7]

whereu(t) € R™ is the input of the system and the integegs
andn, are the model ordersg® € R" in (1) is an unknown

constant parameter vector which is to be estimated from data
The problem we consider in this paper is the following: given

data points{(y(k), x(K))}_, generated by the system (1) up to

INote that the considered system may indeed be nonlineamindginput-
output relation. For example(t) may be of the formx(t) = ¢(z(t)) with ¢
being a known nonlinear map aamf) is formed from measurements.

denote the output (or the state) of the system fortan¥... The
system (5) is called a (parametrinjerval-valued estimatdior
the parameter vect®r of system (1) if:

(@) 6(t) < 6° < 6(t) for all t € Z,, wheneveB(0) < 6° < 6(0)

(b) (5) is Bounded Input-Bounded Output (BIBO) stable i.e.,
if the signalsv andy and the initial stateg(0), 6(0)) are
all bounded then so ig(6).

Now we recall from [2, 3] a lemma that will play a central role
in the design of interval-valued estimators.

Lemmal. Let Me R™Mand(z 2) € R™ x R™ such that < z.
Consider the sef defined byl = {Mz: z < z < 7. Define the



vectors(c, r) by of symmetric matricés{P(t)} such that the solutioé(t) to the

c = Mc, ©) optimization problem (7) can be recursively expressed ks [6
r=|Mr,,
_ _ e a(t) = 6(t — 1) + q(t)(y(t) — x(1)"6(t - 1)) ©)
withc, = (z+2)/2andr, = (z- 2)/2. P(t — 1)x(t)
Then[c —r, ¢ + r] is the tightest interval containing. q(t) = (10)

A+ X({)TP(t - 1)x(t)
We now state formally the estimation problem. I Ton
Problem. Given the datgy(k), x(k));« generated by sys- P = /1(P(t 1) = aOx(®) Pt - 1)) (11)

tem (1) up to an arbitrary_ timee Z,, the uncer_taint;_/ bounds whered(0) = 6o, P(0) = Po. Eqgs (9)-(11) define the well-known
{((®). (1)}, , on the noise sequence as defined in ASSUMPrecyrsive least squares (point-valued) identifier withamen-

tion 1 and a prior (initial) interval se¥ (cy(0), ry(0)) containing  tial forgetting factor [9].

the true parameter vectot from (1), we are interested in find-  For the purpose of the analysis to be presented in the sequel,
ing an interval-valued estimate of the forsi(cy(t), re(t)) c R"  define the parametric errét) = 6(t) — 6°. Then it follows

(in the sense of Definition 1), of the parameter veéfom (1)  from the system equation (1) and hepdate equation (9) that
which is consistent with data. Moreover, itis desirablé the  the error has the following dynamics

estimate ¢(t), ro(t)) at timet be obtained by a simple update

mechanism from the measurement&), y(t), v(t), V(t)) at time 6(t) = A(D)A(t — 1) + q(t)v(t), (12)
t and a finite humbem of past estimatescf(t — i), ro(t — 1)),
i=1,...,m with A(t) = I, —q(t)x(t)". Eq. (12) together with (10)-(11) rep-

We will describe in Section 4 a framework for deriving a resents a dynamic system with inguft)} and state{(t)}. For
solution to this problem. Our method for constructing a recu future use in the paper, we can further exprgpin function
sive set-valued estimator requires three ingredientsa tajer- ~ Of the initial error6(0) and the noise sequenp&k)}; ., up to
ence adaptive point-valued identifier; (b) a charactdopanf  timet,
the stability of the associated error dynamics ; (c) an gmpro
ate mechanism for deducing the set-valued estimate from the
point-valued one. Many recursive identifiers may be suitabl
for the role (a) mentioned above. Here however we choose tyhered is the state transition matrix defined by
discuss only the RLS algorithm.

t
6(t) = ®(t, 0)(0) + . O(t, Ha(V(i), (13)
j=1

I t=1p
Ot to) = { Alt)---Allo+1)  t>t (14)
3. Areference adaptive identifier
An interesting property of the state transition matrix iattfor
For the purpose of designing the recursive interval-valuedny triplet ¢, ty, to) of nonnegative integers satisfying: t; >
estimator as stated above, we first study a reference adaptiy,,

point-valued identifier. D(t, tg) = D(t, t1)D(ty, to). (15)

3.1. Recursive least squares (RLS) Now we recall the stability concept which is of interest i th

A candidate adaptive identifier for point (a) above is the ex_followmg developments. For this purpose, consider the ho-

ponentially weighted recursive least squares (RLS) algori mogte\;‘g:tfszzgf Sgls\;[vehr}:: r(11v2v)e (I]nz th:ngﬂgaﬁlbtzggi\évggn the
which returns a point-valued estimaf@) of 6°, selected at P - Y9 y y

each timet to be the minimizing point of an objective function _ _ _
6 i (6), §) = AMs(t-1), £(0)=¢% (16)
6(t) = arg minVy(6), (7)  whereA: Z, —» R™"is a matrix-valued function ang(t) € R"
feRe is the state of the system (16) attimne Z, . For any {, to) € Z.
with Vi(6) defined by with t > to, £(t) can be related te(to) by £(t) = ®(t, to)&(to).

