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Abstract – This technical paper presents a series of speech intelligibility models that have been developed since
the original version proposed by Lavandier and Culling [(2010). Journal of the Acoustical Society of America
127, 387–399]. This binaural model accounts for better-ear listening and binaural unmasking to predict the
intelligibility of a near-field target speech among multiple stationary noise sources in rooms for normal-hearing
listeners. Subsequent model versions allowed to consider a reverberated speech target in the far-field, envelope-
modulated noise sources, and hearing-impaired listeners. As an intermediate step before considering speech
maskers, a monaural version incorporating a harmonic-cancellation mechanism was recently developed to
account for the effect of a stationary harmonic masker. This technical review is oriented towards model users
and explains when and how each model should be used, points at its advantages and limitations, and provides
an example of predictions using a data set from the literature. All these models along with the data, signals and
code used to prepare the presented figures are made available within the Auditory Modeling Toolbox (AMT 1.1).

Keywords: Speech intelligibility, Binaural hearing, Auditory models, Hearing impairment, Harmonic
cancellation

1 Introduction

Binaural hearing can improve speech intelligibility in
noise: an interfering sound source causes less masking when
it is spatially separated from the target speech [1, 2]. This
spatial release from (energetic1) masking (SRM) is thought
to be based on two mechanisms [3]: better-ear listening and
binaural unmasking. Better-ear listening is associated with
the difference in sound level produced by the competing
sources at the two ears (interaural level differences, ILDs).
For spatially separated sources, one ear usually offers a bet-
ter signal-to-noise power ratio (SNR) than the other, and
listeners can use the information coming from whichever
ear offers the better SNR. Binaural unmasking corresponds
to the release frommasking associated with the difference in
the timing of the sound at the two ears (interaural time dif-
ferences, ITDs) between the target and masker signals,

which as per the equalization-cancellation (E-C) theory
[4] allows the auditory system to cancel part of the masker,
thus improving the internal SNR. These two mechanisms
are described in detail in a recent review chapter [5]. In
rooms, SRM is reduced by reverberation [1, 6, 7]. Sound
reflections traveling around the listener reduce ILDs, thus
critically impairing better-ear listening [1]. Because these
reflections are generally not identical at the two ears, they
also impair binaural unmasking by decorrelating the inter-
fering sound at the ears [8].

Several binaural models have been proposed to predict
the effect of SRM on speech intelligibility. They are also pre-
sented in a recent review [9]. The aim of the present paper is
to compare the model versions within a series of SNR-based
intelligibility models that have been developed since the
original version proposed by Lavandier and Culling (2010)
[10]. All these models are made available within the Audi-
tory Modeling Toolbox (AMT 1.1 [11]). The first versions
are binaural models predicting the intelligibility of a near-
field (close to the listener) speech target among multiple
stationary2 noise sources in rooms for normal-hearing

*Corresponding author: mathieu.lavandier@entpe.fr
1 The factors limiting intelligibility are often separated into
energetic masking [77] and informational masking [67]. Energetic
masking occurs when the competing sounds overlap acoustically
with the target and render it less audible. Informational masking
can occur when the interfering sources are competing talkers
similar to the target. It is associated with difficulties in
determining which parts of the speech mixture belong to the
target (achieving segregation) and difficulties in attending to the
right source in the mixture (overcoming distraction).

2 Stationary is used here to characterize the absence of envelope
modulations in the masker, not to be confused with static, which
indicates that the position of the source is fixed. Only static
sources are considered here. None of the presented models have
been tested for moving sources.
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(NH) listeners, using as inputs either the signals reaching the
listener’s ears (lavandier2022) or the binaural room
impulse responses (BRIRs) measured in the considered con-
figurations (jelfs2011). Subsequent model versions were
designed to consider a reverberated speech target further
away from the listener in the far-field (leclere2015), or
envelope-modulated noise sources (vicente2020nh),
and hearing-impaired (HI) listeners (vicente2020).
A SNR-based monaural model incorporating a harmonic-
cancellation mechanism that accounts for the effect
of a stationary harmonic masker is also presented
(prudhomme2020), and constitutes an intermediate step
before considering speech maskers. All these models have
been described in detail and validated using various data
sets in their corresponding original publication. Our aim
here is to explain when and how each model should be used,
focusing on the differences across models and the practical
details particularly relevant to model users rather than on
the underlying theories (fully described in the original pub-
lications). For each model, predictions using a data set from
the literature is provided. These predictions are not here to
test or validate the model, but to give an example on how to
use it. The data and signals are available within the AMT
1.1 [11] along with the code used to run the models for all
the examples provided, so that the user can check how to
handle a particular model before using it to predict intelligi-
bility in other conditions. The code used to compute the pre-
dictions displayed in each of the six figures of this paper is
integrated as exp_lavandier2022 in the AMT 1.1 (see
section Experiments in the Documentation).

2 Common structure

The original model proposed by Lavandier and Culling
(2010) [10] accounts for better-ear listening and binaural
unmasking. Even if the subsequent models differ from the
original in their exact computations, their underlying
concept and structure are identical. Like other binaural
models [7, 12], this model is based on the E-C theory [4];
but the direct implementation of equalization and cancella-
tion is replaced by a predictive equation and the resulting
prediction of binaural unmasking advantage is added to a
better-ear SNR, making it more conceptually similar to
earlier anechoic models [13, 14].

The better-ear listening and binaural unmasking com-
ponents of the model are predicted independently, from
the signals produced by the sources at the ears of the listen-
ers. The target and interferer signals must be available
separately. When multiple masking sources are present,
the overall interfering signal resulting from these sources
is used as input. The better-ear SNR is estimated from
the SNR computed as a function of frequency at each ear,
selecting band-by-band the ear for which the SNR is higher.
SNRs are weighted according to their relevance for speech
using the speech intelligibility index (SII) weightings [15],
and integrated across frequency to provide a broadband
better-ear SNR in dB. Binaural unmasking is modeled by
increasing the SNR by the size of the binaural masking level

difference (BMLD) for pure tone detection in noise in each
frequency band. BMLDs are estimated from the interaural
phase differences of target and interferer (UT and UI) and
the interaural coherence of the interferer (qI). The BMLD
is obtained in each frequency band using equation (1) fol-
lowing a development of the E-C theory [16, 17]. Where
equation (1) returns a negative value, the BMLD is set to
zero, following the assumption that binaural thresholds
are never above either of the corresponding monaural
thresholds [18]. The BMLD values are then SII-weighted
and integrated across frequency to provide a broadband
binaural unmasking advantage. The target and interferer
signals are both cross-correlated to derive the interaural
parameters used in equation (1). The coherence is taken
as the maximum of the cross-correlation function, and the
interaural phase difference is obtained by multiplying the
corresponding delay by the center frequency of the band.
The search of a maximum in the cross-correlation function
is limited to delays within the range plus/minus half the
period of the band center frequency. As a result, the model
does not predict any BMLD at high frequencies.

BMLD ¼ 10log10ð½k � cosðUT � UIÞ�=½k � qI �Þ ð1Þ
with

k ¼ ð1þ r2
e Þ expðx2r2

dÞ ð2Þ
and x = center frequency of the band in rad/s,
rd = 105 ls and re = 0.25 the standard deviations of
the E-C time and amplitude jitters, respectively. This
equation was adapted from those of Durlach (1972) for
tone detection in noise and uses the same jitter values
[4], characterizing an internal noise in the EC model.

To predict the overall effect of binaural hearing, the
effective SNR is obtained by adding the binaural unmask-
ing advantage to the better-ear SNR, assuming additive
contributions3 of the two mechanisms. This assumption,
previously discussed [5, 19, 20] and not necessarily used in
all binaural intelligibility models (see [9] for a review),
allowed for accurate predictions of several data sets where
the two mechanisms were involved both in isolation and
combination [19, 20]. The model does not provide an abso-
lute evaluation of intelligibility, the prediction method is
relative. Effective SNRs can be used to predict measured
differences in speech reception threshold (SRT, the SNR
for 50% intelligibility). Effective SNRs are simply inverted,
so that high SNRs correspond to low predicted SRTs.
Predicted differences in inverted effective SNR can be
directly compared to SRT differences across experimental
conditions. To predict absolute SRTs rather than relative
differences, a reference needs to be chosen. When modeling
an experiment, we generally choose the average SRT across
listeners and conditions as a reference. Inverted ratios are

3 In the AMT code provided with this paper, the better-ear
SNR and binaural unmasking advantage can be obtained as
additional outputs to the binaural models, so that the relative
contributions of the corresponding mechanisms can be
evaluated.
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centered to this average SRT (by subtracting their
mean and adding the average SRT) to obtain the predicted
SRTs, or in other words, the average predicted SRT is
aligned to the average measured SRT. The predicted differ-
ences in SRT across conditions remain unaffected by this
alignment.

The target and overall masker signals used as model
inputs need to be equalized in level. During SRT measure-
ments, the level of the target or maskers4 is varied to control
the SNR and reach 50% intelligibility. In the same way, for
inputs equalized in level (input SNR = 0 dB), the models
will predict differences in (effective/output) SNR across
compared conditions, which can be compared to the differ-
ences in SNR at threshold during the measurements, the
SRTs. The absolute level at which target and masker sig-
nals are calibrated is important only when audibility is an
issue, i.e. for the model vicente2020 that takes into
account hearing impairment, in which case the signals are
calibrated to the (maskers or target) level that was fixed
during the measurements. For the five other models pre-
sented here, which do not account for audibility, changing
the absolute level of the calibration does not change the
effective SNR at the model output.

