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ABSTRACT
In this paper we introduce a pruning of the medial axis called the

(𝜆, 𝛼)-medial axis (ax𝛼
𝜆
). We prove that the (𝜆, 𝛼)-medial axis of a

set 𝐾 is stable in a Gromov-Hausdorff sense under weak assump-

tions. More formally we prove that if𝐾 and𝐾 ′
are close in the Haus-

dorff (𝑑𝐻 ) sense then the (𝜆, 𝛼)-medial axes of 𝐾 and 𝐾 ′
are close

as metric spaces, that is the Gromov-Hausdorff distance (𝑑𝐺𝐻 ) be-

tween the two is
1
4 -Hölder in the sense that𝑑𝐺𝐻 (ax𝛼

𝜆
(𝐾), ax𝛼

𝜆
(𝐾 ′)) ≲

𝑑𝐻 (𝐾,𝐾 ′)1/4. The Hausdorff distance between the two medial axes

is also bounded, by 𝑑𝐻 (ax𝛼
𝜆
(𝐾), ax𝛼

𝜆
(𝐾 ′)) ≲ 𝑑𝐻 (𝐾,𝐾 ′)1/2. These

quantified stability results provide guarantees for practical compu-

tations of medial axes from approximations. Moreover, they provide

key ingredients for studying the computability of the medial axis

in the context of computable analysis.
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PART I: INTRODUCTION, MOTIVATION AND
NON-TECHNICAL OVERVIEW OF THE RESULTS
1 INTRODUCTION
Given a closed subset 𝐾 of Euclidean space R𝑛 , its medial axis,
denoted ax(𝐾), is the set of points in the complement 𝐾𝑐 of 𝐾 for

which there are at least two closest points in 𝐾 , or, equivalently,
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on its boundary 𝜕𝐾 . Note that the definitions of the medial axis

used in preceding papers on the same topic [20, 42] considered

an open subset O ⊂ R𝑛 instead. Because the medial axis was

then defined as the set of points in O with at least two closest

points on the complement O𝑐 we see that the difference is only
cosmetic by setting 𝐾 = O𝑐 . The properties of the medial axis and

its computation have been intensively studied, both in theory and

in particular applications contexts, see [6] for an overview, or [50]
1

for an application oriented review of general notions of shapes

skeletons and computation methods.

One obvious motivation for studying the stability of the medial

axis is to be able to guarantee the (approximate) correctness of the

information that can be extracted from the medial ax(𝐾 ′) axis of
an approximated shape 𝐾 ′

of an exact, or ideal, shape 𝐾 . Here the

approximation error could be the unavoidable finite accuracy of

physical measurements or some small perturbations induced by

rounding or geometric data conversions.

Another, more formal, motivation for studying the stability is

related to its formal computation. Indeed, among the significant

amount of practical proposed algorithms for the map 𝐾 ↦→ ax(𝐾),
the model of computation is usually implicit, which we find prob-

lematic in the case of this particularly unstable object. We refer to

Section 4.1 for a more extensive discussion of this issue.

The idea of pruning, or filtering, the medial axis, in order to

improve its stability, has been, sometime implicitly, a key ingredient

in realistic algorithms. For example, in [28], the 𝜃 -simplified medial
axis of 𝐾 is defined as the set of points 𝑥 on the medial axis of 𝐾 for

which 𝑥 has at least 2 closest points 𝑝, 𝑞 ∈ 𝐾 such that the angle

∠𝑝𝑥𝑞 is greater than 𝜃 . Since the medial axis of a finite discrete set

𝑆 ⊂ R𝑑 is the (𝑑−1)-skeleton of the Voronoi diagram of 𝑆 , following

some pioneering works such as [4, 8], in [24], the Voronoi cells of a

point sample are pruned along some parametrized criterion, namely

a angle condition or a ratio condition on the circumradius of the set

of closest points and the distance between the point on the medial

axis and its closest projection.

This paper pursues the quest for provably stable filtrations of

the medial axis for general closed subset of Euclidean space, in the

spirit of [20]. Other prunings of the medial axis have been suggested

in e.g. [7, 11, 23, 30, 43, 48, 57, 58]. Each pruning method comes

with some drawbacks (as well as strong points). We refer to [18]

for a discussion of the particular deficiencies of a number of these

methods in more detail.

1
Unfortunately, [50] mixes up the 𝜃 -medial and 𝜆-medial axis in Figure 11 of that

paper.
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2 THE CRITICAL FUNCTION AND THE
𝜆-MEDIAL AXIS

In this section we review a number of results from [19, 20] on

the critical function of a compact set and some related notions.

These results are both key ingredients in our proofs and a source

of inspiration for some of the statements. The reach of a set 𝐾

is the minimal distance between a set and its medial axis. It was

introduced by Federer [27] in order to extend curvature measures

to more general sets. The reach is also the lowest upper bound over

the set of the local feature size [5, 27], that is the distance of a point

to the medial axis.
2
The critical function 𝜒𝐾 : (0,∞) → [0, 1] ([19]

and [12, Section 9]) of a compact set 𝐾 has been introduced in order

to quantify how the topology of a set can be determined from a

Hausdorff approximation of it, in particular when the reach is 0,
which is common for non-smooth sets.

For a point 𝑥 ∈ R𝑛 , we denote by 𝑅𝐾 (𝑥) its distance to 𝐾 and

by F𝐾 (𝑥) the radius of the smallest ball enclosing the points in 𝐾

closest to 𝑥 , see Section 8.2 for details. The critical function 𝜒𝐾 of

𝐾 is then defined as:

𝜒𝐾 (𝑡) =
def.

inf
𝑅𝐾 (𝑥)=𝑡

√︄
1 −

(
F𝐾 (𝑥)
𝑅𝐾 (𝑥)

)2
. (1)

The medial axis ax(𝐾) can be defined as the set of points 𝑥 in R𝑛

such that F𝐾 (𝑥) > 0. It follows that, when 𝐾 has positive reach,

𝜒𝐾 (𝑡) = 1 for 𝑡 smaller than the reach.

We write

𝐾 ⊕𝑡 =
def.

{𝑥 ∈ R𝑛, 𝑑 (𝑥, 𝐾) ≤ 𝑡}

for the 𝑡-offset of 𝐾 . For 𝑡 > 0, the topology of this offset can only

change at critical values of the distance function, that is values

for which 𝜒𝐾 vanishes. For a given 𝜇 ∈ (0, 1], the 𝜇-Reach (𝑟𝜇 ) is

defined as

𝑟𝜇 (𝐾) =
def.

inf{𝑡 | 𝜒𝐾 (𝑡) < 𝜇}.

If 𝐾 has positive 𝜇-reach for some 𝜇 > 0, then 𝐾 ⊕𝑟𝜇
deforms retract

on 𝐾 , see [34, Theorem 12]. Notices that 𝑟1 (𝐾) is the reach of 𝐾 .

In [20] the 𝜆-medial axis of 𝐾 , denoted here ax𝜆 (𝐾), was in-
troduced. Where the medial axis is the set of points in R𝑛 such

that F𝐾 (𝑥) > 0, the 𝜆-medial axis of 𝐾 is a filtered version of it,

defined as the set of points in R𝑛 such that F𝐾 (𝑥) ≥ 𝜆. Since F𝐾

is upper semi-continuous [42, Corollary 4.7], ax𝜆 (𝐾) is a closed set.
For a given value of the filtering (pruning) parameter 𝜆, ax𝜆 (𝐾)
enjoys some geometrical and topological stability, see [20] and the

overview in Section 5 for details.

The medial axis is the limit of 𝜆-medial axes in the sense that:

𝜆′ ≤ 𝜆 ⇒ ax𝜆′ (𝐾) ⊃ ax𝜆 (𝐾) and⋃
𝜆>0

ax𝜆 (𝐾) = ax(𝐾) . (2)

3 OVERVIEW OF RESULTS
In this paper, we show that a simple variant of the previous filtering

𝜆 ↦→ ax𝜆 (𝐾), enables significantly stronger stability statements.

2
The nomenclature was introduced by Amenta et al. [5] in order to state conditions

under which the topology of a set can be determined from a sampling of it, however

the concept was known to Federer [27].

The (𝜆, 𝛼)-medial axis of a closed set 𝐾 ⊂ R𝑛 , denoted here

ax𝛼
𝜆
(𝐾), is the 𝜆-medial axis of the 𝛼-offset3 of 𝐾 :

ax𝛼
𝜆
(𝐾) =

def.

ax𝜆 (𝐾 ⊕𝛼 ).

It is just another similar way of filtering the medial axis, where

(2) is replaced by ⋃
𝜆>0

⋃
0<𝛼<𝜆

ax𝛼
𝜆
(𝐾) = ax(𝐾) . (35)

The stability properties are then improved in two different ways:

First, for 𝜆, 𝛼 > 0, if 𝜒𝐾 does not vanish on some interval [𝑎, 𝑏]
such that 𝑎 < 𝛼 and 𝛼 + 𝜆 < 𝑏, then the map (𝜆, 𝛼, 𝐾) ↦→ ax𝛼

𝜆
(𝐾) is

continuous for the (two-sided) Hausdorff distance on both the input

𝐾 and the output ax𝛼
𝜆
(𝐾). Moreover, we give an explicit Hölder

exponent in terms of 𝜆, 𝛼 : For 𝐾 : (𝜆, 𝛼, 𝐾) ↦→ ax𝛼
𝜆
(𝐾) the Hölder

exponent is 1 with respect to 𝜆 and 𝛼 , i.e. it is locally Lipschitz

with respect to 𝜆 and 𝛼 (Lemma 9.4 and Lemma 9.5). The map is

1
2 -Hölder with respect to 𝐾 (Lemma 10.7).

Secondly, we extend the stability results to theGromov-Hausdorff

distance, see Section 8.4 for a formal definition. We show here that

connected (𝜆, 𝛼)-medial axes are compact subsets of Euclidean

space and have finite geodesic diameter (Theorem 9.12). Therefore

(𝜆, 𝛼)-medial axes equipped with intrinsic geodesic distances on

ax𝛼
𝜆
(𝐾)) give meaningful metric spaces. We show that ax𝛼

𝜆
(𝐾) seen

as metric spaces is Gromov-Hausdorff stable under Hausdorff dis-

tance perturbation of 𝐾 , which can be expressed as the continuity

of the map (𝜆, 𝛼, 𝐾) ↦→ ax𝛼
𝜆
(𝐾) under the associated metrics. More-

over we again establish bounds on the Hölder exponent in this new

metric context: this map is locally Lipschitz with respect to 𝜆 and 𝛼

(Lemmas 9.14 and 9.15) and
1
4 -Hölder with respect to 𝐾 (Theorem

11.1).

This Gromov-Hausdorff stability gives metric stability which

complements the homotopy type preservation and Hausdorff dis-

tance stability. It is the strongest form of stability we can hope for

because the stronger property of bounded Fréchet distance
4
is im-

possible to achieve because of topological instability. In particular

small smooth changes in a set can create changes in the topology

of the medial axis.

Figure 1 illustrates three situations where the two shapes, the

red and the blue, share the same homotopy type, as they all deform

retract to a circle, and are close to each other with respect to the

Hausdorff distance: any point in the red shape is near the blue shape

and the reverse holds as well. On the first example, both distances,

Fréchet (𝑑𝐹 ) and Gromov-Hausdorff (𝑑𝐺𝐻 ) are large, because the

distances in the ‘tail’ differ significantly thanks to the zigzag. Be-

cause of our bound on the Gromov-Hausdorff distance (Theorem

11.1), this situation cannot occur if the red and blue sets are the

medial axis of two sets with small Hausdorff distance between

them.

On the two next examples of Figure 1 the red and the blue shapes

do correspond to medial axes of two sets close to each other in

3
The 𝛼-offset is denoted by 𝐾⊕𝛼

, see (20) and the text following that equation for an

explanation of the notation.

4
Recall that the Fréchet distance between two subsets 𝑆1, 𝑆2 of a same metric space is

the infimum of sup𝑥∈𝑆1 𝑑 (𝑥,ℎ (𝑥)) among all possible homeomorphisms ℎ : 𝑆1 →
𝑆2 . It is therefore infinite when shapes are not homeomorphic. Note that we do not

consider the orientation of the sets 𝑆1 and 𝑆2 .
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Hausdorff distance (in dotted lines). On the middle, the medial axes

are similar but not homeomorphic, so that the Frechet distance is

infinite. In the last case they are homeomorphic but the Fréchet

distance would still be large (you would need to rotate one of

them by 90◦ for the homeomorphism). In contrast, as asserted by

Theorem 11.1, the Gromov-Hausdorff distance between them is

small.

dF is large

dGH is large

dF is infinite

dGH is small

dF is large

dGH is small

Figure 1: Comparison between Fréchet (𝑑𝐹 ) and Gromov-
Hausdorff (𝑑𝐺𝐻 ) stability. On the two examples below, the
shapes are (𝜆, 𝛼)-filtered medial axes of nearby sets (in dot-
ted lines), and as asserted by Theorem 11.1, the Gromov-
Hausdorff distance between them is small.

Gromov-Hausdorff stability can be seen informally as a weaken-

ing of Frechet distance that ignores small scale features.

4 MOTIVATION
4.1 Medial axis computation algorithms and

models of computation
The medial axis is known to be unstable in theory [6], and, as a

consequence, its computation is often problematic in practice. A

typical illustration of this instability is when 𝐾𝑐 is an open disk

in the plane: its medial axis is a point, but a 𝐶∞
perturbation, ar-

bitrary small, in the 𝐶0
sense of differential topology [33], of its

boundary, may produce an arbitrary large perturbation (measured

in the Hausdorff distance) of the resulting medial axis.

Computing the medial axis consists in, given as input some

representation of the closed set 𝐾 , to compute as output some

representation of ax(𝐾). Let us recall two possible computation

models under which what it means to “compute” 𝐾 ↦→ ax(𝐾).
In computational geometry, the implicit computation model

(sometimes called exact computation paradigm in order to dis-

tinguish it from the unrealistic “Real RAM” computation model)

assumes that both input and output can be exactly represented by

finite data in the computer. This implies that input and output have

to belong to countable sets,
5
such as, for example, integer, rational

or algebraic numbers, or polynomials built on top of them. Given

a set of rational or algebraic points, or given a polyhedron with

rational or algebraic vertices coordinates, for example, we now that

the medial axis is a finite algebraic complex and, as such, belongs to

a countable set, therefore exactly presentable on a computer. These

are situations where it makes sense to compute the medial axis in

this exact computation model, even if it may be difficult.

Computable analysis, pioneered with the notion of computable

real numbers introduced by Turing in his 1936 undecidability paper

[51, 52], is studied in the logic and theoretical computer science

literature [10, 14, 31, 37–41, 56], but its formalism is most often

ignored in applications.

However, it is actually implicit in many practical computations

involving real numbers and real functions, for example in numeri-

cal analysis, where a typical example would be the finite element

method. In this context, one considers that input and output can

belong to topological spaces with countable bases of neighbour-

hoods, typically metric spaces with dense countable subsets, called

separable metric spaces, who, as a consequence, have at most the

cardinality of real numbers. Examples of such metric spaces are:

• Real numbers with their natural topology (rational numbers

are dense).

• Continuous functions on a compact set with the sup norm

(polynomials with rational coefficients are dense, by the

Stone-Weierstrass Theorem).

• 𝐿𝑝 (classes of) functions with their associated 𝐿𝑝 norms

(rational step functions are dense).

• Compacts subsets of Euclidean spaces endowed with the

Hausdorff distance (finite points sets in Q𝑛 are dense).

In the context of these separable metric spaces, an algorithm, in

this model of computation, takes as input a sequence belonging to

the dense subset, so that each element of the sequence, belonging

to a countable space, admits a finite representation.
6
It then com-

putes, for each element of the input sequence, an element of the

output sequence in such a way that the output sequence converges

to the image of the limit of the input sequence. This mere defini-

tion assumes that the (theoretical) output of the limit of the input

sequence, is the limit of the sequence of (actual) outputs of items of

the input sequence. This is the reason why, in the context of com-

putable analysis, only continuous functions, that commute with

limits, can be computable
7
. For example, integer part function is

computable, in this model, only at non-integer numbers. In decimal

representation, if, after the dot, an infinite sequence of 9s appears,
the algorithm would read the input forever.

Recall that a continuous function 𝜔 : R≥0 → R≥0, with 𝜔 (0) =
0, is a modulus of continuity of a map 𝑓 : 𝑋 → 𝑌 between metric

spaces if for all 𝑥1, 𝑥2 ∈ 𝑋 ,

𝑑𝑌 (𝑓 (𝑥1), 𝑓 (𝑥2)) ≤ 𝜔 (𝑑𝑋 (𝑥1, 𝑥2)) .

5
As only countable sets can have each of its elements representable by a finite word.

6
The dense set has, formally, to be recursively enumerable.

7
In fact computability of the function requires moreover the modulus of continuity of

the map to be computable, in particular should not tend to 0 slower than any recursive

function.
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If one wishes to control some form of theoretical algorithmic effi-

ciency in the context of computable analysis, a modulus of conti-

nuity of the operator, that associates to some uncertainty on the

input an upper bound on the induced uncertainty on the output,

needs to be estimated.

We do not need to enter here in the technicalities of computable

analysis. Our contribution consists in stating some explicit modu-

lus of continuity, which, on the theoretical side, would be a crucial

ingredient in the proofs of computability and complexity in the

context of computable analysis, but is also, on the application side, a

way to guarantee some accuracy in practical computations. Indeed,

practical implementations of the computation of the medial axis

apply some kind of approximation during the computation process.

In a practical situation, this approximation process is already in-

herent to the data collection process, as any physical numerical

measure is meant at some, finite, accuracy. Second, the actual input

of an algorithm is often the output of a preceding algorithm which

cannot, reasonably, be assumed recursively to compute exact output

from exact inputs: recursion on algebraic numbers representations

are possible along a finite depth of computation only. When, along

the process, some form of rounding, pixelization, small features

collapses or filtering, is performed, being able to upper bound the

impact on the output seems sensible, and in fact necessary for

provably correct algorithms.

Since 𝐾 ↦→ ax(𝐾) is not continuous in general when the topol-

ogy of both inputs and outputs are defined by the Hausdorff dis-

tance, we see two ways of stating a continuity, or stability, prop-

erty, for the operator 𝐾 ↦→ ax(𝐾). One possibility is to consider

a stronger topology on the input, a form of Fréchet, or ambient

diffeomorphism based, 𝐶𝑘 distance, which would apply to smooth

objects and representations.

Another possibility is to consider a weaker topology on the out-

put, by considering filtered medial axes. In this model, the input

sequence encodes 𝐾 in the form of approximations

(
𝐾𝑖

)
𝑖∈N that

converge to 𝐾 in Hausdorff distance. For the 𝐾𝑖 one would typi-

cally choose finite point sets or (geometric) simplicial complexes

(meshes/triangulations). As 𝑖 would increase in one would not only

add more points or simplices to 𝐾𝑖 , but also make the coordinates

of the points/vertices more precise by adding digits to their coordi-

nates.

The output sequence encodes ax(𝐾), in the form of progressive

approximations of the map (𝜆, 𝜇) ↦→ ax𝛼
𝜆
(𝐾), for decreasing values

of 𝜆, 𝛼 . These approximations (effectively) converge, where a basis

of neighbourhoods (in the space of functions) of (𝜆, 𝛼) ↦→ ax𝛼
𝜆
(𝐾)

is given by the sets of maps (𝜆, 𝛼) ↦→ 𝑓 (𝜆, 𝛼) satisfying 𝜆, 𝛼 > 𝑡 ⇒
𝑑★(𝑓 (𝜆, 𝛼), ax𝛼𝜆 (𝐾)) < 𝜖 for some 𝜖, 𝑡 > 0.

This approach does not require any smoothness assumption

on 𝐾 . The present paper focuses on this filtered approach, where

the considered distance 𝑑★ between sets is either the Hausdorff

distance, either the Gromov-Hausdorff distance on geodesic metric

spaces.

Describing formally effective types and algorithms for the com-

putation of the medial axis is beyond the scope of this paper. How-

ever, let us make some suggestions for further work in this direction.

Probably the simplest model would consider the space of finite set

of points with rational coordinates as inputs. These inputs together

form a countable, and recursively enumerable set which is naturally

equipped with the Hausdorff distance. The topological completion

of the set of inputs gives all compact subsets of Euclidean space. The

corresponding output space would consist of the filtered Voronoi

Diagrams for which the coordinates of the Voronoi vertices are

rational numbers. The Hölder modulii of continuity proven in this

paper would allow to formally state the effectivity of the model.

