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Side-Informed Steganography for JPEG Images by
Modeling Decompressed Images

Jan Butora and Patrick Bas, Senior Member, IEEE

Abstract—Side-informed steganography has always
been among the most secure approaches in the field.
However, a majority of existing methods for JPEG
images use the side information, here the rounding
error, in a heuristic way. For the first time, we show
that the usefulness of the rounding error comes from
its covariance with the embedding changes. Unfortu-
nately, this covariance between continuous and discrete
variables is not analytically available. An estimate of
the covariance is proposed, which allows to model
steganography as a change in the variance of DCT
coefficients. Since steganalysis today is best performed
in the spatial domain, we derive a likelihood ratio test
to preserve a model of a decompressed JPEG image.
The proposed method then bounds the power of this
test by minimizing the Kullback-Leibler divergence
between the cover and stego distributions. We exper-
imentally demonstrate in two popular datasets that
it achieves state-of-the-art performance against deep
learning detectors. Moreover, by considering a different
pixel variance estimator for images compressed with
Quality Factor 100, even greater improvements are
obtained.

Index Terms—Steganography, side information,
JPEG, decompressed image

I. Introduction
Steganography is a tool for covert communication,

in which Alice and Bob want to communicate secretly
through a public channel. Their requirement states that
Eve, monitoring their public communication channel,
should not be aware of the secret communication. This
requirement is achieved by ’hiding’ the communicated
message in an ordinarily looking medium - the cover object
while preserving the semantic meaning of the cover. Modi-
fying a cover to carry the secret message then yields a stego
object. A typical cover medium is a digital image because
of the vast number of pixels and hard-to-model content.
This difficulty of modeling content allows Alice to create
statistically undetectable modifications and communicate
secret messages of non-trivial size. The actual secret mes-
sage (typically encrypted) is then encoded into the least
significant bit(s) of the image pixels/DCT coefficients with
some coding mechanism. While there are dozens, maybe
even hundreds, of possible ways to tackle this problem,
the state-of-the-art of hiding messages stems mainly from
side-informed steganography.

Side-informed steganography is a special case of covert
communication in which the steganographer (Alice) has
access to the so-called side information. The side infor-
mation is usually defined as any additional information
about the cover image unavailable to the steganalyst

(Eve). Typically it results from some information-losing
processing, such as downsampling, JPEG compression,
color conversion, etc., as long as the last step of the
processing is quantization. In these cases, the side informa-
tion consists of rounding errors because these information-
losing operations are always followed by quantizing the
image coefficients (whether DCT coefficients or pixels)
to integers. Alice can then use this information while
creating her stego object to preserve better the statistics
of the original (precover) image before it was processed
and embedded with the secret message.
The most popular side information comes from JPEG

compression [6], [13], [21], [24], [28]–[32]. During JPEG
compression, we change the representation of a given
precover image represented in the pixel domain with the
Discrete Cosine Transformation (DCT) (and consecutive
quantization with a quantization matrix defined by the
JPEG quality factor), which is, in fact, an invertible
operation. However, this transformation produces non-
integer DCT coefficients. To perform the actual compres-
sion, the DCT coefficients are additionally rounded to
integers and only then saved to a JPEG file [44]. This loss
of information makes the JPEG compression lossy, and
the signal that gets lost (the DCT rounding errors u ) is
then used as the side information. We want to note that
many imaging devices today round the quantized DCT
coefficients to the nearest integer, but many of them round
toward zero instead [1].
One of the early uses of side information for steganog-

raphy was employed for double-compressed images [29].
The side information, in this case, would be created by
recompressing a JPEG cover image, and the embedding
scheme would make changes only in coefficients with the
corresponding rounding errors close to ±1/2. Such coef-
ficients are intuitively the most ’unstable’ ones, meaning
that even a tiny perturbation can flip its value. In [13], this
idea was extended into content-adaptive steganography
by allowing changes only in specific ’contributing’ DCT
modes producing many DCT coefficients with rounding
errors close to ±1/2.

A. Side Information Usage in Literature
With the development of content-adaptive steganog-

raphy [20], [33]–[36], [39], [41], [45], the use of side in-
formation has changed. The steganographic algorithms
output costs ρi of changing the i-th cover element (pixel
or DCT coefficient) by +1 or −1, which are then used in-
side Syndrome-Trellis Codes [27] for near-optimal coding.
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Table I
Comparison of different side-informed schemes with the proposed JEEP.

Algorithm Stego model Model domain Emb. Domain Modulation SI use RAW Pipeline |Alphabet|
SI-UNIWARD [24] N/A N/A spatial/JPEG (1− 2|u|) heuristic 7 7 3
SI-MiPOD [25] Gauss. mixture Pixel spatial (1− 2|u|)2 model 7 7 2
SI-JMiPOD [21] Gauss. mixture DCT JPEG (1− 2|u|)4 heuristic 7 7 2
NS [2], [47], [48] Gaussian Pixel/DCT spatial/JPEG N/A model 3 3 ≥ 3

GE [30] Gaussian DCT JPEG N/A model 7 3 ≥ 3
JEEP Gaussian Decompressed JPEG Eq. (7) model 7 7 3

Having the embedding costs ρi and the side information
ui, it was proposed [37] to heuristically modulate the
cost of changing an element ’towards the precover’ by
1−2|ui|, where ui is the rounding error introduced during
the JPEG compression. The embedding change in the
opposite direction is prohibited, resulting in a binary em-
bedding scheme. This modulation technique was extended
for ternary embedding schemes by keeping the embedding
cost in the opposite direction intact [24]. This creates
asymmetry in the ternary embedding, and the embedder
ends with embedding costs ρi(±1) of changing the i-th
element by +1 or −1:

ρi(sign(ui)) = ρi(1− 2|ui|), (1)
ρi(−sign(ui)) = ρi. (2)

Based on an investigation of JPEG images compressed
with the Trunc quantizer [1], [12], it was shown [10] that
increasing the embedding cost in the opposite direction
by a factor of 1 + 2|u| provides additional improvements
in security, giving embedding costs:

ρi(+1) = ρi(1− 2ui), (3)
ρi(−1) = ρi(1 + 2ui). (4)

For binary MiPOD [45], which uses steganographic
Fisher information instead of embedding costs, it was
shown [25] that the Fisher information Ii should be mod-
ulated by

Ii = Ii(1− 2|ui|)2. (5)

Even though (5) is the only side-informed modulation
derived from a model, the embedding was assumed binary
for simplicity.