Except for jelfs2011 and leclere2015, the models
presented below take as inputs the signals at the ears. To
produce reliable predictions, they require averaging across
signals (i.e. across time). Thus, predictions are generally
averaged across several realizations of the stimuli. With
the stationary model lavandier2022, predictions can
be computed using single realizations of the stationary noise
maskers (if they are at least 4- to 5-s long). The predictions
change very little when concatenating more stationary
noises (or averaging prediction across more noise realiza-
tions). This is not the case for the non-stationary models
(vicente2020nh and vicente2020) and modulated
noise maskers for which more realizations are required
(except in the particular case of maskers with identical
modulations across realizations; e.g. for sinusoidally-
modulated noises with the same modulation frequency).
Even if the model prudhomme2020 is stationary, it also
requires averaging across several realizations of the
harmonic masker because of the highly stochastic nature
of its predictions (see below). Moreover, for all these models,
the target signal used asmodel input is the average of several
realizations of the target sentences. While for the stationary
models (lavandier2022 and prudhomme2020) this
only reduces the prediction variability across realizations,
applying the non-stationary models (vicente2020nh
and vicente2020) directly on the original speech wave-
forms could mistakenly lead to a reduced effective SNR in
the target pauses, resulting in reduced predicted intelligibil-
ity, implicitly considering these pauses as an absence of
information instead of relevant information [21]. To avoid
this, the non-stationary models consider target energy aver-
aged across time.

Model performances are evaluated here using three
statistics: the Pearson’s correlation coefficient r between
measured and predicted SRTs, the mean absolute error
(MeanErr) computed as the average across conditions of
the absolute difference between data and predictions, and
the maximum absolute error (MaxErr). Note that, when
evaluating the prediction performance of a model, it is
important to consider both prediction errors and correlation
between data and predictions: predictions can be well corre-
lated with the data but with a general offset so that predic-
tion errors are large; if the effects in the data are small and
the model does not predict any difference across compared
conditions (not capturing any of these small effects), then
predictions errors can be small but predictions poorly corre-
lated with the data.

3 Binaural models for stationary noise maskers
3.1 Models

The first two models, lavandier2022 and
jelfs2011, are relevant when considering a near-field
(or anechoic) target speech in the presence of single or mul-
tiple stationary noise sources in rooms (that can be ane-
choic) for NH listeners. The model jelfs2011 [19, 20] is
a revision of the original model [10] presented in the previ-
ous section. In addition to some computational changes, the
revised model is applied on the BRIRs measured between
the listener’s ears and the different source positions rather
than on the full stimuli produced at the ears. Applying
the model directly on BRIRs allows to produce fast and
accurate non-stochastic predictions (no averaging across
realizations). The model lavandier2022 has the same
computational steps as jelfs2011, except that it is
applied on the ear signals (like the original model [10])
rather than on the BRIRs. In both models, inputs are
decomposed into simulated peripheral frequency channels
using a gammatone filterbank. The switch from signals
(lavandier2022) to BRIRs (jelfs2011) requires sig-
nal power to be replaced by BRIR energy when calculating
SNRs, so that this calculation is independent of the pres-
ence of a silence at the end of the BRIR, in the same way
root-mean-square (RMS) power calculation is independent
of (stationary) signal duration.

When using lavandier2022, the signals produced by
multiple interferers are simply summed to obtain the overall
interferer at the ears. When using jelfs2011, the inter-
ferer BRIRs are concatenated rather than added. Concate-
nation has the effect of summing the frequency-dependent
energy of each contributing impulse response, and generat-
ing an averaged cross-correlation function. Summing
directly the BRIRs would result in spectral distortion due
to interference, which does not occur when summing statis-
tically independent interfering signals convolved with those
BRIRs. Concatenation is the appropriate approach when
the interfering sources are independent. Only in the partic-
ular case of different interfering sources driven by the same
signal (e.g., different loudspeakers driven by the same input
[22]) should the BRIRs be summed.

4 In this paper, only experiments in which SRTs were measured
varying the target level are presented.
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The model jelfs2011 applied on BRIRs is more com-
putationally efficient and also particularly suited for exten-
sion towards reverberated targets affected by temporal
smearing (see leclere2015 below). The version
lavandier2022 using ear signals as inputs is well
adapted for extension towards non-stationary maskers
(see vicente2020nh below). That being written, the
two models are conceptually identical and very close in
terms of computation, thus producing very similar predic-
tions, validated across a wide range of anechoic [19, 23]
and reverberated [20] conditions.

3.2 Data

Lavandier et al. (2012) [20] measured SRTs in the pres-
ence of a single stationary noise interferer (Fig. 1). In order
to evaluate the relative contributions of better-ear listening
and binaural unmasking, the stimuli were manipulated so
that they contained normal ITDs (binaural unmasking
and better-ear listening involved) or no ITD (no binaural
unmasking). Real-room listening over headphones was sim-
ulated by convolving anechoic stimuli with BRIRs mea-
sured in a meeting room. Spectral-envelope impulse
responses (SEIRs) were also used. They were obtained by
removing the temporal characteristics of the BRIRs whilst
preserving their spectral envelopes, thus removing the ITDs
necessary for binaural unmasking while preserving the fre-
quency-dependent ILDs necessary for better-ear listening.
The difference between BRIRs (blue) and SEIRs (red) indi-
cates the contribution of binaural unmasking. The inter-
ferer was tested at two distances (0.65 m “near”, 5 m
“far”) and three directions (�25� “left”, 0� “front”, 25�

“right”) relative to the listener; whereas the target speech
was always at near-right. Moving the noise away from the
target, from right to left, improved intelligibility (reduced
SRTs) due to SRM. Increasing the noise distance in the
room increased the influence of reverberation on this source,
leading to a strong reduction of SRM. For nearby interfer-
ers, the contribution to SRM of better-ear listening (SEIR
data, red) was larger than that of binaural unmasking.
Increasing reverberation reduced the influence of azimuth
separation between sources, indicating that head shadow
was very limited in the far conditions; but intelligibility
then benefited from room coloration. Binaural unmasking
was still apparent in the far conditions.

3.3 Implementation of the predictions

The lavandier2022 predictions presented in Figure 1
were computed from the ear signals, using a single realiza-
tion of the masker signal in each of the twelve tested condi-
tions. The target was represented by averaging 120 target
sentences in each condition (BRIR or SEIR), whereby all
sentences were truncated to the duration of the shortest
sentence. Because the BRIR-processed maskers end with a
non-stationary portion corresponding to the reverberation
decay (absent in the SEIRs [20]), only the first 4.2 s of these
signals were used for the predictions (there was no effect of
removing this non-stationary part on the predictions pre-
sented here, but this could become important when consid-
ering long BRIRs). To mimic the level equalization of the
stimuli during the experiment, the mean of the left and
right RMS powers of the averaged target signals was equal-
ized to that of the maskers, which were equalized across

Figure 1. Mean SRTs with standard errors across listeners measured by Lavandier et al. (2012) [20] with a stationary speech-
spectrum noise (SSN) simulated at two distances (near, far) in three directions (left, front, right) in a meeting room, using BRIRs
(blue; binaural unmasking and better-ear listening involved) and SEIRs (red; no binaural unmasking). The target was always at near-
right. Predicted SRTs and performance statistics are displayed for the model lavandier2022.
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tested conditions. The model was then applied on the equal-
ized signals. Because a single realization of the maskers was
considered here, no averaging of predictions across realiza-
tions was required. The reference SRT used to transform
model outputs into predicted SRTs was the average across
the 12 conditions of the mean SRT across listeners. The
average of the inverted effective SNRs was aligned to this
average measured SRT to obtain the predicted SRTs.

Averaging across realizations is never required when
making predictions with jelfs2011. The impulse
responses used as inputs still need to be equalized in level
according to the stimuli used during the experiment.5 To
do so, the impulse responses were first filtered by a
speech-spectrum filter (used to create the stimuli in the
experiment [20]) and the filtered target and masker impulse
responses were equalized in mean energy (not RMS power)
across left and right channels. The model was then applied
on these equalized responses and produced non-stochastic
predictions (Fig. 2). As for the lavandier2022 predic-
tions, the jelfs2011 outputs were transformed into
predicted SRTs using the average SRT across the 12 condi-
tions as a reference. Note that for anechoic predictions
involving much shorter head-related impulse responses, zero
padding of the impulses responses is often required. Having
impulses responses of at least 1024 samples allows for the
gammatone filter to complete its response and produces
accurate predictions [19].

The predictions in Figures 1 and 2 confirm that
lavandier2022 and jelfs2011 produce very similar
predictions (the effective SNRs were on averaged 0.25 dB
higher for jelfs2011, the difference between the two
model outputs being always between 0.05 and 0.37 dB
across the 12 tested conditions). The two models can pre-
dict SRM, binaural unmasking and better-ear listening, as
well as the deleterious effect of reverberation on SRM (for
both models r = 0.98, MeanErr = 0.3 dB, and
MaxErr = 0.6 dB).

3.4 Limitations

The models lavandier2022 and jelfs2011 should
not be used when considering envelope-modulated interfer-
ers, nor HI listeners, nor (highly) reverberated target speech
having its intrinsic intelligibility impaired by reverberation
(which is not the case for near-field or anechoic targets).
Even if the models can predict the influence of having target
and maskers with different spectra, providing that the
impulse responses are filtered accordingly for jelfs2011,
only broadband stimuli should be considered. In our experi-
ence and as in other modelling approaches, predictions fail
for sharply filtered stimuli [15, 24].

