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Abstract 

The purpose of the present paper is to investigate the wave propagation features in a sandwich plate 
with honeycomb core over a large frequency domain. Robust experiment-based identification 
processes are proposed to estimate propagation direction-dependent and frequency-dependent 
wavenumber-space (k-space) characteristics in presence of parametric uncertainties. These processes 
combine structural identification and uncertainty propagation methods. A special emphasis is put on 
wave correlation methods compared to two-dimensional Discrete Fourier Transform. The Variant of 
the Inhomogeneous Wave Correlation method is extended here to two-dimensional identification 
problems. The vibration field is experimentally measured at points which geometric coordinates are 
supposed to vary randomly. Statistical investigations are then carried out to quantify the impact of the 
measurement points geometric coordinates’ variability on the identified parameters and evaluate the 
robustness of the proposed identification processes against uncertainties. Valuable insights into k-
space profiles, damping loss factor and equivalent mechanical parameters, regarding the structural 
orthotropic behavior, are highlighted. The obtained results show the large variability of the identified 
parameters and reveal a significant identification sensitivity to the measurement points geometric 
coordinates’ uncertainties. The use of the generalized Polynomial Chaos method allows robust 
identification with an interesting computing time reduction regarding the Latin Hypercube Sampling. 

Keywords: Wide-band identification, Wavenumber-space, Honeycomb sandwich plate, Uncertainties, 
Robustness 

 

1. Introduction 

Composite materials form an ever-growing emphasis in engineering applications since they provide 
interesting characteristics such as high stiffness and lightweight. The use of composite materials 
allows designing lightweight structures and enables more flexibility in structural engineering. Special 
attention is paid to sandwich-structured composites with honeycomb cores. Such materials exhibit 
often an orthotropic behavior which is determined by specific properties. The characterization of such 
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materials is rarely obtainable from tables and does not match theoretical designs. It could be carried 
out experimentally using appropriate measurement techniques. Modal-based techniques are widely 
used and permit to extract structural elastic parameters from the measurement of resonance 
frequencies and mode shapes. However, they suffer mainly from a frequency constraint and require 
specific boundary conditions. Indeed, modal parameters are difficult to measure in the mid-high 
frequency domain which is characterized by strong modal overlap. Composite materials properties, in 
particular, could strongly vary with frequency which requires techniques with a broadband efficiency. 
The wave-based approach overcomes the modal-based approach limitations in the mid-high frequency 
domain. In a wave propagation framework, the wave-based approach permits to estimate the material 
properties by extracting the wave propagation features in a structure from measured data. In recent 
years, special attention has been paid by the scientific community to this typical inverse problem. The 
most identification methods used frequently in the literature are the Prony series [1], the Ferguson 
method [2], the Mc Daniel method [3], the Inhomogeneous Wave Correlation (IWC) [4, 5] and the 
Fourier Transforms (FTs). The IWC method is well suited to composite structures in particular and 
insensitive to boundary conditions. It consists in correlating a local vibration field with an 
inhomogeneous damped wave to identify the direction-dependent and frequency-dependent 
wavenumber and wave attenuation. The IWC is an energetic method which makes a correlation 
between the energy carried on by the inhomogeneous wave and the total energy of the vibrating 
structure. The IWC method has been recently applied by Marchetti et al. [6] in a comparative study to 
validate a methodology based on an analytical multilayer model of Guyader and Lesueur in the context 
of sandwich and laminated multilayered plates characterization in terms of wavenumber, stiffness and 
damping. An alternative fitting approach was proposed by Roozen et al. [7] to estimate the frequency 
dependent material properties of single point-excited thin isotropic plates. It consists in constructing 
Green’s functions on the basis of Hankel’s functions, using an analytical image source method [8]. 
The authors highlighted that the planar wave-based approximations, such that used in the IWC, are 
only valid in the far field since the vibration field deviates from a plane wave field near the excitation 
point, which requires to choose measurement points not too close to the excitation point. Recently, 
Marchetti et al. [9] have extended the Hankel’s fitting approach for the characterization of elliptical 
orthotropic plates, using the equivalent thin plate theory. The validation of the approach has been 
performed compared to the estimations of the IWC method and an analytical model. The authors have 
highlighted the sensitivity of the IWC estimates to measurement noise. Moreover, an identification 
method based on an algorithm of the Estimation of Signal Parameters via Rotational Invariance 
Techniques (ESPRIT) was proposed by Margerit et al. to extract complex wavevector for 1D [10] and 
2D [11] structures in wide frequency range. Besides, Tufano et al. [12] recently demonstrated the 
efficiency of an IWC-based inverse approach to characterize the vibration behavior of structures with 
different complexity levels. Its feasibility has been investigated on a plane steel panel, a curved thick 
composite sandwich shell and a stiffened aluminum aircraft sidewall panel, subjected to either a 
diffuse acoustic field or a point mechanical excitation. In this paper, a special emphasis is put on the 
IWC-Variant (IWC-V) which is proposed by Lajili et al. [13] to improve the inaccurate IWC estimates 
at low frequencies [14, 15]. The IWC-V has been applied to a honeycomb sandwich beam [13] and is 
extended here to two-dimensional (2D) identification problems. The IWC-V consists in correlating the 
vibration field with a summation of inhomogeneous waves and accounts for both forward and 
backward propagating waves. The IWC-V permits to identify the direction-dependent and frequency-
dependent wavenumber and wave attenuation over a large frequency domain. It requires neither 
specific boundary conditions, nor specific geometry. Bending stiffnesses, orthotropic properties (i.e. 
orthotropy angle) and equivalent mechanical parameters (Young’s moduli, shear modulus and 
Poisson’s ratios) could then be extracted from the identified k-space characteristics using theoretical 
dispersion relations and equivalent models. In the literature, some works focus on the improvement of 
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the method. For instance, Cherif et al. [16] proposed an inverse wave method which applies the IWC 
method to estimate the damping loss factor using as input an a-priori accurately identified 
wavenumber by the same method. Experimental investigations of the accuracy of the inverse wave 
method are performed on isotropic and orthoropic honeycomb sandwich panels. An extended form of 
the IWC method (EIWC) was proposed by Van Belle et al. [17]. The authors include the experimental 
excitation location in the inhomogeneous wave expression. Roozen et al. [18] proposed to use only 
half of the measurement data along a line, either to the left or to the right of the excitation position, 
employing a Prony and IWC approach.  