The model could also be formalized in the context of Scott do-

mains [1, 26], [3, Chapter 1] and their associated information or-

ders.
8
In this context, our results answer the following question:

If the only information we have about some compact set 𝐾 is its

Hausdorff approximation 𝐾 ′
, what information can we infer about

its medial axis ax(𝐾)?

4.2 Motivation from mathematics: the stability
of the cut locus.

The medial axis is closely related to the cut locus. We recall

Definition 4.1. LetM be a smooth (closed) Riemannian manifold

and let 𝑝 ∈ M. For every 𝑣 ∈ 𝑇𝑝M, with |𝑣 | = 1, we can consider

the geodesic 𝛾𝑣 (𝑡) = exp𝑝 (𝑡𝑣) emanating from 𝑝 in the direction 𝑣 .

Let 𝛾𝑣 (𝜏) be the first point along 𝛾𝑣 such that the geodesic {𝛾𝑣 (𝑡) |
𝑡 ∈ [0, 𝜋]} is no longer the unique minimizing geodesic to 𝑝 . The

cut locus of 𝑝 is the union of these points for all unit length 𝑣 in

𝑇𝑝M.

The cut locus is therefore more general in the sense that it is

defined for general Riemannian manifolds, while more restrictive

in the sense that it only considers a single point.
9

The stability and structure of the singularities of the cut locus

has been a studied intensely. Buchner [16] derived the following

result:

Theorem 4.2. Let𝐺 be the space of metrics on a smooth manifold,
endowed with the Whitney topology. Each metric 𝑔 ∈ 𝐺 and 𝑝 ∈ M
yield a cut locus 𝐶𝑝,𝑔 . The cut locus 𝐶𝑝,𝑔 is called stable if there is a
neighbourhood𝑊 ⊂ 𝐺 of 𝑔 such that for any 𝑔′ ∈ 𝑊 there exists
a diffeomorphism Φ : M → M such that Φ(𝐶𝑝,𝑔′) = 𝐶𝑝,𝑔 . If the
dimension ofM is low (≤ 6) then𝐶𝑝,𝑔 is stable for an open and dense
subset of 𝐺 .

Wall [54] extended this result to arbitrary dimensions at the

cost of weakening the diffeomorphism to a homeomorphism. The

structure of the singularities of the cut locus were also described

by Buchner in [17]. A similar description for the singularities of

medial axis of a smooth manifold can be found in [59], see also [44],

as well as [53].

This paper follows the tradition of these investigations of the

stability of cut locus and the medial axis. However, there are also

some significant differences. First and foremost we take a metric

viewpoint instead of analytical. This viewpoint does not require

us to make a distinction between low dimensional and high di-

mensional spaces. We made the constants explicit in view of the

8
It is possible, following [26], to topologically embed our input and output metric

spaces asmaximal elements of some Scott domains. Our boundedmodulus of continuity

would then allow to provide effective structures for them.

9
The reach and medial axis can be defined for closed subsets of Riemannian manifolds

[9, 13, 35, 36].
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applications in computer science, in particular computational ge-

ometry and topology, shape recognition, shape segmentation, and

manifold learning.

The authors are currently working on the stability of the cut

locus and medial axis of smooth sets, using the tools which we

develop in this paper.

5 OVERVIEW OF THE STABILITY OF THE
𝜆-MEDIAL AXIS

Under mild conditions, the 𝜆-medial axis enjoys some nice stability

properties, assuming that 𝐾𝑐 is bounded. Informally:

(1) When 𝜒𝐾 does not vanish on (0, 𝜆], the 𝜆-medial axis pre-

serves the homotopy type of the complement 𝐾𝑐 of 𝐾 [20,

Theorem 2],

(2) Taking the Hausdorff distance on the input 𝐾 and the one

sided Hausdorff distance on the output ax𝜆 (𝐾) we get a kind
of modulus of continuity. If 𝑑ℎ (𝐾,𝐾 ′) is small, the points in

ax𝜆 (𝐾) are “near”, in a quantified way, ax𝜆′ (𝐾 ′), for some

𝜆′ < 𝜆 close to 𝜆 [20, Theorem 3].

(3) For “regular values of 𝜆” the map𝐾 ↦→ ax𝜆 (𝐾) is continuous
for the Hausfdorff distance [20, Theorem 5]. However, the

modulus of continuity can be arbitrarily large in general.

Property 1 gives some stability on the homotopy type with re-

spect to Hausdorff perturbation of𝐾 , since, under similar conditions

on the critical function of 𝐾 , when 𝑑ℎ (𝐾,𝐾 ′) is small, the offsets of

𝐾 ′
may share the homotopy type of 𝐾 [19, 21]. Properties 2 and 3

give precise, quantified, stability results, much stronger than the

mere half-continuity of the medial axis itself, see e.g. [6].

6 CONTRIBUTIONS: THE IMPROVED
STABILITY OF THE (𝜆, 𝛼)-MEDIAL AXIS

Before entering into the formal proofs, let us give some intuition

about the (𝜆, 𝛼)-medial axis stability.

This improved stability can be illustrated in the case of a finite

set 𝐾 . Figure 2 illustrates the (𝜆, 𝛼)-medial axis in the simplest non-

trivial case, where 𝐾 consists of two points in the plane. In this case

the 𝜆-medial axis would be empty as long as 𝜆 is strictly greater

than the half distance between the two points and it would become

the whole bisector line as soon as 𝜆 is smaller or equal to this value.

α
critical value of

distance function λ λλ
axα

λ axα
λ

axα
λ

Figure 2: Comparison between 𝜆-medial axis and (𝜆,𝛼)-
medial axis evolutions for increasing 𝜆, in the particular
case where 𝐾 consists of two points in the plane. The 𝜆-
medial axis would be either the whole bisector line of the
two points, for 𝜆 smaller or equal to half the distance be-
tween the points, either the empty set for larger value of
𝜆. By contrast, the evolution, for increasing 𝜆, of the (𝜆, 𝛼)-
medial axis, which is also the 𝜆-medial axis of the union of
two disks of radius 𝛼 , evolves continuously, inHausdorff dis-
tance, as 𝜆 increases.

By contrast, the (𝜆, 𝛼)-medial axis, for a fixed value of 𝛼 > 0,
here the radius of the two disks of the 𝛼-offset of 𝐾 , is Hausdorff

continuous with respect to 𝜆. Indeed, as 𝜆 increases, when 𝛼 + 𝜆
equals the half distance between the two points, ax𝛼

𝜆
(𝐾), which

until then is the whole bisector line, starts to be disconnected,

creating a hole. But, since the hole grows continuously, its birth

is not a discontinuity for the Hausdorff distance. However, in the

neighborhood of this event, the hole size grows quadratically with

𝜆: This does not contradict the claim that the map 𝜆 ↦→ ax𝛼
𝜆
(𝐾) is

Lipschitz, as the precise conditions of the claim require us to avoid

situations where 𝛼 + 𝜆 is a zero of 𝜒𝐾 .

λ
2

λ
2

λ
2

Figure 3: Comparison between 𝜆-medial axis and (𝜆,𝛼)-
medial axis evolutions for increasing 𝜆, in the particular
case where 𝐾 is a finite subset of the plane. In this case both
filtered medial axes are subsets of the union of the edges
of the Voronoi diagram. On the second row, the points have
been replaced by disks of radius 𝛼 , offset of the points. The
evolution of the (𝜆,𝛼)-medial axis is Hausdorff continuous
whenever 𝛼 + 𝜆 is not a critical value of the distance func-
tion. On the other hand, as seen on first row, the 𝜆-medial
axis contains precisely the whole Voronoi edges or vertices
whose dual simplex lies in a ball of radius 𝜆. The 𝜆-medial
axis is therefore Hausdorff discontinuous for each value of
𝜆 which is the radius of the smallest ball enclosing some De-
launay simplex.

Figure 3 shows a situation where 𝐾 is made of four points in

the plane. The 𝜆-medial axis is made of these edges and vertices

whose dual Delaunay simplex has smallest enclosing radius greater

or equal to 𝜆. As a function of 𝜆, it is therefore Hausdorff distance

discontinuous for each value of 𝜆 that is equal to a such radius.

In contrast, the (𝜆, 𝛼)-medial axis, as a function of 𝜆 for fixed

𝛼 > 0, can be Hausdorff discontinuous only when 𝛼 + 𝜆 is a zero
of the critical function 𝜒𝐾 . We have depicted such a transition in

Figure 4: Here we increase 𝜆 further until 𝛼 + 𝜆 = 𝜌 , where 𝜌 is the

circumradius of the unique acute triangle in the Delaunay diagram,

and therefore the unique value of the distance to 𝐾 corresponding

to a local maximum. Until 𝛼 + 𝜆 = 𝜌 the (𝜆, 𝛼)-medial axis would

contain the Voronoi vertex dual to this acute triangle (for 𝛼 + 𝜆 = 𝜌

the Voronoi vertex would be an isolated point). Since this points
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would disappear from the (𝜆, 𝛼)-medial axis for 𝛼 +𝜆 > 𝜌 , it results

a Hausdorff distance discontinuity of 𝜆 ↦→ ax𝛼
𝜆
(𝐾).

Figure 4: Further evolution of the (𝜆,𝛼)-medial axis, after the
steps of the bottom row of figure 3. For some small inter-
val of values of 𝜆, the Voronoi vertex is an isolated point
on ax𝛼

𝜆
(𝐾), as illustrated on the middle, When 𝛼 + 𝜆 equals

the Delaunay triangle circumradius, this points disappears
from ax𝛼

𝜆
(𝐾), which corresponds to a discontinuity of 𝜆 →

ax𝛼
𝜆
(𝐾) for the Hausdorff distance.

In general, Hausdorff distance discontinuities of 𝜆 ↦→ ax𝜆 (𝐾)
may appear anywhere, at some “non regular values”, as mentioned

in item 3 of Section 5 and illustrated on top row of Figure 3 (where

𝜆 is a zero of 𝜒𝐾 ) and in Figure 9 (where 𝜆 is not a zero of 𝜒𝐾 ). By

contrast, the map 𝜆 ↦→ ax𝛼
𝜆
(𝐾), for 𝛼 > 0, is continuous (locally

Lipschitz) when 𝜒𝐾 (𝛼 + 𝜆) does not vanish, in other words the

interval on which the homotopy type of ax𝛼
𝜆
(𝐾) remains stable.

6.1 The case of a set 𝐾 ⊂ R𝑛 with positive
𝜇-reach and its Hausdorff approximation 𝐾 ′

In Part II we consider the general situation of sets whose 𝛼-offsets

have positive 𝜇-reach. In particular, Lemma 10.7 and Theorem 11.1

use a symmetrical formulations on the pair of sets 𝐾 and 𝐾 ′
in

order to state a modulus of continuity for the map 𝐾 ↦→ ax𝛼
𝜆
(𝐾),

where the metric on 𝐾 is the Hausdorff distance and the metric

on the medial axis can be either the Hausdorff distance or the

Gromov-Hausdorff distance.

In this section we consider the simpler setting, where we don’t

need to offset for 𝐾 to achieve positive 𝜇 reach, that is 𝑟𝜇 (𝐾) > 0
and we are given a set𝐾 ′

that is close to𝐾 in terms of the Hausdorff

distance. This allows a concise formal expression of our main results

in a simpler setting, while illustrating a typical application.

Overall this section, we make the following assumption:

Assumption 6.1 (Assumption for Section 6.1). We assume 𝐾,𝐾 ′
to

be closed sets such that, for some 𝜖 > 0, 𝑑𝐻 (𝐾 ′, 𝐾) < 𝜖 , 𝑟𝜇 (𝐾) > 0
and, the complements𝐾𝑐 and𝐾 ′𝑐

to be bounded: denotingB(0, 𝑅) ⊂
R𝑛 the ball of radius 𝑅 > 0, one has𝐾∪B(0, 𝑅) = 𝐾 ′∪B(0, 𝑅) = R𝑛 .
We assume moreover 0 < 𝛼 < 𝛼max and 0 < 𝜆 < 𝜆max, for

𝛼max + 𝜆max < 𝑟𝜇 (𝐾)/2 and we denote 𝜇 = min(𝜇,
√
3/2).

In particular, assuming 𝛼max + 𝜆max < 𝑟𝜇 (𝐾)/2 allows a simple

expression for 𝜇.

6.1.1 Hausdorff stability. As a consequence of Lemma 9.4 and

Lemma 9.5 we have that:

Proposition 6.2. For any 𝜆min > 0, the map 𝜆 ↦→ ax𝛼
𝜆
(𝐾)

is
(

𝑅2

𝛼𝜆min𝜇
2

)
-Lipschitz in the interval [𝜆min, 𝜆max] for Hausdorff

distance.

Similarly, for 𝛼min > 0, the map 𝛼 ↦→ ax𝛼
𝜆
(𝐾) is

(
𝑅2

𝛼min𝜆𝜇
2

)
-

Lipschitz in the interval [𝛼min, 𝛼max] for Hausdorff distance.

We will now combine this with a result from [19, Theorem 3.4].

Let 𝜇 ′ < 𝜇 and 𝛼 > 0. By definition of 𝑟𝜇 (𝐾), the critical function
of 𝐾 is above 𝜇 on the interval (0, 𝑟𝜇 (𝐾)). Theorem 3.4 of [19] now

says that if 𝐾 ′
is sufficiently close to 𝐾 in Hausdorff distance, then

the critical function of 𝐾 ′
will also be above 𝜇 ′ on the interval

(𝛼, 𝑟𝜇 (𝐾) − 𝛼), see Figure 7. In other words, there is 𝜖 > 0 such

that:

𝑑𝐻 (𝐾 ′, 𝐾) < 𝜖 ⇒ 𝑟𝛼𝜇′ (𝐾
′) > 𝑟𝜇 (𝐾) − 𝛼. (3)

Then, Lemma 10.7 gives us that:

Proposition 6.3. Denoting 𝜇 ′ = min(𝜇 ′,
√
3/2), there is 𝜖max >

0 depending only on 𝐾 , such that, for, 𝜖 < 𝜖max, one has:

𝑑𝐻

(
ax𝛼
𝜆
(𝐾 ′), ax𝛼

𝜆
(𝐾)

)
<

22

3

𝑅2

𝛼
1
2 𝜇 ′

3
2 𝜆

𝜖
1
2 . (4)

Note that, thanks to [19], under the conditions of the proposition,

that is for sufficiently small 𝜖 , ax𝛼
𝜆
(𝐾 ′), ax(𝐾) and 𝐾𝑐 have same

homotopy type (Theorem 9.7 below).

6.1.2 Gromov-Hausdorff stability. Lemma 9.11 and Theorem 9.12

give an explicit upper bound in the geodesic diameter of ax𝛼
𝜆
(𝐾),

assuming 𝐾𝑐 to be connected, as:

GeoDiameter(ax𝛼
𝜆
(𝐾)) ≤ 2

𝑅

𝜇2
+ 2𝛼

((
4𝑅

𝛼

)𝑛
+ 1 + 2

𝜇

)
𝑒

1
𝜇
+ 𝑅

𝛼𝜇2

(5)

Thanks to (3), a similar bound holds forGeoDiameter(ax𝛼
𝜆
(𝐾 ′)),

for sufficiently small 𝜖 .

This bound is exponential in
2𝑅
𝛼𝜇2

and therefore increases quickly

as 𝛼 → 0. We do not know if this bound is close to be tight.
10

Lemmas 9.14 and 9.15 give:

Proposition 6.4. For any 𝜆min > 0, the map 𝜆 ↦→ ax𝛼
𝜆
(𝐾) is(

𝑅2 (2𝛼min𝜆min+𝐷
𝛼2
min𝜇

2

)
-Lipschitz in the interval [𝜆min, 𝜆max] for Gromov-

Hausdorff distance, where

𝐷 = max
𝜆∈[𝜆min,𝜆max ]

GeoDiameter(ax𝛼
𝜆
(𝐾)) .

Similarly, for 𝛼min > 0, the map 𝛼 ↦→ ax𝛼
𝜆
(𝐾) is

(
𝑅 (2𝛼min+𝐷
𝛼2
min𝜇

2

)
-

Lipschitz in the interval [𝛼min, 𝛼max] for Gromov-Hausdorff distance,
where 𝐷 = max𝜆∈[𝛼min,𝛼max ] GeoDiameter(ax𝛼

𝜆
(𝐾)).

Note that the geodesic diameter enters as a factor in the Lipschitz

constant. This is due to the fact that the Gromov-Hausdorff distance

is defined as a global upper bound on differences of lengths, while,

here, the metrics differ mainly by a multiplicative factor. In a sense,

the metric discrepancy would be more tightly bounded by a mix

of additive and multiplicative bounds, where Gromov-Hausdorff

distances consider additive discrepancy only. Replacing 𝐷 by its

universal upper bound (5) is likely, in general, to give an overesti-

mated Lipschitz constant with respect to the one using the actual

diameter 𝐷 = max𝜆∈[𝛼min,𝛼max ] GeoDiameter(ax𝛼
𝜆
(𝐾)).

Also, Theorem 11.1 gives us:

10
But it is seems likely to be pessimistic in practical situations.
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Proposition 6.5. Denoting 𝜇 ′ = min(𝜇 ′,
√
3/2), there is 𝜖max >

0 depending only on 𝐾 , such that, for, 𝜖 < 𝜖max, one has:

𝑑𝐺𝐻

(
ax𝛼
𝜆
(𝐾 ′), ax𝛼

𝜆
(𝐾)

)
< 2

(
22

3

) 3
2 𝑅3 (2𝛼min + 𝐷)

𝛼
7
4

min
𝜇 ′

9
4 𝜆

3
2

𝜖
1
4 , (6)

where𝐷 = max(GeoDiameter(ax𝛼
𝜆
(𝐾)),GeoDiameter(ax𝛼

𝜆
(𝐾 ′))).

Again, taking for 𝐷 the upper bound (5) allows a uniform bound

which is enough in theory.

For a more practical bound on 𝑑𝐺𝐻

(
ax𝛼
𝜆
(𝐾 ′), ax𝛼

𝜆
(𝐾)

)
it would

be easier to calculate a bound on the geodesic diameter of ax𝛼
𝜆
(𝐾 ′).

For example, if 𝐾 ′
is finite (in fact the union of the complement

of B◦ (0, 𝑅) with a finite set) one could determine a bound on the

geodesic diameter of the subset of the (𝑛 − 1)-skeleton of part of

the Voronoi diagram corresponding to ax𝛼
𝜆
(𝐾 ′).

6.2 Method
All proofs in the paper are based on the flow of the (generalized)

gradient of the distance function from a point 𝑥 to 𝐾 , see Section

8.2 for a formal definition. The flow has been used before, among

others to establish the following results:

• The medial axis has the same homotopy type as the set [42].

• The topologically guaranteed reconstruction for non-smooth

sets [19].

The flow also plays a central role in the work on the 𝜆-medial

axis [20]. These tools were developed for non-smooth objects, and

rely on the weak regularity properties based on the 𝜇-reach and

the critical function (Section 8.2). Our stability results rely on the

stability of the flow and its gradient under Hausdorff perturbation

of 𝐾 , and by quantifying how quickly we enter the (𝜆, 𝛼)-medial

axis following the flow of the gradient, assuming that we start not

too far from the (𝜆, 𝛼)-medial axis.

7 FUTUREWORK
Beyond the stability properties presented in this paper, several ques-

tions remain open. We do not know if our moduli of continuity are

optimal, or if other filtrations could offer better Hölder exponents

for the stability. More precisely, because the dependence of the

(𝜆,𝛼)-medial axis on 𝜆 and 𝛼 is Lipschitz, it is only the Lipschitz

constant that can be improved. This contrasts with the Hölder expo-

nents for the map 𝐾 ↦→ ax𝛼
𝜆
, namely

1
2 for the Hausdorff distance

and
1
4 the Gromov-Hausdorff distance, which may not be optimal.

Our stability property expressed in term of Gromov-Hausdorff

distance hides a stronger statement. Indeed the Gromov-Hausdorff

distance applies to two independent metric spaces, while our two

metric spaces are also subset of a same Euclidean space. While

this has not been made explicit in the statement of Theorem 11.1,

when 𝑑𝐻 (𝐾,𝐾 ′) < 𝜖 , (82) gives a O(𝜖
1
2 ) bound on the ambient

Euclidean distance between points pairs in relation that upper

bounds the O(𝜖
1
4 ) Gromov-Hausdorff distance. For example, in

Figure 1 on the right, a simple rotation could define a relation giving

a zero Gromov-Hausdorff distance (an isometry), while in fact our

construction defines another relation for which points in relation

are much closer in ambient space. In order to fully express our

stability properties induced by the flow, we should introduce in a

future work a sharpening of the Gromov-Hausdorff distance, where

the relation realizes not only a small geodesic metric distortion, but

also a small ambient displacement.

