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Abstract

In this article, we derive conditions for the existence of solutions to state-constrained continuity
inclusions in Wasserstein spaces whose right-hand sides may be discontinuous in time. These latter
are based on a fine investigation of the infinitesimal behaviour of the underlying reachable sets,
through which we show that up to a negligible set of times, every admissible velocity of a continuity
inclusion can be approximately realised as the metric derivative of a solution of the dynamics, and
vice versa. Building on these results, we are able to establish necessary and sufficient geometric
conditions for the viability and invariance of stationary and time-dependent constraint sets which
involve a suitable notion of contingent cones in Wasserstein spaces, and presented in ascending order
of generality. We then close the article by exhibiting two prototypical examples of constraints sets
appearing in applications for which one can compute relevant subfamilies of contingent directions.
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1 Introduction

Recent times have witnessed a surge of interest for the mathematical analysis of large-scale approxi-
mations of particle systems. During the past two decades, a series of seminal works concerned with
the mean-field approximation of cooperative dynamics [39, 40, 64], the theory of mean-field games
[36, 67, 71] and the sparse control of multiagent systems [33, 34, 56] have given rise to several research
currents focusing on dynamical and variational problems whose aim is to describe the macroscopic
behaviour of many-body systems. Amongst these latter, mean-field control is a research branch whose
main object lies in designing scale-free and efficient control signals for large microscopic systems, by
finely understanding the interplay that exists between discrete models and their continuous approxima-
tions. From a technical standpoint, these inquiries often boil down to studying variational problems in
the space of probability measures, and are commonly approached using optimal transport techniques
and Wasserstein geometry, in the spirit of the reference treatises [5, 81, 82]. Without aiming at full
exhaustivity, we point the reader to the manuscripts [27, 42, 55, 57] for various existence and qualita-
tive regularity results on deterministic mean-field optimal control problems, as well as to the following
broad series of works dealing with optimality conditions, either in the form of a Pontryagin maximum
principle [11, 18, 20, 21, 23, 26, 77, 78] or Hamilton-Jacobi-Bellman equations [13, 43, 45, 68]. We also
mention the references [2, 35, 41, 76] that propose astute control strategies to stir collective systems
towards specific asymptotic patterns, and finally [1, 21, 30, 31, 79] for various numerical methods in
the context of mean-field optimal control.

Motivated by this blooming interest for variational problems in measure spaces, several research
groups have been investigating relevant generalisations of the core concepts of set-valued analysis to the
setting of mean-field control [13, 22, 23, 24, 28, 44, 46, 68], a lively trend that reached more recently
other closely related topics, such as mean-field games [6, 32] and the study of sufficient conditions
for the well-posedness of dynamics in measure spaces [47, 69]. It is de facto widely accepted that
the language of correspondences, differential inclusions and generalised gradients provides, in many
cases, a synthetic and powerful framework in which most problems stemming from the calculus of
variations, games and control theory can be encompassed, as supported by the series of reference
monographs [8, 9, 48, 83] tracing back to the nineteen eighties. For these reasons, the authors of
the present manuscript introduced in [22, 28] a notion of differential inclusion in Wasserstein spaces
that is tailored to the study of mean-field control problems. Therein, given a set-valued mapping
V i [0,T] x Z,(RY) = COR4,RY), we defined continuity inclusions as the set-valued dynamical
systems

Ouut) € —divy (V (¢, u(t)pt) ),

whose solutions are understood as the collection of all curves u(:) € AC([0,T], Z,(R%)) for which
there exists a measurable selection t € [0,T] — wv(t) € V (¢, u(t)) such that the continuity equation

Oppu(t) + dive (v(t)u(t)) = 0

holds in the sense of distributions. While other notions of solutions for differential inclusions in
measures spaces had already been proposed in some preexisting works, see e.g. [10, 44, 68], the
approach we just described seemed more natural as well as necessary for several reasons. On the one
hand, it remained coherent with the classical theory of set-valued dynamics, see e.g. [8] and [9, Chapter
11], as well as with the geometric interpretation of Wasserstein spaces developed in [5, 73] wherein the
space (Z2,(R%), W,,) is seen as a fiber bundle over which continuity equations essentially play the same
role as ODEs for differential manifolds. On the other hand, it complied with one of the most important
and desired features of differential inclusions, already formulated in the pioneering article [54], which
stipulates that solutions of control systems should be in one-to-one correspondence with those of
their set-valued counterparts. In [22, 28], based on this definition of differential inclusions, we proved
analogues in the setting of Wasserstein spaces of the Filippov estimates and Peano existence theorem,
as well as a relaxation principle and a compactness criterion for the underlying solution sets. These
fundamental results are known to be extremely useful to investigate the fine properties of optimal
control problems, both in the deterministic [61, 83] and stochastic [17] settings, while enjoying natural



generalisations to study e.g. evolution equations in Banach spaces [58, 60] or mutational dynamics in
metric spaces [14, 59]. We also point to our recent works [23, 24], where we successfully applied such
set-theoretic techniques to derive optimality conditions for optimal control problems in Wasserstein
spaces, and to study certain qualitative properties of their solutions.

While permitting to handle a variety of relevant dynamical models in measure spaces, the afore-
described framework does not cover systems with state-constraints, which appear nonetheless in a
wide variety of applications ranging from game theory [37] to pedestrian dynamics [49] and traffic
flows [38], and more recently to the dynamical formulations of deep neural networks [52]. Historically,
the problem of ensuring that a differential inclusion admits trajectories that remain within a given set
starting from any initial condition was coined wviability, whereas that of ensuring that all such trajecto-
ries be viable was usually called invariance. The first results in this direction were established in [72]
for differential equations, while their natural counterparts for differential inclusions with stationary
right-hand sides later followed in [15] and [65]. To this day, the farthest-reaching viability theorems for
classical differential inclusions can be found in [62, 63] — which inspired several of our contributions —,
wherein the viability of general time-dependent constraint tubes is proven both in the Carathéodory
and Cauchy-Lipschitz frameworks. Besides modelling incentives, viability and invariance results can
be used to study the existence and uniqueness of viscosity solutions for several nonlinear partial differ-
ential equations, see e.g. [29, 63], as well as to investigate sufficient stability conditions for differential
inclusions [7]. These viewpoints — like many others stemming from set-valued analysis — present the
advantage of being readily transposable beyond the setting of finite-dimensional vector spaces, as
illustrated e.g. by their recent applications to problems in metric spaces [10, 13, 14, 46].

In this article, we study the viability and invariance properties of constraints sets under the action
of continuity inclusions in the Wasserstein spaces (22,(R%), W,,) with p € (1, +0c). Given a constraint
tube Q : [0,7] = Z,(R%) with proper images (see Definition 2.4 below), we provide necessary and
sufficient conditions ensuring that either all or some of the solutions of the Cauchy problem

Aupa(t) € —div, (V (L, p(t) (1)),
w(T) = pr,

are such that u(t) € Q(¢) for all times ¢ € [, T|, wherein 7 € [0, 7] and p, € Q(7) are both arbitrary.
These results, which are discussed in Section 4, rely on a careful analysis of the infinitesimal behaviour
of the reachable sets of (1.1). This latter is the object of Section 3, and can be heuristically summarised
as follows. In Theorem 3.1, we show that for each element v, € V (7, u) taken at some adequate pair
(7, 1tr) € [0,T] x 2,(R?) and every € > 0, there exists a solution j(-) of (1.1) which satisfies

(1.1)

Wy (e (r + h9), (1d + Bevr)ypiz ) < ehf

whenever h® > 0 is sufficiently small. In other words, each admissible velocity can be approximately
realised — on a subset of times of full .#!-measure and up to an arbitrarily small error — as the right
metric derivative of an admissible curve. In Theorem 3.2, we complete this result by showing that
for #'-almost every 7 € [0,7], each solution p.(-) of (1.1) and any sequence h; — 0, there exists
vs € V(7, pur) such that

Wi (pe (7 + 5, (1d + b, %) gpir ) < el B,

along a subsequence hf — 0. Stated otherwise, one can always find an admissible velocity which
approximately represents — again on a subset of full .Z!-measure, up to an arbitrary small error, and a
subsequence — the metric derivative of a solution of the Cauchy problem. It is worth noting that while
these results are proven under Cauchy-Lipschitz assumptions in the present paper, we do believe that
they remain valid under weaker Carathéodory-Peano hypotheses similar to those of [28, Section 3].
The main issue in proving so would be to replace the estimates on flow maps by their counterparts for
measures concentrated on characteristic curves, whose existence is ensured by the famed superposition
principle of Ambrosio, see e.g. [3, Theorem 3.4].

Let us now discuss more in depth the main contributions of this article, which are the necessary
and sufficient conditions ensuring that a constraints tube Q : [0,7] =% Z2,(R%) is either viable or



invariant under the dynamics of V : [0,7] x Z2,(R?) = C°(R%,RY) for p € (1,+00). For the sake of
clarity, we start our investigation thereof by considering stationary constraints sets. In this context,
the relevant geometric objects allowing to study viability and invariance properties are the metric
contingent cones to Q, defined by

L d d y . . 1 3:. . —
To(v) = {g € LP(RY, R v) s.t. lzﬂ_l}él’ifﬁdlbtyp(]&d)((ld + h&)sv; Q) = 0}

for each v € Q, where £P(R? R? v) stands for the seminormed space of Borel measurable and p-
integrable maps against v, and whose expression is akin to that recently introduced in [13]. Building
on this notion, we show in Theorem 4.4 that if the geometric compatibility condition

V(t,v)NcoTg(v) # 0 (1.2)

is satisfied for .#!-almost every t € [0,7] and each v € Q, where “co” denotes the closed convex hull
of a set, then Q is viable. That is, there exists then for every (7, u,) € [0,7] x Q a solution p(-) of the
Cauchy problem (1.1) satisfying u(t) € Q for all times ¢ € [, T]. Reciprocally, we prove in Theorem
4.6 that if Q is viable, then it necessarily holds that

V(t,v) N To(v) # 0 (1.3)

for .#1-almost every ¢ € [0,7] and each v € Q. We point the interested reader to our recent work [25],
where we leveraged a weaker version of these viability theorems to prove the existence of exponentially
stable solutions to a class of continuity inclusions via the second method of Lyapunov, see also the
second example in Section 5 below. In Theorem 4.7, we subsequently show that the stronger condition

V(t,v) CcoTo(v), (1.4)

which is assumed to hold for .#!-almost every ¢ € [0, 7] and each v € Q, is equivalent to the invariance
of Q under the dynamics of (1.1), namely to the fact that p(t) € Q for all times ¢ € [, T] and every
admissible curve pu(-) starting from p, € Q at time 7 € [0,77].

We then turn our attention to the more involved scenario in which the constraints are allowed to
be time-dependent. In Theorem 4.8, we start by showing that regardless of its regularity, if the tube
Q :[0,T] = Z,(R%) is viable for (1.1), namely if for any 7 € [0, 7] and each p, € Q(7), there exists
a solution of (1.1) satisfying u(t) € Q(t) for all time ¢ € [7,T], then necessarily

({1} x V(t,v)) N Tarapn(o)(t, v) # 0 (1.5)

for £t -almost every t € [0,T] and all v € Q(t), where
Graph(Q) := {(t,v) € [0,T] x Z,(R%) st. v € Q(t)}

denotes the graph of Q : [0,T] = Z,(R%) . In addition, it follows in this context that Q : [0,7] =
2,(R%) is actually left absolutely continuous (see Definition 2.7 below), as it inherits some of the
regularity properties of the reachable sets of (1.1). Similarly, if one posits that Q : [0,7] = Z,(R%)
is invariant for (1.1), that is if u(t) € Q(t) for all times t € [r,T] along every solution of (1.1) starting
from some pr € Q(7) at time 7 € [0, 7], then it must hold that

({1} X V(t, V)) C TGraph(Q) (t, I/) (16)

for #1-almost every t € [0,T] and all v € Q(¢).

Unlike the aforedescribed necessary implications, sufficient viability and invariance conditions for
time-dependent constraints call for separate analyses depending on the regularity of the tube Q :
[0, 7] = Z,(R%). When the latter is absolutely continuous (see Definition 2.7 below), we prove in
Theorem 4.10 that Q : [0,T] = Z,(R%) is viable for (1.1) whenever the geometric condition

({1} X V(t, I/)) N mTGraph(Q)(t’ l/) # 0 (17)
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holds for .#!-almost every t € [0, T] and all v € Q(t). We stress that in this context, the convexification
of the contingent directions requires much more care than in the stationary case, as one must combine
tangent velocities corresponding to possibly different time instants. Similarly to what precedes, we
then show in Theorem 4.11 below that Q : [0,T] = Z,(R?) is invariant for (1.1) provided that

V(t’ V) C ETGraph(Q)(taV) (18)

for .#1-almost every t € [0, 7] and all v € Q(t). Finally in Theorem 4.12, we address sufficient viability
and invariance conditions when the tube Q : [0,7] = Z,(R?) is merely left absolutely continuous.
This regularity framework — which, as already illustrated above, appears naturally when studying
continuity inclusions with state-constraints — is very similar to the one we previously discussed, with
the added subtlety that in this context one cannot convexify the contingent directions anymore.
Thence, the sufficient condition which ensures that Q : [0,7] = Z,(R?) is viable for (1.1) becomes

({1} x V(t,v)) N Tarapn(o)(t, v) # 0 (1.9)

for #1-almost every t € [0,T] and all v € Q(t). Similarly to the stationary and absolutely continuous
cases, one can show that Q : [0,7] = £,(R?) is invariant for (1.1) if the geometric condition

({1} x V(t,v)) C Tiraph(o)(t, V) (1.10)

holds for .#!-almost every t € [0,7] and each v € Q(t). At this stage, it is worth noting that while
conditions (1.2) to (1.9) involve the whole contingent cone to the constraints, it is sufficient in practice
to test their validity only on some nice subsets of tangent directions which are easy to compute.
This fact is expounded in Section 5, in which we exhibit collections of tangents for two simple, yet
frequently encountered families of constraints sets, defined respectively in terms of support inclusions
or as lifted epigraphs. In the first situation, we display certain adjacent directions which are amenable
to computations, while in the second one, we are able to fully characterise a relevant subset of the
contingent cone.

In terms of bibliographical positioning, this work can be seen as a far-reaching extension of [13]
by the second author, in which viability and invariance properties are established as a means to
prove the well-posedness of general Hamilton-Jacobi-Bellman equations for optimal control problems
in Wasserstein spaces, under more restrictive regularity assumptions on the data. We also point to
the independent works [10, 12, 46] which focus on the study of viability properties for another class
of set-valued dynamics in Wasserstein spaces, which we already alluded earlier. The main differences
between the latter notion and the one considered in the present article and the related works of both
authors is thoroughly discussed in [22].

