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ABSTRACT

This work discusses the total transmission delay distribu-
tion in wireless networks where medium access follows the
IEEE802.11 DCF medium access protocol. It does not pro-
pose a new model to derive the delay distribution of such
protocol but focuses on providing a precise performance eval-
uation method to characterize the accuracy of analytical
derivations of the literature. More specifically, this method
separates the error introduced by the two main steps of
the delay distribution characterization, naming the calcu-
lation of the delay probability generating function (PGF)
and its numerical inversion. It is illustrated to assess the
performance of the main Markov-based MAC model found
in the literature together with two different types of queues
(M/M/1 and M/G/1).
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1. INTRODUCTION
Wireless networks based on the IEEE802.11 technology

[5] are now deployed widely for non-critical applications.
The flexibility of wireless connectivity is gaining momen-
tum in the context of real-time networks (wireless industrial

fieldbuses, wireless embedded networks, etc..)[7][8][12]. The
main pitfall of wireless communications is of course the in-
creased unreliability the medium suffers from due to inter-
ference and pathloss compared to shielded wires. Moreover,
the main IEEE802.11 technology is based on is based on
CSMA/CA (Carrier Sense Multiple Access with Collision
Avoidance), which is non-deterministic but highly flexible.

Carrying soft real-time data over wireless is a feasible op-
tion [8], however, it is therefore necessary to characterize
the response time of the network to forecast its behavior
and dimension the real-time application using it. When a
CSMA/CA type of medium access (MAC) is considered,
it is thus necessary to have a precise and accurate knowl-
edge of the delay distribution. Not this many works have
targeted the analytical derivation of the delay distribution.
This makes sense since for non-critical wireless networks,
the knowledge of the average delay for a node to access the
medium is enough. But for real-time applications, it is not
sufficient and the total delay distribution needs to be de-
rived.

The main works that discuss the delay distribution deriva-
tion use different analytical models for the MAC and queu-
ing delay [4][9][10][13]. All these works calculate first the
probability generating function (PGF) of the MAC and queu-
ing delays. From these, they deduce the PGF of the total
transmission delay which has to be inverted to obtain the to-
tal delay distribution. For instance, in [13] and [9], the MAC
delay PGF is derived from the well-known Markov model of
Bianchi [2]. An important step to get the delay distribution
is to invert the PGF to obtain the corresponding probability
mass function. This step can introduce errors. Similarly, dif-
ferent inversion methods have been proposed in these works.

Our aim in this paper is to propose a clear and precise per-
formance evaluation method to i) assess the quality of the
analytical model leading to the total delay PGF, ii) select
the most accurate numerical inversion method. Therefore,
we define two performance measures whose aim is to charac-
terize the error originating from the analytical model on the
one side and from the PGF inversion method on the other
side. Our performance evaluation method is illustrated on



the specific case of a IEEE802.11 DCF medium access where
two different types of queues are assumed, naming M/M/1
and M/G/1.

This paper is organized as follows. In Section 2, the over-
all analytical derivation of the total delay distribution is
presented. Detailed calculations for the individual MAC,
queuing and total delays for IEEE802.11 DCF protocol and
specific queues are given in Section 3. In Section 4, we in-
troduce the method proposed to assess the performance of
a delay distribution model. This method is leveraged in
Section 5 to select the most accurate analytical model that
derives the total delay distribution of an IEEE802.11 wire-
less network using DCF. Finally, Section 6 concludes this
work.

2. TOTAL DELAY DISTRIBUTION
This section starts by introducing the wireless system of

interest and then presents the overall analytical derivation
of the total transmission delay distribution.

2.1 System model
In this paper, a source node is directly transmitting its

packets to a destination node. These two nodes belong
to a set of n stationary nodes sharing a common wireless
medium. Each emitted packet experiences a total transmis-
sion delay dt which is measured from its time of generation
to the time its sender gets an acknowledgement (ACK) from
the destination node or a maximum number of transmission
trials has been reached.

At the time of generation, the emitted packet enters the
transmission queue. Once it has reached the head of its
queue, it will compete for channel access with the other sta-
tions. If the packet has been emitted, the sender waits for a
positive ACK from the destination. Thus, the total delay is
the sum of:

- a queueing delay, which is the time for the packet to
reach the head of the transmission queue, and

- a medium access delay (MAC delay), which is the time
needed by the medium access protocol to either successfully
deliver the packet or drop it in case of repeated failures.