PART II: THE TECHNICAL STATEMENTS AND
PROOFS
8 DEFINITIONS AND PREVIOUS WORK
In this section, we recall some definitions and results, mainly intro-

duced in [19, 20, 42], in order to make the paper self-contained.

Throughout the paper, 𝐾 will be a closed subset of R𝑛 , whose
complement 𝐾𝑐 is bounded and connected.The fact that 𝐾𝑐 is con-
nected is essential for the medial axis to be patch connected and

thus is needed for a bound on the geodesic diameter. The geodesic

diameter in turn is needed for the bound on the Gromov-Hausdorff

distance (our bound is proportional to the geodesic diameter). We

stress that the connectedness assumption is not required for our

results on the Hausdorff distance.

8.1 Homotopy equivalence and weak
deformation retraction

A homotopy equivalence between topological spaces 𝑋 and 𝑌

where 𝑌 ⊂ 𝑋 and the map from 𝑌 to 𝑋 is the inclusion map, is

called weak deformation retract, more formally:

Definition 8.1 (weak deformation retract). If 𝑌 ⊂ 𝑋 and there

exists a continuous map 𝐻 : [0, 1] × 𝑋 → 𝑋 such that:

• ∀𝑥 ∈ 𝑋, 𝐻 (0, 𝑥) = 𝑥 ,
• ∀𝑥 ∈ 𝑋, 𝐻 (1, 𝑥) ∈ 𝑌 ,
• ∀𝑦 ∈ 𝑌,∀𝑡 ∈ [0, 1], 𝐻 (𝑡, 𝑦) ∈ 𝑌 ,

then we say that 𝐻 is a weak deformation retract of 𝑋 on 𝑌 . In

particular 𝑋 and 𝑌 have same homotopy type.

8.2 The medial axis and associated flow
We define the following functions on R𝑛 associated to 𝐾 :

𝑥 ↦→ 𝑅𝐾 (𝑥) =
def.

𝑑 (𝑥, 𝐾) = min
𝑦∈𝐾

𝑑 (𝑥,𝑦) (7)

𝑥 ↦→ Θ𝐾 (𝑥) =
def.

{𝑦 ∈ 𝐾 | 𝑑 (𝑥,𝑦) = 𝑅𝐾 (𝑥)} . (8)

For a bounded set 𝑆 we denote the center of the smallest ball en-

closing 𝑆 by center(𝑆), we write radius(𝑆) for the radius of this
ball.

We further define,

F𝐾 (𝑥) =
def.

radius(Θ𝐾 (𝑥)) (9)

and for 𝑥 ∉ 𝐾 :

∇𝐾 (𝑥) =
def.

𝑥 − center(Θ𝐾 (𝑥))
𝑅𝐾 (𝑥)

(10)

The medial axis ax(𝐾) of 𝐾 is defined as:

ax(𝐾) =
def.

{𝑥 ∈ R𝑛 | F𝐾 (𝑥) > 0} = {𝑥 ∈ R𝑛 | ♯ (Θ𝐾 (𝑥)) ≥ 2}
(11)

where ♯𝑋 denotes the cardinality of the set 𝑋 .

When 𝑥 ∈ 𝐾 , one has Θ𝐾 (𝑥) = {𝑥} and F𝐾 (𝑥) = 0. It follows
that ax(𝐾) ⊂ 𝐾𝑐 .

When 𝑥 ∉ 𝐾 ∪ ax(𝐾), ∇𝐾 (𝑥) coincides with the gradient of the

Lipschitz function 𝑥 ↦→ 𝑅𝐾 (𝑥).



STOC ’23, June 20–23, 2023, Orlando, FL, USA André Lieutier and Mathijs Wintraecken

x

center(ΘK(x))

RK(x)

ΘK(x)

∇K(x)

FK (x)

1

Figure 5: Pictorial overview of the definitions and notation.
The set 𝐾 is indicated in black and the medial axis in green.

For any 𝑥 ∈ 𝐾𝑐 , including when 𝑥 ∈ ax(𝐾), ∇𝐾 (𝑥) could have

been equivalently defined as the projection of 0 on the Clarke

gradient, see [22], of 𝑥 ↦→ 𝑅𝐾 (𝑥). However the definition (10) is

more convenient in our context and does not require the formal

introduction of Clarke gradient, which is technical. For this reason,

we call ∇𝐾 (𝑥) the generalized gradient of 𝑥 ↦→ 𝑅𝐾 (𝑥). Thanks to
the definition of ∇𝐾 (𝑥), and Pythagoras, see that for 𝑥 ∉ 𝐾 one has:

∀𝑥 ∈ 𝐾𝑐 , ∥∇𝐾 (𝑥)∥2 = 1 −
(
F𝐾 (𝑥)
𝑅𝐾 (𝑥)

)2
. (12)

In [42] we have seen that there exists a locally Lipschitz, and there-

fore continuous, flow Φ𝐾 : R≥0 × 𝐾𝑐 → 𝐾𝑐 such that:

∀𝑥 ∈ 𝐾𝑐 , Φ𝐾 (0, 𝑥) = 𝑥

∀𝑥 ∈ 𝐾𝑐 ,∀𝑡 ≥ 0,
𝑑

𝑑𝑡+
Φ𝐾 (𝑡, 𝑥) = ∇𝐾 (Φ𝐾 (𝑡, 𝑥)) (13)

∀𝑥 ∈ 𝐾𝑐 , ∀𝑡1, 𝑡2 ≥ 0, Φ𝐾 (𝑡1,Φ𝐾 (𝑡2, 𝑥)) = Φ𝐾 (𝑡1 + 𝑡2, 𝑥). (14)

1

≤ 1

Figure 6: The blue path follows the flow. The orange vectors
indicate the vectors (∇𝐾 (𝑥)) whose flow Φ𝐾 follows. They
have been shifted slightly for visibility and lengths have
been indicated.

It was established in [42] that ax(𝐾) has same homotopy type

as 𝐾𝑐 . This result is based on the fact that the flow Φ𝐾 realizes the

homotopy equivalence 𝐾𝑐 → ax(𝐾) for a finite 𝑡 (see Definition
8.1). In the particular case when 𝐾 is a finite set, the flow Φ𝐾 is

equivalent to the flow that induces the flow complex [29] of 𝐾 .
We further recall the following:

Lemma 8.2 (Lemma 4.16 of [42]).

∀𝑡 ≥ 0,∀𝑥 ∈ 𝐾𝑐 , 𝑑

𝑑𝑡+
𝑅𝐾 (Φ𝐾 (𝑡, 𝑥)) = ∥∇𝐾 (Φ𝐾 (𝑡, 𝑥))∥2 . (15)

Lemma 8.3 (Corollary 4.7 of [42]). The map F𝐾 is upper semi-
continuous.

Lemma 8.4 (Lemma 4.17 of [42]). The map 𝑡 ↦→ F𝐾 (Φ𝐾 (𝑡, 𝑥)) is
non-decreasing (i.e. increasing but not necessarily strictly increasing)
and therefore, by Lemma 8.3 right-continuous.

Lemma 4.13 of [42] immediately yields:

Corollary 8.5.

𝑅𝐾 (𝑥1), 𝑅𝐾 (𝑥2) ≥ 𝛼 ⇒ ∥Φ𝐾 (𝑡, 𝑥2) − Φ𝐾 (𝑡, 𝑥1)∥ ≤ ∥𝑥2 − 𝑥1∥ 𝑒
𝑡
𝛼 .

(16)

8.3 Critical function, 𝜇-reach and Weak
Feature Size

As we have seen in Section 2, the critical function 𝜒𝐾 : (0,∞) →
[0, 1], is defined as

𝜒𝐾 (𝑡) =
def.

inf
𝑅𝐾 (𝑥)=𝑡

√︄
1 −

(
F𝐾 (𝑥)
𝑅𝐾 (𝑥)

)2
. (1)

In this setting we say that the infimum over the empty set yields

1.We’ll now discuss the intuition behind this function. The critical

function provides us in a certain sense with some lower bound

on the norm of the vector field ∇𝐾 (𝑥) whose flow (Φ𝐾 ) we follow.
Figure 7 illustrates the critical function when𝐾 is a (hollow) square

in R3. The medial axis of the square is an infinite prism, which is

the product of the squares’s diagonals and the line orthogonal to the

square supporting plane. The infimum in (1) is first attained along

the square diagonals, where 𝜒𝐾 (𝑡) = 1/
√
2 since there F𝐾 (𝑥) =

𝑅𝐾 (𝑥)√
2

. Then when the offset reaches the square center we get

F𝐾 (𝑥) = 𝑅𝐾 (𝑥) and therefore 𝜒𝐾 (𝑡) = 0. The topology of the

offset then changes and, after this critical value, the inf is then
reached on the line through the square center and orthogonal to

the square supporting plane.

The critical function enjoys some stability properties with re-

spect to Hausdorff distance perturbation [19, Theorem 4.2], illus-

trated in Figure 7. If two sets𝐾 and𝐾 ′
are close enough in Hausdorff

distance, their critical functions 𝑡 ↦→ 𝜒𝐾 (𝑡) and 𝑡 ↦→ 𝜒𝐾 ′ (𝑡) are
close to each other, for 𝑡 large enough.

The critical function has been introduced in Section 2 and illus-

trated in Figure 7. In [19] the critical function 𝜒𝐾 : (0,∞) → [0, 1]
was defined for a compact set 𝐾 . We adapt it to a closed set 𝐾 with

bounded complement.

On a closed set 𝐾 with bounded complement the function 𝑅𝐾
attains a maximum:

𝑅max (𝐾) =
def.

sup
𝑥 ∈𝐾𝑐

𝑅𝐾 (𝑥) = max
𝑥 ∈𝐾𝑐

𝑅𝐾 (𝑥). (17)
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Figure 7: (Adapted from [12])). On the top, the critical func-
tion 𝜒𝐾 of a square 𝐾 in R3 together with the correspond-
ing level sets 𝑅−1

𝐾
(𝑡) of the distance to 𝐾 , on which the inf is

taken in equation (1). The topology of offsets changes only
when 𝜒𝐾 (𝑡) = 0, that is when 𝑡 = 𝑡𝑐𝑟𝑖𝑡 . which is the half of
the square side. For 𝑡 ∈ (0, 𝑡𝑐𝑟𝑖𝑡 .), 𝜒𝐾 (𝑡) = 1/

√
2 since, for

0 < 𝑡 < 𝑡𝑐𝑟𝑖𝑡 ., the inf in (1) is For 𝑡 ∈ (0, 𝑡𝑐𝑟𝑖𝑡 .) we have that
𝜒𝐾 (𝑡) = 1/

√
2. This can be seen as follows: For 0 < 𝑡 < 𝑡𝑐𝑟𝑖𝑡 .

the inf in (1) is attained on the intersection of 𝑅−1
𝐾

(𝑡), the
supporting plane of the square, and the medial axis. This in-
tersection equals the diagonals of the square. It follows im-
mediately from Pythagoras that F𝐾 (𝑥) = 𝑅𝐾 (𝑥)√

2
. This value

is indeed strictly smaller than 1 as the reach of the square is
0.
At the bottom, the critical function of a set 𝐾 ′ (here a finite
set), close, in Hausdorff distance, to 𝐾 . For large enough off-
set 𝑡 , 𝜒𝐾 ′ is close to 𝜒𝐾 . In particular, if 𝑑𝐻 (𝐾 ′, 𝐾) is small
enoughwith respect to 𝑡𝑐𝑟𝑖𝑡 ., Theorem [19, Theorem 4.2] pro-
vides a lower bound on the critical function of 𝐾 ′, which is
then guaranteed to not vanish on some interval subset of
(0, 𝑡𝑐𝑟𝑖𝑡 .).

The critical function of 𝐾 is the function 𝜒𝐾 : (0, 𝑅max (𝐾)] →
[0, 1] defined as:

𝜒𝐾 (𝑡) =
def.

inf
𝑅𝐾 (𝑥)=𝑡

∥∇𝐾 (𝑥)∥ .

As a consequence of (15), one has 𝜒𝐾 (𝑅max) = 0. For 𝜇 ∈ (0, 1],
the 𝜇-reach of 𝐾 , denoted 𝑟𝜇 (𝐾) is defined as:

𝑟𝜇 (𝐾) =
def.

inf{𝑡 | 𝜒𝐾 (𝑡) < 𝜇}

= sup {𝑟 | 𝑅𝐾 (𝑥) < 𝑟 ⇒ ∥∇𝐾 (𝑥)∥ ≥ 𝜇} .

For 𝜇 = 1, 𝑟1 (𝐾) is also known as the reach of 𝐾 . TheWeak Feature
Size of 𝐾 , denoted wfs(𝐾) is defined as the first critical value of the
distance function, that is the first value at which 𝜒𝐾 vanishes

wfs(𝐾) =
def.

inf{𝑡 | 𝜒𝐾 (𝑡) = 0}. (18)

Since 𝑥 ↦→ F𝐾 (𝑥) is upper semi-continuous, see Corollary 4.7 of

[42], 𝜒𝐾 is lower semi-continuous. The lower semi-continuity of

𝜒𝐾 has a number of consequences:

• If 0 < wfs(𝐾), then we have 𝜒𝐾 (wfs(𝐾)) = 0, so that

wfs(𝐾) > 0 ⇒ wfs(𝐾) = min{𝑡 | 𝜒𝐾 (𝑡) = 0}.
This follows by combining the lower semi-continuity with

the definition of the weak feature size (18).

• By definition of 𝑟𝜇 (𝐾) (and lower semi-continuity of 𝜒𝐾 ) we

have that, for any 𝜇 > 0, 𝑟𝜇 (𝐾) < wfs(𝐾).
• If 0 < sup{𝑟𝜇 (𝐾) | 𝜇 > 0} < ∞, then 𝜒𝐾 (sup{𝑟𝜇 (𝐾) | 𝜇 >

0}) = 0. Because wfs(𝐾) > 0 ⇒ sup{𝑟𝜇 (𝐾) | 𝜇 > 0} > 0, it
follows that:

wfs(𝐾) > 0 ⇒ wfs(𝐾) = sup{𝑟𝜇 (𝐾) | 𝜇 > 0}. (19)

8.4 Gromov-Hausdorff distance
For 𝛼 ≥ 0, the 𝛼-offset of 𝐾 denoted 𝐾 ⊕𝛼

is the set of points lying

at distance at most 𝛼 from 𝐾 :

𝐾 ⊕𝛼 =
def.

{𝑥 ∈ R𝑛 | 𝑑 (𝑥, 𝐾) ≥ 𝛼}, (20)

where 𝑑 (𝑥, 𝐾) =
def.

inf𝑦∈𝐾 𝑑 (𝑥,𝑦) = min𝑦∈𝐾 𝑑 (𝑥,𝑦). Alternatively,

𝐾 ⊕𝛼
can be defined as the Minkowski sum of𝐾 with a ball of radius

𝛼 centered at 0, which motivates the ⊕ notation.

The Hausdorff distance between two compact subsets𝐴, 𝐵 of the

Euclidean space is defined as ([15, Section 5.30]):

Definition 8.6 (Hausdorff distance). The Hausdorff distance be-

tween closed sets 𝐴 and 𝐵 is defined as

𝑑𝐻 (𝐴, 𝐵) = inf
{
𝜀, 𝐴 ⊂ 𝐵⊕𝜀 and 𝐵 ⊂ 𝐴⊕𝜀 } . (21)

One trivially has,

𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴⊕𝜀 ⇒ 𝑑𝐻 (𝐴, 𝐵) ≤ 𝜀. (22)

We now define the Gromov-Hausdorff distance between two

metric spaces 𝑋1 and 𝑋2. We follow [15, Section 5.33], with minor

modifications in the formulation for compatibility.

Definition 8.7 (Gromov-Hausdorff distance). An 𝜀-relation be-

tween two metric spaces 𝑋1 and and 𝑋2 is a subset R ⊂ 𝑋1 × 𝑋2

such that:

(1) For 𝑖 = 1, 2, the projection of R to 𝑋𝑖 is surjective.

(2) If (𝑥1, 𝑥2), (𝑥 ′1, 𝑥
′
2) ∈ R then,��𝑑𝑋1

(𝑥1, 𝑥 ′1) − 𝑑𝑋2
(𝑥2, 𝑥 ′2)

�� < 𝜀.
If there exists an 𝜀-relation between 𝑋1 and and 𝑋2 then we write

𝑋1 ≃𝜀 𝑋2. We define the Gromov-Hausdorff distance between 𝑋1

and 𝑋2 to be

𝑑GH (𝑋1, 𝑋2) = inf {𝜀, 𝑋1 ≃𝜀 𝑋2} . (23)

8.5 The topology of the 𝜆-medial axis
In [20] the 𝜆-medial axis was introduced for 𝜆 > 0 as:

ax𝜆 (𝐾) =
def.

{𝑥 ∈ R𝑛 | F𝐾 (𝑥) ≥ 𝜆}.

By definition the 𝜆-medial axis has the following properties:

𝜆1 ≥ 𝜆2 ⇒ ax𝜆1 (𝐾) ⊂ ax𝜆2 (𝐾),
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and ⋃
𝜆>0

ax𝜆 (𝐾) = ax(𝐾) .

It follows from Lemma 8.3 that:

Lemma 8.8. ax𝜆 (𝐾) is closed and therefore, since 𝐾𝑐 is bounded,
it is compact.

As a consequence of Lemma 8.4, using Definition 8.1, the flow

Φ𝐾 can be used to show that:

Theorem 8.9 (Theorem 2 of [20]). If 𝜆 < wfs(𝐾), then ax𝜆 (𝐾)
has the homotopy type of 𝐾𝑐 .

8.6 Fundamental Theorem of calculus for
Lipschitz functions

As in [20, 42] we apply the fundamental theorem of calculus to

Lipschitz functions while it is usually stated in the context of dif-

ferentiable functions.

We recall that it follows trivially from the definitions that Lips-

chitz functions are in particular absolutely continuous and:

Theorem 8.10 (Adapted from Theorem 6.4.2 in [32]). If 𝑓 :
[𝑎, 𝑏] → R, then the following two statements are equivalent.

(a) 𝑓 is absolutely continuous.
(b) 𝑓 is differentiable almost everywhere on [𝑎, 𝑏], 𝑓 ′ ∈ 𝐿1 [𝑎, 𝑏],

and

𝑓 (𝑥) − 𝑓 (𝑎) =
∫ 𝑥

𝑎

𝑓 ′(𝑡)𝑑𝑡

8.7 Volterra integral inequalities
Apart from a generalized fundamental theorem of calculus we’ll

also need a estimates on Volterra integrals. These are related to the

solution of differential equations of Čaplygin type. The simplest

version of the result we recall first, see for example [46, Theorem 2,

Section 2, Chapter XI],

Theorem 8.11 (Čaplygin). Let 𝐹 (𝑥, 𝑡) be a Lipschitz function and
𝑥 = 𝑥 (𝑡) a differentiable function such that 𝑥 (0) = 𝑥0, and

𝑑

𝑑𝑡
𝑥 (𝑡) ≤ 𝐹 (𝑡, 𝑥 (𝑡)),

then 𝑥 (𝑡) ≤ 𝑦 (𝑡), where 𝑦 (𝑡) is the solution of the initial value prob-
lem 𝑦 (0) = 𝑥0 and 𝑑

𝑑𝑡
𝑦 (𝑡) = 𝐹 (𝑡, 𝑦 (𝑡)).

We note that even though this result is ascribed to Čaplygin the

result was already known to Peano, we refer to [46, page 316] and

the reference mentioned there for more information.

However because we deal with functions that are not differen-

tiable we need an integral version of the statement. For this we’ll

adapt a number of definitions and results on Volterra integral in-

equalities from [55, Chapter I], see also [2, 47]. We first make the

following definitions: Integral equations of the form

𝑥 (𝑡) = 𝑔(𝑡) +
∫ 𝑡

0
𝑘 (𝑥 (𝜏))d𝜏

are called Volterra integral equations and 𝑘 (𝑥) its kernel. In general

these kernels are allowed to depend on 𝑡 , but we don’t need this in

our context. The class 𝑍𝑐 (𝑘) of admissible function for the kernel

𝑘 are the functions 𝜙 (𝜏) such that 𝑘 (𝜙 (𝜏)) exists and is integrable.