1 d . Using the generic LTV system (16), we now define the notion
Vt(g) — E Z /lt_k(y(t) _ X(t)T9)2 + %(0_ GO)T P61(0_90) (8) of exponentlal Stablllty.
k=1

Definition 2. The LTV system (16) is said to be exponentially

In Eq. (8),6 refers to a prior guess for the parameter vectorstable if there exist some constants- 0 andp € [0, 1] such
Po > 0 is a symmetric positive-definite weighting matrix re- that

flecting the uncertainty related to the gu@gsanda € 10, 1] IED, < 70 1€ (to)Il 17)
is a forgetting factor which intends to downweight the imfar o a)| (t, to) € Z, such that > to. Indeed (17) is equivalent to
tion contained in the oldest data with respect to time

Note that the objective function in (8) is continuous, coerc
and strictly convex, hence implying that the minimizer i) (7 2indeed we have(t) = [ L AR XXM +/1‘P51]_1 so thatP~1(t) =
exists and is unique. It can be shown that there exists aBeque APt - 1) + x(t)x(t)".

3




|D(t, to)ll, < yp' . wheref(t) = 4(t) - 6° is the parametric estimation error at time

Finally, note that the non-homogenous system (12) is siable tandy, is any positive number satisfyirfgo).

the BIBO sense if (16) is (exponentially) stable and the gairProof. Let V(t) = 6(t)TP-(t)d(t). By subtracting the true pa-
sequencéq(t)} is bounded. We will see in the next section thatrameter vectos® from each side of (9) and invoking the equa-
such a property is guaranteed for the error system (12)gedvi tion of the data-generating system (1), it is easy to see that
that the regressdx(t)} from the system (1) is bounded and en- §(t) = 6(t — 1) + q(t)e(t), wheres(t) = y(t) — x(t)T0(t — 1) =

joys some richness condition. v(t) — X()T4(t — 1). On the other hand, we know from Lemma
3 2 that{P~(t)} obeys the recursive relation (19). Now by direct
3.2. A stability property for the RLS algebraic calculations it can be seen that
We first recall a definition of the concept of (uniform) per- . . )
sistence of excitation [9]. V(D) = (0t - 1) + qD)e(t) (APt - 1) + x(O)x(®)") x . ..
Definition 3. A vector-valued sequende(t)} ¢ R" is said to . ~-- X (0(t = 1)+ qO=(t))
be persistently exciting (PE) if there exist some stricthgiive = AV(t - 1) + 226(t — 1)TP1(t — 1)q(t)=(t)
constantsy andg (called excitation levels) and a time horizon + 20O TE(t — D)XOTGB)®) + (XOTE(E — 1))
T such that
. +49(t) TPt - 1)) + (xO) T an)e(t)
alp < Z XKx(K)" =By VteZ, (18)  Note now that by posing(t) = 1 + x(t)"P(t — 1)x(t), we have
k=t+1
_ A
The lower bound of (18) requires that the matrix of regressor q(t) Pt - 1)q(t) = FOREOG
X 2 [x(t+1) --- x(t+T)]be full rank on any time horizon 1
of lengthT. Additionally, the smallest eigenvalue XX must x®Tqt) =1- o
be larger than a minimum level > 0. The upper bound in (18) o )t
expresses uniform boundedness of the sequiptte Pt - 1)q(t) = %

Lemma 2. Consider the RLS algorithif®)-(11) under the as- o _ _ _
sumptions that @) > 0 and A € ]0, 1[. Then the matrices @ Substituting these formulas in the above expressiaf(Dfgives
defined by(11) are invertible for all te Z, and the sequence

{P~Y(t)} of their inverses satisfy V() = AV(t - 1) - %a(t)z + V()2
PH(t) = APt - 1) + x(OX(V) " (19 \tfollows thatV(t) < AV(t—1)+v(t)2. lterating this last equation

. X ) .
Moreover, if{x(t)} is PE in the sense of Definition 3 with hori- and invoking the property (20) ¢P~(1)} yields

zon T and excitation levelg,8), then{P~1(t)} is uniformly

t
bounded as follows O, < V() < V() + Y A ku(ky?
k=1
yiln < PHt) < y2ly V20 (20)
which, by using the fact tha®1(0) < omax{ P~1(0)]l, implies
with that
= min (61, a2®™ 1 21 "2 ~ A2
" (61,22”1) - (21) y1|[0®)[[; < A'omad PH0)][|B)]|; + Za‘ ky(K)2.
v2 = Max(0z M ona(PO)+ 1)  (22) <

Hence the claim of the theorem is established. O

..........

omin[-] and omay -] standing for the minimum and maximum
eigenvalues respectively.