The rest of the paper discusses the analytical derivation
of the distribution of the total delay experienced by pack-
ets for an IEEE802.1 DCF medium access (with or with-
out RTS/CTS mechanism). We consider a saturated traffic
where all nodes of the network always have a packet ready
for transmission. Two types of queues are investigated as
well, naming M/M/1 and M/G/1. Ideal channel conditions
are assumed as well (no channel errors, no hidden terminals).

2.2 Overall analytical derivation
MAC and queuing delays are independent discrete random

variables. Indeed, the MAC delay experienced by a head of
line packet is completely independent from the time it has
spent in the queue [13]. It is just a function of the number
of nodes contenting for medium access with him.

In the rest of the paper, the following notation is adopted:
dt(k), dq(k) and dm(k) represent the probability mass func-
tions (PMF) of the total transmission, queuing and MAC
delays, respectively. Dt(Z), Dq(Z) andDm(Z) are the prob-
ability generating functions (PGF) of total, queuing and
MAC delay, respectively. We recall that the probability-
generating function of a discrete random variable X is the

Z-transform of its PMF. It is calculated following D(Z) =
∑

∞

k=0 d(k)Z
k, with Z ∈ C and d(k) the PMF of X.

Since MAC and queueing delay random variables are in-
dependent, the PGF of the total delay Dt(Z) is equal to the
product of Dm(Z) and Dq(Z):

Dt(Z) = Dm(Z)Dq(Z) (1)

and the complimentary cumulative distribution (CCDF) of
the total delay is given by

D̃t(Z) =
1−Dm(Z)Dq(Z)

1−Z
(2)

The mean of the total delay E[Dt] is obtained by summing
the mean MAC and queuing delays:

E[Dt] = E[Dm] + E[Dq] (3)

with E[D] = D′(Z)|Z=1.
In this work we are interested in extracting the probability

mass function dt(k) of the total delay. Therefore, we’ll need
first to derive Dm(Z) and Dq(Z), the PGF of MAC and
queuing delays. Previous works have tackled these problems
with different perspectives and models. Our aim in this
paper is to present a performance evaluation analysis of such
derivations in order to select the ones which provide the best
trade-off between accuracy and complexity. Therefore, the
analytical delay distributions have to be compared to their
empirical counterparts using extensive simulations.

Having Dt(Z) =
∑

∞

k=0 dt(k)Z
k, dt(k) is obtained by the

Z-transform inversion of the PGF. This last inversion step
is critical and can introduce errors. This inversion error
adds to the error an imperfect analytical model creates as
well. We argue in this paper that to have a clear view of
the performance of a given analytical derivation of a delay
distribution, its validation has to be done in two steps. First,
the model used to derive the individual PGFs has to be
validated before numerical inversion. Second, the numerical
inversion has to be tailored to reduce the inversion error.

3. INDIVIDUAL PGF DERIVATIONS
This section recalls briefly the derivation of the individual

PGFs for the MAC and queueing delays we have selected
from the literature.

3.1 PGF of MAC delay
Two different types of models have been proposed in the

literature to characterize the medium access delay distribu-
tion. Zhai et al. [13] and Vardakas et al. [9] rely on a Markov
chain model originating from the work of Bianchi [2]. Vu and
Sakurai [10] proposed a different probabilistic derivation for
the PGF of MAC delay, but their paper presents a very lim-
ited performance evaluation. Thus, we have decided to look
first at the better known Markov model of Vardakas et al.
[9] to derive the PGF of the MAC delay. In the following,
we briefly review the Markov chain model and the related
PGF derivation of the MAC delay of [9]. Then, the PGF
of MAC delay is presented and we introduce a performance
evaluation measure to validate its accuracy against simula-
tion results.

3.1.1 Markov chain model for IEEE 802.11 DCF

Due to space limitation, we refer the reader to [5] for a
detailed description of the IEEE802.11 DCF MAC protocol.
Following the modeling and analysis proposed in [13] and



[9], the state transition diagram of the discrete-time Markov
chain has the following one-step transmission probabilities.
Let {s(t), b(t)} be a bi-dimensional, discrete-time Markov
chain. Here s(t) is the stochastic process which represents
the backoff stage i ∈ [0, . . . ,m] at time slot t and b(t) the
stochastic process which represents the backoff counter (with
different contention window sizes) for a given station at time
slot t. There are m transmission attempts and we thus have
m backoff stages. The aim of this model is to derive τ , the
probability that the node gains access to the channel in any
time slot.

