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The goal of this work is the formulation and analysis of the COVID-19 (coronavirus disease 2019) transmission dynamics model which takes into account two doses of the vaccination process, confinement, and treatment with limited resources, using both integer and fractional derivatives in the Caputo sense. After the model formulation with classical derivative, we start by establishing the positivity, boundedness, existence, and uniqueness of solutions. Then, we compute the control reproduction number R c and perform the local and global asymptotic stability of the disease-free equilibrium whenever R c < 1. We also prove the existence of at least one endemic equilibrium point whenever R c > 1. Using real data from Germany, we calibrate our models by performing parameter estimations. We find that the control reproduction number is approximately equal to 1.90, which implies that the disease remains endemic in Germany. We also perform global sensitivity analysis by computing partial rank correlation coefficients (PRCC) between R c (respectively compartments of infected individuals) and each model parameter. By fixing vaccine coverage at 70%, we observe that it might be more effective to increase the vaccine efficacy than increasing the numbers of vaccinated people. After that, we formulate the corresponding fractional model in the Caputo sense, proving positivity, boundedness, existence, and uniqueness of solutions. We also compute the control reproduction number of the fractional model, which depends on the fractional order φ. We prove the local and global asymptotic stability of the disease-free equilibrium whenever the control reproduction number is less than one, as well as the existence of an endemic equilibrium point whenever the control reproduction number is greater than one. To validate our theoretical analysis of both models, and compare the two types of derivatives, we perform several numerical simulations. We find from numerical simulations, that for a long-term forecasting, it seems better to use a fractional derivative in the range φ ∈ (0, 0.87] than using just ordinary derivatives. Indeed, for this range of the fractional-order parameter, daily detected cases are closer to those the model predicts.

Introduction

COVID-19 (coronavirus disease 2019

) is a disease caused by a new strain of coronavirus. The first case was reported in Wuhan, China in December 2019. Since then, the disease spread in many countries and became a pandemic [START_REF]World Health Organization and others, Coronavirus disease 2019 (covid-19): situation report[END_REF]. The virus called the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted to a healthy person via either respiratory droplets from coughs and sneezes of a infected person, within in a range of about 1.8 metres, or by contact with a contaminated object [START_REF] Hao | Reconstruction of the full transmission dynamics of COVID-19 in Wuhan[END_REF].

At the beginning of the pandemic, the absence of a general COVID-19 pre-existing immunity in humans as well as the absence of curative drugs and vaccines, have led to the choice of several countries to implement non-pharmaceutical interventions. These interventions include social distancing, hand-washing, confinement, isolation which is recommended in order to stop the spread of the virus [START_REF] Ngonghala | Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus[END_REF]. As of May 2021, different COVID-19 vaccines were authorized in some countries.

For emergency or full use, seventeen vaccines have been approved by at least one stringent regulatory authority recognized by the World Health Organization (WHO) [START_REF](WHO, Status of Covid-19 Vaccines within WHO EUL/PQ evaluation process[END_REF]. Twenty five [START_REF] Saadi | Models of covid-19 vaccine prioritisation: a systematic literature search and narrative review[END_REF] other vaccines are in the test phase [START_REF](WHO, Status of Covid-19 Vaccines within WHO EUL/PQ evaluation process[END_REF].

The problem remains the efficacy of each proposed vaccine [START_REF] Meo | Covid-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of pfizer/biontech and moderna vaccines[END_REF][START_REF]Covid-19 vaccines[END_REF]. A mini-review discussing the reliability and efficacy of COVID-19 vaccines revealed that four of the available vaccine had an efficacy greater than 80% (Pfizer-BioNTech (≈ 95%), Moderna (≈ 94%), Sputnik V (≈ 92%), and Oxford-AstraZeneca (≈ 81%)) [START_REF] Doroftei | Mini-review discussing the reliability and efficiency of covid-19 vaccines[END_REF]. These vaccines make it possible to attenuate the serious forms of the disease, thus reducing the number of deaths. This is why there has been a noticeable reduction in the number of hospitalizations as well as deaths linked to COVID-19 in countries in which the vaccination coverage was high [START_REF]COVID-19 Tracker, Outil de suivi du COVID-19[END_REF][START_REF] Doroftei | Mini-review discussing the reliability and efficiency of covid-19 vaccines[END_REF].

Since the work of Sir Ronald Ross on malaria [START_REF] Ross | Some quantitative studies in epidemiology[END_REF], mathematical modeling is used to describe transmission mechanisms as well as estimation and choice of control strategies. One of the first mathematical models, which was formulated to describe the new coronavirus transmission dynamics, has been the model proposed in [START_REF] Liu | Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions[END_REF] by Zhihua with his collaborators. The authors developed a Susceptible-Infectious-Symptomatic reported cases-Unreported cases-Removed epidemiological model to predict the COVID-19 epidemic in Wuhan. Chen et al. [START_REF] Chen | A mathematical model for simulating the phase-based transmissibility of a novel coronavirus[END_REF] also developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source (probably bats) to the human infection.

They estimated the value of the basic reproduction number R 0 of 3.58 (in fact, infection between reservoir and human gives a basic reproduction number equal to 2.30, and 3.58 from human to human). They concluded that the transmissibility of SARS-CoV-2 is higher than the Middle East respiratory syndrome (MERS) in the Middle East countries. Taking into account the existence of the super-spreader of the coronavirus, Ndaïrou et al. [START_REF] Ndaïrou | Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan[END_REF] formulated a compartmental model for the spread of the COVID-19 disease with application to Wuhan reported cases. Since then, several other models were also developed [START_REF] Asma | Mathematical modeling and analysis of the sars-cov-2 disease with reinfection[END_REF][START_REF] Djaoue | Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon[END_REF][START_REF] Du | Modeling comparative cost-effectiveness of sars-cov-2 vaccine dose fractionation in india[END_REF][START_REF] Khan | Modeling the dynamics of novel coronavirus (2019-ncov) with fractional derivative[END_REF][START_REF] Kumar | Prediction studies of the epidemic peak of coronavirus disease in Brazil via new generalised Caputo type fractional derivatives[END_REF][START_REF] Kumar | Prediction studies of the epidemic peak of coronavirus disease in japan: From caputo derivatives to atangana-baleanu derivatives[END_REF][START_REF] Nabi | Forecasting of covid-19 pandemic: From integer derivatives to fractional derivatives[END_REF][START_REF] Ngonghala | Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus[END_REF][START_REF] Olaniyi | Mathematical modelling and optimal cost-effective control of covid-19 transmission dynamics[END_REF].

Numerous works are conducted to evaluate the impact of vaccination on the fight against COVID-19 spread [START_REF] Liu | Optimizing covid-19 vaccination programs during vaccine shortages: A review of mathematical models[END_REF][START_REF] Moore | Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study[END_REF][START_REF] Moore | Modelling optimal vaccination strategy for SARS-CoV-2 in the UK[END_REF][START_REF] Omame | A fractional-order multi-vaccination model for covid-19 with non-singular kernel[END_REF][START_REF] Saadi | Models of covid-19 vaccine prioritisation: a systematic literature search and narrative review[END_REF][START_REF] Steyn | A covid-19 vaccination model for aotearoa new zealand[END_REF]. In [START_REF] Omame | A fractional-order multi-vaccination model for covid-19 with non-singular kernel[END_REF], the authors formulated a compartmental model to examine the impact of the use of three vaccine-types (Pfizer, Moderna and Janssen) on the dynamics of COVID-19 in a population. They used available data for these three vaccine-types to calibrate their model. They concluded through numerical simulations that the three vaccine-types permit to decrease the total number of individuals with severe COVID-19 illness, this means hospitalized persons. Moore et al. in [START_REF] Moore | Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study[END_REF][START_REF] Moore | Modelling optimal vaccination strategy for SARS-CoV-2 in the UK[END_REF] used a mathematical model structured by age to evaluated the use of COVID-19 vaccine as only control strategy in UK region.

The obtained results permitted to conclude that vaccination alone is insufficient to contain the outbreak. In the same way, Watson et al. [START_REF] Watson | Global impact of the first year of covid-19 vaccination: a mathematical modelling study[END_REF] concluded that vaccination has permitted to prevent 14.4 million deaths, due to the Coronavirus, in 185 countries and territories between Dec 8, 2020, and Dec 8, 2021. To estimate the costs of hospitalization, vaccination and the economic benefits of the reducing COVID-19 deaths, Du et al. in [START_REF] Du | Modeling comparative cost-effectiveness of sars-cov-2 vaccine dose fractionation in india[END_REF] developed a multi-scale model which takes into account population-level transmission and individual-level vaccination. Their model consisted of ten compartments in which two compartments stand for the two vaccine doses. They did not consider the environmental infection by indirect contact with tools infected by a infectious persons. To assess age-specific vaccine allocation strategies in India, Foy and coworkers in [START_REF] Foy | Comparing COVID-19 vaccine allocation strategies in India: A mathematical modelling study[END_REF] used an age-structured, expanded SEIR model with social contact matrices. Through numerical simulations, they concluded that depending on vaccine characteristics, people belonging to older age groups must be a priority in vaccine allocation. A statistical model in which social and SARS-CoV-2 epidemiological dynamics interact with one another is developed by Jentsch and coworkers [START_REF] Jentsch | Prioritising covid-19 vaccination in changing social and epidemiological landscapes: a mathematical modelling study[END_REF]. The following vaccination strategies were taken into account: oldest-first strategy (those aged 60 years and older), youngest-first strategy (those younger than 20 years), uniform strategy (vaccinating uniformly by age), and a novel contact-based strategy. They concluded that the choice of the most effective vaccination strategy depends on the time course of the disease in the population, and for later vaccination campaigns, COVID-19 vaccines to interrupt transmission might prevent more deaths than prioritizing vulnerable age groups. In [START_REF] Shen | Mathematical modeling and optimal control of the covid-19 dynamics[END_REF], Shen et al. formulated and studied a compartmental COVID-19 model in which vaccination is combined with the prevention, the rapid screening of exposed individuals, and infected individuals without screening. Through optimal control tools, they concluded that combined control measures can be used to minimize the disease burden. However, their model only considers a unique vaccine dose.