The paper is organised as follows. In Section 2, we start by recalling a list of preliminary ma-
terial pertaining to optimal transport, set-valued analysis, and continuity inclusions. Subsequently,
we discuss in Section 3 the infinitesimal behaviour of reachable sets to continuity inclusions, which
constitute novel contributions to the theory on which the main results of Section 4 crucially rely. This
latter section is then split into two parts in which we discuss viability and invariance results for con-
tinuity inclusions, starting with the case of stationary constraints in Section 4.1. We then approach
time-dependent constraints in Section 4.2, wherein the necessary and sufficient conditions for viability
and invariance are exposed separately for absolutely continuous and left absolutely continuous con-
straints. Finally, we show a couple of relevant examples of constraints sets and compute some of their
tangent directions in Section 5, and close the paper by an appendix that contains the proofs of two
intermediate technical results.

2 Preliminaries

In this section, we fix the notations that will be used throughout the manuscript, and list a series of
prerequisites of optimal transport theory, set-valued analysis and Wasserstein geometry.



2.1 Measure theory and optimal transport

In this first preliminary section, we recollect common notions of measure theory and optimal transport,
for which we refer the reader to the monographs [4, 53] and [5, 81, 82] respectively.

Function spaces and measure theory. Given two complete separable metric spaces (X,dx(-,-))
and (Y,dy(+,-)), we denote by C°(X,Y") the space of continuous functions from X into Y, and likewise
by C’,? (X,Y) the subspace of continuous and bounded functions. In this context, we will use the
notation Lip(¢;€) € Ry U {400} for the Lipschitz constant of a map ¢ : X — Y over some subset
Q C X. In the particular case where (X,dx(-,-)) = (I,] - |) for a closed interval I C R, we shall
write AC(1,Y) for the collection of absolutely continuous curves valued in Y. We shall also denote
by C&° (R%,R™) the space of infinitely differentiable functions with compact support from R? into R™
for some d,m > 1.

In what follows, we let 22(R%) be the space of Borel probability measures defined over (R?, |- |).
Recalling that the latter is a subset of the topological dual of C} (R4, R), it can be endowed with the
usual weak-* or narrow topology, which is the coarsest topology such that

pe P®) s [ p@)dn() € R

defines a continuous mapping for every ¢ € CI?(Rd,R). In this context, given p € Z2(R?) and some
p € [1,4+00), the notation (LP(RY R%; ), |- | 2r (R e ;) Will refer to the seminormed vector space of
Borel maps from R? into itself which are p-integrable with respect to u (see e.g. [16, Chapter 2.4]).
We will also denote by .#! the standard 1-dimensional Lebesgue measure, and given a closed interval
I C R along with a separable Banach space (X, ||||x), we let (L*(I, X), |-l (1)) stand for the Banach
space of (all equivalence classes of) maps which are .#!-measurable and integrable in the sense of
Bochner, see for instance [50, Chapter II].

In the following definition, given some interval I C R, we recall the classical notions of one-sided
density points of an .Z'-measurable subset &/ C I, along with that of one-sided Lebesgue points for a
Lebesgue integrable map defined over I. It is a well-known result in measure theory that these sets
both have full .#!'-measure in .7 and I, respectively.

Definition 2.1 (Lebesgue and density points). Given a Lebesque measurable set o/ C I, its one-sided
density points are defined as the elements 7 € o satisfying

1
L ([r, 7+ hlNA) 1
|h| h—0

Similarly, given a map f € L*(I, X), we denote by Ty C I the subset of its one-sided Lebesgue points,
which are the elements T € I at which

1 7tk
=[O - @)k a o

For any real number p € [1,400), we denote by Z2,(R?) the subset of Borel probability measures
whose moment of order p, defined by

My = ( [ |w|pcm<x>)1/p,

is finite. In what follows, we write fyu € P(R?) for the image measure of an element u € Z(RY)
through a Borel map f : R — R, which is uniquely characterised by the identity

/Rd p(@)d(fyp)(z) = /Rd v o f(z)du(z)

satisfied for every bounded Borel mapping ¢ : R* — R? wherein “o” stands for the composition
operation between functions. The set of transport plans between two measures u,v € & (Rd) is then
defined by

T(u,v) = {fy € Z,(R*) s.t. Wé’y = and ﬂﬁQ*y = 1/},

6



where 7!, 72 : R4 x R? — R? represent the projections onto the first and second factors respectively.

In this context, the Wasserstein distance of order p between p and v is the quantity given by

1/p
— 3 _ P
Wy(p,v) = [ pin (/RM |z -yl dv(%y)) :

and we henceforth denote by I',(u,v) the set of p-optimal transport plans for which the minimum
is reached. Owing to the definition of this distance in the form of an infimum, it can be checked
straightforwardly following e.g. [5, Chapter 7] that

WP(CﬁM? gﬁ:u') < H§ - CHL‘,P(Rd7Rd; ) (21)

for any u € 2,(R?%) and each pair of elements (,¢ € £LP(R? R% ). In the following proposition, we
recall elementary facts regarding the topology of Wasserstein spaces, see e.g. [5, Proposition 7.1.5].

Proposition 2.2 (Topological properties of Wasserstein spaces). The metric spaces (Z,(R%), W)
are complete and separable, and their topology is stronger than the narrow topology. Moreover, a set
K c 2,(R?) is relatively compact for the W,-metric if and only if

SUP/ z|Pdu(x) — 0,
puek J{zeRd s.t.\x\Zk}‘ ’ Hiw) k—+o0

that is, if and only if it is p-uniformly integrable.

Wasserstein geometry. In addition to their convenient topological properties, the Wasserstein
spaces can be endowed with a geometric structure that greatly resembles that of a Riemannian manifold
when p = 2. For a general p € [1,+00), it is discussed in depth throughout [5, Chapter 8] that
(2,(R%), W) can be seen as a bundle, whose fibers are the closed cones

LP (R R 1)
Tan, 7,(R?) = {jy(Ve) st. ¢ € C(R%,R)

defined at each p € 2,(R%). Therein, q € (1,+00] stands for the conjugate exponent of p € [1,+0c0),
and j, : LI9(RY,RY; 1) — LP(RY RY; 1) refers to the so-called duality map, which is given by

@@w:{o e=0 (2.2

£]972¢  otherwise

for each ¢ € LI(R? R% ;). In the following proposition, we provide an adhoc version of the joint
directional superdifferentiability inequalities satisfied by the p-Wasserstein distance whenever p > 1.
We point the reader to [5, Theorem 10.2.2] for the general case.

Proposition 2.3 (Joint directional superdifferentiability of the Wasserstein distance). Fiz an element
p € (1,400) and p,v € P,(R%). Then for each & € LP(RY,RY; 1) and ¢ € LP(RY, R v), it holds that

SR (144 B, (1 4+ hE)gw) = JW () < b [ | (<) =€) dpl = 9)d(a,w) + 1 (h, . )

for any h € R and every v € I'y(p,v), where the remainder term rp(h,(,§) is given explicitly by

0.6 = =1 (0) + 1 (Il + Ielererss)) -
X (1S et gt iy + 1€ gt gt ) ) 1B
when p € [2,+00), and by
(s € €) = 525 (ICIB (o gty + 1€ o gty ) 1PIP (2.4)

7



when p € (1,2]. In particular, there exists a constant Cp, > 0 which only depends on the magnitudes
Ofp, Mp(iu)a Mp(y)a ||<H£P(Rd,]Rd L) and ||£H£I’(Rd,Rd;y)7 such that

rp(h, ¢, &) < Cp|h|™nir2}
whenever h € (0,1]. Moreover, note that rp(h,(,&) =0 if ( =& =0.

Proof. For the sake of readability, the proof of this result is deferred to Appendix A. O

2.2 Set-valued analysis and topological properties of C°(R?, R?)

In this second preliminary section, we recollect pivotal concepts of set-valued analysis and discuss
some of the topological features of the space C°(R%, R?) that will prove useful in the sequel. We point
the reader to the reference treatises [8, 9] for the former topics, and to [70, 80] for the latter.

Elementary notations. Given a metric space (X,dx(-,-)), we will denote the closed ball of radius
R > 0 centered at x € X by By (z, R) := {2’ € X s.t. dx(z,2’) < R}, and write

distx (Q; Q') := inf  dx(x,2)
(z,2)eQx Q!

for the usual distance between two closed sets @, Q" C X. Throughout the article, we will also work
with the Hausdorff metric, which is defined by

dp(K,K') :=inf {e > 0 s:t. £ C Bx(K',¢) and K’ C Bx(K,¢)} (2.5)

for each pair of compact sets K, K’ C X, where we used the condensed notation

By (K,e) = ] Bx(z,e).

zel

In our subsequent developments, we will denote by int(Q) and 0Q := Q \ int(Q) the interior and
topological boundary of a set Q. In the particular case in which (X,dx(-,:)) possesses a linear
structure — e.g. when it is a Banach or a Fréchet space, see for instance [66] —, we define the closed
convex hull of any subset B C X as

X

- N N
E(B)ZCO(B)X = U {Zajbj st. bjeB, aj >0 for je{l,...,N} and Zajzl} ,
N>1 =1 j=1

wherein “eX” stands for the sequential closure with respect to d x(+,-). We finally recall the definition

of the so-called proper subsets of a metric space.

Definition 2.4 (Proper subsets of a metric space). A closed set Q C X is proper provided that
QNBx(x, R) is compact for each v € X and every R > 0.

Note that in the previous definition, one could alternatively require that Q@ N\Bx (x, R) be compact
for each z € Q instead of x € X.

Set-valued analysis. We recall that a set-valued map — or correspondence — between two metric
spaces (X,dx(+,-)) and (Y,dy(-,-)) is an application F : X =% Y whose images are subsets of Y,
namely F(z) C Y for all x € X. In this context, the graph of F is the subset of X x Y defined by

Graph(F) := {(:c,y) EXXY st.ye .7:(56)}

In the coming definitions, we recall the main regularity notions for set-valued mappings with values
in metric spaces, starting with those of continuity and Lipschitz reqularity.



Definition 2.5 (Continuity of set-valued maps). A correspondence F : X =Y is said to be continuous
at x € X if both the following conditions hold.

(1) F is lower-semicontinuous at z, i.e. for any y € F(x) and € > 0, there exists § > 0 such that
F(a') NBy(y,e) # 0
for each &' € Bx(z,9).
(i) F is upper-semicontinuous at x, i.e. for any e > 0, there exists 6 > 0 such that
F(z') C By (F(x),¢)
for each &' € Bx(z,9).

Definition 2.6 (Lipschitz continuity of set-valued maps). A correspondence F : X =Y is said to be
Lipschitz continuous with constant L > 0 provided that

F(a) € By (F(z), Ldx(z,2"))
for all x,2' € X. When F : X =Y has compact images, this is equivalent to requiring that
dy (F(z), F(2")) < Ldx(x,2")

forall z,2' € X.

As for functions defined over the real line taking values in a metric space, it is possible to formulate
several relevant notions of absolute continuity for set-valued maps. Some of them involve the quantity

Appr(Q; Q) = inf {6 >0 st. 9NBx(z,R) C IB%X(Q',g)} € Ry U {+o0},

defined for each x € X, R > 0 and every pair of nonempty closed sets Q, Q" C X, which can be seen
as a sort of asymmetric and localised version of the Hausdorff distance recalled in (2.5).

Definition 2.7 (Notions of absolute continuity for set-valued mappings). We say that a correspon-
dence F : I = X with nonempty closed images is absolutely continuous if for every x € X and each
R > 0, there exists a map my g(-) € L'(I,R4) such that

max {A$7R(]:(T) s F(), Az r(F(1) ;.7-"(7'))} < /Tt mg r(s)ds

for all times 7,t € I satisfying T < t. Analogously, we say that F : I = X is left absolutely continuous
if only the one-sided inequality

Ay p(F(r): F(b) < /T o n(s)ds

holds. In the case where F : I = X has compact images, we say that it is absolutely continuous in
the Hausdorff metric if there exists a map mz(-) € L'(I,Ry) such that

t

du(F(r), F(t) < [ mr(s)ds

T

for all times 7,t € I such that T <t.

These notions of absolute continuity allow us to establish the following regularity statements on the
distance between set-valued maps, which will prove crucial in some of our subsequent developments.



Proposition 2.8 (Regularity of the distance between set-valued maps). Let K : I = X be a set-
valued map with nonempty compact images that is absolutely continuous in the Hausdorff metric and
Q: I = X be an absolutely continuous set-valued map with nonempty closed images. Then, the map

g:telw—distx(K(t); Q(t)) € Ry

is absolutely continuous. In the case where Q : [0,T] = X is only left absolutely continuous, then the
set-valued mapping

g:te[:;{aeR+ s.t.a:g(t)+rf0rsomer20}

is left absolutely continuous as well.
Proof. Being somewhat long and technical, the proof of this statement is deferred to Appendix B. [

Analogously to the classical notions of regularity exposed hereinabove, it is possible to generalise
the concept of measurability to set-valued mappings, as highlighted by the following definition.

Definition 2.9 (Measurability of set-valued maps). A set-valued map F : I = X is said to be
Z1-measurable if the preimages

FUO) = {tel st F)no £0}

are L -measurable for each open set O C X. Moreover, we say that an £ -measurable map f : I — X
is a measurable selection of F : I = X if f(t) € F(t) for L-almost everyt € I.

In the following theorem, we recall an instrumental result of set-valued analysis excerpted from [9,
Theorem 8.1.3], which asserts that measurable correspondences with nonempty closed images always
admit measurable selections.

Theorem 2.10 (Existence of measurable selections). Suppose that (X,dx(-,-)) is a complete separable
metric space. Then every £'-measurable set-valued map F : I = X with nonempty closed images
admits a measurable selection.

We end this primer in set-valued analysis by recollecting a fine adaptation of the Scorza-Dragoni
theorem for set-valued mappings between metric spaces, for which we refer to [19, Theorem 1].

Theorem 2.11 (Scorza-Dragoni property for set-valued mappings). Suppose that (X,dx(-,-)) and
(Y,dy (-,-)) are complete separable metric spaces, and let F : I x X =Y be a set-valued map with
nonempty closed images, such that t € I = F(t,x) is L -measurable for all x € X and v = F(t,x)
is continuous for £'-almost every t € I.