Collision probability p: The collision probability p is
the probability of a collision seen by a packet transmitted
on the channel, which is constant and independent of the
number of the collisions that the packet has suffered from in
the past. A fixed point formulation for p was introduced by
Bianchi [2], who proposed the relationship:

p = 1− (1− τ)n−1 (4)

Channel busy probability pb: As in [14], we assume that
pb stands for the probability that the channel is busy. This
probability is independent of the backoff procedure, that
is, independent not only from the backoff stage (number
of retransmissions), but also from the value of the back-
off counter. The channel is detected busy when at least
one of the n− 1 nodes transmits during a system time slot.
Note also that a station remains with probability pb at state
(i, k), k ≤ 1, when at least one of the n− 1 remaining nodes
transmit. Therefore the values of pb and p coincide.

pb =
∑n−1

i=1 [
(

n−1
i

)

.τ i.(1− τ)n−1−i]
= 1− (1− τ)n−1 (5)

A brief summary of the non null one-step transmission prob-
abilities are provided here.

P{i, k|i, k + 1} = 1− pb, k ∈ [0,Wi − 2], i ∈ [0,m]
P{i, k|i, k} = pb, k ∈ [0,Wi − 1], i ∈ [0,m]
P{i, k|i, 0} = (1− p)/W0, k ∈ [0,W0 − 1], i ∈ [0,m− 1]
P{i, k|i− 1, 0} = p/Wi, k ∈ [0,Wi − 1], i ∈ [1,m]
P{0, k|m, 0} = 1/W0, k ∈ [0,W0 − 1]

Let bi,k = limt→+∞ P{s(t) = i, b(t) = k}, with i, k integers,
i ∈ [0,m] and k ∈ [0,Wi − 1], be the stationary distribution
of the Markov chain. The probability of being in state b0,0
can be computed as:

b0,0 =

{

2(1−p)(1−pb)(1−2p)

W0(1−p)(1−(2p)m+1)+(1−2p)(1−pm+1)
,m ≤ m′

2(1−p)(−pb)(1−2p)
P1+P2

,m > m′.
(6)

where

P1 = W0(1− p)(1− (2p)m
′+1)

P2 = (1− 2p)[1− pm+1 + pW0(2p)
m′

(1− pm−m′

)]

Using (4), (5) and (6), the probability τ is finally derived as:

τ =
∑m

i=0 bi,0 = 1−pm+1

1−p
.b0,0 (7)

3.1.2 PGF of the MAC delay derivation

The interruption of the backoff period is a result of two
different events: the collision of two or more nodes with
probability p and the transmission of only one node other
than the tagged one, with probability

p′ =
(

n−1
1

)

.τ.(1− τ)n−2 (8)

Following [9], the binary exponential backoff algorithm can
be envisioned as a function of two coordinates (x, y), where
(x ∈ [0,m]) is the backoff stage and (y ∈ [0,Wx − 1]) is
the value of the backoff counter at the backoff stage x. The
authors of [9] deduce that the PGF of the duration that a
packet stays in stage x with backoff counter y is given by:

Bx,y(Z) = (1−p).Zσ

1−(p′S(Z)+(p−p′)C(Z))
(9)

where Zσ is the PGF of the propagation time σ, S(Z) =
ZTs and C(Z) = ZTc are the PGFs of the duration of a
successful transmission period Ts and of a collision period
Tc, respectively. They depend on the type of service (basic
or RTS/CTS) and their derivation can be found in [9]. Main
DCF timing values are given in Table 1.

PHY slot σ SIFS DIFS CWmin CWmax m′

DSSS 20 µs 10 µs 50 µs 31 1023 5

Table 1: DCF parameters for DSSS-PHY.

The PGF of the duration the packet stays in the backoff
stage x follows:

Bx(Z) =

{

∑Wx−1
y=0

Bx,y(Z)

Wx
, 0 ≤ x ≤ m′

Bm′(Z),m′ < x ≤ m.
(10)

From this, the PGF of the MAC delay is derived as:

Dm(Z) = (1− p).S(Z).
∑m

x=0[(p.C(Z))x
∏x

i=0 Bi(Z)]+
(p.C(Z))m+1.