4 Binaural model for non-stationary noise
maskers

Modulations in the temporal envelope of the interferer
can reduce its masking. In the temporal dips of the masker,
the SNR is momentarily increased, allowing one to hear the
target better [25, 26]. This ability is often called (temporal)

5 When multiple interferers are involved and the level of the
overall interferer is the reference, the target BRIR is equalized
(in energy) to the level of the overall interferer BRIR (obtained
by concatenating the individual interferer BRIRs).

Figure 2. Mean SRTs with standard errors across listeners measured by Lavandier et al. (2012) [20] with a stationary speech-
spectrum noise (SSN) simulated at two distances (near, far) in three directions (left, front, right) in a meeting room, using BRIRs
(blue; binaural unmasking and better-ear listening involved) and SEIRs (red; no binaural unmasking). The target was always at near-
right. Predicted SRTs and performance statistics are displayed for the model jelfs2011.
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dip listening, listening in the gaps, or glimpsing [27]. Sound
reflections in rooms reduce the possibility for dip listening
by reducing the envelope modulations of the interferer,
making it more masking by filling in the gaps through
which the target could be heard [28–31].

4.1 Model

To account for the effect of envelope modulations in
noise maskers, Collin and Lavandier (2013) [31] revised
the stationary model lavandier2022, applying it on
the ear signals within short-time frames and averaging
the resulting predictions across frames/time, as also done
in other models [21, 30]. The latest version of this non-
stationary model is vicente2020nh [32]. The input
masker signal is segmented using half-overlapping Hann
windows before the gammatone filtering. The better-ear
SNR calculation uses 24-ms windows to predict monaural
dip listening [21, 30, 33], while the binaural unmasking
advantage calculation uses 300-ms windows to take into
account binaural sluggishness [33–36]. The long-term6

characteristics (spectrum, interaural phase) of the target
are computed once and combined with the short-term7 char-
acteristics (spectrum, interaural phase and coherence) of the
masker to compute the effective SNRwithin each time frame
before averaging. To prevent the better-ear SNR tending to
infinity in the interferer pauses, a 20-dB ceiling is applied
when computing this SNR in each time frame and frequency
band. Since a binaural unmasking advantage should not be
computed in the absence of noise, this advantage is set to
zero if there is no interferer energy at one of the ears in
the considered band and frame. As for lavandier2022,
the signals produced by multiple interferers are simply
summed to obtain the overall interferer signal used as model
input.

This third model vicente2020nh is relevant when
considering a near-field/anechoic target speech in the pres-
ence of multiple non-stationary noise sources in rooms for
NH listeners, that is to say in the same conditions than
lavandier2022 and jelfs2011 while additionally
accounting for the effect of envelope modulations in the
noise maskers. This model has been validated considering
about one hundred conditions [32] and further used to eval-
uate (energetic) masking in similar conditions [37].

4.2 Data

Collin and Lavandier (2013) [31] measured SRTs for
stationary noises and noises modulated by the envelope of
one or two voices (Fig. 3). All sources were simulated at
the same short distance (65 cm) from the listener in a
meeting room. The speech target was always presented at
0� (front). The three types of noise were tested at 0�

(co-located condition) and +25�. The stationary and 2-voice
modulated noises were also tested in a symmetrical configu-
ration involving two independent interferers placed on each
side of the target, at�25� and +25�. The 2-voice modulated
noises were obtained by adding two independent 1-voice
modulated noises simulated at the same (0� or +25�) or
different positions (�25� and +25�). Intelligibility improved
when increasing masker modulations from stationary to
1-voice modulated noise, and when spatially separating
target and interferer(s).

4.3 Implementation of the predictions

The vicente2020nh predictions presented in Figure 3
were computed using 36 realizations of the masker signals in
each of the eight tested conditions. The target was identical
in all conditions and represented by averaging 60 target
sentences, whereby all sentences were truncated to the
duration of the shortest sentence and trimmed of the
150-ms silence at their beginning. Only on-going portions
of the masker signals, between 150 ms and 3.5 s, were used
for the predictions. The mean of the left and right RMS
powers of the averaged target signal was then equalized
to that of the maskers (equalized across conditions as in
the experiment). The model was applied on the equalized
signals and predictions were averaged across the 36 masker
realizations. To transform the model outputs (averaged
across realizations) to predicted SRTs, the average of the
inverted effective SNRs across the 8 conditions was aligned
to the average measured SRT (across listeners and
8 conditions).

The predictions in Figure 3 indicate that
vicente2020nh captures the effects of masker modula-
tions and SRM in the data (r = 0.93, MeanErr = 0.6 dB,
and MaxErr = 1.4 dB). Note that the model overestimates
SRM by about 1.5 dB in the ±25� condition of this partic-
ular data set, but such overestimation was not observed for
other data sets [32]. Again, these predictions are presented
here to illustrate how to use the model, not to test or
validate it, for which one should refer to the original
publication [32].

4.4 Limitations

The model vicente2020nh should not be used when
considering HI listeners, nor reverberated target speech.
Vicente and Lavandier (2020) [32] also indicated that the
model tends to slightly underestimate the effect of reverber-
ation filling in the interferer gaps, as also observed with
another binaural model [30].

5 Binaural model for reverberated speech
target and stationary noise maskers

In addition to its effects of SRM (Figs. 1 or 2), reverber-
ation exerts a well-known temporal smearing on the target
speech, which occurs even in quiet. When the speech signal
at the ears is mixed with the multiple delayed versions of
itself reflected off room boundaries, it is temporally smeared

6 As mentioned previously, target level is always averaged
across time to avoid mistakenly predicting reduced intelligibility
in the target pauses.
7 The model computes the interferer level as a function of time
because peaks in the interferer signal induce an increase of
masking whereas pauses induce a decrease of masking.
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and can be self-masked. This smearing reduces the ampli-
tude modulations in the target speech and its intelligibility
can be impaired [38]. The level of reverberation needs to be
sufficiently high for temporal smearing of the target to be
the overriding factor for intelligibility [8, 39]. Having two
ears may ameliorate this smearing effect on intelligibility
slightly, thanks to binaural de-reverberation [8, 40, 41].

5.1 Model

Leclère et al. (2015) [42] revised the stationary model
jelfs2011 taking BRIRs as inputs, to compute binaural
useful-to-detrimental (U/D) ratios and simultaneously
account for temporal smearing, SRM, and binaural de-
reverberation. It combines the binaural model jelfs2011
predicting SRM of a near-field target from multiple station-
ary noise interferers and a U/D decomposition taking into
account the temporal smearing effect of reverberation on
speech transmission. The U/D decomposition regards the
early reflections of the target as useful and part of the signal
because they reinforce the direct sound [43], whereas the
late reflections are regarded as detrimental and effec-
tively a part of the noise [44–46]. The revised model
leclere2015 is identical to jelfs2011, except that it
incorporates a front end realizing the U/D decomposition.
The target BRIR is first separated into an early and a late
part. The early part constitutes the useful component. The
late part is combined with the BRIRs of the interferers to
form the detrimental component.8 These BRIRs are

concatenated (not added) and 1024-sample zero padding
is added to the early and late parts of the target BRIR
during the U/D decomposition (following the recommenda-
tions on the use of jelfs2011 described above). The
binaural model jelfs2011 is then applied on the useful
and detrimental components in the same way as it was
previously applied on the target and interferer BRIRs.

The separation of the target BRIR into early and late
parts uses two complementary temporal weighting win-
dows: the early and the late windows that isolate each part
by multiplying the original BRIR with the corresponding
time-domain window. A rectangular window is a common
way to split an impulse response: the early part is defined
as the original impulse response until the early/late limit
[43, 45, 47–49]. Despite its simplicity, the frontier between
useful/early and detrimental/late is then infinitely sharp,
so that two reflections can be considered very differently
even if they are separated by only few samples. Warzybok
et al. (2013) [50] highlighted this limitation in the presence
of a single reflection; while Lochner and Burger (1964) [44]
showed that only a part of the early reflections energy can
be considered useful for intelligibility. The linear window
used here progressively weights the reflections across time.
The early window samples are equal to one from the begin-
ning of the window to the early-late limit of 30 ms, then
their amplitude decreases linearly from one to zero during
25 ms, the later samples of the early window are equal to
zero. The late window is the complement of the early
window, such that their sum is always equal to one. These
parameters correspond to the room-independent model
proposed by Leclère et al. (2015) [42].

This fourth model leclere2015 is relevant when
considering a target speech in the presence of multiple

8 Note that the energy equalization of the target and interferer
BRIRs sets the relative level of the late target compare to that of
the interferers at the model input, which might differ from its
relative level at the SRT during the experiment.
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Figure 3. Mean SRTs with standard errors across listeners measured by Collin and Lavandier (2013) [31] with stationary, 1-voice
modulated or 2-voice modulated noises tested at 0� (co-located condition), +25�, or ±25�. The target was always at 0�. Predicted
SRTs and performance statistics are displayed for the model vicente2020nh.
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stationary noise sources in rooms for NH listeners [42],
extending the conditions of use of jelfs2011 to far/
reverberated targets. However, it is not appropriate when
considering non-stationary maskers (the effect of masker
envelope modulations is not accounted for as it is in the
model vicente2020nh).

5.2 Data

Lavandier and Culling (2008) [8] measured SRTs for a
stationary noise simulated spatially separated from the
speech target (65� to the left and right of the listener,
respectively, 2 m away) in a virtual room. Different room
absorption coefficients were used for the target and inter-
ferer, so that their reverberation level could be controlled
independently. This experimental design is not realistic as
it implies listening simultaneously to two sources in a room
having different walls depending on the source, but it
allowed to decompose the effect of reverberation into its
temporal smearing of the target and its decorrelation of
the interferer at the ears (reducing SRM). Four absorption
coefficient were tested for each source (0.2, 0.5, 0.7, and 1
corresponding to an anechoic room). Intelligibility suffered
from the effect of reverberation on the noise at lower levels
of reverberation than those affecting intelligibility when
applied to the target (Fig. 4).