Then for every e > 0, there exists a compact set /. C I such that L*(I\ <.) < e, and for which
the following holds.

(i) The restricted set-valued mapping F : o x X =Y is lower-semicontinuous.

(ii) The graph of the restricted set-valued mapping
Graph(F) o xxxy = {(t,x,y) cd.x X xY st.ye ]:(t,x)}

s closed in o, x X x Y.
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Topological structures over the space of continuous functions. Throughout the coming para-
graphs, we recall some useful topological properties of the space C°(R%,R%). In what follows, we let

duup(v,10) == sup [o() — w(z)] € Ry U {+00}
rER4

be the supremum extended-distance between a pair of elements v, w € C°(R? R%). While this latter
is useful to control the global discrepancy between two continuous functions — which may be equal
to +00 —, the topology that it induces is not separable and thus ill-adapted to the application of
measurable selection theorems. For this reason, we will systematically endow the space C°(R? RY)
with the topology of local uniform convergence, whose definition is recalled hereinbelow.

Definition 2.12 (Topology of local uniform convergence). A sequence of maps (v,) C C°(R4 R%)
converges locally uniformly — or uniformly on compact sets — to some v € CO(R?, R?) provided that
v = vnllco(k ray St 0

for each compact set K C RY. This notion of convergence endows CO(R? R?) with the structure of a
separable Fréchet space, whose topology is induced by the translation invariant metric

+o0o
dec(v,w) 1= 3 27 min {1, [|[v = wllgo (0 4 e } (2.6)
k=1

that is well-defined and finite for any v,w € C°(R%,RY).

Amongst its interesting properties, the topology of local uniform convergence enjoys a very explicit
and amenable characterisation of compactness, for which we refer e.g. to [70, Chapter 7, Theorem 18].

Theorem 2.13 (Ascoli-Arzela compactness criterion). A closed set V. C CO(R?, R?) is compact for
the topology induced by dc.(+,-) if and only if its elements are locally uniformly equicontinuous and if,
for every x € R?, there exists a compact set K, C R such that v(z) € K, for each v € V.

We recall below a fact whose proof can be found in [74], which establishes a one-to-one correspon-
dence between .#!-measurable maps ¢t € I — v(t) € C°(R% R?) and Carathéodory vector fields. We
recall that a map v : I x R? — R? is Carathéodory if t € I — v(t, x) is £ -measurable for all z € R?
and z € R? — o(t, x) is continuous for .#-almost every t € [0,T].

Lemma 2.14 (Measurable selections in CY(R% R?) and Carathéodory vector fields). A wector field
(t,x) € IXxR? s v(t,z) € R? is Carathéodory if and only if its functional lift t € I + v(t) € CO(R?,RY)
is L' -measurable with respect to the topology induced by dec(-,-).

Lastly, we prove a technical result which states that for sequences of sublinear continuous functions,
the convergence with respect to dec(-, ) implies the convergence in £P(R%, R%; ;1) for every p € [1, +00)
and each u € Z,(RY).

Lemma 2.15 (Link between local uniform and Lebesgue convergences). Let (v,) C C°(R%,RY) be a
sequence of maps such that for some m > 0, there holds

[on ()] < m(1 + [z])

for all x € RY and each n > 1. Moreover, suppose that dec(vn,v) — 0 as n — 4oo for some
v € CO(RY,RY). Then, for each p € [1,4+00) and p € P,(RY), it holds that {v,}25 C LP(RL,RY; )
and also

v = vnll £p(re R, ) oo 0.

11



Proof. The fact that v,, € LP(RY,R%; 1) for each n > 1 simply follows from the observation that

1/p
[onllesase < m( [ 1+ la)Pdut@) <+

and likewise v € £P(R? R?; ;). Fix now an arbitrary € > 0 and consider some R, > 0 for which

1/p c
1+ [a])d ) <
(/{xeRd 5.t \x\ZRE}( [2)*dp(z) 414+ m)

Then, choose an integer N, > 1 such that

3
lv = vallcoso,ro)me) < 5

for each n > N, which is always possible by the definition (2.6) of d..(-,-). Whence, it follows that

1/p
. o < o=, +2</ 1+ |])7d >§s
o= olessstn < o = vulloomona o 20 g gy F 1D 9000)

for each n > N., which yields the desired convergence result. O

2.3 Continuity equations and inclusions in Wasserstein spaces

In this last preliminary section, we expose well-posedness results and estimates for solutions of con-
tinuity equations and inclusions in Wasserstein spaces. These latter are mostly borrowed from our
previous works [22, 28], but we also point the reader to [5, Chapter 8] and [3, 75] for more standard
versions thereof.

Continuity equations in the Carathéodory framework. In the ensuing paragraphs, we recall
some elementary results pertaining to the qualitative properties of continuity equations of the form

Dupa(t) + div, (v()u(t)) = 0,

defined over some time interval [0,7] with 7" > 0, whose solutions are understood in the sense of
distributions, namely, satisfying

T
/0 /Rd (Bup(t, ) + (Vaip(t @), v(t, 7)) ) dp(t)(@)dt = 0

against smooth test functions ¢ € C°((0,T) xR%, R). In this context, given a real number p € [1, 4+00)
and a pair of elements (7, it;) € [0, T]x 2, (R%), we will study the well-posedness of the Cauchy problem

{@u(t) +divg (v(t)p(t)) =0,

ulr) = por @1)

in the case where the velocity field v : [0,7] x R? — RY satisfies either the following standard
Carathéodory assumptions, or some of their variants.

Hypotheses (CE).

(i) The velocity field v : [0,T] x R* — RY is Carathéodory, i.e. t € [0,T] — v(t,x) is L -measurable
for all z € RY while x € RY s v(t,x) is continuous for L -almost every t € [0,T). Moreover,
there exists a map m(-) € L([0,T],Ry) such that

o(t, )] < m(t)(1 + [z])

for L' -almost every t € [0,T] and all z € RY.

12



(ii) There exists a map I(-) € LY([0,T],Ry) such that
Lip(v(t); RY) < (t)
for L-almost every t € [0,T).

In their strongest form, the well-posedness results stated in Theorem 2.17 below for continuity
equations involve the notion of characteristic flows generated by a velocity field.

Definition 2.16 (Characteristic flow). Given a velocity field v : [0, T] xR? — R? satisfying Hypotheses
(CE), we define the characteristic flows ((I)E}T,t))Tvte[ovT] C CO%(R?,RY) as the unique collection of maps
satisfying

F, =x —i—/ s, ®(; o) (x))ds (2.8)
for all times 7,t € [0,T] and any = € RZ.

Theorem 2.17 (Well-posedness in the Carathéodory framework). Let v : [0,T] x R? — R? be a
velocity field satisfying Hypothesis (CE)-(i), and fix some (1, ) € [0,T] x RY,

Then, the Cauchy problem (2.7) admits solutions u(-) € AC([r,T], Z,(R%)). In the case where
Hypothesis (CE)-(ii) holds as well, the latter is then uniquely defined on the whole interval [0,T], and
represented explicitly by the formula

M(t) = q)E)T,t) ﬁ:u'T
for all times t € [0,T].

Set-valued dynamics in Wasserstein spaces. In the next few paragraphs, we recollect for the
sake of completeness the definition of continuity inclusions introduced in our earlier works [22, 28],
along with several estimates on which our main contributions will strongly rely. In what follows, given
some p € [1,400), we focus on the set-valued Cauchy problems of the form

{@p@)e—dW¢0“tM@DM@D,
(1) = pirs

(2.9)

wherein (7, i17) € [0, T]x Z,(R%) and V : [0,T] x Z,(R?) = CO(R?, RY) are given, and whose solutions
are understood in the following sense.

Definition 2.18 (Solutions to continuity inclusions). A curve of measures u(-) € AC([0,T], 2,(R%))
is said to be a solution of the Cauchy problem (2.9) if there exists an £'-measurable selection t €
[0,T] — v(t) € V(t,u(t)) such that the trajectory-selection pair (u(-),v(-)) satisfies

{@Mﬂ+&w@@W@D=Q
:U’(T) = Ur,
in the sense of distributions.

Based on our earlier contributions, we will assume throughout this article that the dynamics
satisfies the following assumptions. Therein and in what follows, C?(R%, R9) is systematically endowed
with the separable Fréchet structure induced by dc.(, ), exposed in Definition 2.12.

Hypotheses (CI).

(i) For any pu € 2,(R%), the set-valued map t € [0,T] = V(t,n) C CO(RY,RY) is L -measurable
with closed nonempty images.

(ii) There exists a map m(-) € LY([0,T],Ry) such that for £'-almost every t € [0,T], any p €
Z,(RY), every v € V(t,pn) and all x € RY, it holds

[o(@)] < m()(1+ |2] + My(p))
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(i4i) There exists a map l(-) € LY([0,T],Ry.) such that for £*-almost everyt € [0,T], any p € P,(R?)
and every v € V(t, ), it holds
Lip(v; RY) <(#).

(iv) There exists a map L(-) € L'([0,T),Ry) such that for £*‘-almost every t € [0,T], any u,v €
2,(R?) and each v € V(t, 1), there evists an element w € V (t,v) for which

dsup (v, w) < L()Wp(p, v).

Examples of classical set-valued mappings defined in terms of control systems satisfying localised
variants of (CI) are provided in [22, Section 4]. In our subsequent developments, we will frequently
refer to solutions of (2.9) by using the terminology of reachable and solutions sets, defined as follows.

Definition 2.19 (Reachable and solution sets of continuity inclusions). Given a pair of elements
(7, 1tr) € [0,T] x 2,(RY), we define the (forward) solution set of the Cauchy problem (2.9) as

Sirr)(7, 1) = {,u() € AC([, T), Z,(RY)) s.t. u(-) is a solution of (2.9)},

and denote by
Riray(pir) = {t) s:t. () € Sy (1) }
the corresponding reachable sets at time t € [1,T].

By combining classical concatenation results for solutions of continuity equations (see e.g. [51,
Lemma 4.4]) and Definition 2.18, it can be shown that the reachable sets satisfy the semigroup property

R(q—,t) ()U’T) = R(s,t) o R(T,s) (MT) (210)

for all times 7 < s <t < T. Besides, it follows from Hypotheses (CI) and Theorem 2.17 that solution
curves are also well-defined and unique backward in time. Hence, each element of S}, 7 (1, pr) can be
seen as a restriction to [7,7] of some curve in Sy 11(7, i)

In the next propositions, we recall several a priori estimates for solutions of (2.9), along with some
useful topological properties for the reachable and solution sets. Therein and in what follows, given a
map m(-) € L*([0,T],Ry), we will frequently use the shorthand notation () =)l 21 o,17,R)-

Proposition 2.20 (Moment, equi-integrability and absolute continuity estimates). Let V' : [0,T] x
2,(R%) = CO(RY, RY) be a set-valued map satisfying Hypotheses (CI) and (7, ;) € [0,T] x Z,(R%).

Then, there exists a constant Cr > 0 which only depends on the magnitudes of p, M,(1+) and
|m(-)|[1 such that every curve u(-) € Sjor)(T, pr) complies with the a priori moment bound

Mp(p(t)) < Cr, (2.11)

as well as the uniform equi-integrability estimate

jzlPdu(t)(z) < Cr (1 + [z])Pdpr(2) (2.12)

/{:BE]Rd s.t. |z|>R} /{:BE]Rd s.t. |z|>R/Cr—1}

for all times t € [0,T] and each R > 0. Moreover, the following uniform absolute continuity inequality
to
Woli(t), u(t2)) < (1+Cr) [ m(s)ds (2.13)
1

holds for all times 0 <t; <ta <T and every u(-) € Sjo (7, ir)-

Proposition 2.21 (Topological properties of the reachable and solution sets). Assume that the hy-
potheses of Proposition 2.20 hold and that V : [0,T] x Z,(R%) = C°(R%,RY) has convex images.
Then the reachable sets R ;4 (pur) C Pp(RY) are compact for all times t € [0,T], and the solution set
Sjo,r)(7, 1) C CO([0,T], Z,(R%)) is compact for the topology of uniform convergence.
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Proof. The fact that the solution set Sjo7(7, i) C CO([7,T], Z,(R)) is compact when V : [0,T] x
2,(R?) = CO(R4, R?) has convex images was proven in [28, Theorem 3.5]. It is then straightforward
to show that the underlying reachable sets are compact for all times ¢ € [0, 7. O

We end this preliminary section by recalling a simplified and condensed version of one of the main
results of [28], which combines an existence result for (2.9) together with a powerful estimate “a la
Gronwall” involving the distance to an a priori given curve of measures.

Theorem 2.22 (Local Filippov estimates for continuity inclusions). Let V : [0,T] x Z,(RY) =
CORY, RY) be a set-valued map satisfying Hypotheses (CI) and v(-) € AC([0,T], 2,(R%)) be a solution
of the continuity equation

O (t) + divy(w(t)v(t)) =0

driven by a Carathéodory vector field w : [0,T] x RY — RY satisfying the sublinearity estimate
[w(t,y)] <m(t)(1+ ly])

for L-almost every t € [0,T] and all y € RY. Given R > 0, denote by nr(-) € L*([0,T],R.) the local

mismatch function, defined by

na(t) = disteogso,m,za (W) V(¢ v(2))

for £1-almost every t € [0,T).
Then for every (1,p7) € [0,T] x Z,(RY) and each R > 0, there exists a curve of measures
u(-) € Spo.1)(T, pr) which satisfies the a priori estimate

W, (u(t), (1)) < Cy (W,,(MT, V() + / Con(s)ds + & (.t R)) (2.14)

for all times t € [1,T]. Therein, the constant Cf. > 0 only depends on the magnitudes of the data
s Mp(pr), [[m) |1, 1111 and ||L(-) |1, while the error term E,(T,t, R) is given explicitly by

1/p
£,(7.1. 1) =2 mO) sy 1+ C) (14 lyPdv(r)(w))

ys.t. [y|>R/Cr—1}
for all times t € [1,T|, where Cp > 0 is the constant appearing in Proposition 2.20.

Remark 2.23 (Link between continuity equations and inclusions). In the particular case in which
V i [0,T] x Z,(RY) = CORL,R?Y) happens to be single valued and independent of u — that is if
V(t,u) = {v(t)} for £ -almost every t € [0,T] and each p € Z,(RY) -, then the corresponding
velocity field satisfies Hypotheses (CE). In addition, the solution of (2.9) is then unique, coincides
with that of (2.7), and complies with the a priori estimates of Proposition 2.20 and Theorem 2.22.