One of the most frequently used identification methods is that proposed by Mc Daniel et al. [3]. It 
consists in comparing the really measured vibration field to a created wave field. This lies in an 
optimization algorithm which adjusts the wavenumber and the wave attenuation at each frequency and 
propagation direction. The 2D Discrete Fourier Transform (2D-DFT) allows transforming the 
amplitude-time data to amplitude-wavenumber data at discrete frequencies. It was used by Alleyne 
and Cawley [19] and Bolton et al. [20] in the context of multimodal analysis to measure the 
amplitudes and velocities of propagating Lamb waves. The 2D-DFT was also used to approximate 
dispersion curves of 2D structures from measured vibratory field by Ichchou et al. [21, 22], Huang 
[23], Ruzek et al. [24], Zhou et al. [25, 26], Roozen et al. [27], etc. Van Damme and Zemp [28] 
compared the 2D-DFT and the IWC method to estimate the dispersion of bending waves, the elastic 
properties, and the spatial damping in beams. The 2D-DFT implementation is simple using standard 
Fast Fourier Transform (FFT) algorithms, but the method is very demanding in terms of computational 
time since a complete vibration field must be calculated and a high resolution is required for the FFT. 

On the other hand, addressing such issue in deterministic framework remains a constraining 
hypothesis in vibration mechanics. To achieve more realistic identifications, it is inevitable to consider 
uncertainties and evaluate their impact on k-space characteristics. In an experiment-based 
identification context, uncertainties which affect the vibration field measurements are frequently 
encountered. For instance, the measured vibratory field may not match the associated measuring 
points’ coordinates. The geometric variability of these coordinates is not the only influencing factor 
which could affect the identification process. In the context of inverse problem, since the vibratory 
field is the main input parameter, the most influencing parameters should be linked to its 
measurements. Many other parameters should be also considered for ample uncertainty analysis, 
which is the focus of future works. Parametric and sensitivity analyses could also be addressed to 
show the impact of the variability of several parameters on identifications. Only uncertainty on the 
geometric measurement points’ coordinates is considered in this paper. Such type of uncertainty has 
also been considered by authors in a previous work [13] which focused on robust numerical-based and 
experiment-based identifications of isotropic and honeycomb sandwich beam. Here, the geometric 
variability of measurement points’ coordinates is modeled by parametric uncertainty which is 
quantified probabilistically using random variables and then propagated through the identification 
model using uncertainty propagation methods. The sample-based uncertainty propagation methods are 
frequently used in literature. These methods give accurate results but are very time-consuming. The 
most commonly used methods are the Monte Carlo Simulations (MCS) [29, 30] and the Latin 
Hypercube Sampling (LHS) [31, 32]. The LHS method permits to reduce the computational time 
required by the MCS without a significant loss of accuracy. In practice, the number of samples is 
reduced by partitioning the variability space into regions of equal probability and then selecting one 
sampling point in each region. Alternatively, non-sample-based methods require lower computational 
cost. The generalized Polynomial Chaos (gPC) method has recently shown a growing emphasis [33, 
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34]. Its expansion combines multivariate polynomials and deterministic coefficients which could be 
computed using a non-intrusive regression technique [35, 36, 37]. 

The originality of the present paper lies in proposing robust experiment-based identification processes 
to identify the k-space characteristics and the equivalent mechanical parameters of a sandwich plate 
with honeycomb core over a large frequency domain in presence of uncertainties on the measurement 
points’ coordinates. Some robust experiment-based identification processes are proposed here and are 
compared to each other. They consist in combining identification and uncertainty propagation 
methods. The most robust one is that combining the IWC-V with the regression-based gPC method. Its 
efficiency is evaluated in terms of accuracy and computing time. 

2. Theoretical backgrounds 

2.1. Spatial Discrete Fourier Transform 

Standard Discrete Fourier Transform (DFT) allows exploring the spectral content of time signals. A 
spatial 2D-DFT could be used to estimate the k-space content of spatial two-dimensional fields. Then, 
a spatial sampling at points on a uniform discrete 2D grid �� × �� is made: �� = �Δ�, �� = jΔ
, with 0 ≤ � ≤ �� − 1, 0 ≤ � ≤ �� − 1 and �� × �� is the number of equally distributed spatial sampling 

points. The displacement field � is transformed to a complex function: 

 ������, ���� = ����� ∑ ∑ ����, 
���� ��!"�� ��!" # ��$%&�'($)*�+�  (1) 

which could be expressed as: 

������, ���� = ℜ-������, ����. + � ℑ-������, ����.   (2) 

where ℑ2. 4 and ℜ2. 4 correspond respectively to the imaginary and real parts. ��� = 5Δ�� and ��� =6Δ�� are the complex wavenumbers’ exponentials, with 0 ≤ 5 ≤ �� − 1, 0 ≤ 6 ≤ �� − 1, �� =7�81 + �9�:, �� = 7��1 + �9�� and: 

Δ�� = ;<�%=�; Δ�� = ;<�)=�     (3) 

The real wavenumber �, the wave attenuation 9 and the propagation direction > are then calculated by: 

� = ?ℜ8��:; + ℜ����; = ?7�; + 7�;    (4) 

9 = @Aℑ8$%:ℜ8$%:B; + Cℑ�$)�ℜ�$)�D; = ?9�; + 9�;    (5) 

> = tan � Cℜ�$)�ℜ8$%:D = tan � AH)H%B     (6) 

The 2D-DFT is 
;<=� and 

;<=� periodic and bijective, which allows Inverse DFT (IDFT). 