It should be noted that most of the COVID-19 models existing in the literature are either formulated using classical derivatives (integer derivatives) [START_REF] Djaoue | Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon[END_REF][START_REF] Masandawa | Mathematical modeling of covid-19 transmission dynamics between healthcare workers and community[END_REF][START_REF] Ndaïrou | Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan[END_REF][START_REF] Ngonghala | Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus[END_REF] or using fractional derivatives (Caputo, Caputo-Fabrizio, Atangana-Baleanu,...) [START_REF] Kumar | Prediction studies of the epidemic peak of coronavirus disease in Brazil via new generalised Caputo type fractional derivatives[END_REF][START_REF] Kumar | Prediction studies of the epidemic peak of coronavirus disease in japan: From caputo derivatives to atangana-baleanu derivatives[END_REF][START_REF] Liu | Fractal fractional based transmission dynamics of covid-19 epidemic model[END_REF][START_REF] Nabi | Forecasting of covid-19 pandemic: From integer derivatives to fractional derivatives[END_REF][START_REF] Naik | Modeling the transmission dynamics of covid-19 pandemic in caputo type fractional derivative[END_REF][START_REF] Thabet | Study of transmission dynamics of covid-19 mathematical model under abc fractional order derivative[END_REF][START_REF] Sher | Computational and theoretical modeling of the transmission dynamics of novel COVID-19 under Mittag-Leffler power law[END_REF]. The latter are increasingly used in the modeling of infectious diseases. The given reason is that they have the great advantage of having a memory effect, compared to classical derivatives [START_REF] Cuahutenango-Barro | Analytical solutions of fractional wave equation with memory effect using the fractional derivative with exponential kernel[END_REF][START_REF] Jan | Modeling the transmission of dengue infection through fractional derivatives[END_REF][START_REF] Wang | Surpassing the fractional derivative: Concept of the memory-dependent derivative[END_REF][START_REF] Zhao | Representations of acting processes and memory effects: general fractional derivative and its application to theory of heat conduction with finite wave speeds[END_REF]. The memory effect in the COVID-19 pandemic was emphasized by Sofonea et al. in [START_REF] Sofonea | Memory is key in capturing COVID-19 epidemiological dynamics[END_REF]. Fractional derivatives give flexibility to decisionmakers. Indeed, choosing the optimal value of fractional order, one can decide the start and the end date of the control measure strategies [START_REF] Nabi | Forecasting of covid-19 pandemic: From integer derivatives to fractional derivatives[END_REF].

In the present work, we formulate and analyze an extended SEIR model in which we take into account quarantine, two vaccine doses, and the treatment of symptomatic persons in the presence of limited resources. We use both integer and non-integer derivatives. The goal here is to find out which of the two types of derivatives can be used to better forecast the COVID-19 pandemic in Germany, and which fractional order better fits the reported case data.

The present work is structured as follows: Section 2 is devoted to the model formulation with classical derivative (Ordinary differential equations) and its mathematical analysis. Section 3 is devoted to model calibration and global sensitivity analysis.

The formulation and analysis of the fractional model are done in Section 4. Numerical simulations of both models are done in Section 5. A conclusion and perspectives round up the work.

The ODE model

Model formulation

Before formulating our model, it is important to made some biological assumptions:

A 1 : There are no infected immigrants 1 ;

A 2 : Only non-infectious persons are vaccinated and recovered persons do not get the vaccine 2 ; A 3 : Persons who are hospitalized ( in situations of respiratory assistance) do not participate to the disease spread 3 . 1 We assume that there are no infected immigrants. So, new comers in the country are either susceptible, either quarantined or vaccinated. 2 Travellers who want to enter in many countries must have either a vaccine certificate or a proof of be recovered from a Covid-19 infection 3 People in a situation of respiratory assistance do not participate in the spread of the disease. Indeed, since the Covid-19 spreads and is transmitted from an infected individual to a susceptible individual by droplets of saliva, health professionals wear suitable suits which makes them avoid any contamination.

We denote the human population at any time by N (t). Depending on their epidemiological status, we split N (t) into nine sub-classes called compartments. Thus, compartment S denotes susceptible individuals, Q is for quarantined individuals, V 1 is for susceptible individuals who have received the first vaccine dose against COVID-19, while V 2 is for individuals in V 1 state who have received the second vaccine dose against COVID-19. Since the infected individuals will become infectious after a period of 2 to 14 days, we consider the latent compartment E. After this stage, a fraction of infected individuals will become asymptomatic infectious and enter the compartment denoted by A, and the other fraction will become symptomatic infectious and will enter the compartment I. Among asymptomatic individuals, some of them will be recovered and become partially immunized, denoted by R (recovered), and a few of them will enter the compartment of individuals who need respiratory assistance and/or other specific treatments (denoted by H). A fraction of symptomatic individuals will become recovered, and another fraction can need specific treatments and/or respiratory assistance, and so will enter the compartment of hospitalized individuals denoted by H. Thus,

N (t) := S(t) + Q(t) + V 1 (t) + V 2 (t) + E(t) + A(t) + I(t) + H(t) + R(t).
In this model, we take into account the partial immunity of recovered individuals, which means that, after recovering from the disease, some people can become infected again. Contrary to Atifa et al. [START_REF] Asma | Mathematical modeling and analysis of the sars-cov-2 disease with reinfection[END_REF], we assume that recovered individuals do not enter the infectious compartments directly. Indeed, we assume that they must observe the necessary 2 days to become infected again. Contrary to several models in the existing literature (see [START_REF] Nabi | Forecasting of covid-19 pandemic: From integer derivatives to fractional derivatives[END_REF][START_REF] Ngonghala | Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus[END_REF] and some references therein), we consider the fact that an uninfected person can become infected through a contact, for example, with the door handles, and the fact to eat or drink from the same dish or cup used by an infected person without disinfecting it. To model this phenomenon, we include the compartment B which stands for the density of free viruses in nature [START_REF] Djaoue | Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon[END_REF].

It is important to note that the vaccines available against COVID-19 do not confer perfect immunity against this disease. Thus, we include this in our model by the fact that vaccinated individuals can be infected regardless of their vaccination status

(V 1 or V 2 ).
Dynamics of S. Susceptible individuals increase with: the constant rate r 2 Λ, where Λ denotes the recruitment rate and r 2 is the proportion of newcomers who enter the susceptible compartment; and a fraction c 1 of quarantined persons who return into the susceptible compartment after the end of quarantine time. They decrease either by quarantine at a rate c 2 , or by natural death at a rate µ, or by vaccination at a rate v 1 , or by contact with an infected person or a material used by an infected person at a rate ϕ 2 λ where where ϕ 2 is a coefficient representing reduced infectivity of susceptible persons due to the individual protections (wearing face masks, social distancing, hand washing,...) taken to avoid the contamination, and

λ(t) := β 1 A(t) + I(t) N (t) -H(t) + β 2 B(t) K + B(t) , (2.1) 
In Eq. (2.1), β 1 is the transmission probability from a infectious individual (either asymptomatic A or symptomatic I) to a uninfected individual (S, Q, V 1 , V 2 and R); β 2 is the exposure rate to the free viruses in the environment; The half-saturation constant parameter denoted by K represents the concentration of free virus that yields 50% of chance for a susceptible individual to catch the coronavirus [START_REF] Djaoue | Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon[END_REF]. Thus the dynamic of susceptible individuals is given by the following equation

dS(t) dt = r 2 Λ + c 1 Q(t) -      k1 v 1 + µ + c 2 +ϕ 2 λ(t) β 1 A(t) + I(t) N (t) -H(t) + β 2 B(t) K + B(t)      S(t).
(2.2)

Dynamics of Q. The compartment of quarantined persons increases with either the rate r 1 Λ, where Λ denotes the recruitment rate and r 1 is the proportion of new quarantined persons who enter the system, or with a rate c 1 of susceptible persons who are quarantined due to their exposure or contact with an infected individual. They decrease either by natural mortality rate µ, by end of quarantined by returning in the compartment of susceptible individuals with a rate c 1 , or either by contact with an infected person or a material used by an infected person at a rate ϕ 1 λ where λ is described by Eq. (2.1), and the modification parameter ϕ 1 describes the efficacy of the quarantine.

dQ dt (t) = r 1 Λ + c 2 S(t) -   k2 µ + c 1 +ϕ 1 λ(t)   Q(t). (2.3) Dynamics of V 1 .
The compartment of vaccinated persons who have taken the first dose increases with either the rate r 3 Λ,

where Λ denotes the recruitment rate and r 3 is the proportion of vaccinated persons with the first dose who enter the system or with the susceptible individuals who have taken for the first time the COVID-19 vaccine at the rate v 1 . They decrease either by natural mortality rate µ, by taking the second dose of vaccine at a rate v 2 , or by contact with an infected person or a material used by an infected person at a rate ϕ 3 λ where ϕ 3 = 1 -ϵ 1 with ϵ 1 being the efficacy of the vaccine first dose. ϵ 1 satisfies 0 < ϵ 1 ≤ 1, so that ϕ 3 decreases when ϵ 1 increases.

dV 1 dt (t) = r 3 Λ + v 1 S(t) -   k3 µ + v 2 +ϕ 3 λ(t)   V 1 (t). (2.4) 
Dynamics of V 2 . The compartment of vaccinated persons who have taken the second dose increases with either the rate (1 -r 1 -r 2 -r 3 )Λ, or with the vaccinated individuals who have taken the first dose of the COVID-19 vaccine at the rate v 2 .