3 Infinitesimal behaviour of the reachable sets
In this section, we prove two fundamental results concerning the metric differentiability properties of

solutions of the Cauchy problem

{@u(t) € —diVm(V(t7ﬂ(t))M(t))7 (3.1)

p(T) = pur,

which are largely inspired by the analysis carried out in [63, Section 2]. The first one, discussed in the
ensuing theorem, deals with the existence of curves with (approximately) prescribed initial velocities.
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Theorem 3.1 (Existence of admissible curves with approximate initial velocities). Let V' : [0,T] x
2,(R%) = CO(RY, RY) be a set-valued map satisfying Hypotheses (CI).

Then, there exists a subset 7 C (0,T) of full £'-measure such that for every v € 7, all . €
2,(R%), each v, € V(r,ur) and any € > 0, there exist some h. > 0 along with a curve p.(-) €
Sjo,r)(7, pr) such that

Wy (e (r + h), (1d + hv)gpr ) < eh, (3.2)
for all h € [0, he].

Proof. To begin with, denote by Z,, 7, 7r, C (0,T) the sets of one-sided Lebesgue points of the
maps m(-),1(+), and L(-), respectively, and by Z4; C (0,T) the subset of full .Z!-measure over which
Hypotheses (CI)-(ii), (ii7) and (iv) hold. By Theorem 2.11, there exists for every k > 1 a compact
set A¥ C [0,T] satisfying £*([0,T] \ A¥) < 5, and such that V : A% x Z,(R?) = CO(R%,RY) is
lower-semicontinuous in the sense of Definition 2.5-(i). For each n > 1, define then <7, C [0,7] as

oy =[] A", (3.3)

k>n

and denote by o, C i, the subset of its one-sided density points understood in the sense of Definition
2.1, which can be characterised as the subset of full .#!-measure in o7, such that

LU+ ]\ )

=0 3.4
h—0t h ( )

for each 7 € <7,. Upon noting that for each n > 1, one has
1 7\ _ ool k
21 0.1\ =2 (U, (011 4))

—+00 1
1 k
< > ZNo,1]\ A¥) < o
k=n+1

while observing that the sequence of measurable sets (47,) is increasing by construction, it holds that

zl([o,T]\( @%)): lim 21((0,T] \ 7,) = 0.

n—-+o0o

Therefore, the set .7 C (0,7T") defined by
9::( n>1%)m§mm%m%m%, (3.5)

has full #!-measure in [0, 7], and in the sequel we fix an element 7 € .7. We also pick a radius R. > 0
satisfying

1/p
2m(r)(1+ Cr) / (14 o)) < (3.6)

where Cp > 0 is given as in Proposition 2.20 and Theorem 2.22.

z€R? s.t. |z|>R: /Cr—1}

Step 1 — Construction of an admissible curve. Observe that under Hypotheses (CI), each
element v, € V(7, ;) is a time-independent vector field satisfying Hypotheses (CE) with constants
m(7),1(7) > 0. Thus, by Theorem 2.17, there exists a unique solution v(-) € AC([0,T], Z,(R%)) of

{Btu(t) + div, (vrr(t)) =0,
V(T) = Mr,
and the latter can be represented explicitly as

V() = O ghtr
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for all times ¢ € [0,7]. Therein, the maps (@E’; t))tE[O,T} C C°(R?4,R%) are the characteristic flows
generated by vy € V(7, ;) in the sense of Definition 2.16. By standard linearisation techniques (see
e.g. [24, Appendix A]), it can further be shown that

DU

(r,1

Jrh)(ac) =z + hv(x) + 0r 4 (h)

for all z € R? and any sufficiently small h > 0, where [zq |0 2(h)|Pdu,(z) = o-(|h|P). Thence, upon
remarking that

(Id 1 ho,, @f;ﬁh))w € F((Id + hy )i, (T + h)),

we straightforwardly deduce from (2.1) the distance estimate
Wy (v + h), (1d + hv-)gpir ) < or(h), (3.7)

which holds for every sufficiently small h > 0. Moreover, since v(7) = u by construction, there exists
by the Filippov estimates of Theorem 2.22 a curve p(-) € Sjo 1)(7, tt~) which satisfies

W (e (), 0(2)) < ch< /T " disteo 0.1 5 (v 3 V(s,v(s)))ds + &, R€)> (3.8)

for all times ¢ € [r,T], where C}. > 0 only depends on the magnitudes of p, My (ur), [|m ()1, [|1(-) |1,
and [[L(-)[]1-

Step 2 — Distance estimate in the vicinity of 7 € 7. In order to conclude, we need to show
that the right-hand side of (3.8) is bounded from above by eh + 0;.(h) when t = 7+ h with h > 0
sufficiently small. Observe first that by our choice of R, > 0 via (3.6), one has that

1/p
£,(r, 7+, Be) = 201 +Cr) IOl o ( | (14 fa)dur o) )

<eh+or.(h)

z€R? s.t. |z|>R./Cr—1} (3.9)

whenever h > 0 is small enough, since 7 € 7 is a one-sided Lebesgue point of m(-) € L1([0,T],Ry).
In order to derive an upper-bound on the integral of the mismatch function, recall that by the

definition (3.5) of .7 C (0,T), there exists an integer n > 1 such that 7 € 47, and the set-valued map

t € oy, = V(t,ur) is lower-semicontinuous. Hence for each & > 0 there exists some §,, > 0 for which

distcord ra) (vT ; V(t, ,uT)) <
for every t € 7,7 4 6,] N &, where we recall that (C°(R% R?),d.(,-)) is equipped with the Fréchet

structure described in Definition 2.12. In particular, by choosing &’ > 0 to be sufficiently small, it
follows from the definition (2.6) of the metric d..(-,-) that

diStCO(B(O,Rg)JRd) (UT 3 V(t, ,LLT)) S g, (310)

for every t € [r,7 + 6,] N &, where (CO(B(0, R.),R%), [lcoB0,r.) re)) is endowed with its usual
Banach space structure. Besides, noting that the sets V(t,u,) C C°(R? R?) are compact under
Hypotheses (CI)-(i7) and (ii7) as a consequence of Theorem 2.13, while observing that the map

w € CORLRY) — [lvy — w|[cop(0,r. ey € R+

is continuous, it follows from Theorem 2.10 applied with Hypothesis (CI)-(i) that there exists a
measurable selection ¢ € [0,T] — w.(t) € V (¢, ur) such that

[vr = wr()llco(p(o,r.),rey = distco(so,r.)RY) (UT V(T MT)) (3.11)
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for every t € [r,7 + 0] N ,. Furthermore, by Hypotheses (CI)-(i) and (iv) combined again with
Theorem 2.10, there exists a measurable selection ¢ € [0, 7] — w(t) € V(¢,v(t)) satisfying

lw®) = wr ()l eogo o) < LOWp(ir, v()
for .#-almost every t € [0, T], which together with (3.10) and (3.11) further yields
disteo (0, z0) (0 V (E V() < &+ LW, (e, v(2)) (3.12)

for #1-almost every t € [7, 7 + 8,] N .<%,. There now remains to estimate the integral over |7, 7 + h] of
the local mismatch function. The latter can be decomposed into the sum of two terms as

T+h
/ diStCO(B(O,RE),Rd) (vq— ) V(t, l/(t)))dt = / diStCO(B(O,RE),Rd) (UT 5 V(t, l/(t))) dt

[r,7+h]\ (313)

+ dist v VIt v(t)))dt.

[+ CO(B(O’Rs)’Rd)( (t v )))
As a consequence of Hypothesis (CI)-(iz), the first of these two integrals can be estimated as
dist v V(E,v(t)))dt
/[T,T+h]\dn CO(B(O’RE)’Rd)( (t v )))
S / ( Ur + sup w )dt
[r,7+h]|\ ” HCO(B(O’RE)’Rd) weV (t,v(t)) H ”CO(B(O7RE)’R(1)
< (1+R:+Cr) / (m(1) +m(t))dt (3.14)
[r,7+h]|\

< (14 R.+Cr) (2m(7)$1([7, T+ B\ ) +

= 0T7€(h)

where we used the characterisation (3.4) of the one-sided density points of <,, along with the fact
that 7 € .7 is a one-sided Lebesgue point of m(-) € L'([0,T],R, ), as well as the moment bound of
Proposition 2.20. By (3.12), the second term in (3.13) can be bounded from above as

(m(®) — m(r))dt)

[r,7+h]|\

dist vy VI(t,v(t)))dt
/[T,T+h}mm%n CO(B(O’RE)’W)( (t v )))

< (EF LOWa v )

T

+h t
gsh+C’T/ L(t)/ [orllcoB(o,R. ) mey ds dt

, T+h D 1/p
0 [ 2 IO ey 0+ E)( (1 fal)"dpr () )

<eh+ or.(h),

z s.t. |z|>Re/Cr—1}

(3.15)
where we used the single-valued version of the distance estimate of Theorem 2.22 — see Remark 2.23
— along with the fact that 7 € .7 is a one-sided Lebesgue point of m(-), L(-) € L'([0,T],R;). By
plugging (3.14) and (3.15) into (3.13) and combining the resulting estimate with (3.8), one then obtains

W, (ME(T +h), (T + h)) <eh+orc(h) (3.16)

for every small h € (0, d,]. Upon merging (3.16) with (3.7) and taking h. > 0 so that o,.(h) < eh for
all h € [0, h.], one finally has up to rescaling ¢ > 0 by a constant that

Wy (e (7 + h), (1d + hvr)gpir ) < eh,

for all h € [0, he|, which concludes the proof. O
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In the following theorem, we establish a property that is complementary to the one we previously
discussed, which ensures the existence of an admissible velocity representing (approximately) the local
behaviour of any given solution of (2.9) when the admissible velocities are convex.

Theorem 3.2 (Infinitesimal behaviour of reachable sets). Let V : [0,T] x Z,(R%) = CO(R4,R?) be a
set-valued map with convex images satisfying Hypotheses (CI).

Then, there exists a subset 7 C (0,T) of full £ -measure such that for every 7 € 7, all p, €
2,(R%), each solution u(-) € AC([0,T], 2,(R9)) of (3.1), any e > 0 and every sequence h; — 0, there
exists an element v: € V(7, ur) such that

Wy (n(r + h5,), (1d + b, 09 )gnir ) < el (3.17)

along a subsequence hi, — 0 which depends both on v: € V (1, pr) and € > 0.

Proof. First, let I, 7], J1, and i1 be the subsets of full #!-measure in (0,7) defined as in the proof
of Theorem 3.1. By Theorem 2.11, there exists for each k > 1 a compact set AF C [0, T)] satisfying
Z'([0,7]\ A*) < 5, and such that the graph

Graph (V)| g x 7, ey xco e, ey = { (1, 0) € AF x Zp(RY) x CORLRY) s.t.v € V(E, ) |

of the restriction of V : [0,T] x Z,(R%) = C°(R%,RY) is closed in A* x Z,(RY) x CO(R4, RY). For
each n > 1, consider the increasing sequence of .#!-measurable sets (B,,) defined by

A

By = {t0,7] st. m(t) +1(t) <n}.

Then, there exists an increasing subsequence (B,,) of Lebesgue measurable sets that we do not relabel
satisfying B,, C B, as well as Z1(B,,) > 0 for each n > 1, and such that

240,71\ B,) — 0.

n—-+o00

By the inner regularity of the Lebesgue measure, one can find an increasing sequence of closed sets
(Cn) C [0,T] satistying C,, C B,, for each n > 1, as well as

Z(C) 2 (1= 7210, T\ Bo)) " (B).

Then, for each n > 1, define the closed set <, C [0,T] by

Ay = (ﬂm Ak) nC,

and as in the proof of Theorem 3.1, denote by 7, the subset of all one-sided density points of .<7,.
Noting that the sequence of measurable sets (7,) is increasing by construction, and that it satisfies

2'(0.11\ ) = 24 (U,.,, (0711 4%) U (0,71 C) )

k>n

< io L0, T)\ A*) + T — 2" (By) + £([0,T] \ By)
k=n+1

1 1
<220 TI\B) 0,

it follows that the set .7 C (0,T) defined by

ﬂ::( n>1%)mﬂmm%mﬂLmﬂH
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has full .#!-measure in [0,7]. Fix now some 7 € .7, a measure [, € @p(Rd) as well as a solution
() € Sjor1(7, pir) of (3.1) and a sequence h; — 0. Choose also R, > 0 in such a way that

1/p
om(r)(1 + cT)< /{ N |x|p)d,u7(x)) <, (3.18)

where Cr > 0 is the constant appearing in Proposition 2.20, which we recall only depends on the
magnitudes of p, My(u,) and [|[m(-)]]1.

By the definition of solutions to (3.1), there exists an .#!-measurable selection ¢ € [0,7] + v(t) €
V(t,u(t)) € CO(RY,RY) such that the curve pu(-) solves the Cauchy problem

{@u(t) + div(v(t)u(t)) =0,
w(T) = por-

Besides, it can be deduced from Lemma 2.14 that (t,7) € [0,T] x R? + v(t,z) € R? is a Carathéodory
vector field which satisfies Hypotheses (CE), see for instance [28]. Hence by Theorem 2.17, the curve
p(-) € AC([0,T], Z,(R%)) is given explicitly by

M(t) = q)E)T,t) ﬁ:u'T

for all times ¢ € [0,7]. Moreover, there exists by construction an integer n > 1 such that 7 € o,
and the restricted set-valued map t € o, =2 V (¢, u(t)) has closed graph. Since m(-) and I(-) are both
bounded from above over 47,, it stems from Hypotheses (CI)-(i), (i) and (iii) together with Theorem
2.13 that there exists a compact set KC,, € C°(R? R?) such that

V(t,u(t) C Ky

for all times ¢ € «,. Thence, it follows e.g. from [9, Proposition 1.4.8] that t € o, = V (¢, u(t)) is
upper-semicontinuous in the sense of Definition 2.5-(¢7). In particular, for each € > 0, there exists a
measurable selection ¢ € [0, T — 5(t) € V(7, 1) along with some d,, > 0 such that

[v(t) = 07Dl coB(o,r. ) re) < € (3.19)

for every t € o, N [1,T + J,], where we leveraged the expression (2.6) of the metric dc.(-,-).