We say that the kernel is monotone increasing if 𝑘 (𝑥) ≤ 𝑘 (𝑥) for
all 𝑥 ≤ 𝑥 in its domain, and strictly monotone if this still holds

when both bounds are replaced by strict inequalities. We have,

Theorem 8.12. Suppose that 𝑘 (𝑥) is a monotone increasing kernel,
𝑥 (𝑡), 𝑦 (𝑡) ∈ 𝑍𝑐 (𝐾), and 𝐶1 a constant. Further assume that

𝑦 (𝑡) = 𝐶1 +
∫ 𝑡

0
𝑘 (𝑦 (𝜏))d𝜏

𝑥 (𝑡) ≥ 𝐶1 +
∫ 𝑡

0
𝑘 (𝑥 (𝜏))d𝜏,

for all 𝑡 in the domain, where equality in the second equation only
occurs for 𝑡 = 0. Moreover assume that there exists a 𝛿 ′ > 0 such
that for all 𝑡 ′ ∈ (0, 𝛿 ′), we have 𝑦 (𝑡 ′) < 𝑥 (𝑡 ′). Then for all 𝑡 in the
domain,

𝑦 (𝑡) ≤ 𝑥 (𝑡),
where equality occurs only for 𝑡 = 0.

Proof. For any 𝑡 ′ ∈ (0, 𝛿 ′), the result follows from the hypoth-

esis. If the assertion would be false, there would be a 𝑡0 > 0 such

that 𝑥 (𝑡0) = 𝑦 (𝑡0). However because 𝑘 is assumed to be monotone,

𝑦 (𝑡0) = 𝐶1 +
∫ 𝑡0

0
𝑘 (𝑦 (𝜏))d𝜏 ≤ 𝐶1 +

∫ 𝑡0

0
𝑘 (𝑥 (𝜏))d𝜏 < 𝑥 (𝑡0).

The result now follows. □

9 THE (𝜆, 𝛼)-MEDIAL AXIS
In this section, we define the (𝜆, 𝛼)-medial axis and prove its stabil-

ity with respect to both 𝜆 and 𝛼 .

9.1 The definition
It is easy to check that the subset of ax(𝐾) that lies at distance

greater than 𝛼 from 𝐾 coincides with the medial axis ax(𝐾 ⊕𝛼 ) of
the 𝛼-offset of 𝐾 ,

ax(𝐾 ⊕𝛼 ) = {𝑥 ∈ ax(𝐾) | 𝑅𝐾 (𝑥) > 𝛼}.
Moreover, we observe that

𝑅𝐾 (𝑥) > 𝛼 ⇒ 𝑅𝐾⊕𝛼 (𝑥) = 𝑑
(
𝑥, 𝐾 ⊕𝛼 ) = 𝑑 (𝑥, 𝐾) − 𝛼 = 𝑅𝐾 (𝑥) − 𝛼.

(24)

We further note that when 𝑦 ∈ Θ𝐾 (𝑥) one has ∥𝑦 − 𝑥 ∥ = 𝑅𝐾 (𝑥),
by definition of Θ𝐾 , see (8). Using these two observation and the

definition ofΘ𝐾 we see thatΘ𝐾 (𝑥) andΘ𝐾⊕𝛼 are related as follows,

𝑦 ∈ Θ𝐾 (𝑥) ⇐⇒ 𝑥 + 𝑅𝐾⊕𝛼 (𝑥) 𝑦 − 𝑥
𝑅𝐾 (𝑥)

∈ Θ𝐾⊕𝛼 (𝑥),

assuming that 𝑅𝐾 (𝑥) > 𝛼 . So that, under the same condition,

(Θ𝐾⊕𝛼 (𝑥) − 𝑥) = 𝑅𝐾⊕𝛼 (𝑥)
𝑅𝐾 (𝑥)

(Θ𝐾 (𝑥) − 𝑥) , (25)

which yields

F𝐾⊕𝛼 (𝑥) = radius (Θ𝐾⊕𝛼 (𝑥)) = 𝑅𝐾⊕𝛼 (𝑥)
𝑅𝐾 (𝑥)

radius (Θ𝐾 (𝑥)) ,
(26)

and thus

center (Θ𝐾⊕𝛼 (𝑥)) − 𝑥 =
𝑅𝐾⊕𝛼 (𝑥)
𝑅𝐾 (𝑥)

(center (Θ𝐾 ) − 𝑥) .

Thanks to the definitions (9) and (10), we find that

𝑅𝐾 (𝑥) > 𝛼 ⇒ ∇𝐾⊕𝛼 (𝑥) = ∇𝐾 (𝑥),
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which in turn implies that the flows Φ𝐾 and Φ𝐾⊕𝛼 coincide in(
𝐾 ⊕𝛼 )𝑐

.

x

center(ΘK⊕α (x))

RK⊕α(x)

ΘK⊕α(x)

∇K (x)

K⊕α
= ∇

K⊕α (x)
1

Figure 8: Pictorial overview of the definitions and notation.
The set 𝐾 ⊕𝛼 is indicated in grey.

We introduce the map F 𝛼
𝐾
:
(
𝐾 ⊕𝛼 )𝑐 → R≥0 as

F 𝛼
𝐾

=
def.

F𝐾⊕𝛼 . (27)

Therefore (9), (24) , (25) and (26) give us that for 𝑥 ∈
(
𝐾 ⊕𝛼 )𝑐

, that

is 𝑅𝐾 (𝑥) > 𝛼 , one has,

F 𝛼
𝐾
(𝑥) = 𝑅𝐾 (𝑥) − 𝛼

𝑅𝐾 (𝑥)
F𝐾 (𝑥) . (28)

The (𝜆, 𝛼)-medial axis of 𝐾 , denoted ax𝛼
𝜆
(𝐾) is the 𝜆-medial axis

of the 𝛼-offset of 𝐾

ax𝛼
𝜆
(𝐾) =

def.

ax𝜆 (𝐾 ⊕𝛼 )

= {𝑥 ∈ R𝑛 | F 𝛼
𝐾
(𝑥) ≥ 𝜆}. (by (27)) (29)

We note that Lemma 8.8 extends to (𝜆, 𝛼)-medial axis of 𝐾 which

is therefore compact as well.

Since, for 𝑟 ≥ 𝛼 , the map 𝑟 ↦→ 𝑟−𝛼
𝑟 is increasing, we get from

(15), Lemma 8.4, and (28) that

𝑡 ↦→ F 𝛼
𝐾
(Φ𝐾 (𝑡, 𝑥)) is not decreasing. (30)

In fact, when 𝛼 > 0, 𝑡 ↦→ 𝑅𝐾 (Φ𝐾 (𝑡, 𝑥)) is strictly increasing as long
as ∥∇𝐾 (Φ𝐾 (𝑡, 𝑥))∥ > 0, moreover the map 𝑡 ↦→ F 𝛼

𝐾
(Φ𝐾 (𝑡, 𝑥)) is

strictly increasing, which will be quantified in (44) below.

The monotonicity in (30), together with the definition of ax𝛼
𝜆
(𝐾),

implies that ax𝛼
𝜆
(𝐾) is mapped to itself under the action of the flow:

∀𝑡 ≥ 0, Φ𝐾 (𝑡, ax𝛼𝜆 (𝐾)) ⊂ ax𝛼
𝜆
(𝐾) . (31)

Observe that for 𝜆 > 𝛼 one has

𝑥 ∈ ax𝜆 (𝐾) ⇒ 𝑅𝐾 (𝑥) ≥ F𝐾 (𝑥) ≥ 𝜆. (32)

So if 𝑥 ∈ ax𝜆 (𝐾), we get from (28) that

F 𝛼
𝐾
(𝑥) = 𝑅𝐾 (𝑥) − 𝛼

𝑅𝐾 (𝑥)
F𝐾 (𝑥) ≥

𝜆 − 𝛼
𝜆

F𝐾 (𝑥) .

So that,

𝑥 ∈ ax𝜆 (𝐾) ⇒ F𝐾 (𝑥) ≥ 𝜆 ⇒ F 𝛼
𝐾
(𝑥) ≥ 𝜆 − 𝛼

𝜆
𝜆 = 𝜆 − 𝛼

⇒ 𝑥 ∈ ax𝛼
𝜆−𝛼 (𝐾) .

This in turn implies that if 𝜆 > 𝛼 , one has,

ax𝜆 (𝐾) ⊂ ax𝛼
𝜆−𝛼 (𝐾) ⊂ ax𝜆−𝛼 (𝐾) (33)

ax𝛼
𝜆
(𝐾) ⊂ ax𝜆 (𝐾) ⊂ ax𝛼

𝜆−𝛼 (𝐾), (34)

and for any 𝑐 such that 0 < 𝑐 < 1 one has:⋃
𝜆>0

⋃
0<𝛼<𝜆

ax𝛼
𝜆
(𝐾) =

⋃
𝜆>0

ax𝑐𝜆
𝜆
(𝐾) = ax(𝐾). (35)

It follows from (28) and (29) that (𝜆, 𝛼) ↦→ ax𝛼
𝜆
(𝐾) is decreasing

for inclusion order:

𝜆1 ≤ 𝜆2, 𝛼1 ≤ 𝛼2 ⇒ ax𝛼2

𝜆2
(𝐾) ⊂ ax𝛼1

𝜆1
(𝐾). (36)

9.2 The (𝜆, 𝛼)-medial axis is Hausdorff-stable
under 𝜆 perturbation

The purpose of this section is to show that the (𝜆, 𝛼)-medial axis

does not suffer much from instabilities. In this subsection we treat

the stability with respect to 𝜆 (Lemma 9.4 ), the following subsection

is dedicated to the stability with respect to 𝛼 (Lemma 9.5).

We start with introducing the (𝛼, 𝜇)-reach.

Definition 9.1. For 𝜇 ∈ (0, 1] and 𝛼 ≥ 0, the (𝛼, 𝜇)-reach of 𝐾 ,

denoted by 𝑟𝛼𝜇 (𝐾), is defined as:

𝑟𝛼𝜇 (𝐾) =
def.

inf{𝑡 > 𝛼, 𝜒𝐾 (𝑡) < 𝜇} = 𝛼 + 𝑟𝜇 (𝐾 ⊕𝛼 ).

We need an easy lemma that gives a lower bound on the norm

of ∥∇𝐾 (𝑥)∥ for 𝑥 ∈
(
𝐾 ⊕𝛼′

)𝑐
\ ax𝛼

𝜆
, for 0 < 𝛼 ′ ≤ 𝛼 . To be able to

state the result we define,

𝜇
𝛼,𝛼′

𝜇,𝜆
(𝐾) =

def.

min
©­­«𝜇,

√√√
1 −

(
𝜆

𝑟𝛼
′
𝜇 (𝐾) − 𝛼

)2ª®®¬ . (37)

Lemma 9.2. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open
set 𝐾𝑐 and 𝛼, 𝜆 > 0, 𝜇 ∈ (0, 1] and 𝛼 ′ such that 0 < 𝛼 ′ ≤ 𝛼 and
𝑟𝛼

′
𝜇 (𝐾) > 𝛼 + 𝜆.
For any 𝑥 ∈

(
𝐾 ⊕𝛼′

)𝑐
\ ax𝛼

𝜆
, one has

∥∇𝐾 (𝑥)∥ ≥ 𝜇,

where

𝜇 = 𝜇
𝛼,𝛼′

𝜇,𝜆
(𝐾) > 0.

Proof. Because the lower bound 𝜇 is defined as a minimum over

two values we distinguish two cases:

• If 𝑅𝐾 (𝑥) < 𝑟𝛼′
𝜇 (𝐾) then by definition of 𝑟𝛼

′
𝜇 one has

∥∇𝐾 (𝑥) ∥ ≥ 𝜇.
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• If 𝑅𝐾 (𝑥) ≥ 𝑟𝛼
′
𝜇 (𝐾) then 𝑅𝐾⊕𝛼 (𝑥) ≥ 𝑟𝛼

′
𝜇 (𝐾) − 𝛼 . Since 𝑥 ∉

ax𝛼
𝜆
, one has F𝐾⊕𝛼 (𝑥) = F 𝛼

𝜆
(𝑥) < 𝜆. Combining this with

(12) we get,

∥∇𝐾 (𝑥) ∥ = ∥∇𝐾⊕𝛼 (𝑥) ∥

=

√︄
1 −

(
F𝐾⊕𝛼 (𝑥)
𝑅𝐾⊕𝛼 (𝑥)

)2
>

√√√
1 −

(
𝜆

𝑟𝛼
′
𝜇 (𝐾) − 𝛼

)2
> 0.

So that in both cases, we get:

∥∇𝐾 (𝑥) ∥ ≥ 𝜇
𝛼,𝛼′

𝜇,𝜆
(𝐾) > 0. (38)

□

As observed in [20], the 𝜆-medial axis seen as a function 𝜆 ↦→
ax𝜆 (𝐾) is not continuous: ax𝜆 (𝐾) may “increase” abruptly at some

“singular” values of 𝜆, even when 𝜆 is small with respect to wfs(𝐾).
This is illustrated in Figures 9 and 10. This is related to the fact that,

for 𝑥 ∈ ax𝜆 (𝐾), the map 𝑡 ↦→ F𝐾 (Φ𝐾 (𝑡, 𝑥)) may remain constant

on some intervals.

Figure 9: 𝜆 ↦→ ax𝜆 (𝐾) is not continuous, because 𝐾 is non-
smooth at the points 𝑎 and 𝑏.

In contrast, for 𝛼 > 0, the map 𝜆 ↦→ ax𝛼
𝜆
(𝐾) is continuous with

respect to the Hausdorff distance, as long as 𝛼 + 𝜆 < wfs(𝐾), or,
more generally, as long as 𝛼 + 𝜆 < 𝑟𝛼𝜇 (𝐾) for some 𝜇 > 0. The
continuity follows from the fact that the rate of increase of the map

𝑡 ↦→ F 𝛼
𝐾
(Φ𝐾 (𝑡, 𝑥)) is lower bounded as soon as F 𝛼

𝐾
(𝑥) > 0. More

precisely, we have:

Figure 10: 𝜆 ↦→ ax𝛼
𝜆
(𝐾) is continuous.

Lemma 9.3. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open set
𝐾𝑐 and 𝛼, 𝛿, 𝜆 > 0, 𝜇 ∈ (0, 1] such that 𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝜆 + 𝛿 . One has:

Φ𝐾

(
𝑇, ax𝛼

𝜆
(𝐾)

)
⊂ ax𝛼

𝜆+𝛿 (𝐾), (39)

with

𝑇 =
𝑅2max

𝛼𝜆𝜇2
𝛿,

where 𝑅max = 𝑅max (𝐾) < ∞ has been defined in (17). For any
𝑥 ∈ ax𝛼

𝜆
(𝐾), the path

[0,𝑇 ] ∋ 𝑡 → Φ𝐾 (𝑡, 𝑥) ∈ ax𝛼
𝜆
(𝐾),

has length 𝑆 upper bounded by

𝑆 ≤ 𝑅2max

𝛼𝜆𝜇2
𝛿,

where 𝜇 = 𝜇𝛼,𝛼
𝜇,𝜆+𝛿 (𝐾) > 0, and

ax𝛼
𝜆
(𝐾) ⊂

(
ax𝛼
𝜆+𝛿 (𝐾)

)⊕𝑆
. (40)

Proof. For 𝑟 ≥ 𝛼 the map 𝑡 ↦→ 𝑟−𝛼
𝑟 is increasing, this together

with (15), Lemma 8.4 and (28) yields

F 𝛼
𝐾
(Φ𝐾 (𝑡, 𝑥)) ≥

𝑅𝐾 (Φ𝐾 (𝑡, 𝑥)) − 𝛼
𝑅𝐾 (Φ𝐾 (𝑡, 𝑥))

F𝐾 (𝑥) . (41)
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Observe that, using (15) again,

𝑑

𝑑𝑡+
𝑅𝐾 (Φ𝐾 (𝑡, 𝑥)) − 𝛼
𝑅𝐾 (Φ𝐾 (𝑡, 𝑥))

=
𝛼

𝑅𝐾 (Φ𝐾 (𝑡, 𝑥))2
∇𝐾 (Φ𝐾 (𝑡, 𝑥))2 . (42)

Consider now𝑇 such thatΦ𝐾 (𝑇, 𝑥) ∉ ax𝛼
𝜆+𝛿 (𝐾), and thenF

𝛼
𝐾
(Φ𝐾 (𝑇, 𝑥)) <

𝜆 + 𝛿 . From (30) this gives:

∀𝑡 ∈ [0,𝑇 ], F 𝛼
𝐾
(Φ𝐾 (𝑡, 𝑥)) < 𝜆 + 𝛿.

Lemma 9.2 gives a lower bound on ∥∇𝐾 (Φ𝐾 (𝑡, 𝑥))∥, that is,
∥∇𝐾 (Φ𝐾 (𝑡, 𝑥))∥ ≥ 𝜇 = 𝜇

𝛼,𝛼

𝜇,𝜆+𝛿 (𝐾) > 0

and (42) then gives,

𝑡 ∈ [0,𝑇 ] ⇒ 𝑑

𝑑𝑡+
𝑅𝐾 (Φ𝐾 (𝑡, 𝑥)) − 𝛼
𝑅𝐾 (Φ𝐾 (𝑡, 𝑥))

>
𝛼𝜇2

𝑅2max

. (43)

This, thanks to Theorem 8.10, leads us to the following bound,

F 𝛼
𝐾
(Φ𝐾 (𝑇, 𝑥)) − F 𝛼

𝐾
(𝑥)

≥ F𝐾 (𝑥)
(
𝑅𝐾 (Φ𝐾 (𝑇, 𝑥)) − 𝛼
𝑅𝐾 (Φ𝐾 (𝑇, 𝑥))

− 𝑅𝐾 (𝑥) − 𝛼
𝑅𝐾 (𝑥)

)
(by (41))

= F𝐾 (𝑥)
∫ 𝑇

0

(
𝑑

𝑑𝑡+
𝑅𝐾 (Φ𝐾 (𝑡, 𝑥)) − 𝛼
𝑅𝐾 (Φ𝐾 (𝑡, 𝑥))

)
𝑑𝑡

> F𝐾 (𝑥)𝑇
𝛼𝜇2

𝑅2max

. (by (43))

(44)

Because 𝑥 ∈ ax𝛼
𝜆
(𝐾), F 𝛼

𝐾
(𝑥) ≥ 𝜆, and (34) we find that 𝑥 ∈ ax𝜆 (𝐾).

The fact that 𝑥 ∈ ax𝜆 (𝐾) in turn implies that F𝐾 (𝑥) ≥ 𝜆. This

then yields,

F 𝛼
𝐾
(Φ𝐾 (𝑇, 𝑥)) > 𝜆 +

𝜆𝛼𝜇2

𝑅2max

𝑇 .

We have shown that:

𝑥 ∈ ax𝛼
𝜆
(𝐾) and Φ𝐾 (𝑇, 𝑥) ∉ ax𝛼

𝜆+𝛿 (𝐾)

⇒ 𝜆 + 𝜆𝛼𝜇2

𝑅2max

𝑇 < 𝜆 + 𝛿 ⇒ 𝑇 <
𝛿𝑅2max

𝜆𝛼𝜇2
.

By contraposition we have:

𝑥 ∈ ax𝛼
𝜆
(𝐾) and𝑇 ≥ 𝛿𝑅2max

𝜆𝛼𝜇2
⇒ Φ𝐾 (𝑇, 𝑥) ∈ ax𝛼

𝜆+𝛿 (𝐾).

Since ∀𝑦, ∥∇𝐾 (𝑦)∥ ≤ 1, one has

𝑆 = length (Φ𝐾 ( [0,𝑇 ], 𝑥) =
∫ 𝑇

0
∥∇𝐾 (Φ𝐾 (𝑡, 𝑥)) ∥𝑑𝑡 ≤ 𝑇 ≤ 𝛿𝑅2max

𝜆𝛼𝜇2
.

Since the Euclidean distance between 𝑥 ∈ ax𝛼
𝜆
(𝐾) and Φ𝐾 (𝑇, 𝑥) ∈

ax𝛼
𝜆+𝛿 (𝐾) cannot be larger than the length of the path connecting

them we get (40).