Recently, it was proposed for the JPEG variant of
MiPOD [21] to modulate its Fisher information by

Ii = Ii(1− 2|ui|)4. (6)

Yet, the embedding algorithm had to be used in a binary
setting because it was unclear what to do with the Fisher
information in ’the opposite direction.’

For JPEG side-informed steganography, it was pro-
posed [39] to avoid embedding in the so-called ’rational’
DCT modes (0, 0), (0, 4), (4, 0), (4, 4), whenever the round-
ing error is close to ±1/2. One can easily show that
these modes can only produce rounding errors {k8 , k ∈

{−4,−3, . . . , 4}}. In effect, this causes a significant portion
of the errors in these modes to satisfy |ui| = 1/2, leading to
embedding costs equal to 0. Consequently, many of these
coefficients would be changed, causing easily exploitable
artifacts in the embedding scheme. Boroumand et al. [6]
made a further improvement to side-informed embedding
schemes by synchronizing the selection channel - making
embedding costs aware of already performed embedding
changes during iterative embedding on lattices.
A different approach to side-informed steganography

uses even more information during embedding than just
the precover. Having the out-of-camera RAW image, Nat-
ural Steganography [2], [3] (NS) points out that pro-
cessing of the RAW image creates natural dependencies
between pixels. These dependencies were further exploited
for JPEG images [47], [48]. Recent work by Giboulot et
al. [31] proposes to derive a covariance matrix of the
heteroscedastic noise naturally present in images. This
model is then extended to subsequent JPEG compression,
and the embedding algorithm aims to preserve the statis-
tical model of such noise. The method was extended in
Gaussian Embedding [30], [32] (GE), where the algorithm
no longer requires the RAW image. Still, other important
information about the development has to be known,
namely ISO setting, camera model, and the processing
pipeline. The main drawback of these methods is that we
need access to the RAW image or the processing pipeline
together with additional camera information.

B. Comparison to Prior Art and Novelty

We now point out the key differences and originality of
the proposed method w.r.t. prior art. In this work, for the
first time (to the best of our knowledge), we model both
the decompressed JPEG image and the effect of JPEG
steganography in the spatial (pixel) domain. Having these
models, we propose a new steganographic method, JEEP
- JPEG Embedding preserving spatial Error Properties.
We consider the effect on the spatial domain because
the state-of-the-art detectors of JPEG steganography are
Convolutional Neural Networks that operate on decom-
pressed images [9], [17], [19], [51]–[53]. Similarly to [30],
[47], [48], we show that the side information emerges
naturally from the proposed model. However, since we
are modeling the decompressed image, we do not need
additional information on the processing pipeline of the
precover image, nor do we need to model the discrete stego
signal with a continuous distribution.
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Furthermore, we show that having the Fisher informa-
tion Ii, the right thing to do is to construct a Fisher
information matrix Ii =

(
I+
i I±i
I±i I−i

)
with entries:

I+
i = Ii(1− 2ui)4,

I−i = Ii(1 + 2ui)4,

I±i = Ii(1− 2ui)2(1 + 2ui)2. (7)

We can notice that this very much resembles (6); how-
ever, in [21], the modulation is introduced heuristically
and does not allow for ternary embedding. Additionally,
in [21], the image is modeled in the DCT domain as a
mixture of distributions since the stego signal cannot be
assumed normally distributed. In this work, we model the
image in the spatial domain, which allows us to consider
steganography as a change of variance. Further comparison
is given in Table I.

The main contribution of this paper can be summarized
by the following:
• JPEG steganography is modeled in the pixel domain,

where steganalysis performs the best.
• We design a model-based side-informed scheme with-

out additional knowledge about the precover. This
scheme has the side information naturally present in
the variance of stego distribution.

• The proposed method is on par with or outperforms
current state-of-the-art steganography across all qual-
ity factors and payloads with Deep Learning and
Feature-based steganalyzers.

• By considering a different pixel variance estimator for
high-quality JPEG images, the proposed algorithm is
also highly robust against the Reverse JPEG Com-
patibility Attack [11], [18].

C. Organization of the paper
The rest of the paper is organized as follows: In the next

section, we introduce the proposed cover and stego model
of a decompressed JPEG image. Section III presents the
proposed embedding scheme, JEEP, designed to preserve
the cover model. In Section IV, we introduce the datasets
and detectors used for empirical evaluation of its security.
Numerical results are shown in Section V, and the paper
is concluded in Section VI.

II. Proposed Image Model
This section first introduces the notation we keep using

throughout the paper and the basic mechanisms of JPEG
compression. Then we present a statistical model for de-
compressed cover and stego images in the pixel domain.
Finally, we will show that the side information available
to Alice is naturally contained in the variance of the stego
pixels. To derive our cover and stego models, we use several
simplifying assumptions introduced at the beginning of
their respective sections. The validity of these assumptions
is then discussed at the end of their sections.

A. JPEG Compression and Notation
Boldface symbols are reserved for matrices and vectors.

Uniform distribution on the interval [a, b] is denoted U [a, b]
while N (µ, σ2) is used for the Gaussian distribution with
mean µ and variance σ2. The operation of rounding x to
an integer is the square bracket [x]. The sets of all integers
and real numbers are denoted Z and R. Expectation and
variance of a random variable X are denoted as E[X]
and Var(X). Covariance between two random variables
X and Y is denoted as Cov(X,Y ). The original uncom-
pressed 8-bit grayscale image with N pixels is denoted
x ∈ {0, . . . , 255}N . For simplicity, we assume that the
width and height of the image are multiples of 8.
Constraining x = (xij) into one specific 8 × 8 block,

we use indices 0 ≤ i, j ≤ 7 to index elements from this
pixel block. Conversely, indices 0 ≤ k, l ≤ 7 are strictly
used to index elements in the DCT domain. During JPEG
compression, the DCT coefficients before quantization,
dkl ∈ R, are obtained using the 2D-DCT transformation
dkl = DCTkl(x) =

∑7
i,j=0 f

ij
klxij , where

f ijkl = ωkωl
4 cos πk(2i+ 1)

16 cos πl(2j + 1)
16 , (8)