∏m
i=0 Bi(Z)

(11)
It represents the duration for the packet to reach the end
state (i.e. being transmitted successfully or discarded after
maximum m retransmission failures) from the start state
(i.e. beginning to be served). The first term relates to the
delay of a successfully transmission including the delay spent
in the previous x and y backoff stages, while the second term
calculates the delay for dropping the packet after m trials.

Then, the mean MAC delay E[Dm] can be derived by
evaluating the first derivative of Dm(Z) at Z = 1:

E[Dm] = D′
m(Z)|Z=1 (12)

3.2 PGF of queueing delay
This section presents the derivation of the queuing delay

PGF, Dq(Z), Z ∈ C for both M/M/1 and M/G/1 queues.
Packets enter the queue according to a Poisson distribu-
tion of rate λ. The packet transmission process introduced
by the DCF medium access can be modeled as a general
single server whose service time distribution is known from
Eq. (11).

Engelstad and Osterbo [4], Zhai et al. [13] and Vardakas
et al. [9] have introduced models for the queuing delay in
their total delay derivation. Zhai et al. study M/M/1/K and
M/G/1/K queues while Vardakas et al. assume an M/G/1
queue. Zhai et al. show that MAC service times can be rea-
sonably approximated by an exponential distribution. Thus,
using an M/M/1/K model seems reasonable with respect to
the complex derivations entailed by an M/G/1/K model.

3.2.1 M/M/1 queue

For the M/M/1 queue, the service time is exponentially
distributed with parameter µ. Thus, the cumulative dis-
tribution function (CDF) and probability density function



(PDF) of the service delay are F (t) = 1 − eµt and f(t) =
µe−µt, respectively. The service times have an average value
of µ equal to the mean MAC delay: µ−1 = E[Dm]. The
Laplace transform of F is the function Lf (s) =

µ
s+µ

[11]. Ac-

cording to the Pollaczek-Khintchine (P-K) transform equa-
tion, the Laplace transform LDq (s) of the queueing delay
can be expressed as:

LDq (s) =
s(1−ρ)

s−λ+λLf (s) (13)

with ρ = λ/µ the server utilization. According to the re-
lationship between Laplace and Z-transform [11] (cf. Ap-
pendix A), it is possible to deduce the Z-transform Dq(Z)
from LDq (s) by substituting s = − lnZ into (13):

Dq(Z) = −ln(Z)(1−ρ)
−ln(Z)−λ+λLf (−ln(Z)) (14)

Dq(Z) is the queuing delay PGF. We can derive the PMF
dq(k) by inverting Dq(Z).

3.2.2 M/G/1 queue

The M/G/1 queue is a single-server system with Poisson
arrivals and arbitrary service-time distribution. Similarly,
Laplace transform of the queueing delay gives LDq (s) =

s(1−ρ)
s−λ(1−Lf (s))

, where Lf (s) is the Laplace transform of the

service time distribution function. The Z-transform of the
queueing delay Dq(Z) is derived as in [4]:

Dq(Z) = (1−Z)(1−ρ)
1−Z−λ(1−Dm(Z)) (15)

Similarly to the M/M/1 case, the PMF dq(k) can be derived
by inverting Dq(Z).

3.3 PGF of the total delay
The PGF of the total delay is computed by multiplying

the PGF of queuing and MAC delay as given in (1). We
investigate two different models, a very simple and a more
accurate one. The first one assumes an M/M/1 queue and
a Markovian MAC delay distribution as well. The second
one assumes an M/G/1 queue and a MAC delay that follows
the Dm(Z) PGF of (11). This last model is very heavy to
compute compared to the simpler M/M/1 one.

3.3.1 With the M/M/1 queue

In this total delay derivation, we assume that the ser-
vice times are exponentially distributed with an average µ−1

equal to the mean MAC delay of (12). We do not use the
MAC delay distribution of (11), but assume that the packets
are served by the MAC with an exponential distribution of
PDF f(t) = µe−µt of mean MAC delay µ−1 = E[Dm]. The
corresponding PGF of the exponential MAC delay is given
by:

Dm(Z) = µ
µ−ln(Z) (16)

This assumption may of course introduce errors but its deriva-
tion is much simpler. The point of this paper is to state
whether the loss due to this approximation is reasonable or
not compared to a precise (and complex) M/G/1 formula-
tion and complete MAC delay derivation.