□

Since for 𝛿 ≥ 0 one has ax𝛼
𝜆+𝛿 (𝐾) ⊂ ax𝛼

𝜆
(𝐾), (40) and the upper

bound (22) immediately give us:

Lemma 9.4. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open set
𝐾𝑐 and 𝛼, 𝜆max > 0, 𝜇 ∈ (0, 1] such that 𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝜆max. The
map

𝜆 ↦→ ax𝛼
𝜆
(𝐾)

is
(
𝑅2
max

𝛼𝜆min𝜇
2

)
-Lipschitz in the interval [𝜆min, 𝜆max] for Hausdorff

distance, where 𝑅max = 𝑅max (𝐾) < ∞ and 𝜇 = 𝜇𝛼,𝛼
𝜇,𝜆max

> 0.

9.3 The (𝜆, 𝛼)-medial axis is Hausdorff-stable
under 𝛼 perturbation

In this subsection we complete the proof of the stability of the (𝜆, 𝛼)-
medial axis under perturbations of 𝜆 and 𝛼 . It is not difficult to see

that ax𝛼+𝛿
𝜆

(𝐾) ⊂ ax𝛼
𝜆
(𝐾) for 𝛿 ≥ 0. We establish that ax𝛼

𝜆
(𝐾)

is not very far from ax𝛼+𝛿
𝜆

(𝐾) by proving that ax𝛼
𝜆
(𝐾) flows (fast

enough) into ax𝛼+𝛿
𝜆

(𝐾). This is done by determining that the radius

of the enclosing ball of the closest points on 𝐾 increases sufficiently

fast.

Lemma 9.5. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open set
𝐾𝑐 and 𝛼, 𝜆 > 0, 𝜇 ∈ (0, 1] if 𝑟𝛼min

𝜇 (𝐾) > 𝛼max + 𝜆. The map

𝛼 ↦→ ax𝛼
𝜆
(𝐾)

is
(
𝑅max

𝛼min𝜇
2

)
-Lipschitz in the interval [𝛼min, 𝛼max] for Hausdorff

distance, where 𝜇 = 𝜇𝛼max,𝛼min

𝜇,𝜆
> 0.

Proof. From (28) we conclude that,

𝛿 ≥ 0 ⇒ ∀𝑥 ∈
(
𝐾 ⊕𝛼+𝛿

)𝑐
, F 𝛼

𝐾
(𝑥) ≥ F 𝛼+𝛿

𝐾
(𝑥).

It follows that

𝛿 ≥ 0 ⇒ ax𝛼+𝛿
𝜆

(𝐾) ⊂ ax𝛼
𝜆
(𝐾). (45)

Let us assume that for some 𝜇 > 0 one has 𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝛿 + 𝜆 and
take 𝑥 ∈ ax𝛼

𝜆
(𝐾). Using Lemma 9.2, we see that

Φ𝐾 (𝑡, 𝑥) ∉ ax𝛼+𝛿
𝜆

(𝐾) ⇒ ∥∇𝐾 (Φ𝐾 (𝑡, 𝑥)) ∥ > 𝜇 > 0, (46)

where 𝜇 = 𝜇
𝛼+𝛿,𝛼
𝜇,𝜆

(𝐾) > 0.

It then follows from (15) that,

𝑅𝐾

(
Φ𝐾

(
𝑅max

𝛼𝜇2
𝛿, 𝑥

))
=

∫ 𝑅max
𝛼𝜇2

𝛿

0

𝑑

𝑑𝑡 ′+
𝑅𝐾 (Φ𝐾 (𝑡 ′, 𝑥))d𝑡 ′ + 𝑅𝐾 (𝑥)

=

∫ 𝑅max
𝛼𝜇2

𝛿

0



∇𝐾 (
Φ𝐾 (𝑡 ′, 𝑥)

)

2 d𝑡 ′ + 𝑅𝐾 (𝑥)
> 𝑅𝐾 (𝑥) +

𝑅max

𝛼
𝛿 (by (46))

≥ 𝑅𝐾 (𝑥)
𝛼 + 𝛿
𝛼

.

Using (28), we see

F 𝛼+𝛿
𝐾

(
Φ𝐾

(
𝑅max

𝛼𝜇2
𝛿, 𝑥

))
=

𝑅𝐾

(
Φ𝐾

(
𝑅max

𝛼𝜇2
𝛿, 𝑥

))
− (𝛼 + 𝛿)

𝑅𝐾

(
Φ𝐾

(
𝑅max

𝛼𝜇2
𝛿, 𝑥

)) F𝐾

(
Φ𝐾

(
𝑅max

𝛼𝜇2
𝛿, 𝑥

))
>
𝑅𝐾 (𝑥) 𝛼+𝛿𝛼 − (𝛼 + 𝛿)

𝑅𝐾 (𝑥) 𝛼+𝛿𝛼
F𝐾 (𝑥)

=
𝑅𝐾 (𝑥) − 𝛼
𝑅𝐾 (𝑥)

F𝐾 (𝑥)

= F 𝛼
𝐾
(𝑥) (by definition)

≥ 𝜆, (because 𝑥 ∈ ax𝛼
𝜆
)
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where in the second line we used that for 𝑟 ≥ 𝛼 + 𝛿 , the map

𝑟 ↦→ 𝑟−(𝛼+𝛿)
𝑟 is increasing, as well as the previous bound and

Lemma 8.4.

With this we have shown that

𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝛿 + 𝜆 ⇒ Φ𝐾

(
𝑅max

𝛼𝜇2
𝛿, ax𝛼

𝜆

)
⊂ ax𝛼+𝛿

𝜆
(𝐾). (47)

As for Lemma 9.4, this together with (31) and (45) completes the

proof of the lemma. □

9.4 The (𝜆, 𝛼)-medial axis has the right
homotopy type and a finite geodesic
diameter

In this section, we recover that the (𝜆, 𝛼)-medial axis preserves the

homotopy type, as for the usual medial axis [42]. We then prove

that there exists a path of finite length between any two points in

the (𝜆, 𝛼)-medial axis, that is it has a finite geodesic diameter. Both

results are again based on manipulations of the flow Φ𝐾 .
The next lemma gives an upper bound on the time needed for the

flow Φ𝐾 to map 𝐾𝑐 inside ax𝛼
𝜆
(𝐾). It is instrumental for character-

izing the homotopy type of ax𝛼
𝜆
(𝐾) (Theorem 9.7) and establishing

that it has finite geodesic diameter (Theorem 9.12).

Lemma 9.6. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open
set 𝐾𝑐 and 𝛼 ≥ 0, 𝜆 > 0, 𝜇 ∈ (0, 1] and 𝛼 ′ such that 0 < 𝛼 ′ ≤ 𝛼

and 𝑟𝛼
′
𝜇 (𝐾) > 𝛼 + 𝜆. Then, Φ𝐾

(
𝑅max

𝜇2
,

(
𝐾 ⊕𝛼′

)𝑐 )
⊂ ax𝛼

𝜆
(𝐾), where

𝑅max = 𝑅max (𝐾) < ∞ and 𝜇 = 𝜇𝛼,𝛼
′

𝜇,𝜆
> 0.

Proof. Consider 𝑥 ∈
(
𝐾 ⊕𝛼′

)𝑐
. Using (31) and Lemma 9.2 again,

one finds,

Φ𝐾 (𝑇, 𝑥) ∉ ax𝛼
𝜆
⇒ ∀𝑡 ∈ [0,𝑇 ], ∥∇𝐾 (Φ𝐾 (𝑡, 𝑥)) ∥ > 𝜇.

Applying (15) as before yields,

Φ𝐾 (𝑇, 𝑥) ∉ ax𝛼
𝜆
(𝐾)

⇒ 𝑅𝐾 (Φ𝐾 (𝑇, 𝑥)) =
∫ 𝑇

0

𝑑

𝑑𝑡+
𝑅𝐾 (Φ𝐾 (𝑡, 𝑥))d𝑡 + 𝑅𝐾 (Φ𝐾 (0, 𝑥)) > 𝑇 𝜇2 .

Since 𝑅𝐾 (Φ𝐾 (𝑇, 𝑥)) ≤ 𝑅max one gets,

Φ𝐾 (𝑇, 𝑥) ∉ ax𝛼
𝜆
(𝐾) ⇒ 𝑇 𝜇2 < 𝑅max ⇒ 𝑇 <

𝑅max

𝜇2
.

The contraposition gives,

Φ𝐾

(
𝑅max

𝜇2
, 𝑥

)
∈ ax𝛼

𝜆
(𝐾).

□

We now define the map

𝐻 : [0, 1] ×
(
𝐾 ⊕𝛼′ )𝑐

→
(
𝐾 ⊕𝛼′ )𝑐

(𝑡, 𝑥) ↦→ Φ𝐾

(
𝑅max

𝜇2
𝑡, 𝑥

)
= 𝐻 (𝑡, 𝑥) .

Lemma 9.6, (31), and the natural inclusion ax𝛼
𝜆
(𝐾) ⊂

(
𝐾 ⊕𝛼′

)𝑐
together imply that 𝐻 gives a homotopy equivalence between(
𝐾 ⊕𝛼′

)𝑐
and ax𝛼

𝜆
(𝐾), as it satisfies Definition 8.1. Since, by (19),

𝑟 < wfs(𝐾) ⇒ ∃𝜇 > 0, such that 𝑟𝛼𝜇 (𝐾) ≥ 𝑟,

one sees that:

Theorem 9.7. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open
set𝐾𝑐 , 𝛼 ≥ 0, 𝜆 > 0 and 𝛼 ′ such that 0 < 𝛼 ′ ≤ 𝛼 and 𝑟𝛼

′
𝜇 (𝐾) > 𝛼 +𝜆

then ax𝛼
𝜆
(𝐾) has the same homotopy type as

(
𝐾 ⊕𝛼′

)𝑐
.

Pushing a path 𝛾 along the flow Φ, while keeping its endpoints

fixed, will be instrumental in several subsequent proofs. We intro-

duce therefore a specific notation for such pushed paths.

Definition 9.8 (Pushed paths). Let 𝐾 ⊂ R𝑛 be a closed set, 𝛾 :
[0, 1] → 𝐾𝑐 a rectifiable path and 𝑇 ≥ 0. The path 𝛾 pushed along

a time 𝑇 by the flow Φ𝐾 with fixed end points, denoted 𝛾 [𝑇 ]𝐾 is

the path 𝛾 [𝑇 ]𝐾 : [0, 1] → 𝐾𝑐 from 𝛾 (0) to 𝛾 (1) defined by:

𝛾 [𝑇 ]𝐾 (𝑡) =


Φ𝐾 (3𝑡𝑇 ,𝛾 (0)) if 𝑡 ∈ [0, 1/3]
Φ𝐾 (𝑇,𝛾 (3𝑡 − 1)) if 𝑡 ∈ [1/3, 2/3]
Φ𝐾 ((3(1 − 𝑡)𝑇,𝛾 (1)) if 𝑡 ∈ [2/3, 1] .

The next simple lemma says that 𝛾 [𝑇 ]𝐾 (𝑡) is rectifiable and

allows to upper bound path lengths in several subsequent proofs

(Theorems 9.12 and 11.1, Lemmas 9.14 and 9.15 ).

Lemma 9.9. Let𝐾 ⊂ R𝑛 be a closed set and 𝛼 > 0. Let𝛾 : [0, 1] →(
𝐾 ⊕𝛼 )𝑐 be a rectifiable path with length 𝐿(𝛾) and 𝑇 ≥ 0. 𝛾 [𝑇 ]𝐾 is

rectifiable and has length 𝐿
(
𝛾 [𝑇 ]𝐾

)
upper bounded by:

𝐿

(
𝛾 [𝑇 ]𝐾

)
≤ 2𝑇 + 𝐿(𝛾)𝑒

𝑇
𝛼 .

Proof. Since the norm of ∇𝐾 (𝑥) is upper bounded by 1, 𝛾 [𝑇 ]𝐾
is 3-Lipschitz on the first and third intervals [0, 1/3] and [2/3, 1]
so that the length of each of these parts is upper bounded by 𝑇 .

Because im(𝛾) is included in
(
𝐾 ⊕𝛼 )𝑐

, the length of𝛾 [𝑇 ]𝐾 ( [1/3, 2/3])
is bounded by

𝐿(𝛾)𝑒
𝑇
𝛼 .

This follows, because (16) can be applied to arbitrary small sub-

divisions of 𝛾 , the bound on the expansion factor extends to the

length of the curve through the definition of the length of rectifiable

curves. □

The next theorem shows that connected components of (𝜆, 𝛼)-
medial axes have finite geodesic diameter. In particular, geodesic

distances inside connected components of (𝜆, 𝛼)-medial axes are

finite, and are realized by minimal paths.

Before we can go into the precise statement we need to introduce

some notation. For a Borel set 𝑋 ⊂ R𝑛 we denote by Vol(𝑋 ) its
𝑛-Lebesgue measure, or volume. We write 𝑉𝑛 = Vol(B𝑛 (0, 1)) for
the volume of the unit 𝑛-ball, 𝑉𝑛 = 𝜋

𝑛
2

Γ( 𝑛2 +1)
, where Γ is the Euler

Gamma function, see for example [25, page 622].

Remark 9.10. Thanks to Theorem 9.7, connected components

of ax𝛼
𝜆
(𝐾) are in one to one correspondance with connected com-

ponents of

(
𝐾 ⊕𝛼 )𝑐

. For this reason, the next statements related

to geodesic diameters and Gromov-Hausdorff distance assumes(
𝐾 ⊕𝛼 )𝑐

connected without real loss of generality.

While any connected open subset of R𝑛 is path-wise connected

[49, Proposition 12.25], some connected open bounded subset may
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not have a finite geodesic diameter. We’ll illustrate this in the fol-

lowing example. Let

𝑆 =

{
(𝑥,𝑦) ∈ R2

�� 0 < 𝑥 < 1, −1

2
+ sin

1

𝑥
< 𝑦 <

1

2
+ sin

1

𝑥

}
Observe that 𝑆 is indeed a connected, bounded, open subset of R2

with infinite geodesic diameter. Moreover, for some 𝛼 > 1, taking

𝐾 =

{
(𝑥,𝑦, 𝑧) ∈ R3

�� (𝑥,𝑦) ∉ 𝑆 and 𝑑
(
(𝑥,𝑦, 𝑧), 𝑆 × {0}

)
≥ 𝛼

}
,

we get that the open bounded set

(
𝐾 ⊕𝛼 )𝑐

deform retracts by verti-

cal projection on 𝑆 × {0} along trajectories of small length ℎ < 1.
Thanks to this vertical deformation retract we have that𝑑𝐺𝐻 (

(
𝐾 ⊕𝛼 )𝑐 , 𝑆) ≤

2ℎ. More precisely the argument goes as follows: We have that(
𝐾 ⊕𝛼 )𝑐 = {

(𝑥,𝑦, 𝑧)
��(𝑥,𝑦) ∈ 𝑆 and |𝑧 | < ℎ̄(𝑥,𝑦)

}
,

with ℎ̄(𝑥,𝑦) ≤ ℎ ≤ 1. It follows by concatenating a geodesic 𝑆 with

vertical line segments, that

𝑑 ((𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2)) ≤ 𝑑 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) + 2ℎ.

Here we wrote (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2) for elements of

(
𝐾 ⊕𝛼 )𝑐

and

(𝑥1, 𝑦1), (𝑥2, 𝑦2) for the elements of 𝑆 with the same first two coordi-

nates. Conversely,𝑑 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ≤ 𝑑 ((𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2))
because for any rectifiable curve𝛾 (𝑡) ⊂ R3 wehave𝐿(𝜋R2 (𝛾 (𝑡))) ≤
𝐿(𝛾 (𝑡)), where 𝜋R2 denotes the projection onto R2. It follows from
the bound 𝑑𝐺𝐻 (

(
𝐾 ⊕𝛼 )𝑐 , 𝑆) ≤ 2ℎ that

(
𝐾 ⊕𝛼 )𝑐

also has infinite geo-

desic diameter. So to be the complement of an offset does not imply

finite geodesic diameter either.

However, we have the following:

Lemma 9.11. Let 𝐾 ⊂ R𝑛 be the complement of a bounded, open
set𝐾𝑐 . Assume there are 𝜇 > 0 and 𝛼 > 𝛼 ′ > 0 such that 𝑟𝛼

′
𝜇 (𝐾) > 𝛼 .

Then, if
(
𝐾 ⊕𝛼 )𝑐 is connected it has finite geodesic diameter. In

particular, if for some 𝑧 ∈ R𝑛 and 𝑅bound > 0, one has 𝐾𝑐 ⊂
B(𝑧, 𝑅bound), then:

GeoDiameter
( (
𝐾 ⊕𝛼 )𝑐 ) ≤2𝛼 − 𝛼 ′

𝜇

+ 2

((
4𝑅bound
𝛼 − 𝛼 ′

)𝑛
+ 1

)
(𝛼 − 𝛼 ′)𝑒

𝛼−𝛼′
𝛼𝜇 .

This diameter is bounded by constructing a very dense graph

inside the set

(
𝐾 ⊕𝛼′

)𝑐
and bounding the distance between any two

points in the graph. The result then follows by pushing this path

inside

(
𝐾 ⊕𝛼 )𝑐

.

of Lemma 9.11. Since

(
𝐾 ⊕𝛼 )𝑐

is compact, we can cover it by a

finite number of open balls

(
B◦ (𝑦𝑖 , 𝛼−𝛼

′
2 )

)
𝑖∈𝐼0

, where 𝐼0 is a finite

set and 𝑦𝑖 ∈
(
𝐾 ⊕𝛼 )𝑐

. It is possible to extract an 𝜀-net {𝑦𝑖 , 𝑖 ∈ 𝐼 }
from {𝑦𝑖 , 𝑖 ∈ 𝐼0}, that is 𝐼 ⊂ 𝐼0 and(

𝐾 ⊕𝛼 )𝑐 ⊂
⋃
𝑖∈𝐼
B◦

(
𝑦𝑖 , 𝛼 − 𝛼 ′

)
⊂

(
𝐾 ⊕𝛼′ )𝑐

, (48)

with

𝑖, 𝑗 ∈ 𝐼 and 𝑖 ≠ 𝑗 ⇒ B
(
𝑦𝑖 ,

𝛼 − 𝛼 ′
4

)
∩ B

(
𝑦𝑖 ,

𝛼 − 𝛼 ′
4

)
= ∅. (49)

Let us denote the cardinality of 𝐼 by 𝑁 . Since by (49) the balls

B
(
𝑦𝑖 ,

𝛼−𝛼′
4

)
are disjoint and∪𝑖∈𝐼 B

(
𝑦𝑖 ,

𝛼−𝛼′
4

)
⊂ 𝐾𝑐 ⊂ B(𝑧, 𝑅bound)

one has

𝑁 ≤ Vol(B(𝑧, 𝑅bound))

Vol
(
B

(
0, 𝛼−𝛼

′
4

)) ≤
(
4𝑅bound
𝛼 − 𝛼 ′

)𝑛
. (50)

Let𝐺 be the graph with one vertex for each 𝑦𝑖 ∈ {1, . . . , 𝑁 } and
one edge for each pair (𝑖, 𝑗) such thatB◦ (𝑦𝑖 , 𝛼−𝛼 ′)∩B◦ (𝑦 𝑗 , 𝛼−𝛼 ′) ≠
∅. This graph is connected as otherwise, from (48),

(
𝐾 ⊕𝛼 )𝑐

would

be the disjoint union of two non-empty disjoint open sets, which

would contradict its connectedness.

Consider 𝑥, 𝑥 ′ ∈
(
𝐾 ⊕𝛼 )𝑐

and let 𝑘, 𝑘 ′ be such that 𝑥 ∈ B◦ (𝑦𝑘 , 𝛼−
𝛼 ′) and 𝑥 ′ ∈ B◦ (𝑦𝑘′, 𝛼 − 𝛼 ′). We define a piecewise linear path P
from 𝑥 to 𝑥 ′ as follows. First let 𝑦𝑘 = 𝑦𝑖0 . . . 𝑦𝑖𝑀 = 𝑦𝑘′ a shortest

path between 𝑦𝑘 and 𝑦𝑘′ in the graph𝐺 . We define the piecewise

linear path P in

(
𝐾 ⊕𝛼′

)𝑐
as the concatenation of the segments

[𝑥𝑦𝑖0 ], [𝑦𝑖0𝑦𝑖1 ], . . . , [𝑦𝑖𝑀−1𝑦𝑖𝑀 ], [𝑦𝑖𝑀 , 𝑥 ′] .