They decrease either by natural mortality rate µ, or by contact with an infected person or a material used by an infected person at a rate ϕ 4 λ where ϕ 4 = 1 -ϵ 2 with ϵ 2 denotes the efficacy of the vaccine second dose. As ϵ 1 , ϵ 2 satisfies 0 < ϵ 2 ≤ 1.

dV 2 dt (t) = π1 (1 -r 1 -r 2 -r 3 ) Λ + v 2 V 1 (t) -(µ + ϕ 4 λ(t)) V 2 (t). (2.5) 
Dynamics of E. Exposed persons are uninfected individuals (S, µ, or by becoming either asymptomatic (A) with a rate (1 -q)γ or symptomatic (I) with a rate qγ, where 1 γ is the average incubation period, and q is a proportion of exposed person who will become symptomatic. [START_REF] Salman | Scenario analysis of covid-19 transmission dynamics in malaysia with the possibility of reinfection and limited medical resources scenarios[END_REF][START_REF] Zhou | Dynamics of an sir epidemic model with limited medical resources revisited[END_REF] by the function

Q, V 1 , V 2 ,
dE dt (t) := λ(t) (ϕ 5 R(t) + ϕ 1 Q(t) + ϕ 2 S(t) + ϕ 3 V 1 (t) + ϕ 4 V 2 (t)) - k4 (µ + γ) E(t). ( 2 
T (σ, H(t))(t) = σH(t) Φ + H(t) , (2.9) 
with the parameter σ representing the medical resources supplied per unit time and Φ corresponds to half-saturation constant.

Thus, the dynamics of H is given by 

dH dt (t) := ψ 2 θA(t) + π3 (1 -η) νI(t) -( k7 µ + δ 2 + ζ)H(t) -T (σ, H(t)). ( 2 
dR dt (t) := ψ 1 θA(t) + νηI(t) + ζH(t) + T (σ, H(t))(t) -(µ + ϕ 5 λ(t)) R(t). (2.11)
Dynamics of B. Infectious individuals when they sneeze or cough without protection spill small droplets that contain thousands of viruses that will spread through the air, thus directly or indirectly infecting healthy people. We assume that only asymptomatic and symptomatic individuals contribute to the virus spread in the environment, with a rate of α 1 and α 2 , respectively [START_REF] Djaoue | Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon[END_REF]. The mortality rate of Coronavirus is denoted by τ .

dB dt (t) := α 1 A(t) + α 2 I(t) -τ B(t).
(2.12)

Putting Eqs.(2.2)-(2.12) together gives the following system expressed using ordinary derivatives:

                                                                                                                 dS dt (t) = r 2 Λ + c 1 Q(t) -(k 1 + ϕ 2 λ(t)) S(t), dQ dt (t) = r 1 Λ + c 2 S(t) -(k 2 + ϕ 1 λ(t)) Q(t), dV 1 dt (t) = r 3 Λ + v 1 S(t) -(k 3 + ϕ 3 λ(t)) V 1 (t), dV 2 dt (t) = π 1 Λ + v 2 V 1 (t) -(µ + ϕ 4 λ(t)) V 2 (t), dE dt (t) = λ(t) (ϕ 5 R(t) + ϕ 1 Q(t) + ϕ 2 S(t) + ϕ 3 V 1 (t) + ϕ 4 V 2 (t)) -k 4 E(t), dA dt (t) = pγE(t) -k 5 A(t), dI dt (t) = qγE(t) + π 2 θA(t) -k 6 I(t), dH dt (t) = π 3 νI(t) + ψ 2 θA(t) -k 7 H(t) -T (σ, H(t)), dR dt (t) = ζH(t) + T (σ, H(t))(t) + νηI(t) + ψ 1 θA(t) -(µ + ϕ 5 λ(t)) R(t), dB dt (t) = α 1 A(t) + α 2 I(t) -τ B(t), (2.13) 
with the following initial conditions

S 0 = S(0), Q 0 = Q(0), V 10 = V 1 (0), V 20 = V 2 (0), R 0 = R(0), E 0 = E(0), A 0 = A(0), I 0 = I(0), H 0 = H(0), B 0 = B(0). (2.14) We set x = (S, Q, V 1 , V 2 , E, A, I, H, R, B)
′ the vector of state variables and

R 10 + = x ∈ R 10 : x i ≥ 0, i ∈ [1; 10] ∩ N .
System (2.13) can be rewritten in the following compact form

   dx dt = F(t, x) = (F 1 (x), F 2 (x), ..., F 10 (x)) ′ , x(t 0 ) = x(0) = (S(0), Q(0), V 1 (0), V 2 (0), E(0), A(0), I(0), H(0), R(0), B(0)) ′ ∈ R 10 + , (2.15) 
where F : R 10 → R 10 represents the right hand-side of (2.13), and (•) ′ stands for the transposition operator. 

ϕ i , i ∈ [1; 5] ∩ N Modification parameters Remark 2.1.
Hospitalized people (H) are not included in the force of infection λ. Indeed, we assume that there is enough protective clothing that provides to healthcare persons complete protection [START_REF] Ngonghala | Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus[END_REF].

Mathematical analysis 2.2.1. Positivity and Boundedness of solutions

We have the following result Theorem 2.1. (Positivity) Each solution

x(t) = (S(t), Q(t), V 1 (t), V 2 (t), E(t), A(t), I(t), H(t), R(t), B(t)) ′ of model (2.13) with non-negative initial conditions x(0)
is non-negative for all t > 0.

Proof. See Appendix A.

Before proving the boundedness of solutions of systems (2.13), let us define the following subset of R 10

+ Υ = x = (S, Q, V 1 , V 2 , E, A, I, H, R, B) ′ ∈ R 10 + : 9 i=1 x i ≤ Λ µ , x 10 ≤ (α 1 + α 2 )Λ µτ .
(2.16)

The following result holds.

Theorem 2.2. (Boundedness of solutions) The region Υ is positively invariant and attracting for system (2.13).

Proof. See Appendix B.

Existence and uniqueness of solutions

Before proving the existence and uniqueness, let us claim the following result.

Lemma 

x 0 = (S 0 , Q 0 , V 10 , V 20 , E 0 , A 0 , I 0 , H 0 , R 0 , B 0 ) ′ ∈ R 10 + , the COVID-19 transmission model (2.13) admits a unique solution x ∈ C([0; +∞[, R 10 + ).

The control reproduction number

First of all, it is important to note that in the absence of disease, that is E = A = I = H = B = 0, system (2.13) admits always one stationary point, also called disease-free equilibrium (DFE), E 0 = (S 0 , Q 0 , V 10 , V 20 , 0, 0, 0, 0, 0, 0) ′ where

                     S 0 = [c 1 (c 2 r 2 + k 1 r 1 ) + (k 1 k 2 -c 1 c 2 ) r 2 ] Λ k 1 (k 1 k 2 -c 1 c 2 ) , Q 0 = (c 2 r 2 + k 1 r 1 ) Λ k 1 k 2 -c 1 c 2 , V 10 = [(k 1 k 2 -c 1 c 2 ) r 3 + v 1 (k 2 r 2 + c 1 r 1 )] Λ (k 1 k 2 -c 1 c 2 ) k 3 , V 20 = [(k 1 k 2 -c 1 c 2 ) (v 2 r 3 + π 1 k 3 ) + (k 2 r 2 + c 1 r 1 ) v 1 v 2 ] Λ (k 1 k 2 -c 1 c 2 ) k 3 µ .
(2.17)

with k 1 k 2 -c 1 c 2 = µ 2 + (c 2 + v 1 + c 1 ) µ + c 1 v 1 > 0. From (2.17), we have N 0 := S 0 + Q 0 + V 10 + V 20 = Λ µ .
To compute the control reproduction number, denoted by R c , we will use the next generation approach (see [START_REF] Diekmann | On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations[END_REF][START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF]).

Let us set y = (E, A, I, H, B) ′ . The vector Z and W for the new infection terms and the remaining transfer terms for y are, respectively, given by

Z =            λ (ϕ 5 R + ϕ 1 Q + ϕ 2 S + ϕ 3 V 1 + ϕ 4 V 2 ) 0 0 0 0            and W =            k 4 E -pγE + k 5 A, -qγE -π 2 θA + k 6 I, -π 3 νI -ψ 2 θA + k 7 H + σH Φ + H , -α 1 A -α 2 I + τ B            .
Their Jacobian matrices evaluated at E 0 are respectively given by

Z =            0 β 1 N1 N0 β 1 N1 N0 0 β 2 N1 K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            and W =            k 4 0 0 0 0 -pγ k 5 0 0 0, -qγ -π 2 θ k 6 0 0, 0 -ψ 2 θ -π 3 ν k 7 + σ Φ 0, 0 -α 1 -α 2 0 τ            (2.18)
with

N 1 = ϕ 1 Q 0 + ϕ 2 S 0 + ϕ 3 V 10 + ϕ 4 V 20 .
Then, the control reproduction number R c is defined, following [START_REF] Diekmann | On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations[END_REF][START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF], as the spectral radius of the next generation matrix, ZW -1 where

ZW -1 =            R h + R e U 1 U 2 0 U 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           
.

where

R h = β 1 N 1 γk 9 k 4 k 5 k 6 N 0 , R e = β 2 N 1 γk 10 k 4 k 5 k 6 Kτ , U 3 = β 2 N 1 Kτ , U 2 = β 1 KN 1 τ + α 2 β 2 N 0 N 1 k 6 KN 0 τ , U 1 = β 1 KN 1 (π 2 θ + k 6 ) k 5 k 6 KN 0 + β 2 N 1 (α 2 π 2 θ + α 1 k 6 ) k 5 k 6 Kτ . (2.19) with k 8 = π 2 pθ + k 5 q, k 9 = k 8 + k 6 p, k 10 = α 2 k 8 + pα 1 k 6 .
Therefore, the control reproduction number, R c , is the sum of two main contributions, namely, humans and environment, as follows:

R c := ρ(ZW -1 ) = R h + R e , (2.20) 
where ρ(•) represents the spectral radius operator.