5.3 Implementation of the predictions

The BRIRs used as model inputs were equalized in level
according to the stimuli used in the experiment [8]. First,
the target and interferer BRIRs were convolved with a filter

mimicking the long-term spectrum of male and female
speech, respectively; then the filtered BRIRs were equalized
in energy independently for the left and right channels (as
the stimuli were in the experiment). The model was applied
on the equalized BRIRs. Note that the BRIRs of the virtual
room contained a DC component, as it is often the case in
room acoustics simulations that use an impulse with a non-
zero mean to create the direct sound (and resulting reflec-
tions). Thus, the energy calculation used in the equalization
disregarded any energy below 20 Hz (this precaution is not
necessary when manipulating real BRIRs that do not have
a DC component).

For the U/D decomposition, the direct sound was
defined using a recursive algorithm applied to each channel
of the BRIR to locate the direct left and right sounds, and
then the earlier of the two was selected as the arrival time of
the direct sound of the BRIR. The algorithm finds the first
sample that is at least 20% greater than all previous sam-
ples in the impulse response. It was used to avoid defining
the direct sound as the maximum value or the first non-zero
sample, which could induce errors if a combination of reflec-
tions is more energetic than the direct sound or if some
ambient noise is recorded before the direct sound in the
impulse response [42].

The reference SRT used to transform the model outputs
into predicted SRTs was the average across the 16 condi-
tions of the mean SRT across listeners. The predictions in
Figure 4 indicates that the model can predict the effects
of reverberation (r = 0.86, MeanErr = 0.8 dB, and
Max Err = 1.3 dB) temporally smearing the target (effect
of target absorption coefficient) and reducing SRM via

Figure 4. Mean SRTs with standard errors across listeners measured by Lavandier and Culling (2008) [8] with a stationary noise
spatially separated from the speech target in a virtual room, plotted as a function of the room absorption coefficients used for the noise
(four panels) and for the speech (x-axis). Predicted SRTs and performance statistics are displayed for the model leclere2015.
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the reduction of interferer coherence (effect of interferer
absorption coefficient). The SRT is overestimated by about
1 dB in the anechoic target condition, but such systematic
overestimation was not observed for other data sets [42].

5.4 Limitations

In the study of Leclère et al. (2015) [42], the best model
performance was achieved by adjusting the early/late sepa-
ration for each tested room. The room-independent param-
eters used here did not lead to similar performances,
suggesting that a fixed early/late separation might not be
sufficient to predict speech intelligibility in any room. This
room dependence might indicate an inherent limitation of
the approach and could partially explain the wide range
of early/late limits encountered in the literature.9 To over-
come this limitation, one could try to make the early/late
separation room-dependent [51, 52], or one might change
the definition of useful/early and detrimental/late. Rennies
et al. (2019) [53] recently showed that a reflection could be
characterized as useful or detrimental depending on
whether it is binaurally useful/detrimental, i.e. contributing
or not to SRM, rather than early or late. The distinction
between useful and detrimental might also be influenced
by room adaptation [54, 55] and speech rate (delayed reflec-
tions of previous words can overlap with the direct sound
word depending on how fast the words are spoken and
how delayed the reflections are).

As stated previously, leclere2015 cannot account for
effects of envelope modulations in the masker nor hearing
impairment, so that it is appropriate only for conditions
involving stationary noises and NH listeners.

6 Binaural model for hearing-impaired
listeners

Hearing impairment is clinically characterized as hear-
ing threshold elevation (measured by a pure-tone audio-
gram) that leads to lower audibility of the target and
masker information [56, 57]. It can also involve supra-
threshold deficits, i.e., the information that is audible for
HI listeners is not as well processed as for NH listeners
[58]. For these reasons, HI listeners generally show higher
SRT and lower SRM (see [59] for a review). The models
described above are not able to predict these reduced intel-
ligibility and SRM; in particular, they do not consider any
information about the listener’s hearing status.

6.1 Model

Vicente et al. (2020) [60] revised the model
vicente2020nh, so that it could be used to predict intel-
ligibility for both NH and HI listeners. The revised model
vicente2020 accounts for hearing impairment by imple-
menting internal noise levels at the ears. It takes as input

the individual listener’s audiograms, along with the target
and masker signals at the ears. These signals need to be
equalized in level (like for the other models presented here)
but also calibrated to the sound presentation level in dB
SPL used in the considered conditions. Here, the sound level
that was fixed during the SRT measurements was used for
the calibration, i.e. the overall level of the maskers.

The internal noise spectrum is spectrally shaped accord-
ing to the ear-specific listener’s audiogram. In each fre-
quency band, the hearing loss is decomposed into two
contributions interpreted as rough estimates of the outer
and inner hair cell losses [61, 62]. The outer hair cell loss
defines a constant internal noise floor, to which is added
an internal noise component (based on the inner hair cell
loss) that increases linearly with the level of the external
stimuli [63]. This level was approximated here as the exter-
nal (overall) masker long-term broadband level.10 The
external level dependence of the internal noise proved par-
ticularly relevant to avoid overestimating the difference in
SRT between NH and HI listeners (i.e. overestimating the
HI impairment) at low sensation levels [60].

The time-frequency analysis of the signals is similar to
the one in vicente2020nh. To compute the SNR at
the better ear, the SNR at each ear is determined using
the higher between the external and internal noise levels,
and limited to 20 dB. The higher SNR across ears is selected
as the better-ear SNR. The binaural unmasking advantage
is computed as in vicente2020nh but only if the masker
and target levels are above the internal noise levels at both
ears in the frame and band considered (otherwise it is set to
zero). Then, the values are SII-weighted, integrated across
frequency, averaged across time, and added to obtain a
listener-specific effective SNR.

It is worth noting that the internal noise imple-
mentation simulates increased audiometric thresholds but
does not simulate any reduced spectral or temporal
resolution often associated with hearing loss. This fifth
model vicente2020 extends the predictions of
vicente2020nh to HI listeners, and is otherwise relevant
in the same conditions: a near-field/anechoic target speech
in the presence of multiple non-stationary noise sources in
rooms (the detrimental effect of temporal smearing of the
target by reverberation is not accounted for as it is by
leclere2015). The model has been validated considering
such conditions [60] and further used to evaluate (energetic)
masking in speech-in-speech conditions [64]. It is worth not-
ing that the backward compatibility of vicente2020 was
verified [60], where vicente2020 provided similar results
as lavandier2022 and vicente2020nh when tested
with the same data.

9 An early/late limit of 50 ms has been used very commonly [43,
47–49], but other studies also used a limit of 35 ms [45], 80 ms
[45], and 100 ms [44, 81, 82].

10 This approximation is valid when the external level is
dominated by the masker level, that is to say when the SNR/
SRT is below 0 dB, which was the case in the conditions
considered here. If the sound level fixed/known during the SRT
measurements were the target level rather than the masker level,
then the target level might have to be used as a proxy for the
level of the external stimuli, this approximation being valid only
in the less frequent conditions with a SNR/SRT above 0 dB.
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6.2 Data

Rana and Buchholz (2018) [57] measured SRTs in the
presence of two noise-vocoded speech maskers11 (Fig. 5),
for 10 young NH listeners aged between 20 and 30 years
old (mean age: 23.2 years old) along with 10 older HI listen-
ers aged between 57 and 78 years old (mean age: 70.3 years
old). The group of HI listeners presented a four-frequency
(0.5, 1, 2, 4 kHz) average hearing loss (4FAHL) equal to
29.1 ± 8.0 dB HL. The sound sources were simulated
through headphones, with the target always in front of
the listener and the maskers either at the target position
(“co-loc”) or placed on both sides of the listener at ± 90�
(“separ”). This was done by playing the left masker only
through the left channel of the headphones and the right
masker only through the right channel of the headphones,
removing crosstalk between ears, thus involving infinite
ILD. Target sentences and maskers were filtered to individ-
ually equalize audibility across frequency, and then played
at four different sensation levels (0, 10, 20 and 30 dB SL)
relative to the individual SRT in quiet. This could induce
different ILDs and presentation levels across listeners.

Amongst the 10 HI listeners, 1, 6 and 9 of them could not
be tested at 10, 20 and 30 dB SL, respectively, due to loud-
ness discomfort. The measured SRTs on Figure 5 show that
intelligibility and SRM (difference between blue and red)
increased with sensation level.

6.3 Implementation of the predictions

To compute the vicente2020 predictions presented
in Figure 5, the input masker and target signals are lis-
tener-dependent due to the individual amplification applied
to the stimuli during the experiment. For each listener, a
single long masker input signal was used per condition. It
was obtained by trimming the first second of the masker
signal used during the experiment and truncating it at
120 s. The target signal was identical in all conditions
and represented by averaging 128 target sentences, whereby
all sentences were truncated to the duration of the shortest
sentence and trimmed of the 1.2-s silence and alerting beep
at their beginning. The signals provided in the AMT
already contain the appropriate ILDs associated with the
ear-specific audibility equalization. Hence, only the absolute
overall level must be calibrated to the overall masker level
used during the experiment. The reference chosen for the
0 dB SL condition was the target level (averaged across
ears, in dB SPL) at the individual SRT in quiet. Thus,
the target and masker signals were calibrated to this level

11 Only the broadband condition measured by Rana and
Buchholz (2018) is considered here, while band-limited condi-
tions were also tested in their original study [57].