The length of 𝑃 is then lower bounded: 𝐿(P) ≤ 2(𝑁 +1) (𝛼−𝛼 ′). By
definition of 𝑟𝛼

′
𝜇 (𝐾), since 𝑟𝛼′

𝜇 (𝐾) > 𝛼 we have that ∥∇𝐾 (𝑥)∥ ≥ 𝜇

for 𝑥 ∈
(
𝐾 ⊕𝛼′

)𝑐
\

(
𝐾 ⊕𝛼 )𝑐

, so that 𝑃

[
𝛼−𝛼′
𝜇

]
𝐾 ⊂

(
𝐾 ⊕𝛼 )𝑐

. Applying

Lemma 9.9 we get:

𝐿

(
𝑃

[
𝛼−𝛼′
𝜇

]
𝐾

)
≤ 2

𝛼 − 𝛼 ′
𝜇

+ 𝐿(𝑃)𝑒
𝛼−𝛼′
𝛼𝜇 .

□

Theorem 9.12. Let𝐾 ⊂ R𝑛 be the complement of a bounded, open
set 𝐾𝑐 and 𝛼, 𝜆 > 0 such that 𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝜆 and assume

(
𝐾 ⊕𝛼 )𝑐 to

be connected with finite geodesic diameter:

GeoDiameter
( (
𝐾 ⊕𝛼 )𝑐 ) < ∞.

Then ax𝛼
𝜆
(𝐾) is a geodesic space with finite geodesic diameter given

by (51) below. More precisely, if 𝑥, 𝑥 ′ ∈ ax𝛼
𝜆
(𝐾), then there exists a

path 𝛾 : [0, 1] → ax𝛼
𝜆
(𝐾) of minimal length such that 𝛾 (0) = 𝑥 and

𝛾 (1) = 𝑥 ′. This path satisfies,

length(𝛾) ≤ GeoDiameter(ax𝛼
𝜆
(𝐾))

≤ 2
𝑅max

𝜇2
+GeoDiameter

( (
𝐾 ⊕𝛼 )𝑐 ) 𝑒 𝑅max

𝛼𝜇2 , (51)

where 𝑅max = 𝑅max (𝐾), 𝜇 = 𝜇
𝛼, 𝛼

2

𝜇,𝜆
. The length length(𝛾) is the

geodesic distance between 𝑥 and 𝑥 ′ in ax𝛼
𝜆
(𝐾).

The proof follows by pushing paths into the medial axis, using

Lemma 9.9.

Proof. Consider 𝑥, 𝑥 ′ ∈ ax𝛼
𝜆
(𝐾) ⊂

(
𝐾 ⊕𝛼 )𝑐

and Γ a path in(
𝐾 ⊕𝛼 )𝑐

from 𝑥 to 𝑥 ′ with length upper bounded by

GeoDiameter
( (
𝐾 ⊕𝛼 )𝑐 )

.

As in Lemma 9.3 we set 𝜇 = 𝜇
𝛼,𝛼

𝜇,𝜆
. Using Definition 9.8 we con-

sider now the path Γ

[
𝑅max
𝜇2

]
𝐾 with end points 𝑥 and 𝑥 ′. Because Γ
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is included in

(
𝐾 ⊕𝛼 )𝑐

, Lemma 9.9 gives:

𝐿

(
Γ

[
𝑅max
𝜇2

]
𝐾

)
≤ 2

𝑅max

𝜇2
+ 𝐿(Γ)𝑒

𝑅max
𝛼𝜇2

(52)

Due to (31), Γ

[
𝑅max
𝜇2

]
𝐾 ( [0, 1/3]) and Γ

[
𝑅max
𝜇2

]
𝐾 ( [2/3, 1]) are in-

side ax𝛼
𝜆
(𝐾). As a consequence of Lemma 9.6, Γ

[
𝑅max
𝜇2

]
𝐾 ( [1/3, 2/3])

also lies in ax𝛼
𝜆
(𝐾).

This upper bound (52) on the length is independent of 𝑥, 𝑥 ′ ∈
ax𝛼
𝜆
(𝐾) and it therefore gives an upper bound on the geodesic

diameter of ax𝛼
𝜆
(𝐾).

It is known that if a finite length path exists between two points

in a compact subset of Euclidean space, then there exists a path of

minimal length, see the second paragraph of Part III, Section 1: Die
Existenz geodätischer Bogen in metrischen Räumen, in [45]. □

As a consequence of Lemma 9.11 and Theorem 9.12 we get:

Corollary 9.13. Let 𝐾 ⊂ R𝑛 be the complement of a bounded,
open set 𝐾𝑐 , 𝛼 > 𝛼 ′ > 0 and 𝜆 > 0 such that 𝑟𝛼

′
𝜇 (𝐾) > 𝛼 + 𝜆 and

assume
(
𝐾 ⊕𝛼 )𝑐 to be connected.

Then ax𝛼
𝜆
(𝐾) is a geodesic space with finite geodesic diameter.

9.5 The (𝜆, 𝛼)-medial axis is
Gromov-Hausdorff-stable under 𝜆
perturbation

Thanks to Theorem 9.12, ax𝛼
𝜆
(𝐾) is a geodesic space with finite

length inside connected components. Equipped with this geodesic

distance ax𝛼
𝜆
(𝐾) is a metric space which is stable under 𝜆 pertur-

bation in the following sense:

Lemma 9.14. Let 𝐾 ⊂ R𝑛 be the complement of a bounded, open
set 𝐾𝑐 and 𝛼, 𝛿, 𝜆 > 0, 𝜇 ∈ (0, 1] such that, for some 𝛼 ′ < 𝛼 one has
𝑟𝛼

′
𝜇 (𝐾) > 𝛼 + 𝜆 + 𝛿 and

(
𝐾 ⊕𝛼 )𝑐 is connected.

Then, the map 𝜆 ↦→ ax𝛼
𝜆
(𝐾) is locally Lipschitz for the Gromov-

Hausdorff distance with respect to the intrinsic metric.
More precisely, one has

𝑑GH (ax𝛼𝜆+𝛿 (𝐾), ax
𝛼
𝜆
(𝐾)) ≤ 2𝑇 + 𝐷

(
𝑒
𝑇
𝛼 − 1

)
= 𝑂 (𝛿) ,

with

𝑇 =
𝑅2max

𝛼𝜆𝜇2
𝛿.

and 𝐷 < ∞ is the geodesic diameter of ax𝛼
𝜆
(𝐾).

The core of the proof consists of pushing the geodesics in ax𝛼
𝜆

into ax𝛼
𝜆+𝛿 , which is again achieved by the flow. The other proper-

ties we need to verify to establish a bound on the Gromov-Hausdorff

distance are relatively straightforward.

Proof. The value of the geodesic diameter 𝐷 is given by Theo-

rem 9.12. In order to upper bound the Gromov-Hausdorff distance

between ax𝛼
𝜆+𝛿 (𝐾) and ax𝛼

𝜆
(𝐾) we use Definition 8.7.

Consider the relation R ⊂ ax𝛼
𝜆
(𝐾) × ax𝛼

𝜆+𝛿 (𝐾) defined by:

R =
{
(𝑥1, 𝑥2) ∈ ax𝛼

𝜆
(𝐾) × ax𝛼

𝜆+𝛿 (𝐾), ∃𝑡 ∈ [0,𝑇 ], 𝑥2 = Φ𝐾 (𝑡, 𝑥1)
}
,

where 𝑇 =
𝑅2
max

𝛼𝜆𝜇2
𝛿 .

We have to check the two conditions of Definition 8.7. Recall

that, by Lemma 9.3, one has

Φ𝐾

(
𝑇, ax𝛼

𝜆
(𝐾)

)
⊂ ax𝛼

𝜆+𝛿 (𝐾) ⊂ ax𝛼
𝜆
(𝐾).

Condition (1): R is surjective. This condition follows because,

if 𝑥1 ∈ ax𝛼
𝜆
(𝐾) then Φ𝐾 (𝑇, 𝑥1) ∈ ax𝛼

𝜆+𝛿 (𝐾), thanks to Lemma

9.3. This is in turn equivalent to (𝑥1,Φ𝐾 (𝑇, 𝑥1)) ∈ R. Conversely,
if 𝑥2 ∈ ax𝛼

𝜆+𝛿 (𝐾), then 𝑥2 ∈ ax𝛼
𝜆
(𝐾) and (𝑥2, 𝑥2) ∈ R since

Φ𝐾 (0, 𝑥2) = 𝑥2.

Condition (2): The bound on the distance distortion. Consider
(𝑥1, 𝑥2), (𝑥 ′1, 𝑥

′
2) ∈ R, with 𝑥2 = Φ𝐾 (𝑡, 𝑥1) and 𝑥 ′2 = Φ𝐾 (𝑡 ′, 𝑥 ′1)

with 𝑡, 𝑡 ′ ∈ [0,𝑇 ]. Denote by 𝑑1 and 𝑑2 the respective intrinsic

distances in ax𝛼
𝜆
(𝐾) and ax𝛼

𝜆+𝛿 (𝐾). By Theorem 9.7, since

(
𝐾 ⊕𝛼 )𝑐

is connected (which is equivalent to be path-wise connected for an

open set), ax𝛼
𝜆
(𝐾) is path-wise connected and 𝑥1 and 𝑥 ′1 are in the

same connected component of ax𝛼
𝜆
(𝐾). Thanks to Theorem 9.12,

𝑑1 (𝑥1, 𝑥 ′1) < ∞ and there is a path 𝛾1 : [0, 1] → ax𝛼
𝜆
(𝐾) such

that 𝑑1 (𝑥1, 𝑥 ′1) = 𝐿(𝛾1). Thanks to Lemma 9.9, the path 𝛾1
[𝑇 ]𝐾 has

length upper bounded by 2𝑇 + 𝐿(𝛾1)𝑒
𝑇
𝛼 .

ByDefinition 9.8, one has𝛾1
[𝑇 ]𝐾

(
𝑡
3𝑇

)
= 𝑥2 and𝛾1

[𝑇 ]𝐾
(
1 − 𝑡 ′

3𝑇

)
=

𝑥 ′2. Moreover, (30) and (39) yields

𝛾1
[𝑇 ]𝐾

( [
𝑡

3𝑇
, 1 − 𝑡 ′

3𝑇

] )
⊂ ax𝛼

𝜆
(𝐾),

so that𝛾1
[𝑇 ]𝐾

( [
𝑡
3𝑇 , 1 −

𝑡 ′
3𝑇

] )
is a path from𝑥2 to𝑥

′
2 inside ax

𝛼
𝜆+𝛿 (𝐾)

and its length is therefore lower bounded by 𝑑2 (𝑥2, 𝑥 ′2). It follows
that

𝑑2 (𝑥2, 𝑥 ′2) ≤ 𝐿

(
𝛾1

[𝑇 ]𝐾
( [

𝑡

3𝑇
, 1 − 𝑡 ′

3𝑇

] ))
≤ 𝐿

(
𝛾1

[𝑇 ]𝐾
)
≤ 2𝑇 + 𝑑1 (𝑥1, 𝑥 ′1)𝑒

𝑇
𝛼 ,

so that

𝑑2 (𝑥2, 𝑥 ′2)−𝑑1 (𝑥1, 𝑥
′
1) ≤ 2𝑇+𝑑1 (𝑥1, 𝑥 ′1)

(
𝑒
𝑇
𝛼 − 1

)
≤ 2𝑇+𝐷

(
𝑒
𝑇
𝛼 − 1

)
.

(53)

Since ax𝛼
𝜆+𝛿 (𝐾) is connected, there is a path𝛾2 : [0, 1] → ax𝛼

𝜆+𝛿 (𝐾)
such that 𝑑2 (𝑥2, 𝑥 ′2) = 𝐿(𝛾2).

Consider now the path Γ : [0, 1] → ax𝛼
𝜆
(𝐾) defined as:

Γ(𝑢) =


Φ𝐾 (3𝑢𝑡, 𝑥1) if 𝑢 ∈ [0, 1/3]
𝛾2 (3𝑢 − 1)) if 𝑢 ∈ [1/3, 2/3]
Φ𝐾 ((3(1 − 𝑢)𝑡 ′, 𝑥 ′1) if 𝑢 ∈ [2/3, 1] .

Here we used that ax𝛼
𝜆+𝛿 (𝐾) ⊂ ax𝛼

𝜆
for 𝑢 ∈ [1/3, 2/3]. By (30) Γ

is a path from 𝑥1 to 𝑥 ′1 inside ax𝛼
𝜆
(𝐾) so that

𝑑1 (𝑥1, 𝑥 ′1) ≤ 𝐿 (Γ) ≤ 2𝑇 + 𝐿 (𝛾2) = 2𝑇 + 𝑑2 (𝑥2, 𝑥 ′2)

and with (53) we get as required��𝑑2 (𝑥2, 𝑥 ′2) − 𝑑1 (𝑥1, 𝑥 ′1)�� ≤ 2𝑇 + 𝐷
(
𝑒
𝑇
𝛼 − 1

)
.

Note that by Corollary 9.13 (using the assumption 𝑟𝛼
′
𝜇 (𝐾) > 𝛼+𝜆+𝛿)

the geodesic diameter 𝐷 of ax𝛼
𝜆
(𝐾) is finite. □
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9.6 The (𝜆, 𝛼)-medial axis is
Gromov-Hausdorff-stable under 𝛼
perturbation

Using almost identical arguments as in the previous section we also

get the Gromov-Hausdorff stability with respect the offset 𝛼 .

Lemma 9.15. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open
set 𝐾𝑐 and 𝛼, 𝛿, 𝜆 > 0, 𝜇 ∈ (0, 1] such that, for some 𝛼 ′ < 𝛼 one has
𝑟𝛼

′
𝜇 (𝐾) > 𝛼 + 𝜆 + 𝛿 and

(
𝐾 ⊕𝛼 )𝑐 is connected. Then, the map

𝛼 ↦→ ax𝛼
𝜆
(𝐾)

is locally Lipschitz for the Gromov-Hausdorff distance with respect
to the intrinsic metric.

More precisely, one has

𝑑GH (ax𝛼+𝛿𝜆
(𝐾), ax𝛼

𝜆
(𝐾)) ≤ 2𝑇 + 𝐷

(
𝑒
𝑇
𝛼 − 1

)
= 𝑂 (𝛿) ,

with

𝑇 =
𝑅max

𝛼𝜇2
𝛿,

and 𝐷 < ∞ is the geodesic diameter of ax𝛼
𝜆
(𝐾).

Proof. This is similar to Section 9.5 using (47) instead of (39).

□

10 HAUSDORFF STABILITY OF THE
(𝜆, 𝛼)-MEDIAL AXIS UNDER HAUSDORFF
PERTURBATION OF 𝐾

In this section, we prove one of the main stability theorems of

this paper, namely stability in the Hausdorff sense of the (𝜆, 𝛼)-
medial axis under Hausdorff perturbations of 𝐾 . This requires some

further results on the flow that are proven in the first subsections,

while the main result is proven in the final subsection. As in the

previous sectionwe use the flow to establish ourmain result, namely

the Hausdorff stability. Intuitively this may seem straightforward,

because near the medial axis the flow we follow points towards

the medial axis. However, establishing that the flow is fast enough

requires a number of technical estimates. Firstly we need that the

distance to the closest points (𝑅𝐾 ) increases sufficiently fast as we

follow the flow. This is proven in Section 10.1. Based on this result

we can prove that

• Points close to ax𝛼
𝜆
(𝐾) flow inside it after a short amount of

time (Section 10.2).

• If you perturb 𝐾 into 𝐾 ′
(near in Hausdorff distance) then

ax𝛼
𝜆
(𝐾 ′) flows into ax𝛼

𝜆−𝛿 (𝐾) after a short amount of time

(Section 10.3).

The bound on the Hausdorff distance is finally established based

on this and Lemma 9.3.

10.1 A lower bound on 𝑅𝐾 along the flow
trajectories

The technical result that underpins the lemma in this section is the

Volterra integral inequality, as discussed in Section 8.7.

Lemma 10.1. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open
set 𝐾𝑐 , 𝛼 ≥ 0 and 𝜆 > 0. Consider 𝑦 ∈

(
𝐾 ⊕𝛼 )𝑐 \ ax𝛼

𝜆
(𝐾) and denote

by 𝑠 ↦→ 𝑦 (𝑠) the trajectory of 𝑡 ↦→ Φ𝐾 (𝑡, 𝑦), parametrized by arc

length. We stress that 𝑦 (0) = 𝑦. Assume that 𝑅𝐾 (𝑦) −𝛼 > 𝜆 and that
for some 𝑆 > 0 one has

𝑦 (𝑆) ∉ ax𝛼
𝜆
(𝐾),

then

(𝑅𝐾 (𝑦 (𝑆)) − 𝛼)2 ≥ (𝑆0 + 𝑆)2 + 𝜆2,

where 𝑆0 > 0 is defined as

𝑆20 = (𝑅𝐾 (𝑦) − 𝛼)2 − 𝜆2 .

Proof. We define the map 𝑅0 : [0, 𝑆] → R as

𝑅0 (𝑠) =
√︃
(𝑆0 + 𝑠)2 + 𝜆2+𝛼.

We need to prove that 𝑅𝐾 (𝑦 (𝑠)) ≥ 𝑅0 (𝑠), which we’ll do by means

of Theorem 8.12. By definition of 𝑆0, one has 𝑅0 (0) = 𝑅𝐾 (𝑦). For
𝑠 ∈ [0, 𝑆] we get

𝑑

𝑑𝑠
(𝑅0 (𝑠) − 𝛼)2 = 2(𝑆0 + 𝑠).

It follows that

𝑑

𝑑𝑠
𝑅0 (𝑠) =

(𝑆0 + 𝑠)
𝑅0 (𝑠) − 𝛼

=

√︁
(𝑅0 (𝑠) − 𝛼)2 − 𝜆2
𝑅0 (𝑠) − 𝛼

=

√︄
1 −

(
𝜆

𝑅0 (𝑠) − 𝛼

)2
and thus we have the Volterra integral inequality,

𝑅0 (𝑠) = 𝑅0 (0) +
∫ 𝑠

0
𝑘 (𝑅0 (𝜏))d𝜏,

where the kernel 𝑘 is

𝑘 (𝑥) =

√︄
1 −

(
𝜆

𝑥 − 𝛼

)2
.

Combining (13), and (15) gives

𝑑

𝑑𝑠+
𝑅𝐾 (𝑦 (𝑠)) = ∥∇𝐾 (𝑦 (𝑠))∥

=

√︄
1 −

(
F 𝛼 (𝑦 (𝑠))

𝑅𝐾 (𝑦 (𝑠)) − 𝛼

)2
,

see also [20, Equation (5)]. Because 𝑅𝐾 (𝑦 (𝑠)) is Lipschitz, Theo-
rem 8.10 yields that

𝑅𝐾 (𝑦 (𝑠)) = 𝑅𝐾 (𝑦) +
∫ 𝑠

0

√︄
1 −

(
F 𝛼 (𝑦 (𝜏))

𝑅𝐾 (𝑦 (𝜏)) − 𝛼

)2
d𝜏

= 𝑅0 (0) +
∫ 𝑠

0

√︄
1 −

(
F 𝛼 (𝑦 (𝜏))

𝑅𝐾 (𝑦 (𝜏)) − 𝛼

)2
d𝜏 .

By assumption𝑦 (𝑆) ∉ ax𝛼
𝜆
, so (30) implies that 𝑠 ≤ 𝑆 ⇒ F 𝛼 (𝑦 (𝑠)) <

𝜆. Moreover, for sufficiently small 0 < 𝛿 ′ ≤ 𝑆 we can assume that
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F 𝛼 (𝑦 (𝑠)) ≤ 𝜆′ < 𝜆, for 𝑠 ∈ [0, 𝛿], by Lemma 8.4. This means that

𝑅𝐾 (𝑦 (𝑠)) satisfies the following integral inequality of Volterra type,

𝑅𝐾 (𝑦 (𝑠)) ≥ 𝑅0 (0) +
∫ 𝑠

0

√︄
1 −

(
𝜆

𝑅𝐾 (𝑦 (𝜏)) − 𝛼

)2
d𝜏

= 𝑅0 (0) +
∫ 𝑠

0
𝑘 (𝑅𝐾 (𝑦 (𝜏)))d𝜏,

where the equality occurs only when 𝑠 = 0. We note that, because

𝑅𝐾 (𝑦) − 𝛼 > 𝜆 > 0 and 𝑅𝐾 (𝑦) is monotone,

𝑑

𝑑𝑥
𝑘 (𝑥) = 𝜆2

(𝑥 − 𝛼)3
√︃
1 − 𝜆2

(𝑥−𝛼)2
≥ 0

on the domain and thus the kernel is monotone. Because 𝑅𝐾 (𝑦 (𝑠))
is 1-Lipschitz in 𝑠 and we can assume that there is some 𝛿 ′ ≤ 𝛿

such that for all 𝑠 ∈ (0, 𝛿 ′), we have 𝑅𝐾 (𝑦 (𝑠)) > 𝑅0 (𝑠). In fact 𝛿 ′ is
determined by the condition√︄

1 −
(

𝜆′

𝑅0 (0) − 𝛿 ′ − 𝛼

)2
≥

√︄
1 −

(
𝜆

𝑅0 (0) + 𝛿 ′ − 𝛼

)2
𝜆′

𝑅0 (0) − 𝛿 ′ − 𝛼
≤ 𝜆

𝑅0 (0) + 𝛿 ′ − 𝛼
.