In what follows, we use the selection ¢ € [0,T] — 0(t) € V (7, i1r) to build an element v € V (7, ;)
satisfying (3.17) along some subsequence hi — 0. We assume without loss of generality that h; — 0r,
the general case being similar. By the definition (2.8) of characteristic flows, one has that

T+h;
Y (2) = x—}—/ ot dt+/ (v(t, ¥, () —v(t,x))dt (3.20)

for all z € R% As a consequence of Hypothesis (CE)-(ii), the second integral term in the right-hand
side of (3.20) can be estimated from above for all x € B(0, R;) as

/Tr+hi ( (t O (z )) —v(t,x))dt’ - /Tr+h D17 () ol
<(1+R.+Cr) /:H” g(t)(/:m(s)ds) L B2
= 0re(hi)

for h; > 0 sufficiently small, since 7 € 7 is a one-sided Lebesgue point of m(-),I(-) € L1([0,T],R).
At this stage, one may further decompose the first integral in the right-hand side of (3.20) into
(v(t, x) — 05(t, ac))dt

T+h; T+h;
/ v(t,x)dt = / 05(t, x)dt 4+
T T [7,7+hi]\ (322)

+ (v(t, 2) = (¢, 2) ) dt

[r,7+hi|Ne,
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and use Hypothesis (CI)-(ii) to estimate the second expression in (3.22) as

‘ /T en (v(t,x) - fﬁ(t,x))dt} <2(1+R.+Crp) /[T e m(t)dt = o, -(h;) (3.23)

for all z € B(0, R.), since 7 € .7 is a one-sided Lebesgue point of m(-) as well as a one-sided density
point of o7,. Regarding the third term in the right-hand side of (3.22), it follows from (3.19) that

g, (0 =200

and by merging the estimates of (3.23)-(3.24) with (3.22) while inserting the resulting expression
together with (3.21) inside (3.20), one further obtains that

< ehy, (3.24)
C9(B(0,R:),R4)

T+h;
‘ (bE)Tﬂ"Fhi)(x) — T / Tfr(t?x)dt’ <eh; + 0T76(hi) (3'25)

T

for all z € B(0, R.). Observe now that since V (7, 1ir)p(o,r.) C C°(B(0, Rc),R?) is convex and closed,
there exists by the separation theorem a family of elements (vE(h;)) C V (7, ;) such that

n / ) 1B(0,r.)dt = v:(hi)|B(0,R.)-

Besides, noting that V (7, u,) C C°(RY, R?) is a compact set as a consequence of Hypotheses (CI)-(i1)
and (i7i) and Theorem 2.13, there exists some v € V(7, ur) for which

deelVi(E),05) = 0
i

along a subsequence h; — 0". In particular for hi, > 0 sufficiently small, one has that

T+h'5k i € €
[ Ewar -, — orclh,),
T C9(B(0,Rc),R4)
which together with (3.25) finally yields that
B (5) 0 = () | < e, + 0rc ), (3.26)

for all z € B(0, R.). To conclude the proof, there remains to observe that

(o, rong 2T+ 10 0 )gptr € D (u(r + h5,), (1d + b 05 pa- ) (3.27)

and to use the standard Wasserstein inequality (2.1) along with the estimate

1/p
D ine — ke v () [Pdu, )
(/{meRd s.t. \w\ZRs}‘ (T’T+hik)( x) — @ — hi i (@) dpr (2)

1/p
< e (IO rangy M) ([ s oy O 2P)

< ehf, + ore(h,)

(3.28)
which holds as a consequence of Hypothesis (CI)-(ii) combined with the equi-integrability bound of
Proposition 2.20, the definition (3.18) of R. > 0, and the fact that 7 € 7 is a one-sided Lebesgue
point of m(-) € L*([0,7],Ry). Thence, by merging (3.26), (3.27) and (3.28), one finally recovers that

Wy (17 + B5,), (Id + b, v8)gpir ) < ehf,

whenever h7, > 0 is taken sufficiently small, in particular to ensure that 0T7€(hfk) < ¢h;,, and up to
rescaling the free parameter ¢ > 0 by a fixed constant. The case of an unsigned sequence h — 0 being
completely similar, this concludes the proof. O
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Remark 3.3 (More general assumptions for Theorem 3.1 and Theorem 3.2). While the two theorems
displayed in this section have been proven under the Cauchy-Lipschtz regularity assumptions (CI),
we expect them to hold under less stringent requirements, where one only asks for the local uniform
continuity of the dynamics with respect to the space and measure variables in the spirit of [28, Section
3]. For the sake of conciseness, we postpone these refinements to an ulterior work.

Remark 3.4 (Exact differential formulations for compactly supported measures). When the initial
data p, € gzp(Rd) are compactly supported, the quantitative estimates on the difference quotients
derived in Theorem 5.1 and Theorem 3.2 can be expressed more simply in terms of metric derivatives.
In this case, following e.g. [22, Proposition 3], there exists for each r > 0 a radius R, > 0 such
that each p(-) € Sjo)(7, 1ur) satisfies u(t) € P(B(0,R;)) for all times t € [0,T], whenever ju, €
P (B(0,7)). Owing to this uniform support bound, one can check that the error terms orc(h) in the
proofs of both Theorem 5.1 and Theorem 3.2 become independent of € > 0, which consequently means
that the statements of these results hold respectively for every small h > 0 for the former, and along
a subsequence h;, — 0 for the latter, which are both independent of € > 0.

In Theorem 3.1, upon making the additional assumption that the velocity sets V (T, ;) are convex,
it follows from Proposition 2.21 that the solution set S| p () is compact. Then, one can first then
let e — 0T up to considering a subsequence, and then take the limit as h — 0% to obtain that for every
vy € V(7,117), there exists a solution u(-) € AC([0,T], Z,(R%)) of (3.1) such that

Jim W, (w(7 + h), (1d + hoy)gpir ) = 0.

Similarly for Theorem 3.2, upon observing that under Hypotheses (CI) the set V (7, ) is compact
for the topology of local uniform convergence by the Ascoli-Arzela theorem, one can let ¢ — 07 in
conjunction with Lemma 2.15 to obtain that, for each solution u(-) € AC([0,T], Z,(R%)) of (3.1) and
every sequence h; — 0, there exists an element vy € V (T, pur) such that

lim WZ‘WP(M(T + hiy), (1d + hiyvr)gpir ) = 0

hik —0

along a subsequence h;, — 0.

4 Viability and invariance theorems for proper constraints sets

In this section, we discuss several necessary and sufficient conditions for the viability and invariance
of general constraint tubes Q : [0,7] = Z,(R?) under the action of the dynamics

{atp(t) e —div, (V(t, M(t))ﬂ(f)), (4.1)

M(T) = M.

In this context, we will always assume that V : [0,7] x Z,(R?) = CO(R% RY) is a set-valued map
satisfying Hypotheses (CI) for some p € (1,+00), and that (1,u,) € [0,T] x Z,(R%) represents a
some arbitrary initial condition complying with the admissibility constraint p, € Q(7).

Definition 4.1 (Viability and invariance). We say that the tube Q : [0,T] = Z,(R%) is viable for
(4.1) if for every 7 € [0,T] and any p. € Q(7), there exists a solution u(-) € Siz)(7,pr) of the
Cauchy problem such that

ult) € Q1)

for all times t € [7,T). Similarly, we say Q : [0,T] = Z,(R?) is invariant for (4.1) if all the solution
curves u(-) € S (7, pr) satisfy p(t) € Q(t) for all times t € [1,T].

In what follows, we split the exposition of our main results into two separate parts, starting in
Section 4.1 with the simpler case in which the constraints sets are stationary, and then treating the
more involved situation in which they are time-dependent in Section 4.2.
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4.1 The case of stationary constraints

We start our investigation of the viability and invariance under the action of continuity inclusions by
considering the case in which the constraints are represented by a fixed proper subset Q C @p(Rd).
In this context, the crucial geometric object which allows to characterise the viability or the invariance
of the latter is its contingent cone, whose definition is inspired by that of [13] and presented below.

Definition 4.2 (Contingent cone in Wasserstein spaces). Given a closed set Q C Z,(R%), we define
its contingent cone at some u € Q by

The latter can also be characterised in terms of sequences as

To(p) = {5 € LP(RY, R 1) s.t. there exists a sequence hy — 0T

for which dist 5 (ga) ((Id + hi&)g Q) = o(hi)}.

Remark 4.3 (On the choice of defining contingent cones using Borel maps). It is worth noting that
eventhough LP(RY,RY; 1) is merely a seminormed space for any u € P,(R%), the contingent cones
introduced in Definition /.2 are closed for the convergence induced by the pseudometric |||| zp(ra rd; -
Indeed, while the limit of a sequence (&,) C To(u) should be a p-measurable map by construction
(see e.g. [}, Definition 1.12]), the latter always coincides with a Borel function outside of a Borel set
with zero p-measure by [16, Proposition 2.1.11]. In what ensues, the closures of the convexr hulls of
contingent cones will therefore always be understood in with respect to the pseudometric ||-|| L£P(RERY; 1) -

By leveraging this notion, we are able to prove the following sufficient viability conditions for
proper time-independent constraints sets, which is one of our main contributions. We chose to start
by presenting this latter separately, as it thoroughly illustrates the main ideas supporting the more
general results of Section 4.2 a simpler setting.

Theorem 4.4 (Sufficient viability conditions for stationary constraints). Suppose that p € (1,+00),
let V: [0,T] x Z,(RY) = CO(RL,RY) be a set-valued map with convex images satisfying Hypotheses
(CI) and Q C Z,(R) be a proper set such that

V(t,v)NcoTg(v) # 0 (4.2)
for L' -almost every t € [0,T] and each v € Q. Then Q is viable for (4.1).

In the proof of this theorem and several others in the manuscript, we will extensively use the
following regularity property of the reachable sets.

Lemma 4.5 (Regularity in time of the reachable sets). If V : [0,7T] x Z,(R%) = CO(R%,RY) is a
set-valued map with convex images satisfying Hypotheses (CI), then the reachable maps t € [1,T] =
Rz (br) € Pp(RY) are absolutely continuous in the Hausdorff metric for all (1, ) € [0,T]x Z,(R%).

Proof. Let t1,ty € [1,T] be such that 7 < t; <ty < T, and observe that for each pi, € R(74,) (1),
there exists some py; € R(74)(1r) such that py, € Ry, 1,)(111,). Thence, it follows from the regularity
estimate (2.13) of Proposition 2.20 that

to
dist g, oy (1 Riran) (1)) < Wyt o) < (14 Cr) [ m(s)as

t1

for some constant Cr > 0 that only depends on the magnitudes of p, M (u,) and ||m(-)||;. Analogously,
it can be shown that

to
dist g, (ray (,utl ;'R(T,m)(,uT)) <(1+ CT)/ m(s)ds,

t1
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for every i, € R(74,)(#tr). By combining both estimates while remarking that

dy (R(T,tl)(uv), R(T,tQ)(MT)) = max { sup {diStgzp(]Rd) (Mtl ;R(T,tQ)(MT)) sty € R(T,tl)(MT)}7

sup {diSt}gzp(Rd) (ut2 ;R(ml)(uT)) s.t. py, € R(TJQ)(MT)}},

it then holds that .
2
(R (1) Rz (1)) < (14Cr) [ m(s)ds,

t1

which concludes the proof. U
This technical result being established, we can move on to the proof of Theorem 4.4.

Proof of Theorem 4./. In what follows, we assume without loss of generality that (7, ;) = (0, %) in
(4.1) for some p® € Q. Our goal will be to show that the function measuring the distance between Q
and the reachable sets, which is defined for all times ¢ € [0,T] by

g(t) = dist p, (ra) (R(o,t) (1°); Q)7

is identically equal to zero. By Proposition 2.8 and Lemma 4.5, it holds that g(-) € AC([0,T],R),
and we denote by 2 C (0,T) the set of full .#!-measure over which it is differentiable. Note also that
the set Uyejo, 1R 0,0 (1°) € 2, (R%) is compact by Proposition 2.21 and Lemma 4.5. Since p° € Q, it
is possible to choose a radius R > 0 such that

diSt%(Rd)<R(o,t) (1°) ; OB 55 (gay (11°, R)) > diSt%(Rd)<R(o,t) (1) ; Q) +1 (4.3)

for all times t € [0,T], by following e.g. the arguments detailed in Appendix B. Therefore, the set
Or:=0NB g;p(Rd)(,uo, R), which is nonempty as well as compact by construction, is such that

g(t) = dist 5, gay (R(O,t) (1) QR)

for all times ¢t € [0,7].

Step 1 — A Gronwall estimate on the distance function. In this first step, we show by
contradiction that the map ¢ : [0,7] — R is identically equal to zero. Otherwise, since g(0) = 0,
there should exist a time ¢ € [0,7) and some ¢ > 0 such that g(¢t) = 0 and g(7) > 0 for 7 € (¢,¢ + 9).

Let 7 C (0,7) be the subset of full .#!-measure over which the statement of Theorem 3.1 and
Hypotheses (CI)-(ii), (iii) and (iv) hold, and fix an element 7 € (t,t +6) N7 N 2. Since R g (1°)
and Qg are both compact, one has that

9(7—) = WP(MTa VT) (44)

for some pr € Ro,7) (u°) and v, € Qr. Moreover, recalling that R > 0 is defined in such a way that
(4.3) is satisfied, it necessarily holds

Vr € Q N int (]BWP(Rd) (,UO, R)),

which implies in particular that Tg,, (v,) = Tg(v). Thence, by using the definition of contingent cones
provided in Definition 4.2, there exists for each &, € To(v,) a sequence h; — 0" such that

Wy (pir, (1 + Bigr)gvr ) > dist gy (12 3 Q) + 07(hi)
= Wp(pir,vr) + o7 (hi).