Figure 5. Mean SRTs with standard errors across NH (left panel) and HI (right panel) listeners measured by Rana and Buchholz
(2018) [57] as a function of masker sensation level (dB SL, using the individual SRT in quiet as reference). The two vocoded-speech
maskers were either co-located with the speech target in front of the listener (“co-loc”, blue) or simulated on each side of the listener
(“separ”, red). Predicted SRTs and performance statistics are displayed for the model vicente2020.
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plus 0, 10, 20, or 30 dB according to the condition tested.
The number of participants per condition varied across
the 16 tested conditions. Hence, the effective SNRs at the
model output had to be converted into predicted SRTs with
caution. The measured SRTs and effective SNRs were aver-
aged across listeners before being averaged across the 16
conditions to give equal weight to the conditions regardless
of the number of participants per condition. The average of
the inverted effective SNRs was then aligned to the average
measured SRT to obtain the predicted SRTs.

The predictions in Figure 5 indicates that the model
captures the influence of sensation level on SRM and SRTs
for both NH and HI listeners (r = 0.98, MeanErr = 1 dB,
and MaxErr = 3.1 dB).

6.4 Limitations

The model vicente2020 has been validated on three
data sets involving SRTs measured with stationary noise
and non-stationary (noise-vocoded speech) maskers for
NH and HI listeners [60]. Even if only one condition
involved realistic ITDs, the binaural unmasking component
of the model was further tested in conditions involving real
ITDs and reverberation [65]. The model produced accurate
predictions for both NH and HI listeners at moderate noise
levels (50 and 60 dB SPL), while the interaural jitters in
equation 1 had to be revised to describe the data measured
at a lower level (40 dB SPL).

The hearing loss profiles considered in the first studies
testing the model [60, 65] were quite similar across listeners;
especially, listeners suffering from severe hearing loss were
not considered nor did asymmetric HI listeners. Also, the
model was able to predict the influence of hearing impair-
ment on average across listeners, but it had not been thor-
oughly tested at predicting individual SRTs. A more recent
study [66] showed that the model can be used to predict
individual differences among (young) HI listeners for SRTs
in noise, modulated noise, and competing speech; as long as
cues are available to prevent informational masking from
the competing speech (spatial separation in this particular
case), and as long as HI listeners do not have a severe hear-
ing loss. To handle this latter case, a floor SNR needs to be
introduced in the model to limit extreme negative better-
ear SNRs, otherwise the model overestimates impair-
ment and underestimates performance for the severely
impaired listeners. Because of the introduction of this new
parameter, the model requires as input the group average
target level at SRT in the condition considered, so that it
can be used to account a posteriori for differences across lis-
teners but not across conditions [66]. Note that the model
was not able to account for the variability among the NH
SRTs, suggesting that other factors limit performance when
audibility (as measured with the audiogram) is not
compromised.

As stated previously, vicente2020 does not account
for the intelligibility loss associated with the temporal
smearing of strongly reverberated targets, nor for the effects
of informational masking that can be observed with speech
maskers that are similar to the target [67].

7 Monaural model for a stationary harmonic
masker

A masker impairs less intelligibility when it has a
harmonic structure [68–70], at least in part12 because it
produces less energetic masking when its fundamental fre-
quency F0 is different from that of the target (DF0 6¼ 0).
Two mechanisms have been proposed to explain this effect
in SNR terms: spectral glimpsing and harmonic cancella-
tion. Spectral glimpsing assumes that listeners can glimpse
target information in the spectral dips of the masker, thus
improving speech intelligibility [70]. The harmonic cancella-
tion theory proposes that listeners can detect the harmonic
structure of a masker and suppress energy at the corre-
sponding (harmonic) frequencies in order to improve intel-
ligibility [68, 71]. These two mechanisms seem to be
impaired for an intonated masker with a F0 varying across
time, so that masking increases when F0 variations are
introduced [72]. These F0 effects might also be explained
(instead or in addition) in terms of modulation masking
[73, 74] (the fact that modulation in the masker might pre-
vent the listener from detecting and processing the useful
temporal fluctuations of the target speech), in which the
harmonic maskers exhibit reduced envelope modulations
(and associated masking) compared to noise maskers [75],
while varying the F0 in intonated harmonic maskers might
introduce additional envelope modulations causing more
modulation masking.

Prud’homme et al. (2020) [76] proposed a monaural
model incorporating a harmonic-cancellation mechanism
to account for the effect of stationary harmonic complex
tones as a masker. This model prudhomme2020 is pre-
sented within this speech intelligibility model series for
three reasons. First, harmonic complex tones with a F0 con-
stitute an intermediate step before considering speech mas-
kers, which voiced parts are harmonic with a F0, and which
many model users will be interested in. Second, while being
monaural, this model has the same underlying philosophy
and structure as the other (binaural) models in the series.
It is an SNR-based model [9] that uses the same signal as
inputs and produces a similar effective SNR as output.
The SNR analysis is very similar to the better-ear SNR
analysis of the binaural models, while the E-C mechanism
[4] underlying binaural unmasking is replaced here by har-
monic cancellation (that is then based on the F0 of the mas-
ker rather than on its ITDs). Third, because of this common
structure, this model is highly compatible with the binaural
models. We have developed a binaural non-stationary
version of the harmonic-cancellation model (a hybrid
between prudhomme2020 and vicente2020nh). Once
this new version is validated/published, it will be made
available within the AMT. We anticipate that the pre-
sentation of the specificity of prudhomme2020 (and

12 A difference in F0 is also a strong cue for the segregation of
competing sounds [83, 84] or voices [85] into different auditory
streams, thus providing for a release from informational
masking.
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vicente2020nh) here will also help the future users to
navigate the subsequent model versions.

7.1 Model

The model prudhomme2020 is based on the monaural
version of the stationary model lavandier2022 applied
on the ear signals. It can account for spectral glimpsing
because the SNR is computed by frequency band. In addi-
tion, harmonic cancellation is implemented by creating a
comb filter to remove energy at the masker F0 and its har-
monics. The comb filter is applied to both the target and
masker input signals. In each frequency band, the best
SNR between the SNR with or without applying harmonic
cancellation is chosen, the idea being that harmonic cancel-
lation is used only when it provides an advantage13

(improves the SNR in the band). A jitter is introduced in
the estimation of the masker F0 to simulate the fact that
the auditory system might not be able to perfectly estimate
the F0 nor create a perfect comb filter to remove energy at
this F0 and its harmonics. The width of the normal distri-
bution used to select the random jitter value is proportional
to the masker F0 (0.25F0). The width of the notches of the
filter is also proportional to this F0 (0.6F0). Harmonic
cancellation is applied only up to 5 kHz. A 40-dB ceiling
is applied to the SNR selected in each frequency band.
The resulting SNRs are SII-weighted and integrated across
frequency to obtain the effective SNR in the corresponding
condition. The model parameters have been defined using
data from two experiments of Deroche et al. (2014) [70],
with single maskers presenting different F0s and different
degrees of harmonicity.

This sixth model prudhomme2020 is relevant when
considering a monotonous, stationary, diotic/monaural har-
monic complex as the single masker. The effects of multiple
maskers, binaural hearing, masker amplitude modulations,
reverberation on the target, and hearing impairment are
not accounted for. Note that the jitter in the F0 estimation
leads to stochastic predictions that need to be averaged
across several realizations of the jitter (typically 800 [76]),
in addition to considering several realizations of the input
signals, so that prudhomme2020 is less computationally
efficient than lavandier2022 on which it is based.

7.2 Data

Deroche et al. (2014) [70] measured SRTs for stationary
monotonous harmonic and inharmonic complex tones with
different F0s (50, 100, 200 and 400 Hz). The inharmonic
complexes were created by randomly jittering each partial
from their harmonic position (the size of each jitter being
drawn from a uniform distribution between �F0/2 and

F0/2). SRTs were measured for frozen (the same masker
was used throughout one block of target sentences used
to measure one SRT) or fresh (the masker was changed
for each sentence) conditions. As there was no significant
difference between the two conditions, the results presented
in Figure 6 were averaged across frozen and fresh condi-
tions. Intelligibility improved when increasing the masker
F0 for both masker types. The effect was even more pro-
nounced for the inharmonic maskers. The harmonic mas-
kers led to lower SRTs than the inharmonic maskers, the
difference in SRT decreasing with increasing masker F0.

7.3 Implementation of the predictions

The prudhomme2020 predictions presented in Figure 6
were computed using 160 realizations of the masker signal
and 800 trials for each realization, using for each trial a dif-
ferent jitter value taken from a 0.25F0-width normal distri-
bution (where F0 is the fundamental frequency of the
considered masker). The target was represented by averag-
ing 160 target sentences (identical in all conditions),
whereby all sentences were truncated to the duration of
the shortest sentence and trimmed of the 150-ms silence
at their beginning. In the study of Prud’homme et al.
(2020) [76], the target was represented by concatenating
the target sentences. However, averaging instead of con-
catenation considerably reduces the computation time
without affecting the prediction results. Only on-going por-
tions of the masker signals, between 150 ms and 2.5 s, were
used for the predictions. The RMS power of the averaged
target signal was equalized to that of the maskers (equalized
across conditions as in the experiment). For each trial, the
model was applied on the equalized signals, and then pre-
dictions were averaged across the 800 trials and 160 masker
realizations. The randomness introduced in the model by
the jitter is responsible for the fact that the model predic-
tions vary slightly each time they are computed. The refer-
ence SRT used to transform model outputs (averaged
across trials and masker realizations) into predicted SRTs
was the average across the 8 conditions of the mean SRT
across listeners.