Similarly to (1), the Laplace transform of the total delay
LDt(s) is computed as the produce of the Laplace transforms
of the queuing and MAC delay PDFs.

LDt(s) = Lf (s)LDq (s) = Lf (s)
s(1−ρ)

s−λ+λLf (s) (17)

From Lf (s) = µ/(s+ µ) and (17), LDt(s) is given by

LDt(s) =
µ(1−ρ)
s+µ−λ

= µ−λ
s+µ−λ

(18)

The Z-transform of the total transmission delay Dt(Z) can
be expressed as

Dt(Z) = LDt(− lnZ) = µ−λ
− lnZ+µ−λ (19)

The mean queueing delay E[Dq] for M/M/1 queue is com-
puted using Little’s law as ρ/(µ− λ) and the corresponding
mean total delay E[Dt] as 1/(µ− λ).

3.3.2 With the M/G/1 queue

In this case, the service times of the queue are distributed
according to the MAC delay distribution given by the PGF
Dt(Z) in Eq. (11). Following (1), the Z-transform of the
total delay Dt(Z) follows:

Dt(Z) = Dm(Z)Dq(Z) = Dm(Z)(1−Z)(1−ρ)
1−Z−λ(1−Dm(Z)) (20)

The mean queueing delay E[Dq] for M/G/1 is derived by
the Pollaczek-Khinchin mean value formula [6] [Kleinrock
1975(sec 5.6)], given though the second moment of Dm:

E[Dq] =
λE[D2

m]

2(1−ρ)
(21)

where E[D2
m] is derived as E[D2

m] = var(Dm) + (E[Dm])2

and var(Dm) is the variance of Dm(Z):

var(Dm) = D′′
m(Z)|Z=1 +D′

m(Z)|Z=1 − (D′
m(Z)|Z=1)

2

4. EVALUATING THE PERFORMANCE

OF A DELAY DISTRIBUTION
This section proposes a performance evaluation measure

to characterize the accuracy of a given delay distribution
model. As presented in Section 2, it is very convenient to
express the delay distribution as a PGF. Thus, to obtain the
PMF values p(k), the corresponding PGF D(Z) has to be in-
verted. This numerical inversion introduces errors. Thus, we
argue that directly comparing the final p(k) with the PMF
obtained by simulations ps(k) is not meaningful enough. In
other words, it is not possible with such a comparison, as
done in [13] to know whether the errors between the simu-
lated and analytical PMF come from an inaccurate model or
originate from the inversion of D(Z). We argue in this paper
that to have a clear view of the performance of a given an-
alytical derivation of a delay distribution, its validation has
to be done in two steps. First, the model used to derive the
individual PGFs has to be validated before numerical inver-
sion. Second, the numerical inversion has to be tailored to
reduce the inversion error.

Indeed, even though the models proposed in previous works
[9][10][13] are very interesting, they suffer from a limited or
not convincing performance evaluation of the delay distribu-
tion. More specifically, the MAC delay distribution models
of [9] and [10] show little results in their papers. Vardakas
et al. [9] mostly validate the average MAC delay against
simulations but don’t give results for the total distribution.
Vu and Sakurai [10] present a single figure to validate their
model against simulations and [13]’s results. Zhai et al. [13]
provide PMF results for several cases, but they directly com-
pare the PMF to the simulated distribution, completely ig-
noring the fact that errors can originate from the numerical
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inversion of the PGF. There is clearly a need for clear perfor-
mance evaluation measures to assess the quality of a delay
distribution model.

In the following, we describe first a performance measure
to assess the analytical model’s accuracy. Then, we give a
performance measure to calculate the error introduced by
the PGF numerical inversion.

4.1 Analytical performance measure
From now on, we will denote the PMF (resp. PGF) values

obtained by simulation using ds(k) (resp. Ds(Z)) and the
ones obtained analytically using da(k) (resp. Da(Z)).