(4.5)
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Besides, by the directional superdifferentiability property of Proposition 2.3 above, one further has

%Wg (,U"m (Id + hiffr)ﬁ”’r) - %WZI;(,U'W VT) < h; /]R?d <§T(y)7jp(y - 1‘)>d"}/7(.%', y) + OT(hi) (4-6)

for any small h; > 0 and every v, € I',(ur, ;). Hence, by combining the estimates of (4.5) and (4.6),
dividing the resulting expression by h; > 0 and letting h; — 07, one obtains the following inequality

Lo ()i = ) () < 0, (47)

which holds for every &, € To(v,) and each v, € Io(pr, v7).
Observe now that by Theorem 3.1, there exists for any £ > 0 and every v, € V (7, ;) a curve of
measures (. () € Sjo 7)(7, pir) such that

Wy (e + h), (1d + hv)gpr ) < eh, (4.8)

whenever h > 0 is sufficiently small. Furthermore, since pe(7 +h) € R(rr1n)(1tr) € R(o,r+1) (u°), one
can estimate from above the forward difference quotient of % g(atTe(t,t+0)NIT NG as

%gp(T +h) — %gp(T) < %W},’(ug(T +h),vr) — %WE(MT,VT). (4.9)

Besides, assuming without loss of generality that e,k € (0,1] and noting that v, € £LP(R?,R%; ;) by
Hypothesis (CI)-(ii), it can be deduced from (4.8) along with the estimates of Lemma A.1 below that

I%WI?(IU’E(T + h)’ 1/7—) - %Wg((ld + th)tiiu/Ta VT)
< W (1 + hor)gpir, vr) <Wp(:ue(7' + 1), vr) = Wy (1 + hor)gpir, ,,T)>

min{p,2}
+ CP‘WP(IU’E(T + h), VT) - Wp((Id + th)WT, Vr)

, min{p,2}
< Oy (W, (e + ). (14 B ) + W el 4+, (6 o)™ )

< Cpeh + o0rc(h)

(4.10)
for h > 0 sufficiently small, and where the constants C, C’I', > 0 only depend on the magnitudes of
P, M(pr), M(vr), |m() |1 and [|vr || zo(rd re; i, )- Thus, by merging the estimate of (4.10) with (4.9),
one further obtains up to rescaling € > 0 by a positive constant that

z_lagp(T +h) — %gp(r) < %W},’((Id + hvr sz, VT) — %Wz’,’(uﬁ vr) +eh+or.(h) (4.11)

Besides, it follows again from the directional superdifferentiability property of Proposition 2.3 that

%Wg((ld + hor)gpr, VT) - %Wﬁ(ﬂra vr) < h/RQd (vr(2), Jp(x — ¥))dyr(2,y) + 0rc(R) (4.12)

for each optimal transport plan 7, € T',(pr, v-). Therefore, by combining the estimates of (4.11) and
(4.12), dividing the resulting expression by h > 0 and then letting h — 0 while recalling that % g’ (")
is differentiable at 7 € & and that € > 0 is arbitrary, we obtain the differential inequality

PR < [ @) e = y)dn(ey) (4.13)
R

which holds for every time 7 € (t,t+46) N .7 N 2.
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Our goal in what follows is to use differential estimate derived in (4.13) to show that g(-) vanishes
identically on (¢,t + d). By inserting crossed terms in the latter expression, one can easily check that

D) < [ () = ). dple =)o (@)

R2d

+ R2d <UT(y) - ST(y)ujp(x B y)>d77(x’ y)
(4.14)

+ /Rgd (&(y): dp(@ = y))drr(,y)
)+ [, (0rl) = & W) ol = )y (a,0)

where we resorted to (4.7) and Hypothesis (CI)-(iii), as well as to the elementary observation that

/ |z — ylljp(x — y)|dyr(z,y) = / |z —y|Pdy,(z,y) = g7 (7)
R2d R2d

which follows from (4.4) together with the fact that v, € I's(¢r, 7). Recall now that as a consequence
of Hypothesis (CI)-(iv), there exists for each w, € V(7,v,) an element v, € V (7, 1;) such that

dsup(vrawr) < L(T)W (,Uﬂm VT)-
This, together with the fact that the estimates in (4.14) hold for every v, € V (7, u;), further yields

P D90 < (10 +LO)F D)+ [ (wely) =& W) dple =)o) (@415)

for all times 7 € (¢,t4+0)NT N, each &, € TQ(I/T) and every w, € V(7,v,). Noting that the right-hand
side of the previous expression is linear and strongly continuous with respect to &, € LP(R?, R% v, ),
one gets that (4.15) also holds for all £, € ©6To(v;). Thus, by choosing

& =wr € V(mv)NeoTo(vy),

where the intersection is nonempty as a consequence of our standing assumption (4.2), one finally has

g(r) < (Ur) + L(7)) g(7)

for #'-almost every 7 € (t,t + 6). As we assumed that g(t) = 0, a direct application of Gronwall’s
lemma yields that g(7) = 0 for all times 7 € (¢,¢ + J), thus leading to a contradiction.

Step 2 — Existence of a viable curve. In the first step of the proof, we have shown without loss
of generality that

dlst] (R4) (R(Tt (r) s QR) (4.16)

which equivalently means that R, (u-) N Q # () for all times 0 < 7 < t < T — 7 and each
pr € R (u°) N Qr. Given an integer n > 1, consider the following dyadic subdivision [0,7] :=
U2 o [tky tesa] of the time interval, wherein t; := Tk/2" for k € {0,...,2" — 1}. By inductively
leveraging (4.16) along with the semigroup property (2.10) of the reachable sets, we can build for each
n>1a curve py(-) € Sjo7(0, u°) that is such that

pn(tr) € Q (4.17)

for each k € {0,...,2" — 1}. At this stage recall that, as a consequence of Proposition 2.21, the
solution set Sy, 7)(0, ©0) is compact for the topology of uniform convergence, so that

sup W, (un t — 0
2 Wy, (0 40)) =

for some p(-) € Sjo71(1°) and along a subsequence (i, (-)) € AC([0,T], Z,(R?)). In particular, it
then follows from (4.17) that

M(;C_g':) €9,
for every integer m > 1 and each k € {0,...,2™ — 1}. From there, we conclude by a classical density
argument that u(t) € Q for all times ¢ € [0, 7). O
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To complement the sufficient viability conditions stated in Theorem 4.4, we derive below necessary
viability conditions which also involve the contingent cone to the constraints.

Theorem 4.6 (Necessary viability conditions for stationary constraints). Suppose that p € (1,+00),
let V: [0,T] x Z,(RY) = CO(RL,RY) be a set-valued map with convex images satisfying Hypotheses
(CI) and Q@ C Z,(RY) be a proper set. Then if Q is viable for (4.1), it necessarily holds that

V(t,v) NTo(v) # 0
for L' -almost every t € [0,T) and each v € Q.

Proof. This result is a particular case of Theorem 4.8 whose proof is detailed in Section 4.2 below. [

Lastly, we end this section by providing necessary and sufficient conditions for the invariance of a
stationary constraints set, based on a geometric condition that is stronger than that of Theorem 4.4.

Theorem 4.7 (Invariance conditions for stationary constraint sets). Under the assumptions of The-
orem /.4, the set Q C Z,(R%) is invariant for (4.1) if and only if

V(t,v) CcoTg(v)
for L'-almost every t € [0,T] and all v € Q.

Proof. This result is a particular case of Theorems 4.8 and Theorem 4.12, whose proofs are discussed
in depth in Section 4.2 below. O

4.2 The case of time-dependent constraints

As mentioned hereinabove, the viability and invariance results exposed in Theorem 4.4, Theorem 4.6
and Theorem 4.7 can be generalised to time-dependent constraint tubes Q : [0,7] = ,(R?). In this
setting, the relevant geometric objects on which these statements are based are the contingent cones
to the graph of the constraints, which are defined for each (7, ) € Graph(Q) as

Terapn(0) (72 1) = {<<,£> € R x LP(RY,R% 1) s,

lim inf fdistig 77, ey (7 + hC, (1d + h€)zpr) ; Graph(Q)) = 0}.

h—0t
By a simple adaptation of [9, Proposition 5.1.4] following [13, Sections 2.3 and 2.4], this set can be

equivalently characterised as

Taraph(Q) (T, 1) = {(C,E) € R x LP(RY,RY; 1) s.t. there exist sequences h; — 07 and ¢; — ¢ for

which dist 5, (za) ((Id + hi€)ge s QT + hici)) = oT(hi)}.

(4.18)
In the following theorem, we begin our investigation by a discussion centered around necessary viability
and invariance conditions, as these latter do not depend on the regularity of the constraints tubes.

Theorem 4.8 (Necessary viability, invariance and regularity conditions for constraints tubes). Sup-
pose that p € (1,400), let V : [0,T] x Z,(RY) = CO(R%,RY) be a set-valued map with conver images
satisfying Hypotheses (CI), and Q : [0,T] = 2,(R%) be a constraints tube with proper images.

Then if Q : [0,T] = P,(RY) is viable for (4.1), it must be left absolutely continuous and satisfy

({1} X V(t, I/)) N TGraph(Q) (t, I/) #* 0 (4.19)

for £-almost every t € [0,T] and each v € Q(t). Analogously if Q : [0,T] = Z,(R%) is invariant
for (4.1), it necessarily holds that

({1} X V(ta V)) - TGraph(Q) (t’ V) (420)
for £t-almost every t € [0,T] and each v € Q(t).
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Proof. Let us start by showing the necessity of (4.19) when Q : [0,T] = Z,(R%) is viable for (4.1).
Let .7 C (0,T) be the set of full .#!-measure over which the statements of Theorem 3.1 and Theorem
3.2 as well as Hypotheses (CI)-(ii), (i7i) and (iv) hold. Fix some 7 € .7, an element p, € Q(7), a
sequence h; — 07 and a viable curve u(-) € Si7,7)(7, 7). By Theorem 3.2, there exists for each & > 0
a velocity vE € V(7, ur) such that

Wy (17 + B5,), (1d + 5 vty ) < el

along an adequate subsequence hi — 0". Observe that by Theorem 2.13 and our choice of 7 € .7,
the set V (7, u;) € CO(R4 R?) is compact for the topology induced by de.(-,-). In particular for each
sequence g, — 07, there exists a subsequence that we do not relabel and some v, € V (7, j1,) for which

lor = vzl o gty 2 05
n

where we used Lemma 2.15. Note also that for every &, > 0, one can choose §,, := hf: in such a way
that or ., (h;") < e,h;". Thus, recalling that u(t) € Q(t) for all times ¢ € [r,T], one further has that

dist , () ((Id + Gnvr )it s Q(7 + 60) )
< dist g, ) ((1d + 0,05 )y 3 Q7 + 64) ) + Wy (1d + 805" g, (Id + 6,0 )g10- )
< Wy + 8n), (1d + 8,05 )gpir ) + 0 [[7 = 0 || oz gt
<dn (5n+ HUT - Uf—nHEP(Rd,Rd;uT) )’

which in turn implies

lim inf - dist 5, (ga) ((Id + Onvr)ghr s QT + 5n)) =0.

op—0t 71

By (4.18), this is tantamount to the fact that (1,v) € Tqraph(0)(T, it7), and thus yields (4.19).
Suppose now that Q : [0,T] = Z,(RY) is invariant for (4.1), fix an arbitrary v, € V(7, ui,), and
observe that by Theorem 3.1, there exists for every € > 0 some h. > 0 and a curve p.(-) € S (1, pr)
such that
Wy (pe(r + 1), (1d + hor)gpir ) < eh

for all h € [0, he]. This estimate, combined with the fact that p.(t) € Q(t) for all times ¢t € [r,T]
owing to the invariance of the tube, implies that

dist g, ) ((1d + hvp)gpir ;s Q(r + 1)) < Wy (el + h), (1d + hoy)ypir )
< eh.

Thus, dividing by h > 0 and letting h — 07 while recalling that & > 0 is arbitrary, we finally obtain

lim inf £ dist g, (o) ((1d + hvr)gpar ; Q(r + ) ) =0,

h—0t

which equivalently means that (1,v,) € Tgrapn()(T, p7) for all v, € V/(7, ii;), and thus yields (4.20).
Let us finally prove that if Q : [0,7] = Z,(R%) is viable for (4.1), then it is left absolutely
continuous. To do so, fix u € Z,(R?) and R > 0 in such a way that

Q1) N By, (ray (1, R) # 0.

Then, since Q : [0,7] = Z,(R?) is viable, there exists for all 7 € [0,7] and each u, € Q(r) N
B, ray (11, R) a curve p(-) € Spr (7, pr) such that u(t) € Q(t) for all times ¢ € [7,7]. Besides by
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Proposition 2.20, there exists a constant C, g > 0 depending only on the magnitudes of p, M, (1), R
and |[m(-)[|1 such that

Wyloir, 1(0) < (1+ Coum) [ m(s)ds

for all times t € [r,T]. Thus, noting by construction that for any 0 < 7 < ¢ < T, it holds that
A, r(Q(T), Q(t)) < sup {distyp(Rd)(,Uq—; Q(t)) s.t. pr € Q(T) N IB%g;p(Rd)(u, R)}
< sup {Wp(umu(t)) s.t. pir € Q(T) NByy, ey (1, R) and u(-) € Sprpy(7, p17)
satisfies u(t) € Q(t)}
t
< (1 + CH,R)/ ’I’I’L(S)ds,

we can conclude that Q : [0,T] = Z,(RY) is left absolutely continuous. O

Remark 4.9 (On the role of left absolute continuity). It is worth noting that in the previous theorem,
we have shown that being viable for (4.1) under Hypotheses (CI) entails the left absolute continuity of
the constraint tube. This supports the fact that this regularity framework — for which we provide suf-
ficient viability conditions in Theorem 4.12 — appears quite naturally when studying Cauchy-Lipschitz
continuity inclusions with state-constraints.

In the next theorem, we provide sufficient viability conditions for absolutely continuous constraint
tubes, which are the natural generalisation of Theorem 4.4 to the time-dependent setting.

Theorem 4.10 (Sufficient viability conditions for absolutely continuous constraints tubes). Suppose
that p € (1,400), let V : [0,T] x Z,(RY) = CO(RY, RY) be a set-valued map with convex images
satisfying Hypotheses (CI) and Q : [0,T] = Z,(R?) be an absolutely continuous tube with proper
images such that

({1} x V/(t,v)) N T Taraph() (t, V) # 0 (4.21)
for £1-almost every t € [0,T) and all v € Q(t). Then Q :[0,T] = P,(R%) is viable for (4.1).

Proof. As in the proof of Theorem 4.4, we assume without loss of generality that (7, u,) = (0, u%) for
some ° € Q(0). From there on, the arguments will essentially follow along the same line as those of
Theorem 4.4, in which one aims at showing that the distance function, defined by

g(t) = dist p, ey (R0 (1°) ; Q1))

for all times t € [0, T, is identically equal to 0.