Corollary 1. Under the conditions of Theorem 1, if the noise v
of model(1) is identically equal to zero, then

A proof of this lemma can be found in [1]. ~ Armad PHON\? |~
Next we derive an input-to-state-stability (ISS) propdaythe ||9(t)||2 < ( 1 ) ”9(0)“2 (24)
error dynamics (12) subject to (10)-(11).

Th 1. Consider the RLS alaorith lied he d that is, the sequendé(t)} generated by the RLS algorithm con-
eorem 1. Consider the algorithm applie to_t e data verges tog° exponentially fast regardless of the initial point
generated by syste(t). If the regressor sequen¢g(t)} is PE, 6(0)

then
. Lemma 3. Consider the state transition matrix-valued func-
~ o2 1 - Zm 2 - tion @ defined in(14) from the RLS error systeifi2). If the
00> < =[Aomad POIO)| + > ATv(K)?| (23 y
oo, yl[ omal PO kZ:; ®7] (@3 regressor sequenda(t)} ¢ R" is PE, then there exist constant

4



real positive numberg; andy, such that for all(t, t;) obeying
t > to,
I0(t, to)ll < ¢~ (25)

where c= (nyy;1)Y2 andp = AY2, 1 being the forgetting
factor of the RLS algorithm.

Proof. Consider the error system (12) under the assumption

that the noise sequen¢e(t)} is equal to zero. Then for any
(t,to) such that > tg, we haved(t) = @(t, tp)d(tp). Moreover,

in term of its center-radius paicg, r;) given by
t
ci(t) = ©(t, 0)c;(0) + > ®(t, ja(j)eu() (26)
=1

t
r3(t) = 10(t, 0)rz(0) + > 10(t, Ha(Irv(i) (27)
=1

where €, ry) is the pair of signals defining the intervals of the

Corollary 1 can be applied by replacing the time origin for annoise sequencg/(t)} andc;(0) = ¢y(0) - 6° andr(0) = ry(0).

arbitraryty € Z, such that > t; > 0. This gives

1/2

lFcol,

o), < (W%—[Pl@oﬂ)
Y1

for any value ofi(ty) € R". Since the PE condition holds here

Recalling now that® = 6(t) — 6(t), an interval-valued estimate
of the#° can be obtained as proposed in the following proposi-
tion.

Proposition 1. Consider the systefd) and assume that the re-
gressor sequencg(t)} is PE in the sense of Definition 3 and

for {x(t)}, we know by Lemma 2 that there exists a constanthat the noisgv(t)} is bounded and admits an interval repre-

numbery; > 0 such thatrma{ P~1(to)] < 72 (See Eq. (20)). We
can hence write

1/2
ool < (2) o fecoll,
This implies that

||q)(t,~t0)9(to)”2 < (
[Bcto)[,

Finally, the result follows by recalling that
(L to)llr < VNIID(L, to)ll-

Y2

IO, to)ll, = sup —
Y1

6(to)20

1/2
t—1
) p D ’

4. Interval-valued estimator

In this section we present the main contributions of the pa:

per concerning the development of an adaptive intervaledl
parametric estimator. As explained at the end of Sectiom®, o
method relies on the error sequence generated by a poim-val
adaptive estimator. Considering the special case of the ReS
obtain the error dynamics expressed in (13) which is diyeet!

sentation(c,(t), ry(t)). Then the pai(cy(t), ro(t)) given by
{Cﬁ(t) = 0(t) — c5(t)
ro(t) = ra(t)

with (c;(t), rz(t)) as in(26)-(27), defines an interval estimator
for the parameter vectar.

(28)

Proof. To begin with, let us recall that® = 6(t) — 6(t) and
(26)-(27) is such thafi(t) € [ca(t) — rp(t), cz(t) + ry(t)] for all

t € Z,. It follows, as an immediate consequence, tfate
[Co(t) — ro(t), co(t) + ro(t)] with (cy,re) defined as in (28). To
reach the conclusion of the proposition, it remains to prove
that the dynamical systems (operatorg)@),c,) — ¢, and
(re(0),ry) — ry are BIBO stable. By relying on (26)-(27), it
is immediate to see that, under the PE condition, both proper
ties follow indeed from (25) which in turn is a consequence of
Theorem 1. O

4.2. Computational aspects

Implementing numerically the estimator (28) requires com-
puting (;(t), r3(t)) defined in (26)-(27) for any time A prob-

lated to the noise. Applying Lemma 1 to this equation gives alem however is that these convolutional formulas become in-

interval estimate of the erréxt) = 6(t) — 6°, which can then be
modified to get an estimate 6f.