ω0 = 1/
√

2, ωk = 1 for 0 < k ≤ 7 are the discrete
cosines. Before applying the DCT, each pixel is adjusted
by subtracting 128 from it during JPEG compression, a
step we omit here for simplicity.
The quantized DCT coefficients are ckl = [dkl/qkl], ckl ∈
{−1024, . . . , 1020}, where qkl are the quantization steps in
a luminance quantization table, provided in the header of
the JPEG file.
Sometimes, it will be helpful to represent an 8×8 block

of elements with a vector of 64 dimensions instead. To this
end, we denote D ∈ R64×64 the matrix representing the
DCT transformation, and c ∈ R64 a vector containing the
DCT coefficients. Additionally, we denote Q ∈ R64×64 the
quantization matrix, containing the quantization steps on
the diagonal.
Compression and decompression can then be written as

c =
[
Q−1Dx

]
, (9)

y = DTQc, (10)

where y 6= x represents the decompressed image.
To prevent confusion, we will be denoting Σij and Σkl

the diagonal covariance matrices in the spatial and DCT
domains, respectively1. The elements on their diagonals
will be denoted as σ2

ij and σ2
kl, 0 ≤ i, j, k, l ≤ 7. To prop-

agate pixel variances into the DCT domain, we compute

Σkl = DΣijDT , (11)

and similarly, to compute spatial variances from the
DCT covariance matrix

Σij = DTΣklD. (12)
1Notice the slight abuse of notation since ij an kl are not used as

indices.
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B. Cover Model
Recall, in [11], the DCT rounding errors ukl are modeled

with a uniform distribution U(−1/2, 1/2), and thus spa-
tial domain rounding errors yij − [yij ] are modeled with
Wrapped Gaussian distribution NW (0, sij), where sij =∑7
k,l=0

(
f ijkl

)2
q2
klVar(ukl). That initially motivated this

work because we realized that to preserve the Wrapped
Gaussian distribution of the model (see [11] for more de-
tails), the steganographer (Alice) can maintain the under-
lying Gaussian, which is computed as yij−xij ∼ N (0, sij).
Moreover, since we want to create a secure embedding
scheme, we do not have to limit ourselves only to quality
factors (QFs) 99 and 100, as was the case for Reverse
JPEG Compatibility Attack (RJCA) [11], [18].

In this work, instead of modeling the decompression
error, we will model the decompressed pixels with full
knowledge of the DCT rounding errors. In turn, by pre-
serving the pixel model, we shall also be preserving the
rounding error model as a consequence. But first, let us
mention several simplifying assumptions for our image
model, which we will comment upon at the end of this
section:
• (C1) Uncompressed pixels are independent random

variables Xij with E[Xij ] = xij and Var(Xij) = σ2
ij .

• (C2) DCT rounding errors are independent random
variables Ukl with E[Ukl] = ukl and Var(Ukl) = 0.

• (C3) Uncompressed pixels are independent of DCT
rounding errors.

Note that we have not made any assumptions on the
distributions of the random variables so far because we
consider the Central Limit Theorem causing the decom-
pressed pixels to be Normally distributed. We can express
the decompressed pixels as

y = DTQc
= DTd−DTQu
= x−DTQu. (13)

We can therefore model them with

y ∼ N (x−DTQu,Σij), (14)

where Σij is the diagonal covariance matrix of the
precover.

We used several assumptions (C1-C3) to derive mean-
ingful cover image models, and we would like to address
their reasoning:
• (C1) The independence assumption is made to sim-

plify the model. Alternatively, we can consider the
covariance between pixels as part of a modeling error
when estimating their variances since they are not
available in practice.

• (C2) We investigated intra-block and inter-block cor-
relations of the DCT rounding errors, but we did not
find any evidence of correlation. This might be rather
counterintuitive since the DCT coefficients are known

to exert a decent level of correlations [46]. We believe
this to be an effect of the rounding operation.

• (C3) Similarly, as in (C1-C2), we did not find any
evidence of correlation. Alternatively, they could also
be considered as part of a modeling error.

C. Stego Model
To further simplify the situation, we make additional

assumptions on the embedding changes, which we will
discuss at the end of the section:
• (S1) Embedding changes are mutually independent.
• (S2) Embedding changes are correlated with DCT

errors.
We can model embedding changes ηkl ∈ {−1, 0, 1} as
random variables with P (ηkl = ±1) = β±kl and P (ηkl =
0) = 1−β+

kl−β
−
kl, where β

±
kl is the change rate (of change

by +1 or -1). This implies

E[ηkl] = β+
kl − β

−
kl, (15)

Var(ηkl) = β+
kl + β−kl − (β+

kl − β
−
kl)

2. (16)

The stego image pixel values z can be expressed as

z = DTQ(c + η)
= DTd + DTQ(η − u)
= x + DTQη −DTQu. (17)

Assuming the Central Limit Theorem again, we can now
model the decompressed stego pixels as Gaussian variables
with mean

E[z] = x + DTQ(β+ − β− − u), (18)

and variance

Σij = Σij + DTQ2(E− 2C)D, (19)

where E is the diagonal covariance matrix of the em-
bedding changes and C is the diagonal covariance matrix
between embedding changes and the DCT errors.
We will see later in Section V-A that Eve’s knowledge of

the expectation of embedding changes will severely affect
Alice’s embedding strategy.
1) Variance: One of the most significant contributions

of this work is exploiting the dependence between embed-
ding changes and the side information. Unfortunately, the
covariance between the embedding changes and the round-
ing errors Cov(η, U) = E[η · U ]− E[η] · E[U ] is impossible
to compute because we do not know how to calculate the
joint expectation. Instead, we will use several assumptions
that will allow us to approximate the covariance. For the
ease of the following derivations, we assume
• (S3) β+ ≥ 2β− (or β− ≥ 2β+ ).
• (S4) E[η · U ] ≥ 0.

It follows from Lemma 1 that 3E[η] ·E[U ] ≥ 2E[η2] ·E[U2].
We want to point out that in our experiments, we have
observed this inequality violated only when both change
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rates are either close to 1/3 or 0. Combining Lemma 1
with (S4), we will approximate the joint probability as

E[η · U ] = 3E[η] · E[U ]− 2E[η2] · E[U2]. (20)

The covariance can then be expressed as

Cov(η, U) = 2(β+ − β−)u− 2(β+ + β−)u2. (21)

The approximation (20) is reasonable because, with a
bigger expectation of embedding change, we get a bigger
correlation with the side information. Moreover, we would
obtain a slight negative correlation for symmetric change
rates, which is logical because the expectation of embed-
ding change would be zero irrespectively of the rounding
error magnitude. Finally, for rounding errors close to zero,
the correlation would also be very close to zero.