2.2. Mc Daniel method 

The Mc Daniel method [3] allows estimating complex wavenumbers and amplitudes of waves 
propagated through damped structures. It consists in iteratively adjusting the wavenumber � and the 
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wave attenuation 9 to accurately approximate the wave field. The method is based on dispersion 
relations containing information about viscoelastic properties which are difficult to measure 
experimentally. The loss factor is considered as one of the most important properties. 

Given zero initial conditions and forcing only at the boundaries, the displacement field is expressed as 
a sum of inhomogeneous waves: 

�8�, 
, I: = #�$8� JKL M(� LNO M:8�(�P:Q�8I: + # �$8� JKL M(� LNO M:8�(�P:Q;8I: +#$8� JKL M(� LNO M:8�(�P:QR8I: + # $8� JKL M(� LNO M:8�(�P:QS8I:  (7) 

Given the variable transformation T = � cos > + 
 sin >, Eq. (7) becomes: 

�8T, I: = #�$Y8�(�P:Q�8I: + # �$Y8�(�P:Q;8I: + #$Y8�(�P:QR8I: + # $Y8�(�P:QS8I: (8) 

The first two terms correspond to flexural waves and the latters to evanescent waves. Damping causes 
the flexural waves to decay and the evanescent waves to oscillate. 

When the spatial field is measured at Z discrete locations 2T�, T;, … , T\4, Eq. (8) takes the form of a 
system of Z nonlinear complex algebraic equations at each frequency I: 

]�8T�, I:�8T;, I:⋮�8T\, I:_ = ]#�$Y�8�(�P: # �$Y�8�(�P: #$Y�8�(�P: # $Y�8�(�P:#�$Y�8�(�P: # �$Y�8�(�P: #$Y�8�(�P: # $Y�8�(�P:⋮ ⋮ ⋮ ⋮#�$Y`8�(�P: # �$Y`8�(�P: #$Y`8�(�P: # $Y`8�(�P:
_ abb

cQ�8I:Q;8I:QR8I:QS8I:dee
f
  (9) 

The wave amplitudes 2Q�, Q;, QR, QS4 can be estimated using linear least squares. The objective is then 
to find the wavenumber � which minimizes an error function, using a nonlinear optimization 
algorithm. The error function is computed between the real wave field �g8�� , 
� , I: and the estimated 
wave field  �h8��, 
�, I: such as: 

i = ?∑ |kl8�',�',m: kn8�',�',m:|�'̀o� ∑ |kn8�',�',m:|�'̀o�     (10) 

The damping loss factor p which is the structural damping of the material is identified by [48]: 

p = qℑ2$r4ℜ2$r4q      (11) 

The damping loss factor is related to the wave attenuation 9 which is the spatial damping by: 9 = p 4⁄  
[6]. 

2.3. Inhomogeneous Wave Correlation 

The IWC method permits to explore the k-space content of a spatial field by correlation with 
inhomogeneous waves. The dispersion equations are fully reconstructed and the k-space 
characteristics are estimated. The standard form of the IWC method [5] allows accurate 
approximations in the mid-high frequency domain. Nevertheless, approximations are less accurate in 
the low frequency domain, particularly for damping, since the modal overlap is not sufficiently high to 
cover all propagation directions. To overcome this problem, some extended forms of the IWC method 
are proposed in literature [17, 18]. In this work, a special emphasis is put on the IWC variant (IWC-V) 
which has been proposed recently by Lajili et al. [13]. The IWC-V is based on an inhomogeneous 
wave correlation which accounts for both incident and reflected waves. However, only incident waves 
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are considered in the standard form of the IWC. The spatial field is correlated with a sum of 
inhomogeneous waves such as: 

�uvwx = # �$8M:��(�P8M:�8� JKL8M:(� LNO8M:: + #�$8M:��(�P8M:�8� JKL8M:(� LNO8M::  (12) 

where the first term corresponds to incident or forward traveling waves and the second term to 
reflected or backward traveling waves. 

The correlation between the spatial field and the inhomogeneous waves is ensured by a criterion which 
must be maximized. For a spatial field which is measured at Z discrete locations, this criterion is 
expressed as: 

yz{|8�, 9, >: = }∑ ~'k���',�+�.k����∗ ��',�+��'` }?∑ ~'}k���',�+�}��'` .∑ ~'}k������',�+�}��'`    (13) 

where �uvwx∗  is the complex conjugate of the wave �uvwx. �� is the elementary surface of the structure 
around a measurement point �� and �� is the coherence of measurement data at point ��. This 
criterion represents the wave contribution in the field �� or also the ratio between the energy carried by 
the wave and the total energy contained in the field. 

In practice [5, 22], the algorithm of application of the IWC-V method consists in putting the direction >, for each frequency iteration, into a discrete set of values >�. For each direction >�, the maximal 

value of the yz{|���, 9� , >�� criterion corresponds to a couple of values ���, 9�� of the wavenumber 

and the wave attenuation, respectively. The triplet ���, 9�, >�� is removed if the yz{|���, 9� , >�� is too 

low, which means that the wave transports very low energy, or if the wave is strongly damped (for 
example 9� > 1), which means that the wave does not transport energy (overdamped or evanescent). 