4.1. Derivation of an interval-valued estimator

feasible in practice whehgrows towards infinity. Therefore
it is desirable to find anficient implementation of this esti-
mator for example, in the form of a one-step-ahead stateespa
recursive realization. In this perspective, note thét) can be

Assume now that we are given a recursive point-valued essomputed recursively through the following equation

timator (say the RLS algorithm dicussed earlier) genegain
sequence of estimat¢t)} for 6° in (1). To derive an interval-
valued estimator fop°, we first find an interval-valued esti-
mate for the errofi(t) defined in (12). We do so by applying
Lemma 1 to (13) which, for convenience, can be rewritten a
6(t) = M(t)z(t) with

M() = [©(t,0) (t, 1)q(1)
2t) = [6©0)T  v(1) vl

o(t, ()|

Co(t) = A(t)Co(t — 1) + a(t)(Y() — cu(t)).

Unfortunately, there is, in general, no simple recursivelen

(29)

énentation for the interval radiug as defined (27)-(28). Hence,

a strategy would be to search for a more pessimistic estimate
but which would be implementable. That is, the computationa
constraint introduces a dose of pessimism in the estimatisn
sulting in a less tight interval-valued estimatesof A possible
solution is to replace, with a truncated version, , defined,

We hence obtain immediately from Lemma 1 that the smallest

interval set containing the parametric erfi(t) can be expressed
5



for a given integem > 0, by

t
D(t, 0) rg(0) + ) 1(t, k)()Iry(K)
. k=1
Fom(t) = ift=0,...,m t
Ot =M fomt—m) + > 10 KKK,

k=t-m+1

ift>m

(30)
Intuitively fym, is all the smaller asn is large. On the other
hand the computational complexity grows witih Note that
in the extreme case whene = t, we getrgm(t) = ry(t) for all

wherex(t, j) = maxt— jm, 0). Using the propertjA||B| > |AB|,
we observe, for example, that the matrix in the first term @} (3
can be bounded as follows

a(t)+1

]_[ ’cp(K(t, ¢ - 1),«(t, t’))‘

=1
a(t)

=(T1 ’(D(t —(i-1mt- im)‘) B(t — a(t)m, )|
i=1

> ‘CD(t,t — m)®(t - m,t — 2m) - - - O(t — a(t)m, 0)
=|@(t,0)|,

t € Z,. The simplest version (but also the most pessimistic) ofynere the last equality follows from the property (15) of the

the family (30) of estimates is obtained for= 1,
Foa(t) = A Foa(t — 1) + [a(t)Iru(t) (31)

However, as we will see shortly, such an estimate is unlitely

satisfy the BIBO condition of Definition 1. As a consequence

it will not qualify in general as an interval-valued estimiat
The result below formally shows that for any tinhethe
interval . (cy(t, re(t)) is included in.Z (cy(t), Fo m(t)).

Lemma 4. Consider the interval radii g(t) andfy y(t) defined
in (27) and (30) respectively. For any fixed integer m, it holds
that ra(t) < fgm(t) forallt € Z,.

Proof. We start by observing thagm(t) = re(t) fort =0,...,m.
Hence the inequality is true far= 0,...,m. If t > m, write

t = a(t)m+ B(t) for some positive integers(t), 3(t)) such that

0 < B(t) < m. By iterating the second equation of (30), we
ultimately get

a(t)
Fam(®) =(| | |0t - (¢ - Dmyt— em))fm(B(0)
=1

aft) t=(j-1)m -1

w3 2y ([ ]et-e-nme-am))x...

j=1 k=t—jm+1 ¢=1

~x et (- Hm KAk

rv(K)

Moreover, sinced(t) = t — a(t)m satisfies O< B(t) < m, by the
definition (30) ofrym(t) we know that

t—a(t)m
Fom(B(1)) =10(t — a(t)m 0) ro(0)+ Z [ (t—a(t)m, K)g(K)Iry(K).
k=1
Plugging this in the above expression yields

a(t)+1

fom® =( | | |0kt € = 22,2, 0))ro(0)
=1

a(t)+1 «(t,j-1) j-1 (32)

DIIN

=1 «tj+l ¢

'@(K(t, €= 1), k(t, f))') x..
1

X 1®(K(t, i — 1), k)a(k)

rv(k)

state transition matrix. Applying this property to the wieix-
pression of 4 n(t) above leads to

a(t) t=(j-1)m
fom(®) 2 [0 O[rs@) + > > |t (k)
j=1 k=t—jm+1
t—a(t)m

+ ) 19 Kakin

k=1

t
= [o(t, 0)[rg(0) + D [@(t, a®)|rv(k)
k=1

= ry(t)