Plugging (21) into (19) reveals that we can write the
covariance matrix of the decompressed stego image as

Σij = Σij + DTQ2 (β+(1− 2u)
+β−(1 + 2u)− (β+ − β−)2)D. (22)

We can notice that this already resembles the usage of
the side information proposed in (3),(4).
As with the cover model, we will now elaborate on the

stego assumptions:
• (S1) In theory, this assumption is wrong because,

during decompression, the change rates get mixed
together. We assumed independence across change
rates; otherwise, the optimization problem in (30)
involves computing an extremely numerically unsta-
ble hessian matrix of size 128 × 128 for every 8 × 8
block. This turned out to be relatively computation-
ally heavy. However, it is something we will consider
solving in the future.

• (S2) Without this correlation, we cannot fully utilize
the side information during embedding.

• (S3) In other cases, the two change rates can be
assumed to be relatively close to each other. Thus
it is reasonable to think that the side information
does not bring additional security to the model. We
can imagine those are the cases in which embedding
does not change the underlying model, such as in
extremely noisy areas of the image. For ease of the
following derivations, we thus consider the other cases
negligible.

• (S4) Without this assumption, the variance in (19)
rises too rapidly with increasing change rates, and
we cannot efficiently preserve the cover distribu-
tion (14) [8].

III. Minimizing Power of the Most Powerful
Detector

In this section, we will derive Alice’s embedding strategy
to minimize the power of the most powerful detector,
which will turn out to be the Likelihood Ratio Test (LRT).

Note that even though the LRT can potentially be hard to
use in practice, several methods exist that successfully uti-
lize the test [16], [23], [49], [50]. Moreover, security against
the best possible attacker has been among best practices
in the security community for decades. We consider two
types of attackers (steganalysts) - omniscient and realistic
(constrained) Eve. We will see that the two embedding
strategies Alice can employ differ fundamentally depend-
ing on Eve’s capabilities. We call the resulting embedding
algorithm JEEP - JPEG Embedding preserving spatial
Error Properties.

First, somewhat unrealistically, we will assume omni-
scient Eve, who has complete knowledge of the system,
including the precover and the side information. This
assumption is rather silly because if Eve knows the pre-
cover, she can compute from it the cover image and decide
whether the image under investigation is a cover or not.
We do this in order to derive a general form of the
LRT, which we will restrict afterward with more realistic
assumptions on Eve’s abilities.

A. Likelihood Ratio Test
To make the test easier to follow, we will investigate

the behavior of the pixel residual e = y − x + DTQu. In
this case, Eve’s goal is to decide between the following two
hypotheses:

H0 : e ∼ N (0,Σij), (23)
H1 : e ∼ N (µ,Σij), (24)

where µ = DTQ(β+−β−) is the expectation of embed-
ding change after decompression. Following the Neyman-
Pearson Lemma [40], we will be interested in the Likeli-
hood Ratio Test (LRT), which can be used to minimize
detection power for a prescribed false alarm:

Λ(e) =
N∑
i=1

Λ(ei) =
N∑
i=1

log p(ei, µi, σ
2
i )

p(ei, 0, σ2
i )
H1
≷
H0

γ. (25)

We can conclude that as the number of pixels N →∞,
the CLT states that

Λ?(e) =
∑N
i=1 Λ(ei)− E0[Λ(ei)]√∑N

i=1 Var0[Λ(ei)]
(26)

 

{
N (0, 1) under H0

N (δ, %) under H1
, (27)

where  denotes the convergence in distribution, δ is
the deflection coefficient, and % is the effect of embedding
on the variance of the test statistic. We encourage the
reader to read the Appendix for more detailed information
about the test.
We can then compute the probability of detection PD

for a fixed False Alarm PFA:
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PD = Q

(
Q−1(PFA)− δ

√
%

)
. (28)

In [21], [45] % = 1, which allows simply to minimize the
deflection coefficient δ. In our setting, unfortunately, the
detection probability (28) depends on the value PFA since
% 6= 1. Moreover, δ and % are quite complicated functions
of the change rates, and it turns out to be numerically
very unstable to try to minimize δ/

√
% or even δ. For

these reasons, we will minimize an upper bound on the
probability of detection instead.

B. Kullback-Leibler Divergence
From Sanov Theorem, we know that the probability of

detection can be upper bounded with

PD ≤ 1− e−
∑N

i=1
D(Ci||Si), (29)

where D(Ci||Si) is the Kullback-Leibler (KL) divergence
between i-th cover and stego pixels. Instead of minimizing
the power of the LRT, we will aim to minimize this upper
bound, similarly to [30].

We can now formalize our optimization problem as

min
β

N∑
i=1

D(Ci||Si), (30)

such that

N∑
n=1

H3(β+
n , β

−
n ) = α, (31)

where α is the desired relative payload and H3(·, ·) is
the ternary entropy function:

H3(β+, β−) = −(1− β+ − β−) log(1− β+ − β−)
−β+ log β+ − β− log β−. (32)

The objective (30) could be expressed as minimizing the
sum of KL divergences over every 8 × 8 block of pixels,
thanks to the block structure of JPEG images. We com-
pute the KL divergence for a single block of pixels as:

D(C||S) = 1
2

7∑
i,j=0

log
σ2
ij

σ2
ij

+
µ2
ij + σ2

ij − σ2
ij

σ2
ij

. (33)

Next, we simplify (33) by its second-degree Taylor poly-
nomial around β = 0. The Taylor approximation yields:

D(C||S) = 1
2

7∑
k,l=0

βklIklβTkl, (34)

where βkl = (β+
kl, β

−
kl), and

Ikl =
[
I+
kl I±kl
I±kl I−kl

]
(35)

Precover

Side-information

Smooth 
DCT variance

DCT variance

Pixel variance
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pixel variance
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Figure 1. Embedding pipeline of JEEP. The Variance Estimation
branch could be optionally replaced by a different methodology.

is the Fisher information matrix associated with βkl. Let
us denote

Ikl = q4
kl

7∑
i,j=0

(
f ijkl

)4

σ4
ij

, (36)

ιkl = 2q2
kl

7∑
i,j=0

(
f ijkl

)2

σ2
ij

. (37)

The entries of the Fisher information matrix (35) are
given by:

I+
kl = (1− 2ukl)4Ikl + ιkl, (38)
I−kl = (1 + 2ukl)4Ikl + ιkl, (39)
I±kl = (1 + 2ukl)2(1− 2ukl)2Ikl − ιkl. (40)

We provide details on deriving the Fisher information
matrix in the Appendix.
Assuming σ2

ij ≥ 1, the leading term of the Fisher
information is ιkl, which is present due to Eve’s knowledge
of µ. Hence the embedding scheme derived by Alice is
almost independent of the side information. This makes
intuitive sense because, for omniscient Eve, it is much
easier to estimate pixel mean (denoising) than to estimate
the variance. In turn, we could expect that Alice is limited
to very small embedding payloads.