2.4. Equivalent dynamic properties of 2D orthotropic structures 

To provide equivalent dynamic properties of 2D orthotropic structures, the Love-Kirchhoff model is 
used. This model permits, in the case of elliptic orthotropy, to express the dispersion equation as: 

�S8>: ����� cos;8> − >�: + ?��� sin;8> − >�:�; = I;   (14) 

where �� = � �ℎ⁄  and >� is an orthotropy angle between the reference axis and the orthotropy axis. 
The dynamic stiffnesses ��, �� and ��� are defined in general orthotropy case by: 

�� = ���; �%� �%�), �� = ���; �)� �%�), ��� = ���; C �)�%� �%�) + �%�)� �%�) + 4�D  (15) 

where �� and �� are the Young moduli in directions � and 
, �� and �� are the Poisson’ ratios, � the 

mass density and � the shear modulus: 

� = �; ��%�) �)�%� �%�)      (16) 

The aim is then to define the parameters �>�, �� = ����, �� = ?���, ��� = 2?�������. 
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Given ���M� a symmetry axis of orthotropic behavior: ∀ >, �8> − >�: = �8−> − >�: and �8>: =�8−> − 2>�:. To estimate the orthotropy angle >�, we need to maximize a cross-correlation function ℛ8∆>:: 

ℛ8∆>: = �;< ¢ �8>:�8−> − ∆>: �>;<"     (17) 

        = �;< ¢ �8>:�8> + 2>� − ∆>: �>;<"   

ℛ8∆>: is maximum for ∆> = 2>�. In practice, referring to [21], if >� ∈ ¤0 ¥¦ the ℛ8∆>: will be 
evaluated over ¤0 2¥¦ 8∆>§¨© = 2>�:, using � ∈ ¤−2¥ 2¥¦. The size of �� and >� must then be 
doubled such as: ∀� ∈ ªM, > � = >� − 2¥ and � � = ��. 
The dynamic flexural stiffnesses ��� and ��� of the equivalent orthotropic plate are estimated using 

linear least squares, using the error function: 

i��� , ��� = ∑ C��Q� + ��«� − m$'�D;�∈ª¬          (18) 

where Q� = cos8>� − >�: and «� = sin8>� − >�:. This error function is minimum if grad���������� i ��� , ��� =0. Then �� and �� are computed by solving: 

°����± = ² ∑ Q�S ∑ Q�;«�;∑ Q�;«�; ∑ «�S ³ � ´∑ Q�; m$'�∑ «�; m$'�
µ      (19) 

Finally, orthotropy parameters ->�, ��� = ��;, ��� = ��;. are defined from 8>�, ��:�∈ª¬. 

Modal density of an orthotropic plate 

Based on works performed in [38, 39], the dispersion equation writes, in polar coordinates: 

¶S81 − ·; sin;82>:: = �ℎI;     (20) 

with [40]: 

 ¸����� S¹ = ¶ cos >����� S¹ = ¶ sin >       (21) 

and ·; = �; C1 − º%);�º%º)D = �; 81 − »: function of the orthotropy parameter » = º%);�º%º). 

The area below the constant ¶8ω, θ: curve in the wavenumber plane ���, ��� is a measure of the 

number of modes �8I: below the angular frequency ω [40]: 

�8I: = �m;<� ?~�º% Cº%º)D�r ¾8·:     (22) 

where ¾8·: = ¢ 81 − ·; sin;82>:: � ;⁄< ;¹" �>. 

The asymptotic modal density Z¿ is then obtained by derivation of �8I:: 
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Z¿ = �;< ?~�º% Cº%º)D�r ¾8·:     (23) 

Taking into account the correction À depending on boundary conditions, the modal density writes: 

Z8Á: = Z¿ C1 + À ÂÃ�S<�Ä̅D     (24) 

with Á̅ = ÁZ¿, À = −1/2 for the hinged case, À = −1 for the clamped case, À = +1 for the free case 

and �Ã = ? <;Ç8È: �������É A ;Â%º�8",M�:� r⁄ + ;Â)º�8< ;⁄ ,M�:� r⁄ B where ��8>, >�: = ���� cos;8> − >�: +
��� sin;8> − >�:�;

. 

2.5. Uncertainty propagation 

In this work, uncertainty propagation is carried out using two methods: LHS and gPC. The sample-
based LHS method [32] consists in generating a succession of � deterministic computations -T�Ê8\:�, Z = 1, … , �. to approximate the parameter T, according to a set of random variables -Ê8\:.\!��

. These variables are selected by partitioning the variability space into regions of equal 

probability and picking up one sampling point in each region. This technique requires a computing 
time lower than that required by the MCS [30] but remains computationally unaffordable since its 
accuracy is proportional to the number �. To overcome the prohibitive cost of such sample-based 
methods without a significant loss of accuracy, the gPC method [33, 34] represents an interesting 
alternative. The gPC expansion combines multivariate polynomials and deterministic coefficients such 
as: 

T = ∑ ���Ë�8Ê:Ì�!" = TÍÎΨ8Ê:     (25) 

where -���.�!"Ì
 are the Ð + 1 unknown deterministic coefficients and -Ë�8Ê:.�!"Ì

 the Ð + 1 

multivariate polynomials of � independent random variables -Ê8\:.\!�Ñ
, such as: 

Ð + 1 = 8Ñ(�:!Ñ!�!       (26) 

To compute the -���.�!"Ì
 coefficients and then solve the gPC expansion (25), a nonintrusive regression 

technique is used is this work. It consists in minimizing the difference between the gPC approximate 

solution TÍ and the exact solution TÓ through the expression: 

TÍ = 8ΨÎΨ: �ΨÎTÓ = Ψ(TÓ     (27) 

where Ψ = -Ë��Ê8\:�.\!�,…,Ô�!",…,Ì  is the data matrix and Ψ( is its Moore-Penrose pseudoinverse. Here, 

Ξ = -Ê8\:.\!�Ô
 is a set of � random variables corresponding to � exact solutions -TÓ�Ê8\:�, Z =1, … , �., with � ≥ Ð + 1. The efficiency and the stability of the regression approximate lies on the 

well conditioning the matrix 8ΨÎΨ: which depends on the choice of the set  Ξ of � random variables. 
The selection technique used here is that referred in [35, 36, 37, 41, 42]. 