The threshold quantity R c measures the average number of new COVID-19 infections generated by a single infectious individual in a completely susceptible population where quarantine, treatment and vaccination campaign are implemented [START_REF] Garba | Modeling the transmission dynamics of the COVID-19 Pandemic in South Africa[END_REF][START_REF] Nabi | Forecasting of covid-19 pandemic: From integer derivatives to fractional derivatives[END_REF]. The threshold R h represents the number of humans infected through close contact with an infectious individual (either an asymptomatic person (A) or symptomatic person (I h )) during his/her infectious lifetime. It is equal to the product of the direct contact rate between susceptible individuals and infected individuals, the probability that an exposed human survives the latent period, the average duration of the infectious period in asymptomatic humans, the average duration of the infectious period in symptomatic humans, and the ratio between the total number of persons who will become infected and the total number of humans at the disease-free equilibrium. R e represents the number of new infected caused by a contact with an object used by an infected person throughout his/her infectious lifetime. It is equal to the product of the contact rate between susceptible individuals and an object used by an infected individuals, the probability that an exposed human survives the latent period, the average duration of the infectious period in asymptomatic humans, the average duration of the infectious period in symptomatic humans, the natural life expectancy of virus in the environment, the average rate of virus spread to the environment by infectious individuals and the ratio between the total number of persons at the disease-free equilibrium who will become infected, and the total number of free viruses in the environment secreted by an infectious person (A or I).

From [44, Theorem 2], we have the following result.

Lemma 2.4. (Local stability of the DFE) The stationary point E 0 of system (2.13) is locally asymptotically stable (LAS) if R c < 1, and unstable otherwise.

Global stability of the DFE

Concerning the global asymptotic stability of the DFE, we have the following result:

Theorem 2.4. The disease-free equilibrium E 0 is globally asymptotically stable in Υ whenever R c < 1.

Proof. Considering only the infected compartments of system (2.13), we obtain

d dt            E(t) A(t) I(t) H(t) B(t)            = (Z -W )            E(t) A(t) I(t) H(t) B(t)            -M(S, Q, V 1 , V 2 , E, A, I, H, R, B), (2.21) 
where Z and W are the same matrices used to compute the control reproduction number (see Eq. (2.20)), and

M(S, Q, V 1 , V 2 , E, A, I, H, R, B) =                β 1 (A + I) N 1 N 0 - N 1 N -H + β 2 B N 1 K - N 1 K + B 0 0 0 0 0                ,
where

N 1 = ϕ 2 S +ϕ 1 Q+ϕ 3 V 1 +ϕ 4 V 2 +ϕ 5 R, N 1 = ϕ 2 S 0 +ϕ 1 Q 0 +ϕ 3 V 10 +ϕ 4 V 20 . In Υ, N 1 N 0 ≥ N 1 N -H and N 1 K ≥ N 1 K + B for all t > 0. Then, it follows that M(S, Q, V 1 , V 2 , E, A, I, H, R, B) ≥ 0 R 6 . This means that d dt            E(t) A(t) I(t) H(t) B(t)            ≤ (Z -W )            E(t) A(t) I(t) H(t) B(t)           
.

Note that

W -1 =            1 k4 0 0 0 0 pγ k4k5 1 k5 0 0 0 (π2pϑ+k5q)γ k4k5k6 π2ϑ k5k6 
1 k6
0 0

((π2π3Φν+φ2k6Φ)pϑ+π3k5Φνq)γ k4k5k6σ+k4k5k6k7Φ (π2π3Φν+φ2k6Φ)ϑ k5k6σ+k5k6k7Φ π3Φν k6σ+k6k7Φ Φ σ+k7Φ 0 (α2π2pϑ+α2k5q+α1k6p)γ k4k5k6τ α2π2ϑ+α1k6 k5k6τ α2 k6τ 0 1 τ            ≥ 0 R 5×5 .
We also have, from (2.18), that Z ≥ 0. Thus, from [46, Theorem 2.1], there exists a Lyapunov function for system (2.13)

expressed as L (S, Q, V 1 , V 2 , E, A, I, H, R, B) = u ′ W -1 (E, A, I, H, B)
′ where u ′ is the left eigenvector of the nonnegative matrix W -1 Z corresponding to the eigenvalue R c . This implies that,

dL dt = (R c -1) u ′ (E, A, I, H, B) -u ′ W -1 M (S, Q, V 1 , V 2 , E, A, I, H, R, B) ≤ 0. Since M (S, Q, V 1 , V 2 , E, A, I, H, R, B) ≥ 0 R 5 , it follows that dL dt < 0 whenever R c < 1, with dL dt = 0 if and only if (E, A, I, H, B) = 0 R 5 . It follows that the largest invariant set contained in (S, Q, V 1 , V 2 , E, A, I, H, R, B) ∈ R 10 + : dL dt = 0
is {E 0 }. Thus, from LaSalle Invariance Principle [START_REF] La Salle | The stability of dynamical systems[END_REF], every solution of (2.13) with initials conditions in Υ converge to E 0 when t -→ +∞. That is (E, A, I, H, B) -→ (0, 0, 0, 0, 0),

S -→ S 0 , Q -→ Q 0 , V 1 -→ V 10 and V 2 -→ V 20 when t -→ +∞, which is equivalent to (S, Q, V 1 , V 2 , E, A, I, H, R, B) -→ (S 0 , Q 0 , V 10 , V 20 
, 0, 0, 0, 0, 0, 0) when t -→ +∞.

Thus, the disease-free equilibrium E 0 is globally asymptotically stable in W whenever R c < 1. This ends the proof.

From epidemiological viewpoint, Theorem 2.4 implies that the condition R c < 1 whenever

N 1 N 0 ≥ N 1 N -H
, is sufficient to decrease the disease spread and thus, permits to disease die out. In the numerical simulations, we will see that this can be achieved.

Existence of endemic equilibrium points

Due to the model complexity, we consider only the particular case when σ = 0 and ϕ i = 1 for i ∈ 1, 2, 3, 4. σ = 0 implies that there are no specific medical resources supplied which was the case at the beginning of the COVID-19 epidemic in Wuhan, China. ϕ 1 = ϕ 2 = ϕ 3 = ϕ 4 = 1 implies that susceptible individuals, as well as quarantined, and vaccinated individuals, have the same probability to become infected and the vaccine does not confer immunity. This is motivated by the fact that, in the case of the COVID-19 pandemic, available vaccines do not confer permanent immunity, but permit the reduction of the number of critical cases by the decrease the number of COVID-19 hospitalization as well as the number of deaths due to the COVID-19 pandemic [START_REF] For Disease | Science brief: Covid-19 vaccines and vaccination[END_REF].

We claim:

Proposition 2.5. Assume that R c > 1 or R c ≤ 1.
Then, in addition to the disease-free equilibrium E 0 , the COVID-19 model could have one or more than one positive equilibrium.

Proof. See Appendix D.

The case R c < 1 of Proposition 2.5 suggests the possibility that the forward (resp. backward) bifurcation phenomenon can occurs in the COVID-19 model (2.13). Since from Theorem 2.4, the disease-free equilibrium is globally asymptotically stable, it follows that even if the DFE co-exists with other positive equilibrium points in Υ, these last are unstable.

Model calibration and sensitivity analysis

Model calibration with real data of Germany

The start date of mass vaccination in Germany was Sunday, 27 December 2020 [START_REF] Franceinfo | Campagne de vaccination contre le covid-19: en allemagne, un lent démarrage et déjá un premier couac[END_REF]. Since then, several constrained measures was taken to ensure that the majority of inhabitants is vaccinated. We consider the daily infected reported cases in Germany from February 15, 2021 to April 05, 2021 [START_REF] Hannah | Coronavirus pandemic (covid-19)[END_REF].

Taking the total approximate population of Germany equal to N (0) = 83, 000, 000 [START_REF] Ganegoda | Interrelationship between daily COVID-19 cases and average temperature as well as relative humidity in Germany[END_REF], the recruitment rate is equal to Λ = µN (0). The following initial conditions subject to the data fitting are S(0) = 48, 790, 644, We perform experiments until the desired accurate fitting of the model is achieved. After solving numerically the following optimization problem

Q(0) = 2, 338, 987, V 1 (0) = 23, 240, 000, V 2 (0) = 2, 324, 000, E(0) = 2,
min Γ ∥ I predict -I data ∥ 2 , (3.1) 
where Γ = {β 1 , β 2 , v 1 , v 2 , c 1 , c 2 , γ, θ}, we obtain the results consigned in Table 2. The value of the control reproduction number computed with the parameter values in Table 2 is R c = 1.899451294774579. The model simulations versus data fitting are depicted in Figure 1. The future evolution of the disease without any added control measures is depicted in Figure 2. It is clear that, in a long term, the disease will persist in the population if there is no best scientific advance like, for example, the establishment of a vaccine that could protect a vaccinated person to be infected, even if this vaccinated person has close contact with the virus or a sick person. For the moment, available vaccines permit only to prevent severe forms of the disease by decreasing the number of hospitalized cases as well as the number of deaths.

The impact of the vaccination process is depicted on Figure 3 by varying the vaccination coverage between 0 and 70%.

The simulation results show that vaccination forward delayed the date of the epidemic peak. Whatever the vaccine coverage, the dynamics of the disease remain the same after the epidemic peak. This can be justified by the fact that the available COVID-19 vaccines do not prevent the virus transmission between infectious persons and vaccinated persons. This is why it is urgent to develop a COVID-19 vaccine which prevents virus transmission with a high efficacy level. Now, we fix the vaccine coverage at 70%, that is v 1 = v 2 = 0.7, and varying the vaccine efficacy at the second dose between 0 to 100%, that is ϕ 4 ∈ {0, 0.52, 0.75, 0.95}. The result, depicted on Figure 4, shows that fight against COVID-19 pandemic passes through by intensification of vaccination campaigns with a vaccine with a high efficacy level. Indeed, it might be more effective to increase the vaccine efficacy than increasing the numbers of vaccinated people (see Figure 4).