The result is now a direct consequence of the application of Theo-

rem 8.12. □

10.2 Points close to ax𝛼
𝜆
(𝐾) flow inside it after a

short time
Lemma 10.2. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open

set 𝐾𝑐 and 𝛼 > 0, 𝜇 > 0 and 𝜆 > 0, such that 𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝜆. Then,
if 𝛿 < 𝜆 and 𝜖 < min

(
2𝛼,

(2𝜆−𝛿)𝛿
8𝑅max

)
one has

Φ𝐾

(
8𝑅2max

(2𝜆 − 𝛿) 𝛿𝜇 𝜖 , ax
𝛼
𝜆
(𝐾)⊕𝜖

)
⊂ ax𝛼

𝜆−𝛿 (𝐾),

where 𝑅max = 𝑅max (𝐾) < ∞ and 𝜇 = 𝜇
𝛼,𝛼

𝜇,𝜆
> 0. Moreover, for

𝑦 ∈ ax𝛼
𝜆
(𝐾)⊕𝜖 , the length of the trajectory Φ𝐾

( [
0,

8𝑅2
max

(2𝜆−𝛿)𝛿𝜇 𝜖
]
, 𝑦

)
is upper bounded by

8𝑅2max

(2𝜆 − 𝛿) 𝛿 𝜖.

Proof. Consider 𝑦 ∈ ax𝛼
𝜆
(𝐾)⊕𝜖 and 𝑎 ∈ ax𝛼

𝜆
(𝐾) such that

∥𝑦 − 𝑎∥ ≤ 𝜖 . Denote by 𝑠 ↦→ 𝑦 (𝑠) the trajectory of 𝑡 ↦→ Φ𝐾 (𝑡, 𝑦),
parametrized by arc length, so that 𝑦 (0) = 𝑦. Let us now assume

that for some 𝑠 > 0 one has

𝑦 (𝑠) ∉ ax𝛼
𝜆−𝛿 (𝐾).

Since 𝑎 ∈ ax𝛼
𝜆
(𝐾) (34) yields that 𝑎 ∈ ax𝜆 (𝐾). The bound (32)

gives that 𝑅𝐾 (𝑎) ≥ 𝐹𝐾 (𝑎). This together with (29) and (28) gives

𝑅𝐾 (𝑎) − 𝛼 ≥ 𝜆. (54)

By the conditions of the theorem we have 𝜖 < 𝛿 and ∥𝑦 − 𝑎∥ ≤ 𝜖 ,
(54) therefore implies

𝑅𝐾 (𝑦) − 𝛼 > 𝜆 − 𝛿, (55)

by the triangle inequality. This means that the condition of Lemma

10.1 are satisfied.

We can then apply Lemma 10.1 with 𝜆 replaced by 𝜆 − 𝛿 , which
gives us

(𝑅𝐾 (𝑦 (𝑠)) − 𝛼)2 ≥ (𝑆0 + 𝑠)2 + (𝜆 − 𝛿)2, (56)

where

𝑆20 = (𝑅𝐾 (𝑦) − 𝛼)2 − (𝜆 − 𝛿)2 . (57)

Since 𝑅𝐾 (𝑎) − 𝛼 ≥ 𝜆 there is 𝑆𝑎 ≥ 0 such that

𝑆2𝑎 + 𝜆2 = (𝑅𝐾 (𝑎) − 𝛼)2 . (58)

We recall Lemma 4.15 of [42]. The correspondence between the

notation is the following:

We pick O to be equal to

(
𝐾 ⊕𝛼 )𝑐

, 𝑥 to be 𝑎 and 𝑦 to be 𝑦 (𝑠), then
ℛ(𝑥) is 𝑅𝐾 (𝑎) − 𝛼 , ℛ(𝑦) is 𝑅𝐾 (𝑦 (𝑠)) − 𝛼 , and ℱ(𝑥) is F 𝛼

𝐾
(𝑎). So

that the inequality of Lemma 4.15 of [42] reads (using our notation):

(𝑅𝐾 (𝑦 (𝑠)) − 𝛼)2

≤ (𝑅𝐾 (𝑎) − 𝛼)2 + 2∥𝑦 (𝑠) − 𝑎∥
√︃
(𝑅𝐾 (𝑎) − 𝛼)2 − F 𝛼

𝐾
(𝑎)2 + ∥𝑦 (𝑠) − 𝑎∥2 .

Using (58) we have:

(𝑅𝐾 (𝑦 (𝑠)) − 𝛼)2

≤ 𝜆2 + 𝑆2𝑎 + 2∥𝑦 (𝑠) − 𝑎∥
√︃
(𝑅𝐾 (𝑎) − 𝛼)2 − F 𝛼

𝐾
(𝑎)2 + ∥𝑦 (𝑠) − 𝑎∥2 .

and since F 𝛼
𝐾
(𝑎) ≥ 𝜆 one has, using (58) again,√︃

(𝑅𝐾 (𝑎) − 𝛼)2 − F 𝛼
𝐾
(𝑎)2 ≤ 𝑆𝑎

and

(𝑅𝐾 (𝑦 (𝑠)) − 𝛼)2 ≤ (𝑆𝑎 + ∥𝑦 (𝑠) − 𝑎∥)2 + 𝜆2 .
Because ∥𝑦 (𝑠) − 𝑎∥ ≤ ∥𝑦 − 𝑎∥ + ∥𝑦 (𝑠) − 𝑦∥ ≤ 𝜖 + 𝑠 , we get

(𝑅𝐾 (𝑦 (𝑠)) − 𝛼)2 ≤ (𝑆𝑎 + 𝑠 + 𝜖)2 + 𝜆2 . (59)

Combining this with (56) yields,

(𝑆𝑎 + 𝑠 + 𝜖)2 + 𝜆2 ≥ (𝑆0 + 𝑠)2 + (𝜆 − 𝛿)2,
which can be rewritten as

2(𝑆0 − 𝑆𝑎 − 𝜖)𝑠 ≤ (2𝜆 − 𝛿)𝛿 −
(
𝑆20 − 𝑆2𝑎

)
+ (2𝑆𝑎 + 𝜖) 𝜖. (60)

To recover an upper bound on 𝑠 from (60), we need a lower bound

on (𝑆0 − 𝑆𝑎 − 𝜖) and an upper bound on the right hand side of

the previous inequality, that is an upper bound on (2𝜆 − 𝛿)𝛿 −(
𝑆20 − 𝑆2𝑎

)
+ (2𝑆𝑎 + 𝜖) 𝜖 .

From (57) and (58) we get

𝑆20 − 𝑆2𝑎 = (𝑅𝐾 (𝑦) − 𝛼)2 − (𝜆 − 𝛿)2 − (𝑅𝐾 (𝑎) − 𝛼)2 + 𝜆2

= (𝑅𝐾 (𝑦) − 𝛼)2 − (𝑅𝐾 (𝑎) − 𝛼)2 + (2𝜆 − 𝛿)𝛿,
so that,

𝑆20 − 𝑆2𝑎 − (2𝜆 − 𝛿)𝛿 = (𝑅𝐾 (𝑦) − 𝛼)2 − (𝑅𝐾 (𝑎) − 𝛼)2 . (61)

Since |𝑅𝐾 (𝑦) − 𝑅𝐾 (𝑎) | < 𝜖 we get,
| (𝑅𝐾 (𝑦) − 𝛼)2−(𝑅𝐾 (𝑎) − 𝛼)2 | < |𝑅𝐾 (𝑦)+𝑅𝐾 (𝑎)−2𝛼 | 𝜖 ≤ 2𝑅max 𝜖,

where we used that 𝑅𝐾 (𝑦), 𝑅𝐾 (𝑎) ≤ 𝑅max by definition of 𝑅max

and 𝛼 ≤ 𝑅max. Now (61), in turn gives,

| (2𝜆 − 𝛿)𝛿 − (𝑆20 − 𝑆2𝑎 ) | < 2𝑅max 𝜖 (62)

or, equivalently

(2𝜆 − 𝛿)𝛿 − 2𝑅max𝜖 < 𝑆20 − 𝑆2𝑎 < (2𝜆 − 𝛿)𝛿 + 2𝑅max 𝜖. (63)
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With the assumption 𝜖 <
(2𝜆−𝛿)𝛿
8𝑅max

, which gives 2𝑅max 𝜖 < 1
4 (2𝜆 −

𝛿)𝛿 , (63) yields,

0 <
3

4
(2𝜆 − 𝛿)𝛿 < 𝑆20 − 𝑆2𝑎 <

5

4
(2𝜆 − 𝛿)𝛿. (64)

This in turn implies that

𝑆0 − 𝑆𝑎 =
𝑆20 − 𝑆2𝑎
𝑆0 + 𝑆𝑎

>
3

4

(2𝜆 − 𝛿) 𝛿
𝑆0 + 𝑆𝑎

.

Combining (58) and (57) one has 𝑆0 + 𝑆𝑎 < 2𝑅max and using again

𝜖 <
(2𝜆−𝛿)𝛿
8𝑅max

we get

𝑆0 − 𝑆𝑎 − 𝜖 >
3

8

(2𝜆 − 𝛿) 𝛿
𝑅max

− 𝜖 >
(2𝜆 − 𝛿) 𝛿
4𝑅max

. (65)

We have from 𝜖 < 2𝛼 and (58) that 2𝑆𝑎 +𝜖 < 2(𝑆𝑎 +𝛼) ≤ 2𝑅max.

Therefore (60) together with (62) gives us

2(𝑆0 − 𝑆𝑎 − 𝜖)𝑠 < 2𝑅max 𝜖 + (2𝑆𝑎 + 𝜖) 𝜖
≤ 4𝑅max𝜖. (66)

Remark 10.3. Note that the assumption 𝜖 < 2𝛼 is not really

necessary as, here, we could merely upper bound 𝜖 by 𝑅max, so

that 2𝑆𝑎 +𝜖 < 3𝑅max and we would get 5𝑅max𝜖 instead of 4𝑅max𝜖

as upper bound in (66).

Equations (65) and (66) gives us

𝑠 <
8𝑅2max

(2𝜆 − 𝛿) 𝛿 𝜖

We have obtained this inequality by assuming 𝑦 (𝑠) ∉ ax𝛼
𝜆−𝛿 . By

contraposition we get

𝑦

(
8𝑅2max

(2𝜆 − 𝛿) 𝛿 𝜖
)
∈ ax𝛼

𝜆−𝛿 .

This proves the last statement of the lemma that upper bounds the

length of the trajectory. Since by Lemma 9.2, as long as𝑦 (𝑠) ∉ ax𝛼
𝜆−𝛿

the modulus of the right derivative of 𝑡 ↦→ Φ𝐾 (𝑡, 𝑦), which is

𝑑𝑠
𝑑𝑡

= ∥∇𝐾 (Φ𝐾 (𝑡, 𝑦)) ∥, is lower bounded by 𝜇 we get, still using

Theorem 8.10, the first statement of the lemma. □

Remark 10.4. While we do not need it in subsequent proofs,

thanks to remark 10.3, we could omit the condition 𝜖 < 2𝛼 in

Lemma 10.2, so that the lemma holds as well without this condition

and then also for 𝛼 = 0, that is for the 𝜆-medial axis, at the mild

price of a larger constant, replacing the flow time
8𝑅2

max

(2𝜆−𝛿)𝛿𝜇 𝜖 by
10𝑅2

max

(2𝜆−𝛿)𝛿𝜇 𝜖 .

10.3 Flow to the medial axis after a
perturbation of the set 𝐾 .

We write 𝑑𝐻 (𝐶1,𝐶2) for the Hausdorff distance between two com-

pact sets 𝐶1,𝐶2 ⊂ R𝑛 .

Lemma 10.5. Let 𝐾,𝐾 ′ ⊂ R𝑛 be complements of bounded open
sets 𝐾𝑐 and 𝐾 ′𝑐 and 𝛼 ≥ 0 ,𝜇 > 0, 𝜆 > 0, such that 𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝜆.

If 𝑑𝐻 (𝐾,𝐾 ′) < 𝜖 then, if 𝛿 < 𝜆 and 𝜖 <
(2𝜆−𝛿)𝛿
8𝑅max

one has:

Φ𝐾

(
8𝑅2max

(2𝜆 − 𝛿) 𝛿𝜇 𝜖 , ax
𝛼
𝜆
(𝐾 ′)

)
⊂ ax𝛼

𝜆−𝛿 (𝐾),

where 𝑅max = max{𝑅max (𝐾), 𝑅max (𝐾 ′)} < ∞ and 𝜇 = 𝜇𝛼,𝛼
𝜇,𝜆

> 0.

Moreover, for 𝑦 ∈ ax𝛼
𝜆
(𝐾 ′), the length of the trajectory

Φ𝐾

( [
0,

8𝑅2
max

(2𝜆−𝛿)𝛿𝜇 𝜖
]
, 𝑦

)
is upper bounded by

8𝑅2max

(2𝜆 − 𝛿) 𝛿 𝜖.

Proof. The proof is similar to the proof of Lemma 10.2, except

that now we start with a point in ax𝛼
𝜆
(𝐾 ′) and flow to ax𝛼

𝜆−𝛿 (𝐾).
We consider 𝑦 ∈ ax𝛼

𝜆
(𝐾 ′). Denote by 𝑠 ↦→ 𝑦 (𝑠) the trajectory of

𝑡 ↦→ Φ𝐾 (𝑡, 𝑦), parametrized by arc length, so that𝑦 (0) = 𝑦. Assume

that for some 𝑠 > 0 one has:

𝑦 (𝑠) ∉ ax𝛼
𝜆−𝛿 (𝐾)

Recall that 𝑑𝐻 (𝐾,𝐾 ′) < 𝜖 implies that

|𝑅𝐾 ′ (𝑥) − 𝑅𝐾 (𝑥) | < 𝜖, (67)

for all 𝑥 . Similarly to (54), once again has 𝑦 ∈ ax𝛼
𝜆
(𝐾 ′) ⇒ 𝑅𝐾 ′ (𝑦) −

𝛼 > 𝜆 ⇒ 𝑅𝐾 (𝑦) − 𝛼 > 𝜆 − 𝜖 . Moreover due to the hypothesis of

the lemma one has 𝜖 < 𝛿 , so one sees,

𝑅𝐾 (𝑦) − 𝛼 > 𝜆 − 𝛿. (55)

As in the proof of Lemma 10.2 we can apply Lemma 10.1 with 𝜆

replaced by 𝜆 − 𝛿 , which gives us,

(𝑅𝐾 (𝑦 (𝑠)) − 𝛼)2 ≥ (𝑆0 + 𝑠)2 + (𝜆 − 𝛿)2, (68)

where:

𝑆20 = (𝑅𝐾 (𝑦) − 𝛼)2 − (𝜆 − 𝛿)2 . (69)

Since 𝑦 ∈ ax𝛼
𝜆
(𝐾 ′), 𝑅𝐾 ′ (𝑦) − 𝛼 ≥ 𝜆 and there is 𝑆𝑦 ≥ 0 such that

𝑆2𝑦 = (𝑅𝐾 ′ (𝑦) − 𝛼)2 − 𝜆2 . (70)

Again following the same steps as in the proof of Lemma 10.2, we

use Lemma 4.15 of [42] to see that,

(𝑅𝐾 ′ (𝑦 (𝑠)) − 𝛼)2 ≤ (𝑆𝑦 + ∥𝑦 (𝑠) − 𝑦∥)2 + 𝜆2 . (71)

Because 𝑦 (𝑠) is parametrized by arc length, we have ∥𝑦 (𝑠) −𝑦∥ ≤ 𝑠 ,
which together with (67) yields,

(𝑅𝐾 (𝑦 (𝑠)) − 𝜖 − 𝛼)2 ≤ (𝑆𝑦 + 𝑠)2 + 𝜆2 . (72)

Subtracting (68) from (72) yields,

0 ≤(𝑆𝑦 + 𝑠)2 − (𝑆0 + 𝑠)2 + 𝜆2 − (𝜆 − 𝛿)2 + (𝑅𝐾 (𝑦 (𝑠)) − 𝛼)2

− (𝑅𝐾 (𝑦 (𝑠)) − 𝜖 − 𝛼)2 ,
which can be rewritten (in two steps) as,

0 ≤ (𝑆𝑦 + 𝑠)2 − (𝑆0 + 𝑠)2 + (2𝜆 − 𝛿) 𝛿 + (2𝑅𝐾 (𝑦 (𝑠)) − 2𝛼 − 𝜖) 𝜖

2
(
𝑆0 − 𝑆𝑦

)
𝑠 ≤ (2𝜆 − 𝛿) 𝛿 −

(
𝑆20 − 𝑆2𝑦

)
+ 2𝑅max 𝜖.

(73)

Again as in the proof of Lemma 10.2, combining (69) and (70) gives

us���(2𝜆 − 𝛿) 𝛿 − (
𝑆20 − 𝑆2𝑦

)��� = ��(𝑅𝐾 ′ (𝑦) − 𝛼)2 − (𝑅𝐾 (𝑦) − 𝛼)2
��

= (𝑅𝐾 (𝑦) + 𝑅𝐾 ′ (𝑦) − 2𝛼) |𝑅𝐾 (𝑦) − 𝑅𝐾 ′ (𝑦) |
≤ (𝑅𝐾 (𝑦) + 𝑅𝐾 ′ (𝑦) − 2𝛼) 𝜖 (by (67))

≤ 2𝑅max 𝜖, (74)

and (73) gives (
𝑆0 − 𝑆𝑦

)
𝑠 ≤ 2𝑅max 𝜖. (75)
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Since 𝜖 <
(2𝜆−𝛿)𝛿
8𝑅max

, (74) yields,

3

4
(2𝜆 − 𝛿) 𝛿 < 𝑆20 − 𝑆2𝑦 <

5

4
(2𝜆 − 𝛿) 𝛿

and

𝑆0 − 𝑆𝑦 =
𝑆20 − 𝑆2𝑦
𝑆0 + 𝑆𝑦

>
3

4

(2𝜆 − 𝛿) 𝛿
𝑆0 + 𝑆𝑦

>
(2𝜆 − 𝛿) 𝛿
4𝑅max

,

where we used that (69) implies that 𝑆0 ≤ 𝑅max, and (70) implies

𝑆𝑦 ≤ 𝑅max. With (75) we get:

𝑠 <
8𝑅max

(2𝜆 − 𝛿) 𝛿 𝜖

and we conclude exactly as in the proof of Lemma 10.2 □

Remark 10.6. The previous lemma can be interpreted as a stabil-

ity result with respect to the one-sided Hausdorff distance. More-

over, the lemma applies when 𝛼 = 0, in which case the statement

can be compared to Theorem 3 of [20]. Theorem 3 of [20] says

that the 𝜆-medial axis is
1
2 -Hölder stable in the following sense: If

𝑑𝐻 (𝐾,𝐾 ′) < 𝜖 , then for 𝑥 ∈ ax𝜆 (𝐾 ′) there is 𝑦 ∈ 𝑎𝑥𝜆−𝛿 (𝐾) with
∥𝑦 − 𝑥 ∥ = 𝑂 (𝜖

1
2 ). In other words the one sided Hausdorff distance

between ax𝜆 (𝐾 ′) and ax𝜆 (𝐾) is 𝑂 (𝜖
1
2 ). Lemma 10.5 proves the

stronger linear bound ∥𝑦 − 𝑥 ∥ = 𝑂 (𝜖). The effect of a translation
on 𝐾 shows that one cannot expect a bound better than linear.

The proofs of Theorem 3 in [20] and Lemma 10.5 are based on

the same idea. However, here we get a better bound by using the

lower bound on 𝑅𝐾 (𝑦 (𝑆)) given by Lemma 10.1 which is tighter

than the one used in [20].

10.4 Hausdorff distance between ax𝛼
𝜆
(𝐾 ′) and

ax𝛼
𝜆
(𝐾)

Combining Lemmas 10.5 and 9.3 allows to give a more symmetric

statement.