3. Robust experiment-based identification of a honeycomb sandwich plate 
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3.1. Experiments and objectives 

Let consider a sandwich composite plate of dimensions 1×1 m², which is freely suspended under 
bending load. The core of the plate is in aluminum honeycomb (Nida Nomex) of thickness 13 mm. 
The skin of the plate is made of laminated carbon fiber epoxy (Hexcel reference 43199) and is of 
thickness 0.5 mm of each side, with a 50% resin fiber ratio. The plate is excited with a white noise by 
an electrodynamic shaker (Brüel & Kjaer, 4810) at the position (x=0.3 m, y=0.5 m), Figure 1. A force 
sensor (Brüel & Kjaer Type 8001) permits to collect the injected force. The vibration field of the plate 
is measured by a Polytec Scanning Vibrometer (PSV-400) at 1849 measuring points (Δx=0.0231, 
Δy=0.0230 m). The field is sampled and acquired using a Fourier analyzer interfaced with a Hewlett 
Packard Paragon 35654A sampler. 

 

Fig.1. Experimental measuring configuration of the vibratory field of the sandwich plate with honeycomb core 

The purpose of this study is to identify the k-space characteristics from the measured harmonic spatial 
field and then extract the equivalent mechanical parameters of the sandwich plate. A deterministic 
study is addressed at first to provide complete >-dependent and frequency-dependent dispersion 
curves, damping (section 3.2) and equivalent orthotropic plate model (section 3.3). the identification is 
performed using the 2D-DFT, the Mc Daniel method, the IWC and the IWC-V which are compared to 
each other throughout the study. Then a stochastic study is carried out in section 3.4 taking into 
account a parametric uncertainty on the measurement points geometric coordinates. Such uncertainty 
quantifies the variability of the geometric coordinates when the measured vibratory field does not 
exactly match the associated measuring points due to experimental errors or manipulations. Stochastic 
identification processes which combine each identification method with either LHS or gPC method are 
applied. The impact of uncertainty on identifications is statically investigated and the robustness of the 
proposed identification processes against uncertainty is assessed. 

3.2. k-space characteristics identification 

The goal of this section is to provide complete >-dependent and frequency-dependent dispersion 
curves and damping loss factor using the identification methods presented in section 2. The spatial 2D-
DFT takes the advantage of a simple implementation and allows identifying the >-dependent k-space 
profiles at discrete frequencies. These profiles correspond to the wavenumber variation in the 2D k-

space which is also called wavenumber plane ���, ���. These profiles correspond to the maximums of 
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the real part of the transformation given by the 2D-DFT, Eqs. (1-2), which correspond to the 
transporting energy wavenumbers. 

Figure 2 illustrates the k-space profiles identified by the 2D-DFT at some frequencies Á� arbitrarily 
chosen over the domain ¤0, 3200 ØÙ¦ (Á� = 2542, 1066, 1960,32004ØÙ). This figure shows also the 
measured velocity field at each frequency. In the mid-high frequency domain, the excitation point 
could be interpreted from the shapes of the velocity field, if it is not identified a priori. Figure 2 
illustrates the geometry and frequency dependency of the k-space profiles. Moreover, elliptical shapes 
of the k-space profiles are illustrated and are more pronounced in the high frequency domain. The 
orthotropy of the sandwich plate is thus elliptic with an orthotropy angle approximately close to 0°. 
The orthotropy angle is computed in section 3.3. The discontinuity of the k-space profiles in the low 
frequency domain reveals the limits of the 2D-DFT which is typically a mid-high frequency method. 
In the low frequency domain, the energy is not evenly distributed in all propagation directions. 
Consequently, the wavenumber could not be identified in all directions. Furthermore, these results 
illustrate the increase of the wavenumber over the frequency domain due to the decrease of the 
wavelength which becomes large at low frequencies. The 2D-DFT results are compared with those 
obtained by the Mc Daniel method, which is considered as reference, Figure 3. Good agreement is 
obtained as shown at two arbitrarily chosen frequencies. The wavenumber is calculated using Eq. (4). 
Then the mean is computed at each frequency with respect to the propagation directions at which the 
maximums are defined. It should be noted that the discontinuity shown on the >-dependent 
wavenumber variation is not deducible in the frequency-dependent variation illustrated in Figure 6(c). 
Indeed, the mean of the maximal values found for some propagation directions is computed at each 
frequency. Otherwise, values are filtered and only those transporting energy wavenumbers 
(maximums) are retained. Subsequently, smooth curves are obtained, even in the low-frequency 
domain, Figure 6(c). The 2D-DFT permits to identify the wave attenuation 9 using the function ℑ2��4 ℜ2��4⁄ , based on the complex form of the wavenumber �81 + �9:. The wave attenuation is 
calculated using Eq. (5) with 9� ∈ ¤−9ÝÞ�, 9ÝÞ�¦ and 9� ∈ ¤−9ÝÞ�, 9ÝÞ�¦, Figure 5, 9ÝÞ� = 0.25 

being the theoretical maximal value of the wave attenuation. Eq. (6) permits to define the propagation 
direction > for each maximum of ℑ2��4 ℜ2��4⁄  and then the >-dependent variation of the wave 
attenuation 9 and the damping loss factor, p = 49. The identifications are performed at some (even 
few) propagation directions, Figure 4. Then, the mean with respect to the considered propagation 
directions leads to a smooth frequency-dependent curve, Figure 6(d). Subsequently, the 2D-DFT does 
not allow identifying a complete >-dependent and frequency-dependent variation of the parameters. 