It is straightforward to calculate the PMF values ds(k)
from the statistics of the delay obtained by simulation. Thus,
to avoid the inversion of the analytical PGF for its perfor-
mance evaluation, we propose to compare directly the ana-
lytical PGF values Da(Z), Z ∈ C to the PGF Ds(Z) derived
from the simulated PMF. The value of the PGF Ds(Z) for
any complex Z ∈ C is given by the Z-transform of the ds(k):

Ds(Z) =
∑

∞

k=0 d
s(k)Zk. (22)

This calculation doesn’t introduce any errors. Thus for a
same set of complex values C ⊆ C, it is possible to calculate
the analytical PGF Da(Z), Z ∈ C and its simulated coun-
terpart Ds(Z), Z ∈ C. Figure 1 illustrates both analytical
and simulated complex sets (Da

m(Z) and Ds
m(Z)) in a real

and imaginary plot obtained for the MAC delay. Analyti-
cal PGF is derived following Eq. (11). The set of complex
values used to calculate Da

m(Z) and Ds
m(Z) is here defined

as C = {re−iπh/k} where r = 10−4/k, k varies from 1 to 50
with step 5 and h varies from −k to +k with step 1.

For a perfect analytical model, the points calculated for
Da(Z) would exactly match the ones obtained by simulation
(providing that the simulation is extensive enough). From
Figure 1, it is clear that there is an error between analyti-
cal and simulated values. Therefore we propose to quantify
this error by defining a normalized root mean squared error
(NRMSE) as:

fmodel =
1

Card(C)

∑

Z∈C

√

|Ds(Z)−Da(Z)|2

|Ds(Z)|2
(23)

4.2 PGF inversion performance measure
By definition, a perfect PGF inversion is characterized by:

Z{Z−1{D(Z), Z ∈ C}} ≡ {D(Z), Z ∈ C}
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Figure 2: Inversion error for Dm(Z) for n = 5.

where D(Z) is the PGF of a delay distribution, Z : Z ∈
C →

∑

∞

k=0 d
a(k)Zk is the Z-transform function and Z−1 :

D(Z), Z ∈ C → d(k) is the inverse Z-transform.
In the following, the PMF obtained after inversion is de-

noted {d̂(k), k ∈ N}. Thus, for a perfect inversion, there
is a perfect match between the original PGF values D(Z)

and the Z-transform of the PMF d̂(k) = Z−1{D(Z), Z ∈
C}, ∀k ∈ N. A non perfect inversion yields a difference be-
tween the two obtained complex sets. This is illustrated on
Figure 2 for the MAC delay PGF calculated for n = 5. The
same set C as for Figure 1 has been used to represent the
PGF.

To assess the quality of a PGF inversion method, we
propose to simply calculate, for each Z in a complex set
C ⊆ C, the NRMSE between the original PGF and the Z-
transform of the delay PMF obtained by inversion, naming
d̂(k) = Z−1{D(Z), Z ∈ C}, ∀k ∈ N. Formally, our perfor-
mance measure is:

finv =
1

Card(C)

∑

Z∈C

√

|D(Z)−Z{Z−1{D(Z)}|2

|D(Z)|2
(24)

5. PERFORMANCE RESULTS
This section illustrates first our performance metric fmodel

to derive the error related to the analytical model and then,
the performance metric finv to derive the error related to the
numerical inversion step. For the model performance eval-
uation, we compare analytical results to simulations, thus
simulation settings are presented next.

5.1 Simulation settings
The wireless network composed of n nodes and one sink is

simulated using the discrete event-driven network simulator
WSNet1. Presented results for the IEEE 802.11 DCF MAC
delay are obtained for the RTS/CTS scheme. The DSSS-
PHY layer is considered with rate 11Mbps using packets of
size 1400 bytes. Propagation delay δ = 1µs. Further inves-
tigations will be done for OFDM-PHY layers in the future.
Main DCF timing parameters for analysis and simulation
can be found in Table 1. Simulations have been conducted
for 7 hours, experimenting the transmission of ∼70 000 pack-
ets.

All nodes experience the same Poisson arrival rate λ. Since
the MAC model assumes saturated conditions, λ should be

1http://wsnet.gforge.inria.fr/



Table 2: Queue parameters to reach saturation
Number of nodes λ(packet/ms) µ(packet/ms)

n = 5 0.07799 1/12.1808
n = 15 0.02665 1/36.4052
n = 30 0.01359 1/71.3596

chosen such as to satisfy that the transmission queue remains
nonempty. Therefore, utilization of the queue ρ should be
more than 95%. And to satisfy Pollaczek-Khintchine (P-K)
transform equation condition, ρ < 1 (i.e. λ < µ). Since we
set µ−1 = E[Dm], values for λ are calculated for different
network sizes in Table 2.