In what follows, we let .7 C (0,T) be the set of full .#!-measure on which the statements of
Theorem 3.1 and Theorem 3.2 as well as Hypotheses (CI)-(i7), (i74) and (iv) hold. Observing that
g(-) € AC([0,T],Ry) by Proposition 2.8 and Lemma 4.5 , we also denote by 2 C (0,T") the subset of
full #1-measure where it is differentiable. Moreover, owing to the absolute continuity of Q : [0,T] =
2,(R?%) and to the fact that Urelo,71R0,) (u°) is compact by Proposition 2.21 and Lemma 4.5, one
can find some radius R > 0 satisfying

dist z, (ra) (R(o,t) (1) §5B%(Rd)(uo73)) > diS‘U%(Rd)(R(o,t) (1) Q(t)) +1 (4.22)

for all times t € [0, 7], by following e.g. the arguments detailed in Appendix B below. Note that by
construction, the sets Qp(t) :== Q(t) N ng(Rd)(,uo, R) are nonempty and such that

g(t) = dist » (ray (R(O,t) (1%); QR(t))

for all times ¢ € [0, 7.
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Step 1 — Local variations of the distance along contingent directions. Suppose by contra-
diction that there exist some ¢ € [0,7) along with a small § > 0 such that g(¢t) = 0 and g(7) > 0 for
all times 7 € (t,£+0), and fix an arbitrary element 7 € (¢,t+6)N.7 NZ. Since Ry ) (1) and Qr(7)
are both compact because Q(7) is proper, one has that

g(m) = Wp(pr, vr)

for some g € Ror)(1°) and v, € Qr(7). By (4.18) along with the estimate (4.22) imposed on R > 0,
there exists for every (Cr,&7) € Taraph(Q)(T, ¥r) two sequences h; — 07 and ¢! — ¢, for which

dist g, ey ((1d + i )gvr 3 Qr(r + hiCl)) = or(hi).
This allows us to estimate from above the variation of gP(-) around 7 as
LP(r + hi¢)) = Lg7(r) = Ldist?, o) (Riorsnicsy (1) Qr(r + hi)) = EWh iz, vr)

%diStpyp(Rd) (R(O,T-i—hic.})(ﬂo) ; (Id + hiffr)ﬁyr) - %Wg(ﬂra VT) + Or(hi)
(4.23)

IN

for any h; > 0 that is sufficiently small.

In order to extract further information from (4.23), we need to discriminate between two possible
scenarios depending on the asymptotic behaviour of the sequence (¢!) C R. If there exists a sub-
sequence i — -+oo for which ¢/ > 0, it follows from Theorem 3.1 that for every ¢ > 0 and any
vr € V(7, pir), there exists a curve jic(-) € S 7(7, ptr) such that

Wy (e + hiyGi#), (1d + b Clrvr)gpir ) < ehiy G (4.24)

On the other hand, if ¢! < 0 for all large ¢ > 1, we can apply Theorem 3.2 to obtain for each curve
u(-) € Sjo)(7, 1ir) the existence of an element v; € V(7, ) and of a subsequence i, — +o0, both
depending on € > 0, for which

Wi (107 + hip %), (1 + hig Cove) iy ) < ehig |G- (4.25)

Thus by combining (4.24) and (4.25), one may assert that there exist curves ji.(-) € Sjo,7)(7, pt7) along
with two subsequences h;, — 01 and ¢ — (., all possibly depending on ¢ > 0, such that

every vS € V (7, uy) if ¢ >0,

o (4.26)
some v: € V(7r,ur) if ¥ <0,

W, (IU’E(T + hlk T ) (Id+ hlk ’T )ﬁlu”f) S ghlk‘ggk‘ for {

when i, > 1 is large enough. Furthermore, observing that

(T + hlk T ) S R(O,T-}—hikC:k)(Mo)’

one may refine the estimate of (4.23) using the curves u.(-) as follows

g (T + hi &7 ) — %gp( T) < 1Wp(,u5(7' + hiG7 ), (1d + hikgT)ﬁV’r) - %Wg(ﬂﬂ vr) + or(hi,).
(4.27)
At this stage, upon noting that v, € LP(R% R% u,) by Hypothesis (CI)-(ii) while &, € LP(RY, R v,)
by definition, and assuming without loss of generality that ¢ € (0,1] and h;, € (0, 1], one may reproduce
the computations of (4.10) in the proof of Theorem 4.4 and combine them with (4.26) to obtain that

(4.28)
- %Wg((ld +h; C )ﬁ:u"m (Id + hzkffr)ﬁyr) < Ehzk +or E(h )
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for h;, > 0 small enough, and up to rescaling ¢ > 0 by a constant since the sequence ((/*) C R is
bounded. Whence, by merging (4.27) and (4.28), it then holds that

I_l;gp(T + hlkgﬁk) - %gp(T) < le?((Id + hikgfkvﬂe—)ti:uﬁ (Id + hikgT)ﬁVT)

o (4.29)
- %WZI;(MT7 VT) + Ehik + 07‘,6(hik)7

for i, > 1 sufficiently large, with vS € V(7, ;) being either fixed or arbitrary depending on the
asymptotic behaviour of (¢*) C R. One may then apply the joint superdifferentiability inequality of
Proposition 2.3 to obtain

L2 (1 + hiy (2405 g, (Wi £ )gvr ) — SWE (e, v7)

A (4.30)
< hiy, R2d<CTZ’“U§($) - §T(y),jp(x - y)>d77($ay) + OT,E(h’ik)a

for each v, € T'y(ir,vr), where we used the analytical expressions (2.3)-(2.4) of the remainder term,
along with the fact that ((’*) C R is bounded. In turn, by combining (4.29) and (4.30), letting
i — +o0o and recalling that % gP(+) is differentiable at 7 € 2, one finally gets

every vo € V(r,ur) if & >0,
some v: € V(r,ur) if {; <0,

(4.31)
where (¢r,&r) € Tarapn(Q) (7, v7) and 7 € T'o(pur, vr) are arbitrary while vy € V(7, ur) may possibly
depend on (; € R as well as on the free parameter € > 0.

G (i) <

o ((2(2) =&+ (y), Jp(z—y))dyr (z,y) + & for {

Step 2 — Convexification of the contingent directions and viability. In this second step, we
show how one can convexify the contingent directions in (4.31) and then prove the existence of viable
curves. With this goal in mind, we draw inspiration from [63, Lemma 4.9] and consider arbitrary
collections of NV > 1 elements

( 7?" 574) € TGraph(Q) (T, VT) and Qaj € [0’ 1]

indexed by j € {1,..., N}, which are chosen in such a way that
N N A
aj=1 and (=) a¢l >0 (4.32)
=1 j=1

Up to reordering the labels, we may posit that there exists an m € {1,..., N} such that ¢/ > 0if j > m
and ¢/ < 0 otherwise. By applying (4.31) to each (¢/,&7) € Taraph(0)(7,v7) with j € {1,..., N}, and
then summing the resulting expressions depending on whether j < m or j > m, one has that

S o g M) < Y ay (/RM (v (@) = (). dp(w — y))dre (2, y) + 8)7 (4.33)

j<m j<m

1

for some fixed (and potentially empty) tuple (vE9);<m € V (7, 7)™ 1, as well as

Y il (m)gr) < Y Oéj(/RQd (Fvr(@) = € (), dp(a = y))drz(2,y) + 6) (4.34)
jzm jzm
for any element v, € V(7, 7). Introducing in turn the coefficients
__ ol : — A
B .—7].6(0,1) for each j <m and ,B.—l—Zﬂ],
ngm ajCT j<m

which are well-defined as a consequence of (4.32), while recalling that set V(7,u,) is convex by
assumption, it holds for each v, € V(7,v;) that

vh = Bor 4+ Y Bjudd € V(r,vy).

j<m
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Whence, by merging the estimate of (4.33) and that of (4.34) evaluated at v), € V (7, u,) defined via
the previous expression, one eventually obtains that

CT gpil(’T)g(T) < / <<T/U7'(x) - gT(y)’jp(x - y)>d77(x’ y) t+e (435)

R2d

for any given ((;,&7) € coTGraph(0) (7T, vr) satisfying ¢; > 0 and every v; € V(7, iir). Remarking that
the right-hand side in (4.35) is linear and continuous with respect ((,&,) € R x LP(R?, R4 v,), the
latter expression remains valid for every ((,&;) € €0 TGraph(0)(T; vr) such that ¢ > 0.

At this stage, starting from (4.35), one may repeat the argument discussed at the end of Step 1
in the proof of Theorem 4.4 while using the facts that £ > 0 is arbitrary and v, € T's(tr, vr) to show
that the latter estimate further yields

&g D)) < 6 (10) + L)) + [ (Genw) = &)l = 1))dre (),
for every (¢r,&r) € © Trapn(0)(T, ¥7) such that ¢ > 0 and each w, € V(7,v;). Choosing in particular

(Gr:&r) = (Liwy) € ({1} x V(7,v7)) OETGraLph(Q)(T’ vr),

which is licit under our standing assumption (4.21), one finally gets that

g(r) < (Ur) + L()) g(7)

for all times 7 € (¢,t+6)N. 7 NZ. Noting that g(t) = 0 and .7, 2 C (0,T) both have full #!-measure,
it follows from Gronwall’s lemma that g(7) = 0 for all 7 € [¢,t+0), which implies that g : [0,7] — R
is identically equal to zero and thus leads to a contradiction. One can then deduce the existence of a
viable curve by repeating the argument detailed above in Step 2 of the proof of Theorem 4.4. U

In the following theorem, we state the natural counterpart of the sufficient implication of the
invariance result of Theorem 4.7 for absolutely continuous time-dependent constraint sets.

Theorem 4.11 (Sufficient invariance conditions for absolutely continuous constraints tubes). Suppose
that the assumptions of Theorem /.10 hold and that the tube Q : [0,T] = Z,(R?) is such that

({1} X V(t, I/)) C mTGraph(Q) (t, V) (436)
for L1-almost every t € [0,T) and all v € Q(t). Then Q: [0,T] = P,(R?) is invariant for (4.1).

Proof. In what follows, we let .7 C (0,7) and R > 0 be given as in the proof of Theorem 4.10 above,
and assume without loss of generality that (7, u,) = (0, %) for some p® € Q(0). Given an arbitrary
curve u(-) € Sjo,7) (1), our goal is to show that the distance function, defined by

g(t) := dist p, (ga) (1(t) ; Q(t))

for all times ¢ € [0, T, is identically equal to zero. Note that since Q : [0,T] = Z,(RY) is absolutely
continuous, it can be easily verified that g(-) € AC([0,T],R;), and we denote by 2 C (0,T') the subset
of full #!-measure over which it is differentiable. We posit by contradiction that g(¢) = 0 for some
t € [0,7] and that there exists 6 > 0 such that g(7) > 0 for all 7 € (¢,t+ §). Observe now that by the
compactness of Qr(7), there exists an element v, € Qr(7) such that

9(7) = Wp(u(r), vr)-

Besides, owing to the choice of R > 0 made via (4.3), it holds for every pair of contingent directions
(CT? §T) € TGraph(Q) (T7 VT) that

dist g, ey ((1d + hi)gvr s Qn(r + hill)) = or(hi)
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along two given sequences h; — 07 and ¢! — ¢,. By Theorem 3.2, there exists for every ¢ > 0 some
v: € V(1,u(7)) such that

Wy (17 + B5,G%), (1d + B, ol )gpn(r) ) < ehf, |G| + 07 (h,)

k

along a subsequence h; — 0". By following the arguments leading to the differential inequality (4.31)
on % gP(+) in the proof of Theorem 4.10, one can derive the estimate

Grg" N (1)g(r) < /]R (G2 (@) = &), Gl — y))dor(z,y) + &

for all v, € To(u(7),v7), up to rescaling ¢ > 0. Since the latter expression is linear and continuous
with respect to ((r,&7) € Tgrapn()(T, ¥r), it holds more generally for elements of €0 Tyaph(g) (T, Vr)-
There now remains to observe that, by Hypothesis (CI)-(iv), there exists ws € V(7,v;) such that

dSUp(v’ar’ wi) S L(T)WP(M(T)’ VT)?
which together with Hypothesis (CI)-(444), the definition (2.2) of the duality map j, : LP(R? R 1) —
L9(R? R?; 1) and the fact that v, € T'o(u(7), v, ) yields the differential estimate

G D9 < [ (i) = &) dpla — 9)drne,y) + (10 + L) )P () +e.

R2d
which is valid whenever (; > 0. Thence, choosing in particular
(C’ﬁ ST) - (17 wf—) € ({1} X V(Tv VT)) - mTGraph(Q)(Ta VT)a

which is licit under our standing assumption (4.36), one can deduce that

§(r) < (Ur) + (7)) g(r) + <.

which finally yields g(7) = 0 for each 7 € (¢,t 4+ §) by applying Gronwall’s lemma while noting that
e > 0 is arbitrary. This contradicts our initial choice of ¢ € [0, T. O

In the following theorem, we finally present sufficient viability and invariance conditions for con-
straints tubes which are merely left absolutely continuous. In order to treat this less regular case, we
shall see that one must relinquish the convexification of the contingent directions which was available
both in Theorem 4.4 and Theorem 4.10 above.

Theorem 4.12 (Sufficient viability and invariance conditions for left absolutely continuous tubes).
Suppose that p € (1,+00), let V : [0, T]x Z,(R?) = CO(R4,RY) be a set-valued map with convex images
satisfying Hypotheses (CI), and Q : [0,T] = Z,(R%) be a left absolutely continuous constraints tube
with proper images such that

({1} X V(t, I/)) n TGraph(Q) (t, I/) #* 0 (4.37)

for Zt-almost every t € [0,T] and each v € Q(t). Then Q : [0,T] = Z,(R?) is viable for (4.1).
Analogously, if the constraints tube satisfies the stronger condition

({1} X V(ta V)) - TGraph(Q) (t’ V) (438)
for L1 -almost every t € [0,T] and each v € Q(t), then Q : [0,T] = Z,(R?) is invariant for (4.1).