The predictions in Figure 6 indicate that the model can
account for the difference between harmonic and inhar-
monic maskers as well as for the decrease in SRT due to
increasing masker F0 (r = 0.99, MeanErr = 0.5 dB, and
MaxErr = 1.5 dB).

7.4 Limitations

To this point, the model prudhomme2020 has only
been validated for NH listeners with a monotonized, sta-
tionary, diotic, anechoic tone complex masker. The model
should not be used outside this rather limited framework.
Moreover, it does not predict the small interaction observed
in Figure 6, the difference between harmonic and inhar-
monic maskers being reduced when increasing the masker
F0. The effects of spectral glimpsing and harmonic cancella-
tion are greatly reduced when the masker F0 varies across
time [72], this is not accounted for in this stationary model.

13 A parallel can be drawn with the E-C theory and binaural
unmasking that assume that binaural thresholds are never above
the corresponding monaural thresholds [18], so that equaliza-
tion-cancellation is used only when it provides an advantage
(decreases threshold). For all the binaural models presented
here, if equation 1 returns a negative value, the BMLD is set to
zero in the corresponding frequency band.
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Moreover, prudhomme2020 is currently not able to handle
multiple harmonic maskers with different F0s.

It is still unknown how relevant harmonic cancellation
would be for more complex stimuli like speech maskers,
which are intonated and contain unvoiced segments (with
no F0).

8 General discussion

When willing to predict intelligibility, it is important to
choose the right model for the considered conditions. Every
model has its limitations and underlying assumptions, and
will be appropriate or not depending on the type of listeners
(NH or HI) and interferers (stationary noise, envelope-
modulated noise, harmonic complex). Table 1 summarizes
the characteristics of the six models presented here. One
might be particularly interested in predicting the intelligi-
bility of speech among competing talkers. No current model
is able to do so [9]. Given the models currently available,
those validated for non-stationary noise maskers seem to
be the most appropriate to evaluate intelligibility differ-
ences associated with variations in energetic masking across
speech-in-speech conditions. But one should keep in mind
that, first, no such model exists that also accounts for the
energetic masking effects associated with F0 differences
[77]. The importance of such effects highlighted with har-
monic complex maskers [70, 72] remains to be investigated
for speech maskers that are generally intonated, contain
unvoiced segments, and can involve multiple F0s (for mul-
tiple speech maskers). Second, these intelligibility models
generally do not account for the effects of informational

masking [67] that can occur when the speech maskers are
similar to the speech target. On the other hand, models
can be used to predict the contribution of energetic masking
in speech-in-speech conditions, so that the contribution of
informational masking can be quantified a posteriori as
the remaining source of variations in the data once pre-
dicted energetic masking effects have been factored out.
This has been done previously for NH listeners with
vicente2020nh [37, 78] and for NH and HI listeners with
vicente2020 [64].

It is important to keep in mind that the absolute predic-
tions of the models presented here do not carry any interest-
ing meaning, it is the relative differences across predictions
that are relevant. For example, lavandier2022 and
jelfs2011 will produce an effective SNR of 0 dB for a
stationary noise interferer with the same long-term
spectrum as and co-located with the target speech, while
vicente2020nh will output a 4.3-dB SNR in the same
condition, because the Hann window used in the temporal
segmentation systematically reduces the noise levels by
4.3 dB. However, the relative differences in prediction
across different conditions with stationary noises will be
very similar for these three models. Interestingly, to com-
pare differences in predicted SRT across conditions with
this model series, there is no requirement to calculate speech
indices such as the articulation index (AI) [79] or the SII
[15], or to conduct index-to-intelligibility mapping [7, 13].
The predicted differences in model output (effective SNR)
can be directly compared to the measured differences in
SRT (SNR at threshold). It is important to note that this
assumes a linear relationship between SNR and percent
correct, which is not verified at low and high SNRs, as

Figure 6. Mean SRTs across listeners measured by Deroche et al. (2014) [70] with stationary monotonous harmonic and inharmonic
complex tones with a F0 of 50, 100, 200 and 400 Hz. Predicted SRTs and performance statistics are displayed for the model
prudhomme2020.
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indicated by the sigmoid form of the psychometric functions
relating SNR and percent correct (which saturates at high
and low SNRs). Thus, the direct comparison seems appro-
priate when considering the SRT defined at 50% intelligibil-
ity, which corresponds to the linear part of the
psychometric functions, but it might not be appropriate
when other threshold values are chosen (e.g., the SRT at
70% intelligibility). This direct comparison also assumes
that the psychometric functions (underlying the SRTs)
measured in the different conditions only differ by their
SRT and in particular that they have the same slope, which
might not always be verified depending on the conditions
being compared. For example, the models would not be able
to predict any effect on intelligibility associated with a dif-
ference in target speech material (which can differ in word
frequency or in the presence of syntactic and/or semantic
constraints). The nature of this speech material directly
affects the slope of the psychometric function relating
SNR and percent correct [15]. When one wants to predict
absolute SRTs rather than relative differences, then a map-
ping between predictions and measurements is required:
holding the assumptions just mentioned, the predictions
are just linearly offset to match a reference SRT (here the
average SRT across listeners and conditions in each
experiment).

When a particular model has been chosen, it is also
important to use the model properly, depending on its
design. For example, the level equalization of the input sig-
nals is simple (most of the time), but also very important.
In the model series presented here, the target and masker
input signals need to be equalized in level. Any equalization
error affecting differently the compared conditions will be
directly transferred to the effective SNRs and thus to the
prediction errors. For example, it has been explained above
that this equalization needs to consider the energy of the
BRIRs or the RMS power of the ear signals. The BRIRs
also need to be filtered according to the long-term spectrum
of the sources before the equalization (so that it mirrors the
equalization of the stimuli). Any (inaudible) DC component
in the (virtual) BRIRs needs to be discarded when comput-
ing the energy levels. These equalization techniques are
illustrated in exp_lavandier2022 (AMT 1.1 [11]), using
the examples presented here.

The performance of a model can be evaluated in differ-
ent ways. It has already been mentioned that it is impor-
tant to verify that predictions are both well correlated
with the data and lead to low prediction errors. It is of
course crucial to use the absolute value of the predictions
errors before computing the mean prediction error (to pre-
vent over- and under-estimations to cancel each other). One
can also choose to compute the RMS prediction error, even
if this can imply taking the square of a dB value. Another
way to estimate model performance, compare to equalizing
the level of the input signals and then compare the varia-
tions in model output to the variations in the data, could
have been inversely to calibrate the input signals using
the SNR at the SRT (thus using the measured data to
set the levels of the input signals) and then verify that
the model output is constant (plus/minus the predictionT
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errors), corresponding to the constant intelligibility level at
the SRT. This approach, even if elegant, can be very mis-
leading: evaluating an intelligibility model by checking that
it produces a constant output at the SRT is not appropriate
because, for example, a “model” that produces a constant
value of 0 for any input signal would pass this performance
test perfectly even if it cannot predict anything.

The aim of this technical paper was to clarify when and
how to use a series of six SNR-based speech intelligibility
models. It is intended as a user guide, providing a code
example to run each model (exp_lavandier2022,
AMT 1.1 [11]), so that the user can choose a particular
model and verify how to handle its details before predicting
intelligibility in other conditions. The questions raised here
might also prove helpful when considering other modelling
approaches, not limited to intelligibility.

Conflict of interest

The authors declare no conflict of interest.

Data availability statement

Implementations of both the models (lavandier
2022, jelfs2011, leclere2015, vicente2020nh,
vicente2020, prudhomme2020) and the predictions
presented here (exp_lavandier2022) are publicly avail-
able as part of the Auditory Modeling Toolbox (AMT) [11]
in the release of the version 1.1.0 available as a full package
for download ([80] https://sourceforge.net/projects/
amtoolbox/files/AMT1.x/amtoolbox-full-1.1.0.zip/download).

Acknowledgments

The authors would like to acknowledge the crucial con-
tributions of their colleagues who participated in the
development of the models presented here: John Culling,
Sam Jelfs, Benjamin Collin, Thibaud Leclère, Jörg Buch-
holz, and Virginia Best. This work was conducted within
the LabEx CeLyA (Lyon Acoustics Center, ANR-10-
LABX-0060) and supported by the grants Speech2Ears
(Fondation pour l’Audition) and ASH (PHC Danube,
Grant Nos. 45268RE, APVV DS-FR-19-0025, WTZ
MULT 07/2020).

References

1.R. Plomp: Binaural and monaural speech intelligibility of
connected discourse in reverberation as a function of azimuth
of a single competing sound source (speech or noise). Acta
Acustica united with Acustica 34 (1976) 200–211.

2.M.L. Hawley, R.Y. Litovsky, J.F. Culling: The benefit of
binaural hearing in a cocktail party: effect of location and
type of interferer. Journal of the Acoustical Society of
America 115, 2 (2004) 833–843.

3.A.W. Bronkhorst, R. Plomp: The effect of head-induced
interaural time and level differences on speech intelligibility

in noise. Journal of the Acoustical Society of America 83, 4
(1988) 1508–1516.

4.N.I. Durlach: Binaural signal detection: Equalization and
cancellation theory. In: J. Tobias, Ed. Foundations of
Modern Auditory Theory, Vol. II, New York: Academic,
1972: 371–462.

5. J.F. Culling, M. Lavandier: Binaural unmasking and spatial
release from masking. In: R.Y. Litovsky, M.J. Goupell, A.N.
Popper, R.R. Fay, Eds. Binaural Hearing, Vol. 73 of Springer
Handbook of Auditory Research, Switzerland: Springer
Nature, 2021: 209–241.