This concludes the proof. O

Theorem 2. Consider the systeifi) and assume that the re-
gressor sequencg(t)} is PE in the sense of Definition 3 and
that the noisgv(t)} is bounded and admits an interval repre-
sentation(c,(t), ry(t)). Then there exists a numberns 0 such
that for all m> m*, (cy(t), fom(t)) defined in(28) and (30) con-
stitutes an interval estimator for the parameter veetar

Proof. By Lemma 4, we know that,(t) < fom(t). Hence it

is immediate by Proposition 1 thét € [cy(t) — Fom(t), Co(t) +
fom(t)] YVt € Z,. We just need to establish the second condition
of Definition 1. More precisely, we need to show that the se-
quence of intervalsch(t) — o m(t), Co(t) + fom(t)] is bounded. For
this purpose we will show that the systenagQ), c,) — ¢, and
(re(0),ry) — o are stable.

Boundedness dty(t)}. Recall that a state-space realization of
Cy is given in (29). Relying on this equation, it is clear that
(c4(0), c,) — ¢y is BIBO state if and only if §(0),v) — 6 de-
fined in (12) is BIBO stable. As already shown in the proof
of Theorem 1, the PE condition Siges to guarantee thatis
bounded wheneve#(0), v) is bounded. We hence conclude that
(cy(0),c) — ¢4 is BIBO.

Boundedness dfyn(t)}. We will rely on formula (32). Tak-
ing the Frobenius norm ofyn(t) and applying the submul-
tiplicativity property of the Frobenius norm and the facatth
IIAllle = Al (i.e., Frobenius norm ok equals Frobenius norm



of |A|) for any matrixA, we can write

a(t)+1
From®ll, < ( ] [lotetti = 1.xci)]|_)iracod
i=1

a®+1xtj-1)  j-1
Y (l_[||(I>(K(t,€—1),K(t,£’))HF)><
=l k=k(L))+1 =1

x|t § - ), K]| oG il

Here, we have used the fact thiat|r = ||X||, for any vectorx.

Since the PE condition holds, it follows from the analysis of

Section 3 (See Eg. (25)) that the transition matbixsatisfies
[lD(t, to)llr < cot~% with the constants > 0 andp being defined
as in (25). Applying this in the above inequality gives

[[Fom®]|, < (0™ O (co'*O™) [Iry(O)Il
at) t=(j-1)m _ _
D D I B s T (A (]
j=1 k=t—jm+1
t—a(t)m

+ 0 (@O O™ 1Rl (Kl

k=1

Under the PE condition ofx(t)}, we know by Lemma 2 that
{P(t)} is uniformly bounded as/¥l, < P(t) < 1/y1l, for all
t. From this, it is easy to see that the vedift) defined in (10)
satisfies

1/yasuplix@®)llz

A+ Lyzinf XI5
This implies thafq(t)} is upper-bounded. On the other hand,

lla(kll; < (33

This suggests that the richer the regressor seque(ie (that

is, the smaller the ratigy/y,), the smaller the thresholah*
will be. Note indeed thag; andy, depend not only on the data
sequencéx(t)} but also on the forgetting factdrand the initial
weighting matrixP~1(0). A few further comments can be made
concerning the behavior of . First, note that an asymptotic
bound on the estimated interval radius can be derived asvsl!|

Chigiy 1 —p™
l-pl-co™
Then we see that as the truncation ordegrows, the asymp-
totic bound onrgm(t) gets closer tdX = cngn/(1 - p). By
invoking Eq. (33) it is immediate to see that if we lgti, =
inf, [IX(t)ll, andhmax = sup [IX()]l,, thenng < ﬁhzm"# which,
by using the expressions ofandp given in (25), implies that

2 (72 )3/ ?

1-av2\y,

Iitm sup|[fam(®)|, < (36)
—+00

hmax

b < .
+ /1’)/2

37
hﬁﬂn ( )
What this shows is that the influencing parameters of the bound
b originates from three sources: (i) the parameters meagurin
richness of the learning dataa, y2, hmin, hmax; (i) the design
parameters of the estimator; P~1(0); (iii) the magnitudey, of
the uncertainty associated with the mathematical reptaten
(1) of the data.

4.3. Further improvements

Due to the presence of noise in the data, the size of the in-
terval estimatescy, ry) or (Cy, fo.m) discussed above may oscil-
late over time instead of decreasing monotonically (Searkig

is bounded by assumption. Let therefore consider the bounds for @ visual illustration of this phenomenon). This behav-

Mg = SURez, IA(K)Il; andny = SUpez, [INV(K)Il2. Using these
notations and proceeding from above gives

~ 1—pM1— mya(t)
Ol < (oMt + a2 =12

1-— t—a(t)m

+ C’Iq’lv(CPm)a(t)+

-p

This inequality can be refined as

[Fom®], <(co™*OclireO)Il2

N Cngnv [ 1—p™
1-p|1-com

Note thata(t) = [t/m] —» +c0 ast — +oo. The notation| -]

refers here to the floor function (integer part). Hencepif <
In(c)

