Clément Aubert
email: aubert@math.cnrs.fr

Thomas Rubiano
email: rubiano.thomas@gmail.com

Neea Rusch
email: nrusch@augusta.edu

Thomas Seiller
email: seiller@lipn.fr

Certifying Complexity Analysis

Keywords: CCS Concepts:, Theory of computation → Program verification; Complexity theory and logic Implicit Computational Complexity, Automatic Complexity Analysis, Program Verification

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Motivation

The ability to statically infer resource bounds of programs offers numerous benefits, e.g., to insure safe memory usage. Even more preferable if those guarantees are established with the rigor of formal verification, because that increases confidence in the obtained analysis result and enables integration of complexity analyses into larger formal developments.

Unfortunately, computational complexity is notoriously difficult to represent formally for several reasons. In general, deriving a complexity bound for an arbitrary program is an undecidable problem. In the area of complexity theory, "formalisations of even basic complexity-theoretic results are not available" [11, p. 114], hindering certification attempts.

For practical complexity analyses, many existing techniques present methodological challenges if they require e.g., program termination or inlining functions [START_REF] Carbonneaux | Compositional certified resource bounds[END_REF]. Therefore, a realistic pathway toward formal certification of a program's resource usage is narrow. A few encouraging early results exist, and we discuss some of those in Sect. 3. In this proposal we will sketch how a different approach, founded on Implicit Computational Complexity, could sidestep some of the usual difficulties in implementing and verifying complexity analyses in Coq.

The field of Implicit Computational Complexity (ICC) [START_REF] Dal | A Short Introduction to Implicit Computational Complexity[END_REF] drives better understanding of complexity classes, but it also guides the development of resources-aware languages and static source code analyzers. The core idea is to bound resources while the program is being written (or type checked) instead of measuring its resource usage afterwards on an abstract model of computation. This can be done through e.g., bounded recursion or using typing mechanisms. The goal is to find a syntactical restriction or a type system such that a program can be written or typed only if it belongs to a particular complexity class. ICC-based systems are often compositional and they offer more natural tools to write programs than theoretical models of computation used in complexity theory. We speculate these combined properties could make ICC-approaches a conceivable pathway toward certified complexity and sketch a more detailed plan below.

Preliminary Action Plan

We plan to formalize in Coq an ICC-based complexity analysis technique, the mwp-flow analysis [START_REF] Jones | A flow calculus of mwp-bounds for complexity analysis[END_REF] 1 . We chose this method because its internal mechanics has been recently studied [START_REF] Aubert | mwp-Analysis Improvement and Implementation: Realizing Implicit Computational Complexity[END_REF], and by our assessment, it seems suitable for formalization in Coq. As for Coq, it seems like the ideal target language because of its existing libraries and preliminary work-some of which are discussed in Sect. 3-, most notably related to compilers [START_REF] Leroy | Formal verification of a realistic compiler[END_REF].

Overview of mwp-Flow Analysis

The mwp-flow analysis certifies polynomial bounds on the size of the values manipulated by an imperative program. While it does not ensure (or require) program termination, it provides a certificate guaranteeing that the program uses throughout its execution at most a polynomial amount of space, and as a consequence that if it terminates, it will do so in polynomial time in the size of its inputs.

The analysis computes, for each program variable, a vector tracking how it depends on other variables. The vector values are determined by applying the nondeterminitic rules of the sound mwp-calculus to the commands of the program. Those vectors are collected in a matrix. A program is assigned a matrix only if all the values in it are bounded by a polynomial in the inputs sizes. This technique is compositional, abstracts away e.g., iteration bounds, and operates on a memory-less imperative language, reminiscent of the Imp language from Software Foundations [START_REF] Pierce | Logical Foundations[END_REF].

The Coq Formalization

Our goal is to certify the analysis as presented in the original paper [START_REF] Jones | A flow calculus of mwp-bounds for complexity analysis[END_REF]. Note that this does not mean that the bound is certified, but that the mechanism to compute those bounds is certified. Of course, this implies the correctness of the bounds as a by-product but constitutes a major difference w.r.t. the results discussed in Sect. 3. Preliminary explorations have led us to establish the following milestones.