Uncertainty and global Sensitivity analysis

Using 10,000 runs of the Latin hypercube sampling (LHS) [START_REF] Stein | Large sample properties of simulations using latin hypercube sampling[END_REF], we compute the partial rank correlation coefficients (PRCC) between the control reproduction number R c and each model parameters [START_REF] Abboubakar | Backward bifurcation and control in transmission dynamics of arboviral diseases[END_REF][START_REF] Marino | A methodology for performing global uncertainty and sensitivity analysis in systems biology[END_REF][START_REF] Wu | Sensitivity analysis of infectious disease models: methods, advances and their application[END_REF]. Each model parameter is supposed to be a random variable, uniformly distributed, with its mean value as listed in Table 2. With this 10,000 sampling, we obtain the mean value of R c equal to 2.4724 which implies that we are in an endemic state. The derived distribution of R c is depicted in We observe that: For the compartment E, the most influential parameters are β 1 , γ and ϕ 2 ; For the compartment A, the most influence parameters are β 1 , θ, q and ϕ 2 ; For the compartment I, the most influence parameters are β 1 , ν and ϕ 2 ; And for the compartment H, the most influence parameters are β 1 , ν, η and ζ. This suggest that control measures like individual protection, prevention and treatment (with high level of efficacy) combined with all measures which consist to detect new cases as well as which can boost the immunity system must be intensified to fight against the persistence of COVID-19 in the population.

(a) Sampling distribution of R c from 10,000 runs of Latin hypercube sampling. In panel (c) of Figure 8, R c is represented as a function of the coefficients β 1 and ϕ 2 . By Noting that ϕ 2 = 1 -ϵ 2 where ϵ 2

represents the booster immunity level, we look that decreasing simultaneously these two parameters permits to decrease R c , that is, not individual protection with a population with weakened immune system contributes to the persistence of the disease in the population. This means that it might be more effective to increase the vaccine efficacy than increasing the numbers of vaccinated people.

In panel (d) of Figure 8, R c is represented as a function of the coefficients β 1 and γ. We see R c is a increase function of this two parameters. The same way is observed in the remaining panels (e) and (f).

4. The fractional model

Preliminary definitions and results

Definition 4.1 (The R-L integral). Let f ∈ L 1 ([0; a], R + ), a > 0. The fractional order integral of f of order φ > 0, in the sense of Riemann-Liouville, is defined as

C a I φ t (f (t)) = 1 Γ(φ) t 0 f (θ)(t -θ) φ-1 dθ. (4.1) 
Definition 4.2 (The Caputo derivative [START_REF] Podlubny | Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[END_REF]).

Let f ∈ C m ([0; a]), a > 0, φ ∈ R, m ∈ N such that m -1 < φ < m. The
Caputo fractional order derivative of f of order φ is defined as

C a D φ t (f (t)) = 1 Γ(m -φ) t a (t -θ) m-φ-1 f (m) (θ) dθ, t > 0. (4.2) 
Definition 4.3 (The Mittag-Leffler function [START_REF] Mittag-Leffler | Sur la nouvelle fonction eα (x)[END_REF]). The Mittag-Leffler function of order φ > 0 is an entire function defined by the series

E φ (x) = ∞ k=0 x k Γ(φk + 1) . (4.3) 

The fractional model and its analysis

The new formulation of the COVID-19 transmission model (2.13) with the Caputo fractional derivative is given by

                                                   C a D φ t S(t) = r 2 Λ φ + c φ 1 Q(t) -(k φ 1 + ϕ 2 λ(t)) S(t), C a D φ t Q(t) = r 1 Λ φ + c φ 2 S(t) -(k φ 2 + ϕ 1 λ(t)) Q(t), C a D φ t V 1 (t) = r 3 Λ φ + v φ 1 S(t) -(k φ 3 + ϕ 3 λ(t)) V 1 (t), C a D φ t V 2 (t) = π 1 Λ φ + v φ 2 V 1 (t) -(µ φ + ϕ 4 λ(t)) V 2 (t), C a D φ t E(t) = λ(t) (ϕ 5 R(t) + ϕ 1 Q(t) + ϕ 2 S(t) + ϕ 3 V 1 (t) + ϕ 4 V 2 (t)) -k φ 4 E(t), C a D φ t A(t) = pγ φ E(t) -k φ 5 A(t), C a D φ t I(t) = qγ φ E(t) + π 2 θ φ A(t) -k φ 6 I(t), C a D φ t H(t) = π 3 ν φ I(t) + ψ 2 θ φ A(t) -k φ 7 H(t) -T (σ, H(t)), C a D φ t R(t) = ψ 1 θ φ A(t) + ην φ I(t) + ζ φ H(t) + T (σ, H(t))(t) -(µ φ + ϕ 5 λ(t)) R(t), C a D φ t B(t) = α φ 1 A(t) + α φ 2 I(t) -τ φ B(t). (4.4) 
where

λ(t) = β φ 1 A(t) + I(t) N (t) -H(t) + β φ 2 B(t) K + B(t)
, and T (σ,

H(t))(t) = σ φ H(t) Φ + H(t) , (4.5) 
and

k φ 1 = µ φ +c φ 2 +v φ 1 , k φ 2 = µ φ +c φ 1 , k φ 3 = µ φ +v φ 2 , k φ 4 = µ φ +γ φ , k φ 5 = µ φ +θ φ , k φ 6 = µ φ +δ φ 1 +ν φ , k φ 6 = µ φ +δ φ 2 +ζ φ .
For dimensional consistency emphasized by Diethelm in [START_REF] Diethelm | A fractional calculus based model for the simulation of an outbreak of dengue fever[END_REF], all model parameters except r 1 , r 2 , r 3 , q, ψ 1 , ψ 2 , η, and ϕ i for i ∈ [1; 5] ∩ N have dimensions 1 t φ . System (4.4) is subject to the following initial conditions

S(0) = S 0 > 0, Q(0) = Q 0 ≥ 0, V 1 (0) = V 10 ≥ 0, V 2 (0) = V 20 ≥ 0, E(0) = E 0 ≥ 0, A(0) = A 0 ≥ 0, I(0) = I 0 ≥ 0, H(0) = H 0 ≥ 0, R(0) = R 0 ≥ 0, B(0) = B 0 ≥ 0. (4.6) Let us set x = (S, Q, V 1 , V 2 , E, A, I, H, R, B(t))
′ and K (t, x(t)) = (f φ i ) ′ , i ∈ [0, 10] ∩ N, where f φ i for i ∈ [0, 10] ∩ N are the right-hand side of system (4.4). Thus the fractional model (4.4) is rewritten in the following compact form

C a D φ t x(t) = K (t, x(t)) , x(0) = x 0 ≥ 0, t ∈ [0, a], a > 0, 0 < φ ≤ 1, (4.7) 
with the condition x(0) = x 0 ≥ 0 which is interpreted component by component.

The initial value problem (IVP) is in turn rewritten in the following integral form

x(t) = x(0) + C a I φ t (K (t, x(t))) . (4.8) 
As in the case of the ODE model (2.13), we compute the control reproduction number, denoted by R c using the next generation approach (see [START_REF] Diekmann | On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations[END_REF][START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF]), and the control reproduction number of the fractional model (4.4) is given by

R c = β φ 1 N 1 γ φ k φ 9 k φ 4 k φ 5 k φ 6 N 0 + β φ 2 N 1 γ φ k φ 10 k φ 4 k φ 5 k φ 6 τ φ K . ( 4.11) 
Before we study the local stability of the disease-free equilibrium, let us recall the following result. The Jacobian of system (4.4) evaluated at the disease-free equilibrium E 0 is given by

J (E 0 ) =                          -k φ 1 c 1 0 0 0 -β φ 1 ϕ 2 S 0 N 0 -β φ 1 ϕ 2 S 0 N 0 0 0 -β φ 2 ϕ 2 S 0 K c φ 2 -k φ 2 0 0 0 -β φ 1 ϕ 1 Q 0 N 0 -β φ 1 ϕ 1 Q 0 N 0 0 0 -β φ 2 ϕ 1 Q 0 K v φ 1 0 -k φ 3 0 0 -β φ 1 ϕ 3 V 10 N 0 -β φ 1 ϕ 3 V 10 N 0 0 0 -β φ 2 ϕ 3 V 10 K 0 0 v φ 2 -µ φ 0 -β φ 1 ϕ 4 V 20 N 0 -β φ 1 ϕ 4 V 20 N 0 0 0 -β φ 2 ϕ 4 V 20 K 0 0 0 0 -k φ 4 β φ 1 N 1 N 0 β φ 1 N 1 N 0 0 0 β φ 2 N 1 K 0 0 0 0 pγ φ -k φ 5 0 0 0 0 0 0 0 0 qγ φ π 2 θ φ -k φ 6 0 0 0 0 0 0 0 0 ψ 2 θ φ π 3 ν φ -k φ 7 -σ φ Φ 0 0 0 0 0 0 0 ψ 1 θ φ ην φ ζ φ + σ φ Φ -µ φ 0 0 0 0 0 0 α φ 1 α φ 2 0 0 -τ φ                          . The eigenvalues of J (E 0 ) are -µ φ , -k φ 3 , -k φ 7 + σ φ Φ
, and those of the following sub-matrix

J 1 =               -k φ 1 c φ 1 0 -β φ 1 ϕ 2 S0 N0 -β φ 1 ϕ 2 S0 N0 -β φ 2 ϕ 2 S0 K c φ 2 -k φ 2 0 -β φ 1 ϕ 1 Q0 N0 -β φ 1 ϕ 1 Q0 N0 -β φ 2 ϕ 1 Q0 K 0 0 -k φ 4 β φ 1 N1 N0 β φ 1 N1 N0 β φ 2 N1 K 0 0 pγ φ -k φ 5 0 0 0 0 qγ φ π 2 θ φ -k φ 6 0 0 0 0 α φ 1 α φ 2 -τ φ               =   J 11 • 0 R 4×2 J 22   .
with

J 11 =   -k φ 1 c φ 1 c φ 2 -k φ 2   , and 
J 22 =         -k φ 4 β φ 1 N1 N0 β φ 1 N1 N0 β φ 2 N1 K pγ φ -k φ 5 0 0 qγ φ π 2 θ φ -k φ 6 0 0 α φ 1 α φ 2 -τ φ         .
It is easy to verify that J 11 has all its eigenvalues nonpositive. It thus remains to show that the ones of J 22 are also nonpositive.