Moreover, >-dependent and frequency-dependent variations of the wavenumber and damping loss 
factor identified using the IWC-V are illustrated by 3D representations shown in Figure 6(a-b) 
respectively. 
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Fig.2. Velocity fields of the honeycomb sandwich plate and the associated k-space profiles identified by 2D- 
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Fig.3. k-space profiles identified by the 2D-DFT method (colored surface plots) and the Mc Daniel method 

(black dotted curves) at two arbitrarily chosen frequencies 

The identifications of the k-space characteristics using the Mc Daniel method, the IWC and the IWC-
V are illustrated in Figures 4-6. Figure 4 shows polar representations of the >-dependent variation of 
(a) the wavenumber, (b) the phase velocity Qß (� = I Qß⁄ ) and (c) the damping loss factor p, at some 

frequencies. The wavenumber and phase velocity profiles exhibit an elliptic orthotropic behavior of 
the honeycomb sandwich plate. Furthermore, the profiles vary from circular form to elliptic one which 
could be stretched in vertical or horizontal directions. This variation justifies the use of a frequency 
dependent orthotropic model to extract equivalent mechanical properties from wavenumber 
identifications, section 2.4. The elliptic shape of the �-profiles is pronounced proportionally to 
frequency. The inverse relation between the wavenumber and the phase velocity explains the inverted 
elliptical form of the Qß-profiles (with an angle approximately close to 90°) compared to the �-profiles 

(orthotropy angle near to 0°). Moreover, the >-dependence of these k-space characteristics is slightly 
smooth: no significant variation between consecutive directions. 
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 (a)  

 (b)  

 (c)  

Fig.4. Polar >-dependent variation of (a) the wavenumber, (b) the phase velocity and (c) the damping loss factor 
identified by Mc Daniel, IWC, IWC-V and 2D-DFT at frequencies 340 Hz, 1640 Hz and 3200 Hz 

Nevertheless, the investigations of the damping loss factor identification reveal to be more 
complicated. Few works in the literature focus on such analysis, especially for 2D composite 
structures [6, 27]. Figure 4(c) illustrates strong >-dependent variability of the damping loss factor and 
disagreement between all applied identification methods. The smoothness of the curves obtained at 
low frequencies does not reveal accurate identifications but wrong values. For the sake of brevity, only 
three polar representations are shown. The dispersed damping profiles make it difficult to compare the 
applied identification methods, despite the agreement which has been deduced in terms of amplitude. 
Frequency-dependent variation of the identified damping loss factor, Figure 6(d), shows oscillating 
values in the low-frequency domain. 
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Fig.5. Cartesian representation of the damping loss factor profiles identified by the 2D-DFT method (colored 
surface plots) and the Mc Daniel method (white dotted curves) at two arbitrarily chosen frequencies 

(a)      (b) 

 
(c)      (d) 

 
Fig.6. 3D representations of the frequency-dependent and propagation direction-dependent variation of (a) the 

wavenumber and (b) the damping loss factor identified using the IWC-V; Frequency-dependent variation of the 
mean values, computed with respect to all propagation directions, of (c) the wavenumber and (d) the damping 

loss factor identified using the Mc Daniel method, the IWC, the IWC-V and the 2D-DFT 

Polar and cartesian representations of the k-space characteristics identification reveal an elliptic 
orthotropic behavior which permits to simplify investigations taking advantage of the symmetry. 
Nevertheless, the damping >-dependent variation does not reveal any symmetrical profiles. Therefore, 
it is necessary to find out another criterion which could extract correlations between the identified 
values at different propagation directions. The Modal Assurance Criterion (MAC) is a comparison 
criterion which is used in the literature to evaluate eigenvectors’ correlation [37, 43]. In our case, a 
similar criterion is used to compute correlation indices between identified values at all propagation 
directions, for both wavenumber and damping loss factor. A matrix { is defined such as {��8�: =
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à��á. ��à �‖��‖. ‖��‖�¹ , where �� = �8>�:. {�� = 1 indicates perfect correlation and thus perfect 

symmetry between directions >� and >�. {�� = 0 means that no-correlation is found. Figure 7 illustrates 

the matrices {8�: and {8p: computed for the wavenumber and the loss factor, respectively. The {��8�: values vary between 0.984 and 1 which illustrates multiple symmetries for the wavenumber. 

Much less symmetries are obtained for the loss factor since {��8p: ∈ ¤0,1¦ with a tendency toward 0. 

 
Fig.7. Correlation matrices {8�: and {8p: computed for the wavenumber and the loss factor, respectively 

3.3. Equivalent dynamic properties extraction 

The main purpose of this section is to extract relevant dynamic properties from the k-space 
characteristics, identified in section 3.2, using the model given in section 2.4. The orthotropy angle >� 
is computed using Eq. (17) with the hypothesis of no frequency-dependency. The >� is estimated by 3.5° using the three methods Mc Daniel, IWC and IWC-V, Figure 13, with very small relative errors. >� = 3.5° in the majority of frequencies, excepting dispersed values at some frequencies as shown in 
Figure 8. 

 
Fig.8. Orthotropy angle computed over the considered frequency domain using the Mc Daniel method, the IWC 

and the IWC-V 

 >� being calculated, the dynamic stiffnesses ���8Á:, ���8Á: and ����8Á: and the mechanical 

parameters ��, ��, �, �� and �� are deduced. The frequency-dependent variation of these parameters 

is illustrated in Figure 9. Strong oscillations of the curves are detected at low frequencies and are 
progressively attenuated as the frequency increases. Non-monotonic variability is obtained, 
particularly at low frequencies. The k-space based methods are more efficient in the mid-high 
frequency domain. At low frequencies, the modal overlap is very low and few wavenumbers are 

 [
°]



16 
 

correctly defined which affects the dynamic stiffnesses identification. Note that the >-dependent 
variation of the dynamic stiffnesses could also be investigated [44]. It should also be noted that several 
works in the literature focus on the identification of mechanical parameters of 1D and 2D structures. In 
[45, 46], composite beams characterizations were performed using an inverse method based on local 
equation of motion. Equivalent viscoelastic parameters were identified considering composite material 
as homogeneous. In [18, 47], equivalent models of heterogeneous composite and orthotropic sandwich 
plates were proposed to estimate the equivalent mechanical parameters. 