I ’

(34)

+(e") 01— p™ )]

4

1, thatis, ifm > m*
bounded.

then the sequendéy (1)} is
O

A candidate for the constantis the one expressed in (25).
By making use of it, a full expression af* can be obtained as

In(my2y7%)

M= -

(35)

ior is undesirable in practice and should be mitigated ashmuc
as possible. For this purpose, we discuss here a simple re-
cursive intersection operation for removing such possilolie
monotonic trend of the interval-valued estimate for théneest
tors proposed in the previous sections. To this end, conaide
pair ¢, &) : Z, — R" x R" such that the to-be-estimated pa-
rameter vector® lies in [£(t), £(t)] for all t. Define the pair

of vector-valued functionsg(6) : Z, — R" x R" such that
6° € [6(0),6(0)] and for allt > 1,

8(t) = max(@(t - 1).£0)
8(t) = min @t - 1).20)),

(38)
(39)

where the minimugmaximum operators apply componentwise,
i.e., whenx andy are vectors of the same dimension, iy
refers to the vector whose entries are given by mijy(). We
will call (£,¢) the input of the dynamic system (38)-(39) and
(6,6) its state. In fact (38)-(39) is equivalent t&t), 6(t)] =

[t - 1), 6(t - )] N [£(1), EQ)]-
We now state some basic properties of the estimator (38)-(39

Lemma 5. Assum&)(0) < 6(0) and&(t) < &(t) for all t. Then
the following facts are true: B

1. Boundednessi(0) < 6(t) < 4(t) < 6(0) Vt > 0



2. Monotonically decreasing width§(t), a(t)] c [0(K),6(k)]  The relation (41) is key for deriving an interval-valuediest
¥(k, t) such that k< t. mator. In dfect, by relying on it and following the preced-

3. Convergence: The sequende@)} and{d(t)} convergeto  ing discussions, it is easy to obtain, under the PE condition

an interval-valued estimator for the vector-valued segeen

{6°(t)}. More precisely, the complete form of the estimator is

0" 2 max(6(0), maxé(t)) F(c, (1), ry(1) = [cy(t) — rp(t), ci(t) + ry(t)], with centerc, de-

- B t = fined by the state-space equation

6 andd respectively with

6 £ min(9(0), min&(t))

t Cco(t) = Alt)cy(t — 1) + at)(¥(t) — cu()) + Al)cs(t),  (44)

If max £(t) < 6(0) and min, £(t) < 6(0). then the input c(0) = ¢,(0), and radius;, given in convolution form by
sequencg(t),g(t)} does not bring any information since
in this casey(t) = 6(0) and6(t) = 6(0) for all t.

4. If 6° € [6(0),6(0)] N [£(t), £(1)] for all t, then

6° € MiZol6(), 6(1)]. . .

o ) Recall that in (44),{0(t)} still refers to the sequence gener-
Proof. The facts 1, 2 and 4_ are quite |mmeFj|ate. To see Whyytaqg by the point-valued RLS identifier (9)-(11). Likewise,
fact 3 holds, note thalg(t)} is (componentwise) nondecreas- ¢ is the RLS transition matrix expressed in (14). As to the
ing and upper-bounded whi{é(t)} is nonincreasing and lower- truncated form of the estimator, it now admits the expressio
bounded. Hence by the monotone convergence theorem, bot#i(cy(t), f; () = [c;(t) — (1), () + Fj ()] with ¢; as in
sequences are convergent and their limits are the maximal el(44) andry (t) defined by
mentg* and minimal element of the respective sequences as

t
ro(t) = 1O(t, 0)re(0) + Z [D(t, ))BDIry(])- (45)
=1

t

expressed above. - DL O) () + > [(t, KBRIrs{K)
Remark 1. In virtue of the properties stated in Lemma 5, the ) k=1
estimator in(38)-(39) is naturally robust to potential outliers O ft=0,....m .
in the sequencfv(t), V(t))} of bounds on the equation errorsin D, t — m)| 7, (t —m) + Z ID(t, K)B(K)Irs(k)

? o,m i \ ’
(1) k=t—m+1

ift>m

5. Application to a time-varying system (46)

Finally, let us remark that it is possible, similarly as ircen
We now consider the case where the true parameter vecta3, to derive improved versions of the above interval-gdlu
¢° in (1) is no longer constant but may be time varying with aestimators for the case of time-varying systems. For this pu
limited rate of change. Let us pose pose, consider any pait,&) of functions such thag(t) < &(t)

and@°(t) e [£(t),£(t)] for all t > 0. Then by letting b, p) be
defined by ~ -

where{d(t)} is unknown but assumed to be bounded in an in-
terval. More precisely, we assume that we know a sequence E(t) = max(B(t -1 +§(t)’§(t)) (47)
{7 (cs(t), r5(1))} of intervals such thad(t) € .7 (c;(t), rs(t)) for P(t) = min(p(t — 1) + 6(t), £(t)), (48)
all't € Z,. Let us still use the notatio#(t) to refer to the para-

metric error now defined bg(t) = 6(t) — °(t) with 6(t) gener-  with §(t) = cs(t)—r,(t) ands(t) = cs(t)+15(t), it holds thae°(t)
ated as in (9) from the data. It can then be shown that the errgix(t), p(t)] for all t > 0 provided that°(0) € [p(0), p(0)].