The characteristic equation of J 22 is given by P(z) = a 1 z 4 + a 2 z 3 + a 3 z 2 + a 4 z + a 5 = 0, where

a 1 = k φ 9 k φ 10 , a 2 = k φ 9 k φ 10 (τ φ + k φ 6 + k φ 5 + k φ 4 ), a 3 = k φ 10 [(k φ 6 + k φ 5 + k φ 4 ) k φ 9 τ φ + k φ 5 k φ 6 k φ 9 + k φ 4 k φ 6 (pk φ 6 + π 2 pθ φ + k φ 5 q (1 -R h )) +k φ 4 k φ 5 (k φ 8 + pk φ 6 (1 -R h ))] , a 4 = k φ 4 k φ 5 k φ 6 k φ 10 [R h (τ φ + k φ 5 q) + k φ 6 p (R h + 1) + pπ 2 θ φ (1 -R h )] + k φ 4 k φ 5 k φ 6 k φ 9 τ φ (pα φ 1 + α φ 2 q) (1 -R e ) + k φ 4 k φ 9 τ φ α φ 2 π 2 pθ φ (k φ 5 + k φ 6 ) + (k φ 5 ) 2 α φ 2 q + (k φ 6 ) 2 α φ 1 p + k φ 5 k φ 6 k φ 9 k φ 10 τ φ , a 5 = k φ 4 k φ 5 k φ 6 τ φ (π 2 pθ φ + k φ 5 q + k φ 6 p) (α φ 2 π 2 pθ φ + α φ 2 k φ 5 q + α φ 1 k φ 6 p) (1 -R c ) .
Coefficients a 1 , a 2 are always positive. Coefficient a 5 is positive (resp. negative

) iff R c < 1 (resp. R c > 1). Since R c < 1 =⇒ (R h < 1 & R e < 1)
, it follows that a 3 and a 4 are also positive. Then, E 0 is locally asymptotically stable iff the following Routh-Hurwitz conditions hold

a 2 a 3 -a 4 > 0, a 2 (a 3 a 4 -a 2 a 5 ) -a 1 a 2 3 > 0.
(4.12)

We thus claim what follows:

Lemma 4.7. Assume that condition (4.12) holds. Then, the disease-free equilibrium of the fractional model (4.4) is locally asymptotically stable whenever R c < 1.

From [63, Corollarly 2], we use the same Lyapunov-type function to prove the global stability of the DFE for the classical model (2.13), we prove that the DFE of the fractional model (4.4) is globally asymptotically stable in Υ φ whenever R c < 1.

Thus, the following result is valid.

Theorem 4.4. Assume that condition (4.12) holds. Then, the disease-free equilibrium of the fractional model (4.4) is globally asymptotically stable whenever R c < 1.

Numerical scheme

To construct a numerical scheme of the fractional model (4.4), we used the Adams-type predictor-corrector iterative scheme [START_REF] Diethelm | A predictor-corrector approach for the numerical solution of fractional differential equations[END_REF][START_REF] Diethelm | Detailed error analysis for a fractional Adams method[END_REF]. To this aim, let us consider the uniform discretization of [0, a] given by t m = mh, m ∈ [0; N ] ∩ N where h = a/m denotes the step size. For a given approximation x h (t i ) ≈ x(t i ), the next approximation x h (t i+1 ) is obtained (using the predictor-corrector method) as follows:

Predictor:

x p h (t n+1 ) = ⌈φ⌉-1 l=0 t l n+1 l! x l 0 + 1 Γ(φ) m l=0 d l,m+1 K (t l , x h (t l )) ;
Corrector:

x h (t n+1 ) = ⌈φ⌉-1 l=0 t l n+1 l! x l 0 + h φ Γ(2 + φ) K (t l+1 , x h (t l+1 )) + h φ Γ(2 + φ) m l=0 b l,m+1 K (t l , x h (t l )) ; with b l,m+1 =          m 1+φ -(m -φ)(m + 1) φ , if l = 0, (m -l + 2) 1+φ + (m -l) 1+φ -2(m -l + 1) 1+φ , if 1 ≤ l ≤ m, 1 if l = m + 1,
and d l,m+1 = h φ φ [(m -l + 1) φ -(m -l) φ ].

Numerical simulations and discussion

Here, we perform several numerical simulations to (1) Validate our theoretical results; and (2) compare the use of integer derivatives with fractional derivatives (which of the two permits to better predicting the disease spread in a short, medium or, long term).

General dynamics

Figure 9 illustrates the situation of the disease when the control reproduction number is greater that one. Indeed, when R c > 1 implies that the disease will persist in the population. Although we did not prove the uniqueness of the endemic equilibrium point as well as its global asymptotic stability, the figure 9 suggests that the model admits a globally asymptotically stable endemic equilibrium point whenever R c is greater than 1.

Figure 9: Time-series of A(t), I(t), H(t) and B(t) with the above parameter values of Table 2. In this case R c ≈ 1.9 > 1. 2 except β 1 = 0.027. In this case R c = 0.9787 < 1 and the disease will die out in the population.

Impact of the fractional operator

The impact of fractional derivative on the COVID-19 dynamics is depicted in Figures 11-12 2.

In a quantitative point of view, we note that the model with integer derivative (φ = 1) struggles to hug data on the longterm predictions. Indeed, in Figure 12, it is clear that it is only from φ ≈ 0.87 that the fractional-order model better fits the data. Thus the model with fractional derivative (in the Caputo sense) is better than the model with integer derivative in the prediction of the COVID-19 new cases. From Figure 13, we see that using a model with classical derivatives (integer derivative) can overestimate the total number of news cases. Indeed, we see in Figure 13 that at t ≈ 744 days, the epidemic peak is reached with 21, 850, 146 cases for φ = 1, while for φ = 0.84, the epidemic peak is reached with 11, 843, 669 cases at t ≈ 1224 days. 2.

Figure 14 and 15 illustrate Theorem 4.4. We see that when R c < 1, all trajectories vanish to zero, which means that the DFE of the fractional model is globally asymptotically stable (Figure 14), while they tend to their maximum values which represent the endemic equilibrium point (Figure 15. 2 for different values of the fractional order φ.

Conclusion and perspective

In this work, we formulated and analyzed a COVID-19 transmission dynamics model which takes into account two doses of the vaccination process, confinement, and treatment with limited resources, using both integer and fractional derivatives in the Caputo sense. After the model formulation with classical derivative, we started by establishing the positivity, boundedness, existence, and uniqueness of solutions. Then, we computed the control reproduction number R c and perform the local and global asymptotic stability of the disease-free equilibrium whenever R c < 1. Indeed, we constructed a Lyapunov function and applied the comparison theorem to prove that the disease-free equilibrium is GAS whenever the control reproduction number is less than one. In the other words, this means that if existing controls can achieve that R c < 1, then the disease will die out.

After that, we took the case R c > 1 and proved the existence of at less than one endemic equilibrium point. We then calibrate the model by estimating the model parameters with German data. With these estimated parameter values, we found that the control reproduction number is approximately equal to 1.90, which means that we are in endemic state since the control reproduction number is greater than one. Thus, intensification of control measures is needed to decrease this threshold under unity. We also found through numerical simulations that intensification of mass vaccination campaigns with a COVID-19 vaccine with a high efficacy level can permit to decrease the disease burden. We then performed global sensitivity analysis by computing partial rank correlation coefficients (PRCC) between R c (respectively compartments of infected individuals, i.e.

E, A, I, and H) and each model parameters. We found that the most influential model parameters are β 1 , γ, ϕ 2 , θ, ν, η and ζ.

This suggest that, control measures like individual protection, prevention and treatment (with high level of efficacy) combined with all measures which consist to detect new cases as well as which can boost the immunity system must be intensified to fight against the persistence of COVID-19 in the population. Indeed, in the case of the vaccination process, it might be more effective to increase the vaccine efficacy than increasing the numbers of vaccinated people.

After that, we formulated the corresponding fractional model in the Caputo sense. As in the case of the integer model, i=1

x i (0) -Λ µ e -µt , for all t ≥ 0.

This implies, by passing to the limit, that lim sup We proceed by the similarly way for ∂Fj ∂xi , 1 ≤ i ≤ 10; 2 ≤ j ≤ 10. Thus, we conclude that each ∂Fi ∂xj , for i, j ∈ [1, 10] ∩ N, is continuous and bounded.

D. Proof of Proposition 2.5

To find stationary (equilibrium) points of system (2.13) for the special case, we set the right-hand side of (2.13) equal to zero. That is

                                                   r 2 Λ + c 1 Q ⋆ -[k 1 + ϕ 2 λ ⋆ ] S ⋆ = 0, r 1 Λ + c 2 S ⋆ -[k 2 + ϕ 1 λ ⋆ ] Q ⋆ = 0, r 3 Λ + v 1 S ⋆ -[k 3 + ϕ 3 λ ⋆ ] V ⋆ 1 = 0, π 1 Λ + v 2 V ⋆ 1 -[µ + ϕ 4 λ ⋆ ] V ⋆ 2 = 0, λ ⋆ (ϕ 5 R ⋆ + ϕ 1 Q ⋆ + ϕ 2 S ⋆ + ϕ 3 V ⋆ 1 + ϕ 4 V ⋆ 2 -k 4 E ⋆ = 0, pγE ⋆ -k 5 A ⋆ = 0, qγE ⋆ + π 2 θA ⋆ -k 6 I ⋆ = 0, π 3 νI ⋆ + ψ 2 θA ⋆ -k 7 H ⋆ = 0, ζH ⋆ + νηI ⋆ + ψ 1 θA ⋆ -[µ + ϕ 5 λ ⋆ ] R ⋆ = 0, α 1 A ⋆ + α 2 I ⋆ -τ B ⋆ = 0, (D.1)
where