C. Realistic Attacker
As mentioned in the previous section, full knowledge

of the side information virtually disables its effect during
embedding. In this section, we thus consider more realistic
(even though still very powerful) Eve. In particular, we
assume Eve has access to the variance of embedding
changes Var(η) and the covariance between the embedding
changes and the rounding errors Cov(η, U). On the other
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hand, we assume that Eve does not have access to the
precover or the expectation of embedding change E[η]. In
practice, we are not sure if Eve can access the residuals
e, but it was shown [11] that the decompression rounding
errors y−[y] are excellent approximations of such signals.2
For this reason, we assume that Eve does, in fact, have
access to the residuals. It is helpful to mention that with
the knowledge we granted Eve, she cannot reconstruct
the change rates β±kl nor the side information ukl. That
is in accordance with our real-world expectations since
the change rates are correlated with the side information,
which is, by definition, inaccessible.
Eve’s hypothesis test then transforms into

H0 : e ∼ N (0,Σij), (41)
H1 : e ∼ N (0,Σij). (42)

Following the same methodology from the previous
section, we find that Alice wants to minimize the KL
divergence (34), but the elements of the Fisher information
matrix (35) are of the form

I+
kl = (1− 2ukl)4Ikl, (43)
I−kl = (1 + 2ukl)4Ikl, (44)
I±kl = (1 + 2ukl)2(1− 2ukl)2Ikl, (45)

with Ikl from (36).
The proposed strategy assumes that pixel variance is

known to the steganographer. However, this is not the
case in practice because Alice has an image and needs
to estimate the variance in some way before the embed-
ding procedure (unless we assume Alice has additional
knowledge, which we do not in this work). Similarly, Eve,
who observes a potential stego version of the same image,
cannot know the actual variance of pixels. Since we want to
compare two embedding strategies, assuming omniscient
or realistic attacker, and we want to avoid the effect
of imprecise variance estimation, we create an artificial
source where we have control over pixel variances. This
source is detailed in Section IV-B, and Section V-A shows
that assuming omniscient Eve compared to the realistic
one leads to severe security decay when tested against a
state-of-the-art steganalyzer.

D. Variance Estimation
In an image source where we do not know the variance

of the noise, it is necessary to estimate it. However, this
could create errors due to imprecise estimation. We will
therefore use some of the best practices for estimating
the variance. We consider two different variance estimators
for two different situations. The first is for steganography
targeting ’standard’ steganalysis, while the second targets
the Reverse JPEG Compatibility Attack used for images
compressed with QF 100.

2At least for quality factors 99 and 100.
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Figure 2. Expectation of embedding change as a function of the
rounding error ukl from one image, QF 95, 0.5 bpnzAC. Left:
JEEP(o), right: JEEP(r).

1) MiPOD-Estimator: For ’standard’ steganography,
the methodology of computing variance, depicted in Fig-
ure 1, is described in the following. First, we need to
estimate the pixel variances σ2

ij . We decided to use a pop-
ular trigonometric variance estimator originally used for
MiPOD [45], which is also used in its JPEG extension [20],
[21]. For the sake of brevity, we refer the reader to the
publications mentioned above for more details about the
variance estimator.
Due to imprecise variance estimates, smoothing with

the neighboring blocks in the DCT domain, as proposed
in [21], is done to mitigate overly-content adaptive em-
bedding. First, we compute the DCT variances Σkl =
DΣijDT .
The squared variances are then smoothed by averaging

nine neighboring DCT coefficients from the same DCT
mode:

σ̃−4
kl =

1∑
i=−1

1∑
j=−1

wijσ
−4
k+8i,l+8j , (46)

where w is the averaging kernel:

w = 1
20

 1 3 1
3 4 3
1 3 1

 . (47)

Finally, the smooth DCT variances are lower-bounded
by σ̃2

kl = min{10−10, σ̃2
kl}, to prevent numerical instabili-

ties, and decompressed to obtain final smoothed variance
estimates Σ̃ij = DT Σ̃klD.
While we think there are many possible ways of smooth-

ing the variance, we chose this (perhaps cumbersome) way
because it has been shown in practice that smoothing the
DCT variances provides good results for steganography.
2) RJCA-Estimator: The second variance estimator

we use in this work is for images compressed with QF
100. A different variance estimator is necessary because
RJCA [11] can be used to steganalyze these images, and
the MiPOD estimator was designed with feedback from
spatial domain steganalysis. We decided to use constant
variance for all pixels since it was shown [8] that using
constant costs with a cleverly picked polarity of the em-
bedding changes is a good strategy against the RJCA. We
refer to JEEP with this constant variance estimator as
JEEP-C. Unlike in the previous section, JEEP-C does not
require Fisher Information smoothing. We also tested the
MiPOD variance estimator for this case (JEEP); however,
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its performance was worse than using simple constant
variance, and thus we do not mention its results.

E. Obtaining the Change Rates
The goal of the proposed scheme is to solve (30) un-

der the payload constraint (31). To achieve this, we use
the method of Lagrange multipliers. Together with the
payload constraint (31), this forms 2N + 1 equations
with 2N + 1 unknowns composed of the change rates
β±n , n = 1, . . . , N , and the Lagrange multiplier ϑ:

β+
n I

+
n + β−n I

±
n = λ log 1− β+

n − β−n
β+
n

, (48)

β−n I
−
n + β+

n I
±
n = λ log 1− β+

n − β−n
β−n

, (49)

N∑
n=1

H3(β+
n , β

−
n ) = α. (50)

Equations (48)-(50) can be solved efficiently with the
Newton method by parallelizing over all N DCT coeffi-
cients and a binary search over λ satisfying the payload
constraint.

To employ a coding mechanism, such as Syndrome-
trellis codes [27], the change rates can be converted into
embedding costs:

ρ±n = log
(

1− β+
n − β−n
β±n

)
. (51)

The costs are obtained by inverting the formula for
optimal change rates, given embedding costs:

β±n = e−λρ
±
n

1 + e−λρ
+
n + e−λρ

−
n

. (52)

F. Discussion
We observed that constraining embedding in the ’ra-

tional’ DCT modes, as described in Section I-A, is in-
deed necessary in order to avoid security deterioration.
However, we can see that this would not be the case
for omniscient Eve since then the term (37) needs to be
present in the Fisher information, which automatically
avoids the problem of Fisher information being zero.