Lemma 10.7. Let 𝐾,𝐾 ′ ⊂ R𝑛 be complements of a bounded open
sets 𝐾𝑐 and 𝐾 ′𝑐 and 𝛼 > 0, 𝜇 > 0, 𝜆 > 0, such that 𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝜆. If

𝑑𝐻 (𝐾,𝐾 ′) < 𝜖,

and, if 𝛿 = 2
√︁
𝛼𝜇𝜖 < 𝜆, and 𝜖 < min

(
(2𝜆−𝛿)𝛿
8𝑅max

, 𝜆2

16𝛼𝜇

)
then,

Φ𝐾

(
𝐶𝜖

1
2 , ax𝛼

𝜆
(𝐾 ′)

)
⊂ ax𝛼

𝜆
(𝐾),

where 𝑅max = max{𝑅max (𝐾), 𝑅max (𝐾 ′)} < ∞ , 𝜇 = 𝜇
𝛼,𝛼

𝜇,𝜆
(𝐾) > 0,

and 𝐶 is defined as

𝐶 =
22

3

𝑅2max

𝛼
1
2 𝜇

3
2 𝜆
. (76)

Moreover, if one has also symmetrically 𝑟𝛼𝜇 (𝐾), 𝑟𝛼𝜇 (𝐾 ′) > 𝛼+𝜆 and
𝑅max = max (𝑅max (𝐾), 𝑅max (𝐾 ′)), and 𝜇 = min

(
𝜇
𝛼,𝛼

𝜇,𝜆
(𝐾), 𝜇𝛼,𝛼

𝜇,𝜆
(𝐾 ′)

)
we have

𝑑𝐻

(
ax𝛼
𝜆
(𝐾), ax𝛼

𝜆
(𝐾 ′)

)
< 𝐶𝜖

1
2 . (77)

Proof. We first flow ax𝛼
𝜆
(𝐾 ′) into ax𝛼

𝜆−𝛿 (𝐾), and then we flow

from ax𝛼
𝜆−𝛿 (𝐾) to ax

𝛼
𝜆
(𝐾). Indeed these Lemmas 10.5 and 9.3 give

that if 𝐾,𝐾 ′ ⊂ R𝑛 are complements of a bounded open sets 𝐾𝑐 and

𝐾 ′𝑐
and 𝛼 > 0, 𝜇 > 0, 𝜆 > 0, are such that 𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝜆 and

𝑑𝐻 (𝐾,𝐾 ′) < 𝜖 then for 0 < 𝛿 < 𝜆 and 𝜖 <
(2𝜆−𝛿)𝛿
8𝑅max

one has,

Φ𝐾

(
𝑅2max

𝛼 (𝜆 − 𝛿)𝜇2
𝛿 + 8𝑅2max

(2𝜆 − 𝛿) 𝛿𝜇 𝜖 , ax
𝛼
𝜆
(𝐾 ′)

)
⊂ ax𝛼

𝜆
(𝐾), (78)

where we use (14) and 𝑅max = 𝑅max (𝐾) < ∞ and 𝜇 = 𝜇
𝛼,𝛼

𝜇,𝜆
> 0.

Here we still have to choose a value of 𝛿 that minimizes the first

argument of Φ𝐾 in (78), that is,

𝛿 ↦→ 𝑅2max

𝛼 (𝜆 − 𝛿)𝜇2
𝛿 + 8𝑅2max

(2𝜆 − 𝛿) 𝛿𝜇 𝜖. (79)

To this end we first observe that when 𝜖 is small, the value of 𝛿 that

minimizes, (79) is small. When 𝛿 is small (79) is well approximated

by

𝛿 ↦→ 𝑅2max

𝛼𝜆𝜇2
𝛿 + 4𝑅2max

𝜆𝛿𝜇
𝜖. (80)

The value of 𝛿 that minimizes (80) is

𝛿 = 2
√︁
𝛼𝜇𝜖. (81)

We now substitute (81) in (79). If we also observe that if 𝜖 < 𝜆2

16𝛼𝜇 ,

(81) gives 𝛿 < 𝜆/2 and thus 2𝜆 − 𝛿 > 3/2𝜆 and 𝜆 − 𝛿 > 1/2𝜆 we

find the following upper bound

𝑅2max

𝛼 (𝜆 − 𝛿)𝜇2
𝛿 + 8𝑅2max

(2𝜆 − 𝛿) 𝛿𝜇 𝜖 <
22

3

𝑅2max

𝛼
1
2 𝜇

3
2 𝜆
𝜖

1
2 .

□

Remark 10.8. The symmetric condition 𝑟𝛼𝜇 (𝐾), 𝑟𝛼𝜇 (𝐾 ′) > 𝛼 + 𝜆
can be replaced by a condition on 𝐾 only. More precisely, in the

limit where some 𝛿 tends to zero as 𝑑𝐻 (𝐾,𝐾 ′) → 0 we have that

𝑟𝛼−𝛿𝜇 (𝐾) > 𝛼 + 𝜆 + 𝛿 implies 𝑟𝛼𝜇 (𝐾), 𝑟𝛼𝜇 (𝐾 ′) > 𝛼 + 𝜆 , see [19,

Theorem 3.4] where also the dependencies of 𝛿 and 𝑑𝐻 (𝐾,𝐾 ′) are
made precise.

Lemma 10.9. Let 𝐾 ⊂ R𝑛 be the complement of a bounded open
set 𝐾𝑐 and 𝛼 > 0, 𝜇 > 0 and 𝜆 > 0, such that 𝑟𝛼𝜇 (𝐾) > 𝛼 + 𝜆. Then,
if 𝛿 = 2

√︁
𝛼𝜇𝜖 < 𝜆 and 𝜖 < min

(
2𝛼,

(2𝜆−𝛿)𝛿
8𝑅max

, 𝜆2

16𝛼𝜇

)
one has

Φ𝐾

(
𝐶𝜖

1
2 ,

(
ax𝛼
𝜆
(𝐾)

)⊕𝜖 )
⊂ ax𝛼

𝜆
(𝐾),

where 𝑅max = 𝑅max (𝐾) < ∞, 𝜇 = 𝜇𝛼,𝛼
𝜇,𝜆

(𝐾) > 0, and𝐶 is defined by
(76).

Proof. The proof is identical to the proof of Lemma 10.7, how-

ever this this time we combine Lemmas 10.2 and 9.3 to achieve

the more symmetric statement. We note that we choose the same

optimal value for 𝛿 from (81). □

11 GROMOV-HAUSDORFF STABILITY OF
THE (𝜆, 𝛼)-MEDIAL AXIS UNDER
HAUSDORFF PERTURBATION OF 𝐾

In this section, we bound the Gromov-Hausdorff distance between

the (𝜆, 𝛼)-medial axis of a set 𝐾 and the medial axis of perturbation

of the set, where the perturbation is small in the Hausdorff sense.

Gromov-Hausdorff distance is understood to be with respect to the

intrinsic distance on the medial axis, that is the metric on the space
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Figure 11: Illustration of the proof of Theorem 11.1. The
path Γ, concatenation of 𝜎𝑎𝑎′ , 𝛾 ′ and 𝜎𝑏′𝑏 , is pushed through

the flow Φ𝐾 into a path Γ

[
𝐶

3
2 𝜖

1
4

]
𝐾 that realizes a path in

ax𝛼
𝜆
(𝐾) between 𝑎 and 𝑏.

ax𝛼
𝜆
(𝐾) is the metric induced by the geodesic distance on the set.

As we have seen in Section 9.4 this metric is well defined.

We assume that we are in the symmetric setting, that is the

conditions of Lemma 10.7 are satisfied. We assume moreover that

𝐾𝑐 and (𝐾 ′)𝑐 are connected.
Figure 11 illustrates the idea of the proof of Theorem 11.1. Con-

sider the pairs

(𝑎, 𝑎′), (𝑏, 𝑏 ′) ∈ R =

{
(𝑥, 𝑥 ′) ∈ ax𝛼

𝜆
(𝐾) × ax𝛼

𝜆
(𝐾 ′), ∥𝑥 − 𝑥 ′∥ < 𝐶𝜖

1
2

}
.

In order to compare the length of a geodesic 𝛾 from 𝑎 to 𝑏 to the

length of a geodesic 𝛾 ′ from 𝑎′ to 𝑏 ′ (left), we first create a path Γ
(middle), concatenation of 𝛾 with two straight segments 𝜎𝑎𝑎′ and

𝜎𝑏′𝑏 . Then Γ is “pushed” (right) along the flow Φ𝐾 , which, after a

“time” 𝑡 = O
(
𝜖

1
4
)
, belongs to ax𝛼

𝜆
(𝐾). The pushed path can then be

shown to be not much longer than the path 𝛾 ′.

Theorem 11.1. Let 𝐾,𝐾 ′ ⊂ R𝑛 be complements of bounded open
sets 𝐾𝑐 , (𝐾 ′)𝑐 , 𝛼 > 0, 𝜇 > 0 and 𝜆 > 0, such that, for some 𝛼 ′ < 𝛼

one has 𝑟𝛼
′
𝜇 (𝐾) > 𝛼 + 𝜆 and 𝑟𝛼

′
𝜇 (𝐾 ′) > 𝛼 + 𝜆, and

(
𝐾 ⊕𝛼 )𝑐 and(

𝐾 ′⊕𝛼 )𝑐 are connected. Denote 𝑅max = max (𝑅max (𝐾), 𝑅max (𝐾 ′)),
and 𝜇 = min

(
𝜇
𝛼,𝛼

𝜇,𝜆
(𝐾), 𝜇𝛼,𝛼

𝜇,𝜆
(𝐾 ′)

)
.

Assume that 𝑑𝐻 (𝐾,𝐾 ′) < 𝜖 . If

𝜖 < min

(
𝜆2𝛼𝜇

16𝑅2max

,
𝜆2

16𝛼𝜇
,
9𝜆4𝛼𝜇3

400𝑅4max

,

(
2𝛼

𝐶

)2
,

(
𝜆2𝛼𝜇

16𝑅2max𝐶

)2
,

(
𝜆2

16𝛼𝜇𝐶

)2)
,

then the Gromov-Hausdorff distance between ax𝛼
𝜆
(𝐾) and ax𝛼

𝜆
(𝐾 ′)

with respect to the intrinsic metric is upper bounded by

2𝐶
3
2 𝜖

1
4 + 2𝐶𝜖

1
2 𝑒

𝐶
3
2 𝜖

1
4

𝛼 + 𝐷
(
𝑒
𝐶

3
2 𝜖

1
4

𝛼 − 1

)
= 𝑂

(
𝜖

1
4

)
,

where

𝐶 =
22

3

𝑅2max

𝛼
1
2 𝜇

3
2 𝜆

and

𝐷 = max
(
GeoDiameter(ax𝛼

𝜆
(𝐾)),GeoDiameter(ax𝛼

𝜆
(𝐾 ′))

)
< ∞.

Proof. In order to lower bound the Gromov-Hausdorff distance

between ax𝛼
𝜆
(𝐾) and ax𝛼

𝜆
(𝐾 ′) under the assumptions of Lemma

10.7 we use Definition 8.7.

Consider the relation R ⊂ ax𝛼
𝜆
(𝐾) × ax𝛼

𝜆
(𝐾 ′) defined by:

R =

{
(𝑥, 𝑥 ′) ∈ ax𝛼

𝜆
(𝐾) × ax𝛼

𝜆
(𝐾 ′), ∥𝑥 − 𝑥 ′∥ < 𝐶𝜖

1
2

}
, (82)

where 𝐶 is defined by (76).

We know from Lemma 10.7 that this relation is surjective, which

means that for any 𝑥 ∈ ax𝛼
𝜆
(𝐾) there is 𝑥 ′ ∈ ax𝛼

𝜆
(𝐾 ′) such that

(𝑥, 𝑥 ′) ∈ R and, reciprocally, if 𝑥 ′ ∈ ax𝛼
𝜆
(𝐾 ′) there is 𝑥 ∈ ax𝛼

𝜆
(𝐾)

such that (𝑥, 𝑥 ′) ∈ R.
Consider (𝑎, 𝑎′), (𝑏, 𝑏 ′) ∈ R. Since 𝐾𝑐 and (𝐾 ′)𝑐 are connected,

Theorem 9.12 yields that there are paths 𝛾 : [0, 𝐿] → ax𝛼
𝜆
(𝐾) and

𝛾 ′ : [0, 𝐿′] → ax𝛼
𝜆
(𝐾 ′), parametrized by arc length such that:

𝛾 (0) = 𝑎, 𝛾 (𝐿) = 𝑏, 𝛾 ′(0) = 𝑎′, 𝛾 ′(𝐿′) = 𝑏 ′

and where 𝐿 and 𝐿′ are the respective geodesic distances in ax𝛼
𝜆
(𝐾)

and ax𝛼
𝜆
(𝐾 ′) between 𝑎, 𝑏 and 𝑎′, 𝑏 ′, that is,

𝐿 = 𝑑ax𝛼
𝜆
(𝐾) (𝑎, 𝑏) and 𝐿′ = 𝑑ax𝛼

𝜆
(𝐾 ′) (𝑎′, 𝑏 ′).

Denote by 𝜎𝑎𝑎′ and 𝜎𝑏′𝑏 the linear path from 𝑎 to 𝑎′ and from 𝑏 ′ to
𝑏, respectively. By definition of the relation R, we have that their
lengths are upper bounded by𝐶𝜖

1
2 and, since 𝑅𝐾 (𝑎), 𝑅𝐾 (𝑏) ≥ 𝜆+𝛼 ,

we have the inclusions im(𝜎𝑎𝑎′), im(𝜎𝑏′𝑏 ) ⊂
(
𝐾 ⊕𝜆+𝛼−𝐶𝜖

1
2

)𝑐
.

From now on we assume:

𝜖 <
𝜆2

𝐶2
=

9𝜆4𝛼𝜇3

400𝑅4max

(83)

then 𝐶𝜖
1
2 < 𝜆 and it follows that im(𝜎𝑎𝑎′), im(𝜎𝑏′𝑏 ) ⊂

(
𝐾 ⊕𝛼 )𝑐

.

Also im(𝛾 ′) ⊂ ax𝛼
𝜆
(𝐾 ′) ⊂

(
𝐾 ′⊕𝜆+𝛼

)𝑐
. Because 𝛼, 𝜆 < 𝑅max and

𝜇 ≤ 1, (83) implies 𝜖 < 𝜆, and 𝑑𝐻 (𝐾,𝐾 ′) < 𝜖 gives

(
𝐾 ′⊕𝜆+𝛼

)𝑐
⊂(

𝐾 ⊕𝛼 )𝑐
and we get im(𝛾 ′) ⊂

(
𝐾 ⊕𝛼 )𝑐

.

From (77) one has as well im(𝛾 ′) ⊂ ax𝛼
𝜆
(𝐾 ′) ⊂

(
ax𝛼
𝜆
(𝐾)

)⊕𝐶𝜖 1
2

and 𝑎, 𝑏 ∈ ax𝛼
𝜆
(𝐾) with (𝑎, 𝑎′), (𝑏,𝑏 ′) ∈ R gives as well

im(𝜎𝑎𝑎′), im(𝜎𝑏′𝑏 ) ⊂ ax𝛼
𝜆
(𝐾)⊕𝐶𝜖

1
2
.

Now consider the path Γ from 𝑎 to 𝑏, which we define as the

concatenation of 𝜎𝑎𝑎′ , 𝛾
′
and 𝜎𝑏′𝑏 . One has,

length (im(Γ)) < 𝐿′ + 2𝐶𝜖
1
2 . (84)
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Γ is included in

(
𝐾 ⊕𝛼 )𝑐

and

(
ax𝛼
𝜆
(𝐾)

)⊕𝐶𝜖 1
2

, that is,

im(Γ) ⊂
(
𝐾 ⊕𝛼 )𝑐 ∩ (

ax𝛼
𝜆
(𝐾)

)⊕𝐶𝜖 1
2

. (85)

For 𝑇 ≥ 0, we consider now the path Γ [𝑇 ]𝐾 , connecting 𝑎 to 𝑏

according to Definition 9.8.

Intuitively, the path Γ [𝑇 ]𝐾 can be visualized as the path Γ “pushed”
during a time 𝑇 by the flow Φ𝐾 while “holding” the end points 𝑎

and 𝑏 as shown in Figure 11.

Using (85), if 𝛿 ′ = 2

√︃
𝛼𝜇𝐶𝜖

1
2 < 𝜆 and

𝐶𝜖
1
2 < min

(
2𝛼,

(2𝜆 − 𝛿 ′) 𝛿 ′
8𝑅max

,
𝜆2

16𝛼𝜇

)
we can apply Lemma 10.9 with 𝜖 replaced by 𝐶𝜖

1
2 .

Note that the condition: 𝛿 ′ = 2

√︃
𝛼𝜇𝐶𝜖

1
2 < 𝜆 and

𝐶𝜖
1
2 < min

(
2𝛼,

(2𝜆−𝛿′)𝛿′
8𝑅max

, 𝜆2

16𝛼𝜇

)
is implied by

𝜖 < min

((
2𝛼

𝐶

)2
,

(
𝜆2𝛼𝜇

16𝑅2max𝐶

)2
,

(
𝜆2

16𝛼𝜇𝐶

)2)
, (86)

so that Lemma 10.9 gives us:

Φ𝐾

(
𝐶

(
𝐶𝜖

1
2

) 1
2
, im(Γ)

)
⊂ ax𝛼

𝜆
(𝐾),

that is, together with (31),

im

(
Γ

[
𝐶

3
2 𝜖

1
4

]
𝐾

)
⊂ ax𝛼

𝜆
(𝐾) .

Since Γ

[
𝐶

3
2 𝜖

1
4

]
𝐾 is a path from 𝑎 ∈ ax𝛼

𝜆
(𝐾) to 𝑏 ∈ ax𝛼

𝜆
(𝐾) inside

ax𝛼
𝜆
(𝐾), one has

length

(
Γ

[
𝐶

3
2 𝜖

1
4

]
𝐾

)
≥ 𝐿 = 𝑑ax𝛼

𝜆
(𝐾) (𝑎, 𝑏) .

Because by (85) Γ lies in

(
𝐾 ⊕𝛼 )𝑐

, Lemma 9.9 can be applied which

gives, using (84):

length

(
Γ

[
𝐶

3
2 𝜖

1
4

]
𝐾

)
≤ 2𝐶

3
2 𝜖

1
4 +

(
𝐿′ + 2𝐶𝜖

1
2

)
𝑒
𝐶

3
2 𝜖

1
4

𝛼

= 𝐿′ + 2𝐶
3
2 𝜖

1
4 + 2𝐶𝜖

1
2 𝑒

𝐶
3
2 𝜖

1
4

𝛼 + 𝐿′
(
𝑒
𝐶

3
2 𝜖

1
4

𝛼 − 1

)
.

Since, by Theorem 9.12, 𝐿′ ≤ GeoDiameter(ax𝛼
𝜆
(𝐾 ′)) < ∞, one

has

𝐿 ≤ 𝐿′+2𝐶
3
2 𝜖

1
4 +2𝐶𝜖

1
2 𝑒

𝐶
3
2 𝜖

1
4

𝛼 +GeoDiameter(ax𝛼
𝜆
(𝐾 ′))

(
𝑒
𝐶

3
2 𝜖

1
4

𝛼 − 1

)
.

Because we make, symmetrically, the same assumptions on 𝐾 and

𝐾 ′
one has,

(𝑎, 𝑎′), (𝑏, 𝑏 ′) ∈ R ⇒
���𝑑ax𝛼

𝜆
(𝐾) (𝑎, 𝑏) − 𝑑ax𝛼

𝜆
(𝐾 ′) (𝑎′, 𝑏 ′)

���
≤ 2𝐶

3
2 𝜖

1
4 + 2𝐶𝜖

1
2 𝑒

𝐶
3
2 𝜖

1
4

𝛼 + 𝐷
(
𝑒
𝐶

3
2 𝜖

1
4

𝛼 − 1

)
,

where

𝐷 = max
(
GeoDiameter(ax𝛼

𝜆
(𝐾)),GeoDiameter(ax𝛼

𝜆
(𝐾 ′))

)
.

By Corollary 9.13 (using the assumptions 𝑟𝛼
′
𝜇 (𝐾) > 𝛼 + 𝜆 and

𝑟𝛼
′
𝜇 (𝐾 ′) > 𝛼 + 𝜆), we know that 𝐷 < ∞. □
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