λ ⋆ := β 1 A ⋆ + I ⋆ N ⋆ -H ⋆ + β 2 B ⋆ K + B ⋆ . (D.2)
The resolution of the first seven equations coupled with the tenth equation of (D.1) in term of λ ⋆ gives 

             S ⋆ = r 2 Λ + c 1 Q ⋆ [k 1 + ϕ 2 λ ⋆ ] , Q ⋆ = r 1 Λ + c 2 S ⋆ [k 2 + ϕ 1 λ ⋆ ] , V ⋆ 1 = r 3 Λ + v 1 S ⋆ [k 3 + ϕ 3 λ ⋆ ] , V ⋆ 2 = π 1 Λ + v 2 V ⋆ 1 [µ + ϕ 4 λ ⋆ ] , E ⋆ = λ ⋆ (ϕ 5 R ⋆ + ϕ 1 Q ⋆ + ϕ 2 S ⋆ + ϕ 3 V ⋆ 1 + ϕ 4 V ⋆ 2 k 4 , A ⋆ = pγE ⋆ k 5 , I ⋆ = qγE ⋆ + π 2 θA ⋆ k 6 , B ⋆ = α 1 A ⋆ +
λ ⋆ (ϕ 1 Q ⋆ + ϕ 2 S ⋆ + ϕ 3 V ⋆ 1 + ϕ 4 V ⋆ 2 k 4 -k 7 H ⋆ = 0, (D.4)
Solving the ninth equation of (D.1) gives

R ⋆ = ζH ⋆ + k 11 k 4 λ ⋆ (ϕ 1 Q ⋆ + ϕ 2 S ⋆ + ϕ 3 V ⋆ 1 + ϕ 4 V ⋆ 2 ) k 4 [k 4 (µ + ϕ 5 λ ⋆ ) -k 11 ϕ 5 λ ⋆ ] , (D.5) 
where k 11 = νηγ(qk5+pπ2θ) x i (t) -δ φ 1 x 7 -δ φ 2 x 8 ≤ Λ φ -µ φ x i (t) .

Using the Mittag-Leffler function defined at Eq. (4.3) (see Definition 4.3), we obtain by solving the above inequality, that 0 ≤ N (t) := x i (t) ≤ Λ φ µ φ + 9 i=1

x i (0) -Λ φ µ φ E φ (-µ φ t) , for all t ≥ 0.

This implies, by passing to the limit, that lim sup Λ φ µ φ -τ φ x 10 .

Solving the above inequality gives 0 ≤ x 10 (t) = B(t) ≤ (α φ 1 + α φ 2 )Λ φ µ φ τ φ + x 10 (0) -(α φ 1 + α φ 2 )Λ φ µ φ τ φ E φ (-τ φ t) for all t ≥ 0.

By passing to the limit, we obtain lim sup t-→+∞

x 10 (t) = lim sup

t-→+∞ B(t) ≤ (α φ 1 + α φ 2 )Λ φ µ φ τ φ .
Thus, Υ φ is positively invariant and attracting for system (4.4).

. 10 )

 10 Dynamics of R. The compartment of recovered individuals includes ψ 1 θ rate of asymptomatic persons, ην rate of symptomatic persons and ζ + T (σ, H) rate of hospitalized persons. It decrease either by natural mortality at a rate µ, or by infection by a rate ϕ 5 λ where ϕ 5 is a coefficient representing reduced infectivity of recovered persons due to the control measures taken to avoid another contamination.

r 2 3 1 First dose vaccination rate v 2 Second dose vaccination rate c 1 2 1 2 1 Disease-induced death for symptomatic people δ 2 1 2

 231212121212 Proportion of newcomers to the S compartment r Proportion of newcomers to the V 1 compartment v The rate from Q to S c The rate of flow from S to Q γ Incubation period q Proportion of people in the E-compartment who will become asymptomatic θ The rate of flow between A to I, H, R-compartments ψ Proportion of people in the A-compartment who will recover from the disease ψ Proportion of people in the A-compartment who will become Hospitalized ν The rate of flow between I to H, R-compartments η Proportion of people in the I-compartment who will recover from the disease δ Disease-induced death for hospitalized people ζ Recovered rate of Hospitalized people σ Medical resources supplied per unit time Φ Half-saturation constant for treatment α Rate of virus spread to the environment by asymptomatic people α Rate of virus spread to the environment by symptomatic people τ The natural death rate of coronavirus in the environment K Half-saturation constant for free virus

  [START_REF] Liu | Fractal fractional based transmission dynamics of covid-19 epidemic model[END_REF] 843, A(0) = 0, I(0) = 2, 338, 987, H(0) = 23, 389, R(0) = 160, 115[START_REF] Hannah | Coronavirus pandemic (covid-19)[END_REF], and B(0) = 10 6 . The nonlinear least square method is used to fit the model to the real data. It provides realistic values of model parameters, which is beneficial when we want to forecast the evolution of the disease in a given time interval.

Figure 2 :

 2 Figure 2: Short and Long-term forecasting of Coronavirus (COVID-19) pandemic in Germany. Blue colour stands for prediction of new cases while red colour denotes detected cases.

Figure 3 :Figure 4 :

 34 Figure 3: Impact of vaccination coverage on the COVID-19 dynamics in Germany.

Figure 5 (

 5 Figures 6 & 7 depict PRCC between infected states E, A, I and H, and each model parameter, as well as the corresponding P-values. We observe that: For the compartment E, the most influential parameters are β 1 , γ and ϕ 2 ; For the compartment A,

Figure 5 :

 5 Figure 5: Sampling distribution of R c (a) and global sensitivity indices (b) for R c against model parameters. The character 'd' stands for the dummy parameter.

  PRCCs between the infected compartment A and model parameters

Figure 6 :

 6 Figure 6: Global sensitivity indices for infected state variables of the model (2.13) against model parameters.

  PRCCs between the infected compartment H and model parameters

Figure 7 :Figure 8 : 3 -

 783 Figure 7: Global sensitivity indices for infected state variables of the model (2.13) against model parameters.

Lemma 4 . 6 .

 46 [START_REF] Hamdan | A fractional order SIR epidemic model for dengue transmission[END_REF] Theorem 4.4] The disease-free equilibrium of the fractional model (4.4) is locally asymptotically stable if all the eigenvalues ϖ i of its Jacobian matrix evaluated at the DFE satisfy |arg(ϖ i )| > φπ 2 , i = [1; 10] ∩ N.

Figure 10 illustrateFigure 10 :

 1010 Figure 10 illustrate the result of Lemma 2.4 and Theorem 2.4. Indeed, if some other control measures like social distancing, wearing a mask continuously, and Confinement, are combined with vaccine and quarantine, the control reproduction number R c should be less than one, then it is possible that, in long-term, the disease dies out.

  .

Figure 11

 11 depicts R c as function of the fractional order φ. It is clear that R c is an increasing function of φ. Indeed, φ ∈ [0.5; 1] implies R c ∈ [0.77; 1.8998] with R c = 1 when φ ≈ 0.681.

Figure 11 : 2 -

 112 Figure 11: 2-D plot of R c as a function of the fractional-order. The parameter values are those of Table2.

Figure 12 :Figure 14 :

 1214 Figure 12: Long-term forecasting of Coronavirus (COVID-19) with varying the fractional-order parameter φ ∈ [0.87; 1] (left panel) and φ ∈ [0.74; 0.87] (right panel). The parameter values are those of Table2. t = 0 stands for February 15, 2021 and t = 437 stands for April 28, 2022. We see that curves with fractional-order φ less than 0.87 better fit the data comprising the days between t = 300 and t = 437.

Figure 13 : 2 -

 132 Figure 13: 2-D plot of R c as a function of the fractional-order. The parameter values are those of Table2.

Figure 15 :

 15 Figure 15: Time-series of A(t), I(t), H(t) and B(t) with the parameter values listed in Table2for different values of the fractional order φ.

1 + 4 -k 7 Hqk 5 + pπ 2 θ k 5 + ψ 2 θ pγ k 5 k 2 5 k 2 6 k 2 7 2

 14755522 ϕ 5 λ ⋆ ] ζH ⋆ + k 11 k 4 λ ⋆ G(λ * ) 1 -k 11 ϕ 5 λ ⋆ k 4 [µ + ϕ 5 λ ⋆ ] k 12 λ ⋆ G(λ * ) k ⋆ = 0,which givesH ⋆ = k 11 k 12 ϕ 5 λ ⋆ + k 12 [k 4 (µ + ϕ 5 λ ⋆ ) -k 11 ϕ 5 λ ⋆ ] k 4 k 7 [k 4 (µ + ϕ 5 λ ⋆ ) -k 11 ϕ 5 λ ⋆ ] -k 4 k 12 ϕ 5 ζλ ⋆ λ ⋆ G(λ * ), (D.6)wherek 12 = π3νγ k6 and G(λ * ) = ϕ 1 Q ⋆ + ϕ 2 S ⋆ + ϕ 3 V ⋆ 1 + ϕ 4 V ⋆ 2 . Using (D.3), (D.5) and (D.6) in (D.2), it follows that find the equilibrium points of model (2.13) in this special case consists in the resolution of the following equationP(λ ⋆ ) := λ ⋆ A 4 (λ ⋆ ) 4 + A 3 (λ ⋆ ) 3 + A 2 (λ ⋆ ) 2 + A 1 λ ⋆ + A 0 = 0 (D.7)whereA 0 = -k 2 4 Kµ 4 τ (R c -1) , Coefficient A 0 is negative (resp. positive) if and only if R c > 1 (resp. R c < 1). The sign of the remaining coefficients depend of the parameters values. The proof is completed thanks to Descartes' rule of signs.E. Proof of Theorem 4.Adding the first nine equations of system (4.4) together, it follows that C a D φ t N (t) := 9 i=1 C 0 D φ t x i (t) = Λ φ -µ φ 9 i=1