It was shown [14] that steganographic costs can be
viewed as estimators of a reciprocal standard deviation
of pixels. Seeing the linear relationship between the stan-
dard deviation and the side information (43),(44) could
explain why using the linear term (1 − 2ukl) in the cost-
based side-informed steganography (3),(4) works best in
practice. Interestingly, a second power of (1 − 2ukl) (5)
was derived in [25] from the image model. We believe this
is due to modeling stego image as a mixture of Gaussian
distributions. The fourth power of (1 ± 2ukl) present
in (43),(44) was already used in SI-JMiPOD [21], but the
explanation was heuristic and did not come from the image
model. This heuristic also prevented the authors from
using ternary embedding since they were probably unsure
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PFA
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Figure 3. ROC curves of JIN-SRNet, trained on N-BOSSBase cover
images compressed with QF 95 and stego images embedded with 0.5
bpnzAC.

how to handle the term I±kl. Since JMiPOD models stego
DCT coefficients as a Gaussian mixture, we believe the
modulation (5) should have been used instead, similarly
as in SI-MiPOD [25].
Lastly, if the side information is unavailable, JEEP

naturally degenerates into a non-informed scheme, sim-
ply by setting E[u] = 0. Interestingly, even though the
proposed method changes pixel variance instead of mean,
the resulting Fisher information closely resembles that of
JMiPOD. While JMiPOD computes DCT variance (11)
and uses its square to compute the Fisher information

σ−4
kl =

(∑7
i,j=0

(
f ijkl

)2
σ2
ij

)−2
, we found out that the

Fisher information contains
∑7
i,j=0

(fij
kl)

4

σ4
ij

instead. It can
be easily shown that the value computed by JMiPOD
is always greater than Ikl, making the embedding more
content-adaptive.

IV. Datasets and Detectors

A. Experimental Setup
To experimentally verify our results, we chose two pop-

ular datasets used for steganographic benchmarking. First
is the BOSSbase [4] dataset, made of 10, 000 uncompressed
grayscale images of size 512 × 512, split into training,
validation, and testing sets of sizes 7, 000, 1, 000, and
2, 000, respectively. The other dataset is the ALASKA2
dataset [19], comprising 25, 000 uncompressed grayscale
images of size 512× 512. We split the ALASKA2 dataset
into training, validation, and testing sets of 22, 000, 1, 000,
and 2, 000 images. Both datasets are then JPEG com-
pressed with python’s PIL library with several quality fac-
tors (QF). For security comparison with the prior art, we
picked SI-UNIWARD [24], [37], [39] and SI-JMiPOD [21]
algorithms as two main representatives of state-of-the-
art steganography with side information. To add more
contrast w.r.t. prior art on QF 100, we added SVP [8]. This
algorithm was explicitly designed to be robust against the
RJCA, even though without the use of side information.
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Figure 4. Accuracy of three different detectors on BOSSBase.

We use four types of detectors to evaluate stegano-
graphic security. First is EfficientNet-B0 [43], initialized
with weights pre-trained on the ImageNet dataset [26].
This detector, which we denote as e-B0, is used to test
security against the RJCA and is trained only on the
spatial domain rounding errors eij = yij − [yij ] of im-
ages compressed with QF 100. The next two detector we
use to verify security in the pixel domain are the JIN-
SRNet [15], SRNet [5] pre-trained on ImageNet embedded
with J-UNIWARD at a variable payload, and EfficientNet-
B4 [43]. The SRNet was trained with the Pair Constraint
(PC) - forcing the cover and its stego version into the
same mini-batch. Unlike in [15], it was observed in this
work to boost the network’s performance. We believe this
is caused by a much bigger security of the side-informed
algorithms. Similarly, EfficientNet-B4 was first trained on
the largest payload 0.7 bpnzAC, because it would not
converge on smaller payloads. From this point, it was
fine-tuned to every other payload (including 0.7 bpnzAC)
without the PC, because it was observed that with the PC,
the detector suffers from tremendous overfitting. The PC
was not used for the e-B0, as it did not bring any detection
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Figure 5. Accuracy of e-B0 on BOSSBase images compressed with
QF 100.

improvements. Mini-batch sizes of SRNet, e-B0, and B4
detectors were set to 32, 32, and 24 images respectively.
The e-B0 is only trained for 15 epochs, as the detection
saturates quickly in this scenario. The B4 and SRNet, on
the other hand, were trained for 50 epochs in BOSSBase
and 20 epochs in ALASKA2 due it its much bigger training
set. All the other hyperparameters of SRNet and B0 are
kept exactly as in [15] (see Section 3.2.1), while B4 used the
same hyperparameters as B0. Because the detectability in
the spatial domain is typically much smaller than in the
RJCA scenarios, we use larger payloads for the spatial
domain detector. The last detector we use is the Low-
Complexity Linear Classifier [22] (LCLC) coupled with
DCTR features [38]. We include this detector to verify
security in the DCT domain as well. The LCLC was
trained on half of the images and tested on the other half
for both datasets.

B. Controlled Source
To verify the validity of our assumptions on Eve’s

knowledge, we created an artificial cover source [7], which
allows us to have the true pixel variances without the need
to estimate them. In this dataset, we denoise the images to
eliminate the dependencies caused by the RAW develop-
ment and further processing. The images are then noisified
to enforce our cover model (14). We briefly summarize the
creation of the dataset in 5 steps:
1) Estimate pixel variance σ2

ij using MiPOD’s variance
estimator introduced in Section (III-D).
2) Denoise every image with Daubechies 8-tap

wavelets [42] by removing i.i.d. Gaussian noise with a
standard deviation σden = 10. The (non-integer) pixel
values of the denoised image are clipped to the dynamic
range of 8-bit grayscale images [0, 255].
3) Narrow the dynamic range into [15, 240] by a linear

transformation of the pixels and round them to integers.
Denote them as µij .
4) Adjust the variance so that the probability of a

noisified pixel being outside of the interval [0, 255] is equal
to a one-sided 5σ Gaussian outlier (2.87 × 10−7). This is
done by computing σij = min{ 1

5 min{µij , 255− µij}, σij}.
5) Noisify cover pixels xij by adding samples from
N (0, σ2

ij). The resulting cover image model comprises



10

0.3 0.4 0.5 0.6 0.7
Payload (bpnzAC)

0.5

0.6

0.7

0.8

0.9

1.0
A

cc
u

ra
cy

QF75 QF95

SI-UNIWARD

SI-JMiPOD

JEEP

JIN-SRNet

0.3 0.4 0.5 0.6 0.7
Payload (bpnzAC)

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

QF75 QF95

SI-UNIWARD

SI-JMiPOD

JEEP

EfficientNet-B4

0.3 0.4 0.5 0.6 0.7
Payload (bpnzAC)

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

QF75 QF95

SI-UNIWARD

SI-JMiPOD

JEEP

DCTR

Figure 6. Accuracy of three different detectors on ALASKA2.

independent Gaussian variablesN (xij , σ2
ij) rounded to the

nearest integers and clipped to [0, 255].
For more details about the ’noisifying’ procedure, see [7].