0°(t) = 6°(t — 1) + 6(1), (40)

dynamics take the form Moreover, p, ) is bounded provided thag ) is bounded. Of
é(t) = A(t)é(t — 1)+ B(t)V(t) (41)  course the inputg_(g) of (47)-(48) can be taken to be any of
the estimateéc), —ry, ¢, —rp) in (44)-(45) or(c; —f; .. ¢, —Ff )
with A(t) = I, — q(t)x(t)" as in (12) and with f;, , defined in (46).

B() = [q(t) -A)]

v(t) = [v(t) s®)T]"
_ _ _ 6.1. Linear Time Invariant system
Note in passing that one recovers the error dynamics (18) fro ¢ jjlustrate the performance of the proposed estimataes, w

(41) whend(t) = 0 for all t, that is, wheno"(t) is assumed first consider a dynamical LTI system described by a model of
constant. Now an interval representatiorv@j in (41) is given  the form (1) where® = [-1.40 Q75 060 -0.10]7 e R*

(42) 6. Some simulation results

by . andx(t) = [-y(t-1) -y(t-2) ult-1) ut-2)7 e R*
ci(t) = [ou(t)  cs(t)] (43)  Withthe inputiu(t)} being generated as the realization of a zero-
re(t) = [ru(t) rs(®)]". mean white Gaussian noise with unit variance. As to the noise



sequencév(t)}, it is uniformly sampled from an interval of the s
form [-a, a] with a = 0.2. In these conditions, we consider an MmN
estimation horizon of lengthl = 200 data points and compute
the interval-valued parameter estimates described in (P&

initial parameter se¥ (cy4(0), ry(0)) is selected such thag(0) = | |
0 andry(0) = apl, with @g = 4 andn = 4 here andl, being % |\agozz-z-------moooooomm- -
a n-dimensional vector of ones. The reference RLS algorithm [ ___________________________

Estimates(, 6)

o

(9)-(12) is run with initial valued(0) = 0, covariance matrix
P(0) = 10°1, and forgetting facton = 0.99.

Evaluations of the preliminary estimators. Considering the 0 50 e 200

truncated estimates (29)-(30), we start by recalling thates-

tablished by Theorem 2, there is a minimum value of the horiFigure 2: Interval-valued estimates (averaged over 10(pexddent runs) given

zonmbeyond which boundedness of the estimate can be hopé¥ the estimator (38)-(39) with = ¢, + fym, £ = Gy — fom andrym as in (30)

for. With the experimental setting described above, a méim orm=10 (dot@ed red)m: N (solid blue) : true (constant) paramegér(solid
green) and estimates given by the method of [7] (dashed black).

such value is empirically found to be about 10 for most realiz

tions of the input-output data.

Figure 1 below presents the interval-valued parameter estinfluence of the RLS forgetting factor. As can be intuitively
mates for this example when applying the estimators desgrib guessed, the performance of the proposed interval-valstéd e
(29)-(30) form € {20,50, N}. Note that the casm = N with mators depends on the properties of the RLS reference iden-
N being the entire estimation horizon generated an inteasal r tifier which in turn are determined by the richness of the data
diusryy, such thatg, = ry (See Eq. (28)). The results confirm and the user-defined parameters sucRP@ andA. In partic-
that the estimateZ (cy(t), ro(t)) defined in (28) is tighter than ular, it is interesting to study the impact of the forgettfag-
the truncated forms?(cy(t), fom(t)) for m < N. Moreover, the tor A € ]0,1]. In general, for point-valued estimation, such a

larger the truncation horizom, the tighter.# (c,(t), fom(t)). parameter is selected, to be close to 1 in order to smooth the
trajectories of in (9). In contrast, the recursive interval-valued
6 estimator (38)-(39) tends to perform better whieis small. To
mm=20 | see this consider Figure 3 where we have plotted the final in-
—m=N terval widthd(N) — 8(N) achieved by the estimator (38)-(39).