9 i=1

 9 

9 i=1

 9 

  From the last equation of (2.13), we haveC a D φ t x 10 (t) := C 0 D φ t B(t) = α φ 1 x 7 (t) + α φ 2 x 8 (t) -τ φ x 10 ≤ (α φ 1 + α φ 2 )

  and R) who have contracted the Coronavirus (COVID-19) but are not yet infectious. Their number increases with the flow due to susceptible individuals S, quarantined individuals Q, vaccinated individuals for the first dose V 1 , vaccinated individuals with the second dose V 2 and recovered individuals R, who have had close contact with infectious individuals (A or I). They decrease by natural mortality with a rate

  .6) Dynamics of A. The compartment of asymptomatic persons increases with a flow (1 -q)γ of exposed persons and decreases by natural mortality at a rate µ, either by becoming hospitalized at a rate ψ 2 θ or recovered at a rate ψ 1 θ, or by becoming symptomatic at a rate (1 -ψ 1 -ψ 2 )θ, where θ stand for the transition rate to remainder states (I, H, R). Dynamics of H. The compartment of hospitalized persons includes a fraction ψ 2 θ of asymptomatic persons to which it is added a rate (1 -η)ν of symptomatic individuals. It decreases either by natural mortality at a rate µ, by the disease mortality rate δ 2 , or by healing with a natural recovered rate ζ, or by specific treatment which is impacted by the limited medical resources (for hospitalized persons requiring respiratory assistance) described as in

					p	k5
		dA dt	(t) :=	(1 -q) γE(t) -	(µ + θ) A(t).	(2.7)
	Dynamics of I. The compartment of symptomatic persons increases with a flow qγ of exposed persons to which we add a
	flow of (1 -ψ 1 -ψ 2 )θ of asymptomatic persons; It decreases either by natural mortality at a rate µ, by the disease-induced
	death rate δ 1 , by becoming either hospitalized at a rate (1 -η)ν, or recovered at a rate ην, where ν stand for the transition
	rate from I to hospitalized compartment H or recovered compartment R.
					π2	k6
	dI dt	(t) := qγE(t) +	(1 -ψ 1 -ψ 2 ) θA(t) -	(µ + δ 1 + ν) I(t).	(2.8)

Table 1 :

 1 Description of model parameters.

	Parameter	Description
	Λ	Recruitment rate
	µ	Natural mortality rate
	β 1	Direct contact rate
	β 2	Indirect contact rate
	r 1	Proportion of newcomers to the Q compartment

Table 2 :

 2 Model parameters and their estimated values.

	Parameter Value/per day	Source	Parameter Value/per day Source
	Λ	N (0) × µ	Estimated ζ	0.1428	[52]
	µ	1 81.72 × 365	Estimated α 1	0.1	[53]
	β 1	0.052428772948116	Fitted	α 2	0.1	[53]
	β 2	3.303061249323349e-07 Fitted	τ	0.1724	[53]
	r 1	0.1	Assumed K	10 6	[14]
	r 2	0.8	Assumed δ 1	0.0018	[53]
	r 3	0.05	Assumed δ 2	0.0018	[53]
	v 1	0.000547888192948	Fitted	q	0.7	[53]
	v 2	0.000080792493821	Fitted	η	0.09	[53]
	c 1	0.000318771165360	Fitted	σ	0.0584	[41]
	c 2	0.014228191665571	Fitted	Φ	3.0173	[41]
	γ	0.759448007021108	Fitted	ϕ 1	0.596	[19]
	θ	0.019286496666118	Fitted	ϕ 2	1	Assumed
	ψ 1	0.31	Assumed ϕ 3	0.52	[54]
	ψ 2	0.045	Assumed ϕ 4	0.52	[54]
	ν	0.017	Assumed ϕ 5	0.5	Assumed
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	Figure 1: Model fitting versus reported cases in Germany during the period from February 15, 2021 (t = 0) to April 05, 2021
	(t = 49).
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  Table 2 except β 1 = 0.027 (to have R c < 1) for different values of the fractional order φ.
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  = α 1 x 6 (t) + α 2 x 7 (t) -τ x 10 ≤ (α 1 + α 2 ) Λ µ -τ x 10 .To prove Lemma (2.2), we just have to show that each ∂F i ∂x j , 1 ≤ i, j ≤ 10 exists and is continuous. From (2.13) and using the fact that each state variable of system (2.13) is bounded, we have:∂F ∂S = -k 1 -ϕ 2 λ + ϕ 2 β 1 S A + I (N -H) 2 , ∂F 1 ∂S ≤ k 1 + ϕ 2 + ϕ 2 β 1 < +∞,

	C. Proof of Lemma 2.2					
	∂F ∂Q	= c 1 + ϕ 2 β 1	(A + I)S (N -H) 2 ,	∂F 1 ∂S	≤ c 1 + ϕ 2 β 1 < +∞,
	∂F ∂V	= ϕ 2 β 1	(A + I)S (N -H) 2 ,	∂F 1 ∂V 1	≤ ϕ 2 β 1 < +∞,
	∂F ∂V	= ϕ 2 β 1	(A + I)S (N -H) 2 ,	∂F 1 ∂V 2	≤ ϕ 2 β 1 < +∞,
	∂F ∂E ∂F ∂A	= ϕ 2 β 1 = -ϕ 2 β 1 (A + I)S (N -H) 2 , (N -H -A -I)S (N -H) 2	,	∂F 1 ∂E ∂A ∂F 1	≤ ϕ 2 β 1 < +∞, ≤ ϕ 2 β 1 < +∞,	(C.1)
	∂F ∂I	= -ϕ 2 β 1	(N -H -A -I)S (N -H) 2	,	∂F 1 ∂I	≤ ϕ 2 β 1 < +∞,
	∂F ∂H	= 0,					∂F 1 ∂H	≤ +∞,
	∂F ∂R	= -ϕ 2 β 1	(A + I)S (N -H) 2 ,	∂F 1 ∂R	≤ ϕ 2 β 1 < +∞,
	∂F ∂B	= -ϕ 2 β 2	K (K + B) 2 S,	∂F 1 ∂B	≤ ϕ 2 β 2 |S| < +∞,
					t-→+∞	N (t) ≤	Λ µ	.
	From the last equation of (2.13), we have
	dx 10 dt (t) Solving the above inequality gives (t) := dB dt
	0 ≤ x 10 (t) = B(t) ≤	(α 1 + α 2 )Λ µτ	+ x 10 (0) -	(α 1 + α 2 )Λ µτ	e -τ t for all t ≥ 0.
	By passing to the limit, we obtain lim sup t-→+∞	x 10 (t) = lim sup t-→+∞	B(t) ≤	(α 1 + α 2 )Λ µτ	.
	Thus, Υ is positively invariant and attracting for system (2.13).

  α 2 I ⋆ τ (D.3) Using (D.3) in the eighth equation of (D.1) givesπ 3 νI ⋆ + ψ 2 θA ⋆ -k 7 H ⋆ = 0,

	⇐⇒	π 3 νγ k 6	qk 5 + pπ 2 θ k 5	+ ψ 2 θ	pγ k 5	E ⋆ -k 7 H ⋆ = 0,
	⇐⇒	π 3 νγ k 6	qk 5 + pπ 2 θ k 5	+ ψ 2 θ	pγ k 5	λ ⋆ ϕ 5 R ⋆ k 4
	+	π 3 νγ k 6	qk 5 + pπ 2 θ k 5	+ ψ 2 θ	pγ k 5

The following results hold. The proofs are obtained as the same ways than the results obtained for the model (2.13).

Theorem 4.1. For x(0) ≥ 0 R 10 , the solution x(t) of the IVP (4.7) is positive whenever t ≥ 0.

Let us define the following subset of R 10 E,A,I,H,R,B)

′ ∈ R 10 + : The region Υ φ is positively invariant and attracting for system (4.4). Theorem 4.3 (Existence-uniqueness). For initial conditions 

Local stability of the disease-free equilibrium

As for the case of the model with integer derivative (2.13), the fractional model (4.4) admits always one stationary point, also called disease-free equilibrium (DFE), E 0 = (S 0 , Q 0 , V 10 , V 20 , 0, 0, 0, 0, 0, 0) ′ where

From (2.17), we have

we proved the positivity, boundedness, existence, and uniqueness of solutions. We also computed the control reproduction number of the fractional model, which depends on the fractional order φ. So, if the fractional order φ = 1, then both models have the same control reproduction number. Using the same approach as the case of the integer model, we proved the global asymptotic stability of the disease-free equilibrium whenever the control reproduction number is less than one, as well as the existence of an endemic equilibrium point whenever the control reproduction number is greater than one. We constructed a numerical scheme of the fractional number using the Adams-type predictor-corrector iterative method. To validate the theoretical analysis of both models, and compare the two types of derivatives, we performed several numerical simulations. We found that for a long-term prediction of new daily cases, the fractional model is better than the model with integer derivative. Indeed, when the fractional order φ is less than 0.87, the model with fractional derivative best fits the data in comparison to the model with classical derivatives. Thus, it seems better to use a fractional derivative in the range φ ∈ (0, 0.87] than using just ordinary derivatives. For both models, numerical simulations showed that all infected compartments go to zero whenever R c < 1, which confirms the GAS of the disease-free equilibrium. Although we did not prove the uniqueness of the endemic equilibrium, numerical simulations indicate that the model can have a unique endemic equilibrium that is globally asymptotically stable.

In the present work, we considered constant controls. It would be more realistic to replace constant controls with timedependent controls. And thus, one should use the optimal control theory to make decisions like (1) the percentage of the population that should be vaccinated as the progression of the COVID-19 pandemic, to minimize the number of people infected, (2) the cost of implementing the vaccination strategy, and (3) which controls must be combined with vaccination to decrease rapidly the disease burden. This represents a direct perspective of this work.
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So, the nonnegativity of state variables of system (2.13) are obtained thanks to the Barrier theorem [START_REF] Gauthier | Mathematical Epidemiology[END_REF]. This means that R 10 + is an invariant set for the system (2.13).

B. Proof of Theorem 2.2

Adding the first nine equations of system (2.13) together, it follows that

x i (t) .

Solving this inequality gives 0 ≤ N (t) :=