5.2 Model performance evaluation
This section illustrates our model performance measure

fmodel on the following two models for DCF MAC:

1. the Markov chain based MAC PGF of [9],[13] derived
in Eq. (11).

2. the simple exponential MAC PGF of Eq. (16).

The PGF of the first model is complex to evaluate while
the second one is very light, since it simply necessitates the
derivation of the mean MAC delay of Eq. (12). Our point is
to use the fmodel measure to quantify the error induced by
both models and check whether the exponential distribution
is a valid assumption or not.

The same type of evaluation will be applied in future
works to test the accuracy of Vu and Sakurai’s MAC model
[10]. Indeed, their results show (on a single plot) that it
performs much better than the Markov chain based model
of [13].

5.2.1 MAC delay PGF evaluation

Most of the works on DCF modeling have been validated
by comparing the mean values. Table 3 gives the analytical
and simulated mean values obtained for different network
sizes. Note that both Markov based and exponential MAC
models provide the same average delay.

Table 3: E[Da
m], E[Ds

m] and ∆ = |E[Da
m]−E[Ds

m]| (ms)
Number of nodes E[Da

m] E[Ds
m] ∆

n = 5 12.1808 12.1582 0.0226
n = 15 36.4052 36.0012 0.404
n = 30 71.3596 71.8879 0.5283

Simulated and analytical mean values are really close. As
can be seen on Figure 1, the analytical and simulated values
of Dm(Z) do not coincide for the Markov model. Thus,
to better discriminate the quality of the distribution, the
value of fmodel is derived for the Markov model and the
simple exponential MAC service distribution. Results are
summarized in Table 4. Clearly, the Markov model is much
more precise.

Table 4: Comparison of MAC distributions
Number fmodel for fmodel for
of nodes Markov model Exponential MAC
n = 5 0.0547 0.1736
n = 15 0.0789 0.1258
n = 30 0.0729 0.1040
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Figure 3: Comparison of MAC delay PMF for dif-
ferent inversion methods (accuracy 10−6, n = 5)

5.3 PGF Inversion performance evaluation
Inverting the probability generating function can be done

by repeatedly differentiating and evaluating it at Z = 0:

d(k) =
D(k)(Z)

k!

∣

∣

∣

∣

Z=0

This type of inversion has been done by Zhai et al. in [13] us-
ing numerical differentiation techniques and symbolic math-
ematical software. However, it is often difficult to achieve
desired accuracy with numerical differentiation techniques,
especially for large kmax (kmax being the number of PMF
values obtained after inversion). It is also difficult to in-
voke symbolic mathematical software when the generating
function is only expressed implicitly. Fortunately, in this
setting numerical inversion is a viable alternative that has
been chosen by Vardakas et al. [9] and Vu and Sakurai [10].
The numerical inversion of a PGF is based on the Lattice-
Poisson (LP) algorithm [1]. Two different derivations of the
LP algorithm have been proposed to numerically invert a
delay PGF in [9] and [10].

The LP inversion formula of Vardakas et al. [9] is:

d(k) ≈ 1
2krk

∑2k
j=1(−1)jRe(D(reiπj/k)) (25)

with Re(D(Z)) is real part of the complex D(Z). For each
k, d(k) is derived by summing Re(Dm(Z)) over a circle of

radius r = 10−γ/(2k) for an accuracy of 10−γ .
The LP inversion formula of Vu et Sakurai [10] is :

d(k) ≈ 1
2klrk

Re
(

∑kl−1
j=−kl D(re−iπj/(kl))eiπj/l

)

(26)

where, l = 1 and r = 10−γ/(2k), which results in an accuracy
of 10−γ as well. Both formulas are almost equivalent. The
only difference is how the real part is calculated. In Eq. (25),
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Figure 4: Comparison of MAC delay PMF for different accuracy using Vu and Sakurai’s LP formula.

only the real part of D(Z) is considered, while in Eq. (26),
the real part of the whole sum is returned.