This noisified dataset was created from BOSSbase, and we
refer to it as N-BOSSbase.

V. Results
In this section, we first evaluate the validity of assump-

tions on the steganalyst by training a detector in a con-
trolled environment. We show that assuming all-powerful
Eve is a fundamental mistake Alice can make because
the detectability of her resulting embedding algorithm is
extremely high. In the other two sections, we evaluate
JEEP in BOSSBase and ALASKA2 datasets with several
steganalyzers. We show that it provides superior security
to previous state-of-the-art side-informed steganography.

A. Attacker Capabilities Effect (Controlled Source)
In this section, we aim to investigate the difference

between Alice’s assumptions on Eve. On the one hand, Eve
is assumed to be omniscient - has full access to the side
information. We have shown in Section III-B that Alice’s
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Figure 7. Accuracy of eB0 on ALASKA2 images compressed with
QF 100.

embedding strategy, in this case, is to minimize the KL
divergence with the Fisher information matrix (38)-(40).
On the other hand, Alice can assume a more realistic Eve
described in Section III-C. The only thing Alice needs to
change in such a scenario is using the Fisher information
matrix of the form (43)-(45) instead. We refer to these
two embedding algorithms as JEEP(o) and JEEP(r) for
omniscient and realistic.
In Figure 2, we show the expectation of embedding

change β+ − β− as a function of the rounding error u for
the omniscient and realistic attacker. We can clearly see
that for the omniscient Eve, the side information has no
effect on the embedding because it stays symmetric. For
the realistic attacker, the side information introduces a lot
of asymmetry.
Next, we trained JIN-SRNet on the denoised images

from N-BOSSBase compressed with QF 95 and embedded
with 0.5 bits per non-zero AC DCT coefficient (bpnzAC).
We used SI-JMiPOD, SI-UNIWARD, and JEEP(o,r).
Since the pixel variances are known for all methods, we
skipped the smoothing (46) (SI-UNIWARD does not use
any smoothing). We show the ROC curves of these detec-
tors in Figure 3. Several observations can be made from
this figure. First, the assumption of omniscient Eve during
embedding makes, in fact, makes the scheme highly de-
tectable. Next, JEEP(r) provides the best security across
embedding schemes. We believe the improvement over SI-
JMiPOD comes mainly from two things. 1) JEEP is, by
nature, a ternary embedding scheme, which reduces the
total number of embedding changes. 2) Different method-
ology of computing the Fisher information aimed specif-
ically against spatial steganalysis, as pointed out in Sec-
tion III-F. And lastly, SI-JMiPOD and SI-UNIWARD have
a very similar ROC curve, which is somewhat surprising
because in uncontrolled datasets (see Sections V-B,V-C),
SI-UNIWARD is way more detectable.
We have seen that with a state-of-the-art steganalyzer,

assuming an omniscient attacker during embedding leads
to severe security underperformance. That makes us con-
clude that such an assumption is unrealistic, and for the
rest of the paper, we only assume realistic Eve. We will
refer to Alice’s embedding algorithm simply as JEEP.
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B. BOSSBase
In this section, we evaluate the empirical security of

JEEP in the popular BOSSBase database. In Figure 4,
we plot the accuracies of SRNet, B4 and DCTR as a
function of relative payload α for QFs 75 and 95. When
steganalyzing with SRNet, we can see similar behavior
for JEEP and SI-JMiPOD at QF 75, with SI-UNIWARD
being much more detectable across all payloads. Similarly
for EfficientNet-B4. For QF 95, we can see better security
for JEEP by up to 3.2% in terms of accuracy of SRNet and
up to 6% for B4. With DCTR, we can see that JEEP is
more detectable than SI-JMiPOD. That is not surprising,
as JEEP was built with a decompressed image model,
while JMiPOD uses a model in the DCT domain, where
the steganalysis is performed. However, we can see that the
detectability is much higher in the spatial domain across
all QFs and payloads.

Results for images compressed with QF 100 are shown
in Figure 5. Notice that the payloads are much smaller due
to the detection power of RJCA. While JEEP is slightly
more secure than SI-JMiPOD (results were omitted), we
can see significant improvements in security with JEEP-
C, up to 9% for 0.1 bpnzAC. Finally, compared to the
state-of-the-art SVP without side information, we can see
security gains of up to 27%.

C. ALASKA2
Results for the ALASKA2 dataset are fairly similar to

BOSSBase. From Figure 6, we can still see better security
of SI-JMiPOD against DCTR. However, SRNet is the
most accurate detector, which in the end makes JEEP
more secure. We can observe that for payloads below 0.5
bpnzAC, JEEP is a bit more detectable than SI-JMiPOD.
We consider this difference statistically insignificant since
the detectability of both schemes for these lower payloads
is below 60%. In other cases, JEEP offers better security
than the other two embedding schemes. This is especially
true for QF 95, where JEEP outperforms SI-JMiPOD by
up to 3% for 0.6 bpnzAC.

At QF 100, Figure 7 shows again an improvement of
JEEP-C over other side-informed methods by up to 5.5%
in detectability at 0.1 bpnzAC. Compared to non-informed
SVP, the gains are as high as 29.5%.

VI. Conclusions
This paper introduces a side-informed embedding

scheme driven by a statistical model of a decompressed
image. For the first time, the side information, in the form
of JPEG compression rounding errors, is used through
covariance with the embedding changes. This allows us
to get rid of typical heuristics around the rounding errors.
Since we cannot compute the covariance from one given
observation of a rounding error, we estimate its value with
the help of several simplifying assumptions. This naturally
creates an asymmetry of embedding changes, which is
captured by the Fisher information matrix.