 

 
Fig.9. Frequency-dependent variation of the dynamic stiffness, the elasticity moduli and the Poisson’s ratios 

identified using the IWC-V 

Besides, the identified k-space characteristics and dynamic stiffnesses permit to estimate the modal 
density. The modal density is of fundamental importance in vibration mechanics. It represents an 
essential indicator in the mid-high frequency domain, with particular importance in the prediction of 
high-frequency vibration levels. In the literature, it is considered as a key parameter in several analyses 
approach to vibration prediction in a wide range of structural applications such as the statistical energy 
analysis method which allows investigating the influence of boundary conditions and mechanical 
properties. With special emphasis on the mid-high frequency domain, such indicator should be 
properly identified in the present work. The modal density is defined as the number of resonant modes 
within a unit frequency band. For the considered freely suspended sandwich plate with honeycomb 
core, the modal density increases as frequency increases, Figure 10. The modal density is computed 
using the formulation given by Renji et al. [38] and Boutillon et al. [39], section 2.4, based on the 
wavenumber identified using the Mc Daniel method, the IWC or the IWC-V. The curve becomes 
smoother and the individual resonances coalesce as the frequency increases. These results are coherent 
with those obtained by Renji et al. [38] and Clarkson and Ranky [49] for orthotropic honeycomb 
sandwich panels with shear. 
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Fig.10. Frequency-dependent variation of the modal density of the sandwich plate with honeycomb core 

3.4. Statistical investigations of the impact of uncertainty on the k-space characteristics 

identification 

Deterministic hypothesis in experiment-based structural identification remains constraining in 
vibration mechanics. The analysis should be sensitive even to the smallest perturbation or ignorance 
which could occur during experiments. Realistic investigations require therefore accounting for such 
perturbation which could essentially be random. The most influencing parametric variability should be 
linked to the measurement of the vibratory field which is the main input of the identification process. 
For instance, the measured vibratory field may not match the associated measuring points’ 
coordinates. In a probabilistic framework, these coordinates could vary randomly in the 8�, 
: plane 
such as T = T"81 + åYÊ:, where T is the measurement points’ coordinates matrix, T" the vector 
containing mean values, åY the statistical dispersion value and Ê a gaussian random variable. The 
uncertainty on the input parameters is propagated through the identification model in order to 
investigate its impact on the output results. 1000 samples-based LHS method is used to propagate 
uncertainty. It allows for accurate results, which could be considered as reference, but is very time 
consuming. Alternatively, the gPC method allows for an interesting computational time reduction 
without a significant loss of accuracy [36, 37]. Several stochastic identification processes are 
constructed by combining each identification method with either LHS or gPC methods and are 
compared to each other. These processes are denoted hereafter: LHS-2D-DFT, LHS-McDaniel, LHS-
IWC, LHS-IWC-V and gPC-IWC-V. Statistical investigations of the robustness analysis against 
uncertainty are carried out. Statistical post-processing quantities are computed: the mean, the envelope 
(extreme statistics) and the statistical dispersion which is the ratio of the standard deviation by the 
mean. The impact of uncertainty on the identified wavenumber is illustrated in Figure 11 which 
compares the results of the processes LHS-2D-DFT and LHS-McDaniel, in a cartesian representation 
(a), and those of the processes LHS-McDaniel, LHS-IWC and LHS-IWC-V, in polar representations 
(b), at frequency 3200 Hz. 
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(a) (b)  (c)  

Fig.11. (a) Cartesian representation of the envelopes of the k-space profiles estimated using the LHS-McDaniel 
and the LHS-2D-DFT processes at frequency 3200 Hz; Polar representations of (b) the envelopes and (c) the 
statistical dispersions of the k-space profiles identified using the LHS-McDaniel, the LHS-IWC and the LHS-

IWC-V processes at frequency 3200 Hz 

Figure 12 illustrates the variation of the envelope and the statistical dispersion of the wavenumber 
over the considered frequency domain. The width of the envelope increases as the frequency increases 
and a nearly constant statistical dispersion of around 3.5% is obtained. These results show that a 
statistical dispersion of 2% of the measurement points’ coordinates affects significantly the 
wavenumber identification. The LHS-IWC-V identification process allows more accurate 
identifications compared to the gPC-IWC-V process. The LHS-IWC-V process proves to be robust 
against uncertainty with a very interesting gain on computational time which reaches 99.51%. 

 

 
Fig.12. Envelopes and statistical dispersions of the wavenumber computed over the considered frequency 

domain using the identification processes LHS-2D-DFT, LHS-McDaniel, LHS-IWC, LHS-IWC-V and gPC-
IWC-V 

Generally smooth elliptic profiles describe the wavenumber variation in the k-space. Similar shapes 
are found for the phase velocity, but results are not shown for the sake of brevity. Nevertheless, 
disordered polar distributions are obtained for the damping. The analysis is more complicated and few 
works focus on this issue in the literature. The variations over the considered frequency domain of the 
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envelope and the statistical dispersion of the wave attenuation are illustrated in Figure 11. A nearly 
constant envelope and a statistical dispersion of 3.5% are obtained. Results are compared to those 
published by the authors in their previous work [13] which has addressed numerical-based and 
experiment-based identification of isotropic and sandwich beams. It has been illustrated that 
uncertainty on the measurement points’ coordinates does not affect the damping loss factor estimate. 
A statistical dispersion equal to zero has been found for the damping loss factor. 