Table 5: finv for Vu’s and Vardakas’ LP algorithm,
n = 5

Error bound Inversion method finv

γ = 10−6 Vu and Sakurai 0.0195
Vardakas et al. 0.0688

γ = 10−4 Vu and Sakurai 0.0232
Vardakas et al. 0.1814

Using finv, it is possible to decide which inversion formula
is correct. It is the one with the smallest value of finv.
The values are given in Table 5 for an accuracy of 10−6

and 10−4. It is the LP formula of Vu and Sakurai which
introduces the less error. It can be observed as well on the
plot of Figure 3. It makes sense that Eq. (26) is correct
since to inverse the PGF mathematically, a contour integral
has to be computed of the complex values D(Z).Zn−1. The
real d(k) values of this integral are obtained by taking the
real part of the integration result and not by integrating
Re(D(Z)).Zn−1 over the contour.

The impact of the precision can be measured as well with
finv as shown in Table 5 and presented in Figure 4. As
expected, the best results are obtained for a 10−6 accuracy.

5.4 Queuing and total delay PMF
The inversion method of Vu and Sakurai with a precision

of 10−6 will be used for following derivations as previous
analysis showed its reduced inversion error. Queueing and
total delay distributions for M/M/1 and M/G/1 are pre-
sented in Figure 5 for n = 5 nodes.

The total delay is clearly dominated by the queueing de-
lay. This is not surprising since we are working at a very
high utilization ρ > 95% to reach saturated conditions. For
the queuing delay, the NRMSE calculated using the kmax

PMF values is of 0.1036 for the M/M/1 model and of 0.0553
for the more precise M/G/1 model. It can be concluded
that the M/G/1 model better matches the simulated queu-
ing delay, but the error with M/M/1 stays limited. We can
notice although that for high queuing delays (> 500ms),
both queuing models exhibit a bad fit with the simulated
PMF.

For the total delay, the NRMSE calculated using the kmax

PMF values is of 0.1031 for the M/M/1 model and of 0.0549
for the more precise M/G/1 model. However, looking at the

total delay distribution on Figure 5, M/M/1 seems to be a
better (and simpler) match for low delay values (5ms). For
high delay values (> 500ms), both models exhibit a bad fit
with the simulated PMF, which is a consequence of the total
delay being dominated by the queuing delay.

In Table 4, it is clear using fmodel that the exponential
MAC model of M/M/1 is less efficient than the complete
Markov based model. However, looking at the final total
delay distribution, both M/M/1 and M/G/1 models give
very close analytical PMFs. As a first conclusion, it seems
that the benefits of a very fine and complex modeling using
the Markov MAC model together with the M/G/1 queue are
limited compared to the simple exponential M/M/1 model.
This type of result has to be validated for other scenarios
where different data rates and PHY layers are investigated.

6. CONCLUSION
This paper proposes a performance evaluation method to

characterize the accuracy of a delay distribution derivation.
This method is capable of decoupling the error originating
from the analytical model from the error induced by the
probability generating function inversion. The method has
been illustrated on MAC, queuing and total delay distribu-
tion models for an IEEE DCF medium access protocol un-
der saturated conditions. Future work will leverage the pro-
posed performance evaluation method to exhibit the most
accurate delay distribution model, for saturated and unsat-
urated conditions and various IEEE 802.11 PHY layers.
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APPENDIX

A. LAPLACE TRANSFORM
The Laplace transform of a cumulative distribution func-

tion (CDF) F (t), defined for all real numbers t ≥ 0, is the
function Lf (s), defined by:

Lf (s) =
∫

∞

0
e−stdF (t), s ∈ C (27)

Similar with the above property of probability generating
function, the Laplace transform of the sum of independent
random variables equals to the product of the Laplace trans-
form of each variable.

The relationship between the probability generating func-
tion and Laplace transform is the following[11]: be f the
probability density function (PDF) corresponding to the
CDF F (t) of a random variable ; be {fi : i ∈ N, fi := f(i)}
the sequence of ”samples” of f(t) taken at the discrete times
i = 0, 1, 2, ... ; be Gf (z) the probability generating function
of that sequence and Lf (s) the Laplace transform of f . Then
it is straightforward to show

Lf (s) = Gf (e
−s). (28)

That is Lf (s) differs from Gf (z) only by the change of vari-
able z = e−s [3].