6. J.F. Culling, K.I. Hodder, C.Y. Toh: Effects of reverberation
on perceptual segregation of competing voices. Journal of the
Acoustical Society of America 114, 5 (2003) 2871–2876.

7. R. Beutelmann, T. Brand: Prediction of speech intelligibility
in spatial noise and reverberation for normal-hearing and
hearing-impaired listeners. Journal of the Acoustical Society
of America 120, 1 (2006) 331–342.

8.M. Lavandier, J.F. Culling: Speech segregation in rooms:
Monaural, binaural, and interacting effects of reverberation
on target and interferer. Journal of the Acoustical Society of
America 123, 4 (2008) 2237–2248.

9.M. Lavandier, V. Best: Modeling binaural speech under-
standing in complex situations: In: J. Blauert, J. Braasch,
Eds. The technology of binaural understanding, Switzerland:
Springer Nature, 2020: 547–578.

10.M. Lavandier, J.F. Culling: Prediction of binaural speech
intelligibility against noise in rooms. Journal of the Acous-
tical Society of America 127, 1 (2010) 387–399.

11. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.x: A
toolbox for reproducible research in auditory modeling. Acta
Acustica 6 (2022) 19.

12. R. Wan, N.I. Durlach, H.S. Colburn: Application of an
extended equalization- cancellation model to speech intelli-
gibility with spatially distributed maskers. Journal of the
Acoustical Society of America 128, 6 (2010) 3678–3690.

13.H. Levitt, L.R. Rabiner: Predicting binaural gain in intelli-
gibility and release from masking for speech. Journal of the
Acoustical Society of America 424 (1967) 820–829.

14. P.M. Zurek: Binaural advantages and directional effects in
speech intelligibility. In: G. Studebaker, I. Hochberg, Eds.
Acoustical factors affecting hearing aid performance, Need-
ham Heights, MA: Allyn and Bacon, 1993: 255–276.

15.ANSI S3.5: Methods for calculation of the speech intelligi-
bility index, American National Standards Institute, New
York. 1997.

16. J.F. Culling, M.L. Hawley, R.Y. Litovsky: The role of head-
induced interaural time and level differences in the speech
reception threshold for multiple interfering sound sources.
Journal of the Acoustical Society of America 116, 2 (2004)
1057–1065.

17. J.F. Culling, M.L. Hawley, R.Y. Litovsky: Erratum: The role
of head-induced interaural time and level differences in the
speech reception threshold for multiple interfering sound
sources. Journal of the Acoustical Society of America 118, 1
(2005) 552.

18.N.I. Durlach: Equalization and cancellation theory of binau-
ral masking-level differences. Journal of the Acoustical
Society of America 35, 8 (1963) 1206–1218.

19. S. Jelfs, J.F. Culling, M. Lavandier: Revision and validation
of a binaural model for speech intelligibility in noise. Hearing
Research 275 (2011) 96–104.

20.M. Lavandier, S. Jelfs, J.F. Culling, A.J. Watkins, A.P.
Raimond, S.J. Makin: Binaural prediction of speech intelli-
gibility in reverberant rooms with multiple noise sources.
Journal of the Acoustical Society of America 131, 1 (2012)
218–231.

M. Lavandier et al.: Acta Acustica 2022, 6, 20 15

https://sourceforge.net/projects/amtoolbox/files/AMT1.x/amtoolbox-full-1.1.0.zip/download
https://sourceforge.net/projects/amtoolbox/files/AMT1.x/amtoolbox-full-1.1.0.zip/download


21.K.S. Rhebergen, N.J. Versfeld: A speech intelligibility index-
based approach to predict the speech reception threshold for
sentences in fluctuating noise for normal-hearing listeners.
Journal of the Acoustical Society of America 117, 4 (2005)
2181–2192.

22. J.F. Culling, S. Jelfs, M. Lavandier: An alternative perspec-
tive on multi-channel reproduction, in Reproduced Sound
2010, Proceedings of the Institute of Acoustics. 2010.

23. J.F. Culling, M. Lavandier, S. Jelfs: Predicting binaural
speech intelligibility in architectural acoustics. In: J. Blauert,
Ed. The technology of binaural listening, Berlin-Heidelberg-
New York NY: Springer, 2013: 427–447.

24. T. Leclère, D. Thery, M. Lavandier, J.F. Culling: Speech
intelligibility for target and masker with different spectra. In:
P. van Dijk, D. Bas�kent, E. Gaudrain, E. de Kleine, A.
Wagner, C. Lanting (Eds.), Physiology, psychoacoustics and
cognition in normal and impaired hearing, Vol. 894, Springer,
Advances in Experimental Medicine and Biology, 2016: 257–
266.

25. J.M. Festen, R. Plomp: Effects of fluctuating noise and
interfering speech on the speech- reception threshold for
impaired and normal hearing. Journal of the Acoustical
Society of America 88, 4 (1990) 1725–1736.

26.A.W. Bronkhorst, R. Plomp: Effect of multiple speechlike
maskers on binaural speech recognition in normal and
impaired hearing. Journal of the Acoustical Society of
America 92, 6 (1992) 3132–3139.

27.M. Cooke: A glimpsing model of speech perception in noise.
Journal of the Acoustical Society of America 119, 3 (2006)
1562–1573.

28.A.W. Bronkhorst, R. Plomp: A clinical test for the assess-
ment of binaural speech perception in noise. Audiology 29
(1990) 275–285.

29. E.L.J. George, J.M. Festen, T. Houtgast: The combined
effects of reverberation and nonstationary noise on sentence
intelligibility. Journal of the Acoustical Society of America
124, 2 (2008) 1269–1277.

30. R. Beutelmann, T. Brand, B. Kollmeier: Revision, extension,
and evaluation of a binaural speech intelligibility model.
Journal of the Acoustical Society of America 127, 4 (2010)
2479–2497.

31. B. Collin, M. Lavandier: Binaural speech intelligibility in
rooms with variations in spatial location of sources and
modulation depth of noise interferers. Journal of the Acous-
tical Society of America 134, 2 (2013) 1146–1159.

32. T. Vicente, M. Lavandier: Further validation of a binaural
model predicting speech intelligibility against envelope-
modulated noises. Hearing Research 390 (2020) 107937.

33. J.F. Culling, Q. Summerfield: Measurements of the binaural
temporal window using a detection task. Journal of the
Acoustical Society of America 103, 6 (1998) 3540–3553.

34.D.W. Grantham, F.L. Wightman: Detectability of a pulsed
tone in the presence of a masker with time-varying interaural
correlation. Journal of the Acoustical Society of America 65,
6 (1979) 1509–1517.

35. J.F. Culling, E.R. Mansell: Speech intelligibility among
modulated and spatially distributed noise sources. Journal
of the Acoustical Society of America 133, 4 (2013) 2254–
2261.

36. C.F. Hauth, T. Brand: Modeling sluggishness in binaural
unmasking of speech for maskers with time-varying interau-
ral phase differences. Trends in Hearing 22 (2018) 1–10.

37. J. Cubick, J.M. Buchholz, V. Best, M. Lavandier, T. Dau:
Listening through hearing aids affects spatial perception and
speech intelligibility in normal-hearing listeners. Journal of
the Acoustical Society of America 144, 5 (2018) 2896–2905.

38. T. Houtgast, H.J.M. Steeneken: A review of the MTF
concept in room acoustics and its use for estimating speech
intelligibility in auditoria. Journal of the Acoustical Society
of America 77, 3 (1985) 1069–1077.

39.M. Lavandier, J.F. Culling: Speech segregation in rooms:
Effects of reverberation on both target and interferer.
Journal of the Acoustical Society of America 122, 3 (2007)
1713–1723.

40. J.P. Moncur, D. Dirks: Binaural and monaural speech
intelligibility in reverberation. Journal of Speech and Hearing
Research 10 (1967) 186–195.

41.A.K. Nábĕlek, P.K. Robinson: Monaural and binaural speech
perception in reverberation for listeners of various ages.
Journal of the Acoustical Society of America 71, 5 (1982)
1242–1248.

42. T. Leclère, M. Lavandier, J.F. Culling: Speech intelligibility
prediction in reverberation: Towards an integrated model of
speech transmission, spatial unmasking and binaural de-
reverberation. Journal of the Acoustical Society of America
137, 6 (2015) 3335–3345.

43. J.S. Bradley, H. Sato, M. Picard: On the importance of early
reflections for speech in rooms. Journal of the Acoustical
Society of America 113, 6 (2003) 3233–3244.

44. J.P.A. Lochner, J.F. Burger: The influence of reflections on
auditorium acoustics. Journal of Sound and Vibration 1, 4
(1964) 426–454.

45. J.S. Bradley: Predictors of speech intelligibility in rooms.
Journal of the Acoustical Society of America 80, 3 (1986)
837–845.

46. J.S. Bradley, R.D. Reich, S.G. Norcross: On the combined
effects of signal-to-noise ratio and room acoustics on speech
intelligibility. Journal of the Acoustical Society of America
106, 4 (1999) 1820–1828.

47.G.A. Soulodre, N. Popplewell, J.S. Bradley: Combined effects
of early reflections and background noise on speech intelli-
gibility. Journal of Sound and Vibration 135, 1 (1989) 123–
133.

48. I. Arweiler, J.M. Buchholz: The influence of spectral
characteristics of early reflections on speech intelligibility.
Journal of the Acoustical Society of America 130, 2 (2011)
996–1005.

49.N. Roman, J. Woodruff: Speech intelligibility in reverbera-
tion with ideal binary masking: Effects of early reflections
and signal-to-noise ratio threshold. Journal of the Acoustical
Society of America 133, 3 (2013) 1707–1717.