The mathematical foundations Our first goal is to define the mathematical structure required to carry out the rest of the construction. This requires defining vectors, matrices and their operations, semi-rings, and honest polynomials 2 that are needed to represent the mwp-bounds. The Mathematical Components library [START_REF][END_REF] will lay the foundations for the linear algebra representations, but likely requires extensions to accommodate our specific analysis. Implementing the language The analyzed language is a simple imperative language that manipulates natural numbers, held in a fixed number of program variables. Its syntax includes variables, expressions (operations + and ×), Boolean expressions, and commands (e.g., assignment, loop and decision statements, command sequences, and skip), with their usual semantics. We expect implementing it and its small-steps semantics in Coq to be relatively simple, following the examples from Software Foundations [START_REF] Pierce | Programming Language Foundations[END_REF][START_REF] Pierce | Logical Foundations[END_REF]. Implementing the typing system Even if it can be computationally expensive to run an automatic inference [START_REF] Aubert | pymwp: A Tool for Guaranteeing Complexity Bounds for C Programs[END_REF], the typing system in itself is relatively simple. It contains only 10 rules, essentially one for each type of command, and except for the initial assignment of vectors to variables, is fully deterministic. We conjecture that standard methods [START_REF] Chlipala | An Introduction to Programming and Proving with Dependent Types in Coq[END_REF][START_REF] Chlipala | Formal Reasoning About Programs[END_REF] to implement simple type systems will be enough, but will require some care to scale to the matrix-as-type paradigm of this analysis. Certifying the analysis This will be the most demanding part of our plan. The original paper contains all the required handwritten proofs, but the authors caution that "[t]hese proofs are long, technical and occasionally highly nontrivial" [15, p. 2]. The main result of the paper is the soundness proof of the analysis [15, Theorem 5.3], i.e., the proof of the existence of a matrix typing the program implies the existence of an honest polynomial bounding the variables' growth 2 Which are "polynomial build up from constants in N and variables by applying the operations + (addition) and × (multiplication)." [15, p. 5] rates. The main result follows from 15 pages of proofs presented in section 7 of the paper. This section revolves around proving the soundness properties of the calculus, and we expect the most substantial effort to be spent on formalizing these proofs. Some of them are quite intricate but with a satisfactory level of detail. The cases concerning soundness of loops are the most difficult on paper, but their inductive nature should (we hope!) be processed by Coq rather easily.

We leave for future work the possibility of creating a formally verified, automatic static analyzer founded on the proof of correctness of this method: as we discussed in other works [START_REF] Aubert | mwp-Analysis Improvement and Implementation: Realizing Implicit Computational Complexity[END_REF][START_REF] Aubert | pymwp: A Tool for Guaranteeing Complexity Bounds for C Programs[END_REF], care is required to implement a typing strategy that does not rapidly become intractable.

Related Work

A few prior results exist that combine formalization of complexity and Coq. They range from practical analyses to proofs in computational complexity theory.

For practical application, Coq has been used to verify stack bounds for assembly code [START_REF] Carbonneaux | End-to-end verification of stack-space bounds for C programs[END_REF] and to obtain WCET loopbound estimation [START_REF] Blazy | Formal Verification of Loop Bound Estimation for WCET Analysis[END_REF]. Carbonneaux et al. [START_REF] Carbonneaux | Automated Resource Analysis with Coq Proof Objects[END_REF] presented an automatic static analyzer for imperative programs, and although the analyzer itself is not verified, it generates bounds with machine-checkable certificates, to guarantee that the computed bound holds. For functional paradigm, McCarthy et al. [START_REF] Mccarthy | A Coq library for internal verification of running-times[END_REF] developed a Coq library, with a monad that counts abstract steps, which enabled running time analysis of programs written using the monad. An ICC-based characterization was introduced by Férée et al. [START_REF] Férée | Formal proof of polynomial-time complexity with quasi-interpretations[END_REF], in the form of a Coq library, that allows for readily proving that a function is computable in polynomial time.

Coq has also been used to formalize some of the foundations of modern complexity theory. Ciaffaglione [START_REF] Ciaffaglione | Towards Turing computability via coinduction[END_REF] proved the undecidability of the halting problem. Guéneau et al. [START_REF] Guéneau | A Fistful of Dollars: Formalizing Asymptotic Complexity Claims via Deductive Program Verification[END_REF] formalize the O notation. Forster et al. [START_REF] Forster | Verified programming of Turing machines in Coq[END_REF] implemented a multi-tape to single-tape compiler, and introduced the first formalized universal Turing Machine verified w.r.t. time and space complexity, for any model of computation, in any proof assistant. More recently, Gäher and Kunze formalized the Cook-Levin theorem in Coq [START_REF] Gäher | Mechanising Complexity Theory: The Cook-Levin Theorem in Coq[END_REF]. Despite these advances, formalization of complexity is in early stages and basic complexitytheoretic results e.g., time and space hierarchy theorems, remain unavailable.

Our proposed project differs from these earlier results primarily in its intent. We plan to formalize the complexity analysis mechanism itself-not its computed result, as was done previously. In their work with the Turing Machines, Forster et al. [START_REF] Forster | Verified programming of Turing machines in Coq[END_REF] were explicit in emphasizing the challenge they experienced in formalizing complexity. We hypothesize that our ICC-based approach, with e.g., its built-in abstractions, will help reduce this challenge. It is our hope that CoqPL will welcome our proposal for a certified complexity 2023-04-26 20:37. Page 2 of 1-3.

Where mwp stands for maximum, weak polynomial and polynomial, representing increasing growth rates of variables values.

2023-04-26 20:37. Page 1 of 1-3.

Acknowledgments

The authors wish to thank Delphine Demange for the interesting discussion she had with Neea, and the reviewers for their careful reading and many interesting comments. This research is supported by the Th. Jefferson Fund of the Embassy of France in the United States and the FACE Foundation, and has benefited from the research meeting 21453 "Static Analyses of Program Flows: Types and Certificate for Complexity" in Schloss Dagstuhl. Th. Rubiano and Th. Seiller are supported by the Île-de-France region through the DIM RFSI project "CoHOp". N. Rusch is supported in part by the Augusta University Provost's office, and the Translational Research Program of the Department of Medicine, Medical College of Georgia at Augusta University.

analysis in Coq, and will be keen on indicating any library, tool or resource that could help.