 

 
Fig.13. Envelopes and statistical dispersions of the wave attenuation computed over the considered frequency 

domain using the identification processes LHS-McDaniel, LHS-IWC, LHS-IWC-V and gPC-IWC-V 

Furthermore, an illustration of the impact of uncertainty on the damping loss factor is provided by the 
correlation matrix {, Figure 14. The {�� correlation indices are here computed between deterministic 

values of the loss factor and the means of the stochastic ones. Compared to the matrix { computed in 
deterministic case, Figure 7, which is recalled in Figure 14(a), the correlation is no longer perfect on 
the diagonal terms, Figure 14(b). Indeed, the impact of uncertainty is illustrated mainly by diagonal 
terms which are no longer equal to one: {�� < 1, Figure 14(b). 
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(a)       (b) 

 
Fig.14. Comparison of the correlation matrices { computed for the damping loss factor in (a) deterministic case 
and (b) stochastic case: (a) the correlation indices are computed at each propagation direction between the value 
of the loss factor and the values at all other propagation directions; (b) the correlation indices are computed at 
each propagation direction between the deterministic value of the loss factor and the mean values of the 
stochastic loss factor at all other propagation directions. 

To recapitulate, the statistical investigations show that the impact of the uncertainty of the 
measurement points’ coordinates on the k-space characteristics’ estimates is significant, which reveals 
the sensitivity of identification to erroneous experimental manipulations leading to such uncertainty. 
The analysis highlights besides the robustness of the processes combining identification and 
uncertainty propagation methods. 

3.5. Statistical investigations of the impact of uncertainty on the equivalent dynamic properties 

The purpose of this section is to investigate the impact of uncertainty on the orthotropy angle, the 
dynamic stiffnesses, the modal density and the mechanical parameters which are computed using the 
identified stochastic k-space characteristics. Figure 15 shows the statistical quantifications (mean and 
envelope) of the orthotropy angle variability over the considered frequency domain in the stochastic 
case. A statistical dispersion of nearly 20% is obtained, against only 2%-dispersed measurement 
points’ coordinates. The identification of the orthotropy characteristics is thus strongly affected by 
such uncertain measurement data. 

 
Fig.15. Mean and envelope of the orthotropy angle computed over the considered frequency domain using the 

identification process LHS-McDaniel 
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Figures 16-19 illustrate the statistical quantifications of the variability of the dynamic stiffnesses and 

the mechanical parameters over the considered frequency domain. Only results corresponding to ���, Z8Á:, �� and �� are shown for the sake of brevity. Statistical dispersions of nearly 13.5%, 13.5%, 15%, 17% and 7% are obtained on the dynamic stiffnesses ���, ��� and ����, the modal density Z8Á:, 

the Young Moduli �� and ��, the shear Modulus � and the Poisson’s ratios �� and ��, respectively, 

Tab. 1. These statistical dispersion values reflect the important impact of the measurement points’ 
coordinates variability on the identification of the mechanical parameters of the honeycomb sandwich 
plate. 

Tab.1. Statistical dispersions of the identified parameters 
 Input  Outputs 

Parameter T � Qß 9 p >� ��� ��� ���� Z8Á: �� �� � �� �� 
Dispersion (%) 2 3.5 3.5 20 13.5 13.5 15 17 7 

 

 
Fig.16. Envelope and statistical dispersion of the dynamic stiffness ��� computed over the considered frequency 

domain using the identification process LHS-McDaniel 

 

Fig.17. Envelope and statistical dispersion of the modal density computed over the considered frequency domain 
using the identification process LHS-McDaniel 
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Fig.18. Envelope and statistical dispersion of the Poisson’s ratio �� computed over the considered frequency 

domain using the identification process LHS-McDaniel 

 

Fig.19. Envelope and statistical dispersion of the Young Modulus �� computed over the considered frequency 
domain using the identification processes LHS-McDaniel, LHS-IWC-V and gPC-IWC-V 

Otherwise, a statistical dispersion of 2% on the measurement points’ coordinates is multiplied by 
nearly 1.7 when identifying the wavenumber, the phase velocity, the wave attenuation and the 
damping loss factor. It is then four-times greater when calculating the orthotropy angle, the dynamic 
stiffnesses, the modal density, the elastic and shear moduli and the Poisson’s ratios. 
Concerning the proposed identification processes, good agreement is obtained between the results of 
the LHS-IWC-V process and those of the gPC-IWC-V process. We highlight the advantages of the 
gPC method regarding the LHS method in terms of computational time, without a significant loss of 
accuracy. 
 

4. Conclusion 

The present paper has investigated the impact of the random variability of the measurement points’ 
coordinates on the identification of both spatial and structural characteristics of a sandwich plate with 
honeycomb core over a large frequency domain. The identification process is based on measured 
velocity field and carried out to estimate the spatial characteristics in the wave propagation space and 
then extract the structural parameters using an equivalent elliptic orthotropic model. Several stochastic 
two-dimensional experiment-based identification processes have been proposed and compared to each 
other. A special emphasis is put on the process combining the Variant of the Inhomogeneous Wave 
Correlation method and the generalized Polynomial Chaos method. The process has proven to be 
robust against the significant variability estimated on the identified parameters with a very important 
computational time reduction and without a significant loss of accuracy. Statistical investigations of 
the uncertainty impact have illustrated an important output-to-input statistical dispersion ratio which 
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reveals the identification sensitivity to such measuring errors involved in experimental manipulations. 
The intensity of the uncertainty impact differs from one parameter to another and increases as the 
identification procedure progresses, reaching a four-times greater statistical dispersion for the shear 
modulus. 

Uncertainty on the measurement points’ coordinates is not the only influencing factor which could 
affect the identification process. It should be interesting to consider other types of uncertainties, either 
parametric or nonparametric. Sensitivity analyses could also be addressed to determine on which 
parameters the identification might be dependent and sensitive, which optimizes the needs of the 
engineer throughout the execution of the identification process. 
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