Due to better steganalysis in the spatial domain, we
use this covariance in the model of a decompressed JPEG
image. We then minimize the Kullback-Leibler divergence
between the cover and stego distributions to bound the
power of the likelihood ratio test. To be statistically
significant, we show that the side information can be and
has to be considered unavailable to a potential attacker.
We demonstrate through experiments that the proposed

algorithm outperforms other state-of-the-art side-informed
algorithms. This is especially true for images compressed
with Quality Factor 100, where the Reverse JPEG Com-
patibility Attack can be applied. By using constant pixel
variance, the gains in security are up to 9%. While the
proposed algorithm is developed assuming the knowledge
of the side information, we anticipate that the superiority
of the introduced model will be even more obvious in the
case without the side information since we believe that
the side information overweights the importance of the
underlying image model.
In the future, we plan to extend the methodology into

color images, as well as different types of side information
and no side information. The source code for JEEP is
available from https://janbutora.github.io/downloads/.
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Appendix

Lemma 1. If β+ ≥ 2β−, u ≥ 0, then

3(β+ − β−)u ≥ 2(β+ + β−)u2.

Similarly for β− ≥ 2β+, u ≤ 0.

Proof: For u = 0, the result holds.
Let now u ∈ (0, 1/2] and β+ ≥ 2β−. Let us assume

3(β+ − β−) < 2(β+ + β−)u. We will show that this leads
to a contradiction.
It follows that

β+(3− 2u) < β−(2u+ 3)
β+

β−
<

2u+ 3
3− 2u

= −1 + 6
3− 2u

< 2.

https://janbutora.github.io/downloads/
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Likelihood-Ratio Test

For clarity, we omit the indices of variables in the
following. The test statistic of the LRT (25) for a single
pixel is

Λ(e) = 1
2 log σ

2

σ2 + e2σ
2 − σ2

2σ2σ2 + e
µ

σ2 −
µ2

2σ2 .

It follows that the mean of the test statistic under null
and alternative hypotheses is

E0[Λ(e)] = 1
2 log σ

2

σ2 + σ2 − σ2

2σ2 − µ2

2σ2 ,

E1[Λ(e)] = 1
2 log σ

2

σ2 + σ2 − σ2

2σ2 + µ2 2σ2 − σ2

2σ2σ2 .

Next, let us remind the reader that for a random variable
X ∼ N (µ, σ2), the fourth moment is computed as E[X4] =
µ4 + 6µ2σ2 + 3σ4, and variance of X2 is then given by
Var(X2) = E[X4]− σ4 − µ4 − 2µ2σ2 = 2σ4 + 4µ2σ2.

The variances of a pixel test statistic are

Var0[Λ(e)] = σ2

σ2 (σ2 − σ2 + µ),

Var1[Λ(e)] = σ2 + 2µ2

σ2 (σ2 − σ2) + µ.

The deflection coefficient δ and the variance effect %
from (26) can now be expressed as

δ =
∑N
i=1 (E1[Λ(ei)]− E0[Λ(ei)])√∑N

i=1 Var0[Λ(ei)]

=

∑N
i=1

(σ2
i−σ

2
i )2+µ2

i (3σ2
i−σ

2
i )

2σ2
i
σ2

i√∑N
i=1

σ2
i

σ2
i
(σ2
i − σ2

i + µi)
,

and

% =
∑N
i=1 Var1[Λ(ei)]∑N
i=1 Var0[Λ(ei)]

=

∑N
i=1

σ2
i +2µ2

i

σ2
i

(σ2
i − σ2

i ) + µi∑N
i=1

σ2
i

σ2
i
(σ2
i − σ2

i + µi)
.

We can see that even for realistic Eve (µ = 0), expres-
sions for δ and % are not possible to write down in a simple
form.

Taylor Expansion of KL Divergence

Denote D(β) = D(C||S) the 8 × 8 block KL diver-
gence (33), where β is a vector of all 128 change rates
β+
kl, β

−
kl, 0 ≤ k, l ≤ 7. Using the independence of em-

bedding changes (S1), the derivatives of stego mean and
variance are

∂σ2
ij

∂β±kl
=

(
f ijkl

)2
q2
kl((1∓ 2ukl)2 ∓ 2(β+

kl − β
−
kl)),

∂2σ2
ij

∂2β±kl
= −2

(
f ijkl

)2
q2
kl,

∂2σ2
ij

∂β+
kl∂β

−
kl

= 2
(
f ijkl

)2
q2
kl,

∂µij

∂β±kl
= ±f ijklqkl.

Second-order Taylor expansion around zero dictates
D(β) = D(0) + β∇D(0) + 1

2 β∇2D(0)βT .
For zero-change rates, the stego distribution is equal to

the cover distribution, therefore D(0) = 0. The derivatives
of the KL divergence w.r.t. change rates are

∂

∂β±kl
D(β) = ∂

∂β±kl

1
2

7∑
i,j=0

log
σ2
ij

σ2
ij

+
µ2
ij + σ2

ij − σ2
ij

σ2
ij

= 1
2

7∑
i,j=0

(
∂σ2

ij/∂β
±
kl

σ2
ij

−
σ2
ij∂σ

2
ij/∂β

±
kl

σ4
ij

+
2µijσ2

ij∂µij/∂β
±
kl − µ2

ij∂σ
2
ij/∂β

±
kl

σ4
ij

)
.

Then, since σ2
ij |β=0 = σ2

ij we get ∇D(0) = 0. We
already see that the only remaining term in the Taylor
expansion is the Fisher information matrix. We will show
only the computation of I+

kl since I
−
kl and I±kl follow the

same logic.
Denoting ∂σ2

ij = ∂σ2
ij/∂β

+
kl, ∂2σ2

ij = ∂2σ2
ij/∂

2β+
kl and

∂µij = ∂µij/∂β
+
kl, the second derivative of KL divergence

is

∂2

∂2β+
kl

D(β) = 1
2
∑
i,j

(
σ2
ij∂

2σ2
ij − (∂σ2

ij)2

σ4
ij

+
2σ2

ij(∂µij)2 − µ2
ij∂

2σ2
ij

σ4
ij

−
σ2
ijσ

4
ij∂

2σ2
ij − 2σ2

ijσ
2
ij(∂σ2

ij)2

σ8
ij

−
2σ2

ij∂σ
2
ij(2µijσ2

ij∂µij − µ2
ij∂σ

2
ij)

σ8
ij

)
.

Finally

I+
kl = ∂2

∂2β+
kl

D(0)

= 1
2

7∑
i,j=0

(∂σ2
ij |β=0)2

σ4
ij

+ 2(∂µij)2

σ2
ij

= 1
2

7∑
i,j=0

(
f ijkl

)4
q4
kl(1− 2ukl)4

σ4
ij

+ 2

(
f ijkl

)2
q2
kl

σ2
ij

.
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