Again only the estimates related to the first component of the
parameter vector are represented. We consider the estimato
(38)-(39) with¢ = ¢y — fgm andé = ¢ + o as defined in (28)
and (30) form € {20,50,N}. The results are indeed averages
over 100 independent simulations. What this reveals is kst t
estimator's asymptotic performance depends on the fangett
50 100 150 200 factor in the sense that the width of the estimated intesvalli

Time the smaller as the forgetting factois small. This behavior can
Figure 1: Interval-valued parameter estimates for the firsyeri ¢° (averaged ~ be explained by the fact that a smaih the RLS may cause the
over 100 independent runs). Truncated estimatgs(m) with fym asin (30)  estimatesdy, fy ) to fluctuate substantially hence favoring the
for m = 20 (dotted red)m = 50 (dashed magentaji = N (solid blue) and the o\ ant that the associated interval jumps occasionally toals
true (constant) parametet (solid green).

value. We can further observe that for small values of the for

ically i d esti i he b _getting factor (e.g4 < 0.6 in Figure 3), all truncation ordera
Monotonically improved estimators. To illustrate the benefit 0 perform equally well. This suggests an important fea

of the monotonic opergtors prpposed in Se_ction 4.3, we appli/ure of the proposed estimation framework for practicallamp
them to the three previous estimators, 'that is, the estBr@® o ntation: provided the exciting inp((t)} is suficiently rich
now computed by using, fom) as inputin Egs (38)-(39), with - 5,4 i then taken small enough, the computational complexity

me {10, N}. Again recall thatn = ro. The associated results ¢ 6 estimators can be reduced to the minimum by selecting a
are plotted in Figure 2. As argued before, we can see that thfmall truncation horizom

obtained estimates are smoother and tighter compared e tho
of Figure 1. Moreover, theyfectively generate intervals with 6.2. Linear Time Varying system
monotonically decreasing (nonincreasing) widths. Forgam
ison purpose, we have also represented estirhatetained by
the method described in [7]. As it turns out, our estimatoegi
tighter estimates. We will see in the next paragraph thaemor
tightness can be gained by using a smaller forgetting fatctor

Estimates

We now consider a model of the form (1) where the pa-
rameter vectop® is time-varying with dynamics defined as in
(40) where it is assumed théft) belongs to an interval given
by cs(t) = 0 andrs(t) = [0.10 005 004 001" for all t.
For the simulation, we generate a sequei¢®} in this interval
such tha#(t) = rs(t) sin(2tt/30). The other settings remain the

3Note that no line is visible in the time interval,[20] because the first 20 same as previously defined in the beginning of Section 6 éxcep
samples are used here to initialize the algorithm.
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Figure 3: WidthgJ(N) — 6(N) (averaged over 100 independent runs) of the esti-
mated parameter intervals versus forgetting fagtadnly the first components
of the parametric (vector-valued) error are representettdiocated estimators
of the form (30) form = 20 (dashed red)n = 50 (dashed magentaj = N
(solid blue) and the true (constant) paramétefsolid green).

(1
[2]

the forgetting factor which is now set tol0(recall that as dis-
cussed earlier, the estimate is tighter whésismall). Consider
applying the estimator (47)-(48) with inpugs= ¢, — fom and

& = ¢y +Fym as defined in (28) and (30) fan € {5, N}. The out-
come of this experiment is depicted in Figure 4. For a value of
Aas small as @, the estimated interval appears to be very tight. |5
Moreover, all values of the truncation horizorgive almost the
same performance in this case.

(3]

[4]

(6]
[71

(&)

(8]
[9]

Estimates §p, p)
o

[10]
5
0 50 100 150 200
Time [11]
Figure 4: Interval-valued parameter estimates (averagedl®gindependent
runs) given by the estimator (47)-(48) on the time-varyingneplke with¢ = [12]
cy + fé’,’m, E=¢- f;,m andry, as in (46) form = 5 (dashed red) anch = N
(solid blue). The true time-varying paramegéris in solid green.
[13]
7. Conclusion [14]

In this paper, we have presented a recursive intervalps)
valued estimation framework for the identification of linga
parametrized models. The main idea of the method is to care-
fully bound the error generated by a certain reference agapt [16]
algorithm, for example the recursive least squares. Homwevgi7]
the smallest interval-valued estimator we discussed un#o

be computationally costly to implement in an online scemari
We therefore turn to an alternative family of (over)-estiona
which exhibits a trade{® between the achievable performance
of and the price to pay for it in computational load. Two cased19]
have been studied: one where the to-be-estimated parameter
vector is constant and a more general situation where itss po
sibly time-varying. In the first case, we further show that th
estimated interval size can be made monotonically decrgasi

10

(18]

In the second, this monotonic property cannot be systeailtic
achieved (as this depends on the change rate of the parajneter
but the width of the estimated interval can be made very small
by an appropriate design of the reference point-value ifilent
For example, we have observed in simulation that when the ref
erence identifier is the RLS algorithm, the performance ef th
estimator improves if the forgetting factor is small.

Future work may concern the extension of the proposed
interval-valued estimation framework to systems whose-mod
els are nonlinear in the parameters.
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