50.A. Warzybok, J. Rennies, T. Brand, S. Doclo, B. Kollmeier:
Effects of spatial and temporal integration of a single early
reflection on speech intelligibility. Journal of the Acoustical
Society of America 133, 1 (2013) 269–282.

51.A. Lindau, L. Kosanke, S. Weinzierl: Perceptual evaluation
of model- and signal-based predictors of the mixing time in
binaural room impulse responses. Journal of the Audio
Engineering Society 60, 11 (2012) 887–898.

52.O. Kokabi, F. Brinkmann, S. Weinzierl: Segmentation of
binaural room impulse responses for speech intelligibility
prediction. Journal of the Acoustical Society of America 144,
5 (2018) 2793–2800.

53. J. Rennies, A. Warzybok, T. Brand, B. Kollmeier: Measure-
ment and prediction of binaural-temporal integration of speech
reflections. Trends in Hearing 23 (2019) 2331216519854267.

54.A.J. Watkins: Perceptual compensation for effects of rever-
beration in speech identification. Journal of the Acoustical
Society of America 118, 1 (2005) 249–262.

55. E. Brandewie, P. Zahorik: Prior listening in rooms improves
speech intelligibility. Journal of the Acoustical Society of
America 128, 1 (2010) 291–299.

M. Lavandier et al.: Acta Acustica 2022, 6, 2016



56.V. Best, E.R. Thompson, C.R. Mason, G. Kidd: An energetic
limit on spatial release from masking. Journal of the Associ-
ation for Research in Otolaryngology 14, 4 (2013) 603–610.

57. B. Rana, J.M. Buchholz: Effect of audibility on better-ear
glimpsing as a function of frequency in normal-hearing and
hearing-impaired listeners. Journal of the Acoustical Society
of America 143 (2018) 2195–2206.

58. S. Santurette, T. Dau: Relating binaural pitch perception to
the individual listener’s auditory profile. Journal of the
Acoustical Society of America 131, 4 (2012) 2968–2986.

59.H. Glyde, L. Hickson, S. Cameron, H. Dillon: Problems
hearing in noise in older adults: a review of spatial processing
disorder. Trends in Amplification 15, 3 (2011) 116–126.

60. T. Vicente, M. Lavandier, J.M. Buchholz: A binaural model
implementing an internal noise to predict the effect of
hearing impairment on speech intelligibility in non-station-
ary noises. Journal of the Acoustical Society of America 148,
5 (2020) 3305–3317.

61. B.C.J. Moore, B.R. Glasberg: A revised model of loudness
perception applied to cochlear hearing loss. Hearing Research
188 (2004) 70–88.

62. I. Pieper, M. Mauermann, D. Oetting, B. Kollmeier, S.D.
Ewert: Physiologically motivated individual loudness model
for normal hearing and hearing impaired listeners. Journal of
the Acoustical Society of America 144, 2 (2018) 917–930.

63. L.R. Bernstein, C. Trahiotis: Binaural signal detection,
overall masking level, and masker interaural correlation:
Revisiting the internal noise hypothesis, Journal of the
Acoustical Society of America 124, 6 (2008) 3850–3860.

64. P.A. Wasiuk, M. Lavandier, E. Buss, J. Oleson, L. Calan-
druccio: The effect of fundamental frequency contour simi-
larity on multi-talker listening in older and younger adults.
Journal of the Acoustical Society of America 148, 6 (2020)
3527–3543.

65. T. Vicente, M. Lavandier, J.M. Buchholz: Modelling binaural
unmasking and the intelligibility of speech in noise and
reverberation for normal-hearing and hearing-impaired lis-
teners. Journal of the Acoustical Society of America 150, 5
(2021) 3275–3287.

66.M. Lavandier, C.R. Mason, L.S. Baltzell, V. Best: Individual
differences in speech intelligibility at a cocktail party: a
modelling perspective. Journal of the Acoustical Society of
America 150, 2 (2021) 1076–1087.

67.G. Kidd, H.S. Colburn: Informational masking in speech
recognition. In: J. Middlebrooks, J. Simon, A.N. Popper, R.
R. Fay, Eds. The Auditory System at the Cocktail Party,
Springer Handbook of Auditory Research, Cham: Springer,
2017: 75–109.

68.A. de Cheveigné, S. McAdams, J. Laroche, M. Rosenberg:
Identification of concurrent harmonic and inharmonic vow-
els: A test of the theory of harmonic cancellation and
enhancement. Journal of the Acoustical Society of America
97, 6 (1995) 3736–3748.

69.K. Steinmetzger, S. Rosen: The role of periodicity in perceiving
speech in quiet and in background noise. Journal of the
Acoustical Society of America 138, 6 (2015) 3586–3599.

70.M.L.D. Deroche, J.F. Culling, M. Chatterjee, C.J. Limb:
Speech recognition against harmonic and inharmonic

complexes: Spectral dips and periodicity. Journal of the
Acoustical Society of America 135, 5 (2014) 2873–2884.

71.A. de Cheveigné, S. McAdams, C.M.H. Marin: Concurrent
vowel identification II. Effects of phase, harmonicity, and
task. Journal of the Acoustical Society of America 101, 5
(1997) 2848–2856.

72. T. Leclère, M. Lavandier, M.L.D. Deroche: The intelligibility
of speech in a harmonic masker varying in fundamental
frequency contour, broadband temporal envelope, and spa-
tial location. Hearing Research 350 (2017) 1–10.

73.M.A. Stone, C. Fiillgrabe, B.C.J. Moore: Notionally steady
background noise acts primarily as a modulation masker of
speech. Journal of the Acoustical Society of America 132, 1
(2012) 317–326.

74.M.A. Stone, C. Füllgrabe, R.C. Mackinnon, B.C.J. Moore:
The importance for speech intelligibility of random fluctua-
tions in steady background noise. Journal of the Acoustical
Society of America 130, 5 (2011) 2874–2881.

75.K. Steinmetzger, J. Zaar, H. Relaño-Iborra, S. Rosen, T.
Dau: Predicting the effects of periodicity on the intelligibility
of masked speech: An evaluation of different modelling
approaches and their limitations. Journal of the Acoustical
Society of America 146, 4 (2019) 2562–2576.

76. L. Prud’homme, M. Lavandier, V. Best: A harmonic-
cancellation-based model to predict speech intelligibility
against a harmonic masker. Journal of the Acoustical Society
of America 148, 5 (2020) 3246–3254.

77. J.F. Culling, M.A. Stone: Energetic masking and masking
release. In: J. Middlebrooks, J. Simon, A.N. Popper, R.R.
Fay, Eds. The Auditory System at the Cocktail Party, Vol.
60, Springer Handbook of Auditory Research, Cham:
Springer, 2017: 41–73.

78. L.S. Baltzell, J. Swaminathan, A. Cho, M. Lavandier, V.
Best: Binaural sensitivity and release from speech-on-speech
masking in listeners with and without hearing loss. Journal of
the Acoustical Society of America 147, 3 (2020) 1546–1561.

79.K.D. Kryter: Methods for the calculation and use of the
Articulation Index. Journal of the Acoustical Society of
America 34, 11 (1962) 1689–1697.

80. The AMT Team: The auditory modeling toolbox full package
(version 1.1.0) [code]. (2021). https://sourceforge.net/projects/
amtoolbox/files/AMT1.x/amtoolbox-full-1.1.0.zip/download.

81. J. Rennies, T. Brand, B. Kollmeier: Prediction of the
influence of reverberation on binaural speech intelligibility
in noise and in quiet. Journal of the Acoustical Society of
America 130, 5 (2011) 2999–3012.

82. J. Rennies, A. Warzybok, T. Brand, B. Kollmeier: Modeling
the effects of a single reflection on binaural speech intelligi-
bility. Journal of the Acoustical Society of America 135, 3
(2014) 1556–1567.

83.A. Bregman: Auditory scene analysis, the perceptual orga-
nization of sound, The MIT Press, Cambridge, MA, 1990.

84. B.C.J. Moore, H. Gockel: Properties of auditory stream
formation, Philos. Trans. R. Soc. B. 367, 1591 (2012) 919–931.

85.M. David, M. Lavandier, N. Grimault, A.J. Oxenham:
Sequential stream segregation of voiced and unvoiced speech
sounds based on fundamental frequency. Hearing Research
344 (2017) 235–243.

Cite this article as: Lavandier M. Vicente T. & Prud’homme L. 2022. A series of SNR-based speech intelligibility models in the
Auditory Modeling Toolbox. Acta Acustica, 6, 20.

M. Lavandier et al.: Acta Acustica 2022, 6, 20 17

https://sourceforge.net/projects/amtoolbox/files/AMT1.x/amtoolbox-full-1.1.0.zip/download
https://sourceforge.net/projects/amtoolbox/files/AMT1.x/amtoolbox-full-1.1.0.zip/download

	Introduction
	Common structure
	Binaural models for stationary noise maskers
	Models
	Data
	Implementation of the predictions
	Limitations

	Binaural model for non-stationary noise maskers
	Model
	Data
	Implementation of the predictions
	Limitations

	Binaural model for reverberated speech target and stationary noise maskers
	Model
	Data
	Implementation of the predictions
	Limitations

	Binaural model for hearing-impaired listeners
	Model
	Data
	Implementation of the predictions
	Limitations

	Monaural model for a stationary harmonic masker
	Model
	Data
	Implementation of the predictions
	Limitations

	General discussion
	Conflict of interest
	Data availability statement
	Acknowledgements
	References