Proof. In what follows, we only prove the viability of Q : [0,7] = Z2,(R%) under the sufficient
condition (4.37), as its invariance under (4.38) follows from a straightforward transposition of the
method detailed previously in the proof of Theorem 4.11.
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Without loss of generality, we assume that (7, u,) := (0, u°) for some pu® € Q(0) and let .7 C (0,T)
be the set of full £!-measure such that the statements of Theorem 3.1 as well as Hypotheses (CI)-
(i), (#7i) and (iv) hold. Since the constraints tube Q : [0,7] = Z,(R%) is merely left absolutely
continuous, the distance function

gt €[0,T] = dist g, ) (R0 (1°); Q1))

is not absolutely continuous in general. To estimate its local variations, we cannot resort to the usual
Gronwall approach detailed above, and need to carry out a subtler viability analysis on its epigraph.
By contradiction, assume that there exist ¢ € [0,7] and § > 0 such that g(¢) = 0 and g(7) > 0 for
T € (t,t+0). By combining the arguments detailed in the proof of Theorem 4.10 with (4.37), one can
check that for each 7 € (¢,t + ) N.7, it holds that

lim inf g
h—0t

G h})L —9) (1) + (7)) g(7). (4.39)

Consider now the auxiliary real-valued tube defined by
E(1) = {a € Ry st. a=g(r) +r for some r > 0},
as well as the 1-dimensional linear vector field
f(ra) = (i(r) + L(7))

given for all times 7 € [t,t + 6] and each a € R, and notice that & : [t,t + §] =2 R is left absolutely
continuous by Proposition 2.8. Given some 7 € (t,t + ) N .7, remark that if & € &(7) is such that
a = ¢g(7), it can then be deduced from (4.39) and [9, Proposition 5.1.4] that

f(7,9(r) = (Ur) + L(7) ) g(r) € {€ € R 5.t (1,€) € Tarapn(e(7,9(7)) }- (4.40)

On the other hand, if « € &(7) is such that a > g(7), it is then clear that

f(r,a) e {€ € R st (1,6) € Tarapn(e)(1.0)} =R. (4.41)

Whence, by combining (4.40) and (4.41), one then obtains
() € {E€ € R st (1,€) € Tarapn(e)(7,0) |

for #1-almost every 7 € (¢,t+6) and each o € &(7). Thus, observing that g(t) = 0 € &(t), the classical
measurable viability theorem of [63, Theorem 4.2] yields the existence of a curve a(-) € AC([t,t+3],R)
solution of the Cauchy problem

{a(r) = (U7) + L(7))a(r), (4.42)

at) =0,

such that a(7) € &(7) for all times 7 € [t,t+0]. Noting that the unique solution of (4.42) is identically
equal to zero, we conclude that g(7) = 0 on that same interval, which contradicts our initial choice of
t € [0,T]. From there, the existence of a viable measure can be obtained by repeating the argument
in Step 2 of the proof of Theorem 4.4 above. O

5 Examples of constraints sets and computations of tangents

In this section, we provide two examples of proper constraint sets @ C L@p(Rd) which frequently arise
in applications, and compute in each case some relevant subsets of tangent directions.
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Constraints sets defined by support inclusions. In this first example, we start by considering
the prototypical case in which the constraints set is given as

Qk = {u € Z,(RY) s.t. supp(p) C K},

for some compact set K C R? where supp(u) C R? denotes the support of p € 2(R?), defined by

supp(p) := {CE e R? s.t. u(N;) > 0 for each neighbourhood AV, of z in Rd}.

By Proposition 2.2, it can easily be checked that Qx C @p(Rd) is compact and thus proper. In what
ensues, we fully characterise a nice subset of the adjacent cone (see e.g. [9, Definition 4.1.5] for a
general definition) to Qx at some p € Q, defined in our context by

T&K(,u) = {f € Ep(]Rd’Rd;M) s.t. hli)rél+ %distyp(Rd)((Id + hE)yp; QK) = 0}. (5.1)

Notice in particular that T"QK (1) C Tg, (1) by construction.
Proposition 5.1 (Computation of adjacent directions to Q). For every u € Qg, it holds that

{5 € Ep(Rd,Rd; ) s.t. &(x) € T}’((az) for p-almost every x € K} C TI’QK (1)

where T}’((x) denotes the standard adjacent cone to K C R? at z € K.

Proof. Let &€ € LP(RYRY; ) be such that &(z) € T%(x) for p-almost every x € K and h > 0 be given.
In addition, denote by /i any complete extension of the Borel measure p given e.g. by [80, Theorem
1.36], and observe that the map = — x + h&(z) is Borel and thus fi-measurable, see for instance [4,
Definition 1.12]. Then, it follows from [9, Theorem 8.2.11] that the set-valued mapping
Dk :x € K = argmin |z + hé(z) —y| C K
yeK
is fi-measurable as well. Because the latter has closed images and since the g-algebra of ji-measurable

sets is complete, it follows from [9, Theorem 8.1.3] that there exists a fi-measurable selection =z € K —
di(z) € Dk (x) C K which satisfies

@ + hé(x) — dic(2)| = distga (z + hé(2) ; K) = 0y (h)

for f-almost every z € K as h — 07 , where |o,(h)| < h|é(z)]. Moreover, by [16, Proposition 2.1.11],
the latter coincides with a Borel map di : K — K outside of a Borel set of zero ji-measure. Therefore,
noting in turn that

R4
supp(dx gp) C {dK(ac) st.x € supp(u)} CK

since di' (B(y,¢)) = 0 for every y € R4\ K and ¢ > 0 for which B(y,e) N K =, because K C R is
closed, it further holds that

dist 5, zay (1 + h€)gpe; Q) < W (1 + h&) g, dic 1)
< |Id + h§ — dk || cora pe; ) = o(h)

as h — 0T by Lebesgue’s dominated convergence theorem. This concludes the proof by definition
(5.1) of the adjacent cone T&K (). O

It is possible to generalise this example to time-dependent tubes K : [0,7] = R%. In this context,
we define the constraints sets by

Quc(t) = {p € Z,(R7) st supp() € K (1)}

for all times ¢ € [0,T]. In what follows, we treat the case in which K : [0,7] = R? is left absolutely
continuous with nonempty compact images.
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Proposition 5.2 (Regularity in time of the constraints). Under our assumptions on K : [0,T] = R,
the constraints tube Qg : [0,T] = 2,(R?) is left absolutely continuous.

Proof. Fix some 7 € [0, 7] along with u € Z,(R?) and R > 0 for which Qx(7) N B, ray (11, R) # 0,
and let pr € Qk (1) N By (gay(p, R). Since K : [0,T] = R? is left absolutely continuous, there exists
for each x, € supp(u,) and every t € [0, 7] such that 7 < ¢ some point z; € K (t) for which

t
|z — x| g/ mg(s)ds

where mx(-) € L'([0,7],Ry) only depends on K : [0,7] = R? Whence, up to a trivial extension
argument outside supp(y;), it is possible to construct a Borel map ¢,y : K(7) — K(t) which satisfies

t

B r) =] < [ mic(s)ds

T

for each x; € supp(u,). Then, one can easily show that the measure p; := P(rt) gfbr satisties supp(ue) C
K(t), and by (2.1) the latter also complies with the estimate

t
Wolpies ) < [ mic(s)ds.

Repeating the arguments supporting the regularity statement of Theorem 4.8 then closes the proof. [J

Proposition 5.3 (Computation of adjacent directions to Graph(Qg)). For all times t € [0,T] and
each p € Qi (t), it holds that

{(C,f) e R x LP(RYE,RE ) s.t. (¢, €(x)) € Téraph(K) (t,z) for u-almost every x € K(t)}
- Téraph(QK)(t’ :U’)

Proof. Given some t € [0,T], an element p € Q(t) and some ((,&) € R x LP(RY R% 1) such that
(¢, &(x)) € Téraph(K) (t,x) for p-almost every x € R?, one can show by repeating the arguments in the
proof of Proposition 5.1 that the set-valued map

Dk : K(t) = argmin [z + h&(z) —y| C K(t + h()
yEK (t+h¢)

admits a Borel selection x € K (t) — d)(z) € K(t + h¢) which satisfies
|2+ h&(x) — dg @) (2)] = 0x(h)

for p-almost every x € R? as h — 07, where |o,(h)| < h|¢(z)|. Then, there simply remains to note
that dg ) gp € Qi (t + h) by construction, while

dist z, (ra) ((Id + h&)gp; Qi (t + h)) < Wp((Id + h)s1, dic () uM)
< [[Id + h§ — dg ()l co(ra e, iy = o(h)
by Lebesgue’s dominated convergence theorem, which concludes the proof. O
Constraints sets defined as lifted epigraphs. In this second example, which is discussed in our

earlier work [25], we consider an extended real-valued map W : Z,(R?) — R U {+oco} with compact
sublevels that is continuous over its domain dom(W) C Z,(R?), and define its lifted epigraph by

Qyy = {u € PRI sty = p x 84 with p € Z,(RY) and W(u) < a}.

In what follows, we discuss the topological properties of this constraint set and provide a full charac-
terisation of a relevant subset of its contingent cone.
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Proposition 5.4 (Topological properties of Qyy). Under the assumptions listed hereinabove on the
function W : 2,(R?) — Ry U {+oc}, the set Qyy C Z,(RY) is proper.

Proof. Showing that Q,y is closed under our assumptions is a matter of routine computations. Given
p=p % 0o € Qyy and some v € Z,(R¥1), one has that

W) = ([ la) - (y,ﬁ)l”dv(:v,a,y,ﬁ))l/p

1/p
> ([l = BlPdr(@05.5))
> 0] = fyes [Bldu(y. )

for all v € T',(p,v), where we used Jensen’s inequality. In particular given R > 0, it then holds for
every p € Qw NBy (gat1) (v, R) that

Wp)<a< R+ fRdH |Bldv(y, B).

Since W : 2,(R%) — R U {+00} has compact sublevels, we deduce that Qy, N B 2,®a+1)(V, R) s
compact for any v € Z,(R4T!) and R > 0, and thus that Qyy is proper. O

Similarly to what is known in nonsmooth analysis, the contingent cone to Qjy, can be expressed
in terms of lower directional derivatives of the functional. Following [14], we define these latter as

L W(pn) = W(p)
D = 1 f
TW(M)(S) h—)O"',l;ngelgom(W) h
W ((Ad+hE)p,un)=o(h)

(5.2)

for each p € dom(W) and every & € Tyomw) (1) C LP(RE RY; p).

Proposition 5.5 (Characterisation of contingent directions to Qyy). For every p € Qyw and each
(&, p) € LP(RY,RY: 1) x R, it holds that

€ € Taomow) (1) and DyW(p)(§) <p  when a=W(p),

(& p) € To, (1) if and only if {5 € Taomom) (1) when a > W(u).

Proof. The ensuing arguments are largely inspired by those of [9, Proposition 6.1.4]. We only treat
the case o = W(u), the other being similar. Assume first that (¢, p) € Tg,, () so that one may find
a sequence h; — 0" and some pp, = pp, X 50%' € Qyy which satisfy

Wy (1 + hi(€, p))gtts in, ) < olhi). (5.3)

Note also that, as a consequence of the disintegration theorem (see e.g. [5, Theorem 5.2.1]) and up to
a permutation of coordinates, each optimal plan 7y, € I'o((Id + hi(§, p))gpe, pn,;) is of the form

Yhi = Thi X OW()+hip,an,)

for some 5, € I'o((Id + hi€)sp, pip, ). Thence, it necessarily holds that
1/p
W, (1 + e ) = ([, 1o = oPdm (o)
R2d

1/p
= (/R2(d+1) ](m,a) N (y’ﬂ)’pdvhi(x’%yw@))

= Wp((ld + hi(&, p))she, Mm)-

Owing to (5.3), this implies in particular that £ € Tyom(w)(p). Similarly, one can show that
ln, = W(p) = hapl < W (14 + hi(&, p))gtss pan, ) = olhs)
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which together with (5.2) and (5.3) finally yields

o W) — W(p)
DiW(u)(p) < lim inf »

<p.

Conversely, let (£, p) € Taom(w)(1) x R be such that D4W(u)(§) < p, and observe then that there
exist sequences h; — 07 and (up,) C dom(W) satisfying Wy (pup,, (Id + hi&)sp) = o(h;), for which

W(pn,) < W(n) + hip + o(h;)

when h; > 0 is small enough. Hence, there exists p; — p such that pp, 1= pn, X dw(u)4n,p, € Qw and

Wy (1d + hi(€, ) (1 % S, pn, ) < Wip((1d + hi)git, in,) + hilp = pi) = o(hi)

as h; — 0%, which equivalently means that (£, p) € Tg,, (1). O

Appendices

A Proof of Proposition 2.3

In this appendix, we detail the proof of Proposition 2.3. For the sake of self-containedness, we recall
first the following technical result taken from [5, Lemma 10.2.1].

Lemma A.1 (Quantitative superdifferentiability estimates on powers of the euclidean norm). Given
z,y € R, one has for p € (1,2] that

. 2—
Ly = LalP — (y — @, jp(2)) < |z -y,

whereas for p € [2,4+00), it holds that
Ly = Lal? — (y — 2, jp(2)) < Bt|z — y|” max{|z], [y[}P 2.

Therein, jp R? — R? is the usual duality map defined by

0 if v =0,
Jp(@) = { !

|z|P~22  otherwise.

Proof of Proposition 2.3. Given an element v € I',(u, ) and some h € R, define the transport plan
i = (([d+h¢) ot (1d + he) o 7?)y € T((Id + hO)gp, (1d + hE)yv),

and note that by construction, one has that

%Wf((ld + hQ)gp, (Id + hﬁ)ﬁ’/) — sWh(p,v) < /Rw slen = ynlPdyn (. yn) — /R2d sl —ylPdy(z,y)

Lz - - P_ Ll P

= /R2d (p’x y+h(((z) = EW)IF = 5lz -yl )d')’(%y).
(A.1)

By leveraging the identities of Lemma A.1 above, it can be checked that for p € (1,2], one has that

Lo (e =y +h(c@) = €@ = Ho = ol = h{¢(a) = £(w)dola — 1)) dr(a.9)
<23 [ IhC@) - w)Pdye.y) (A2)

< 2R (1S g g )+ 110 g1y )
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whereas for p € [2,4+00), it holds

[y Gl =y h(cl) = €@ = Fa = 9l = 1 (C) ~ €@ = ) dray)

R2d
p—2

< / r(¢@) =€) Pmax {2 — yl,Je —y + h(C(@) — €D} da(z,y)

p—2

< B [ @)~ WP (e — ol + -y + B~ €@DI) D)

p—2
(- 1>rh\2(wp<u, v) + ] (11¢1] o et oty + usummw)) (ICIE et gty + 1E0 70t g1 )
(A.3)

where we used elementary Holder and convexity inequalities to derive both estimates. Thence, upon
combining (A.2) and (A.3) with (A.1) depending on the value of p € (1,400), one finally obtains that

IN

Lwp ((1d + he)gp, (1d + hO)pv) — SWE(u,v) < h 20 (C@) =€) dp(@ = y))dy(,y) +rp(h € )

with 7,(h, (,§) being defined as in (2.3) or (2.4) depending on the value of p € (1, +00). O

B Proof of Proposition 2.8

In this appendix section, we detail the proof of Proposition 2.8.

Proof of Proposition 2.8. In what follows, we assume without loss of generality that I := [0,7] for
some T > 0, and start by showing that when Q : [0,7] = X is absolutley continuous, the map

te[0,T] — g(t) = distx (K(£); O(t))

is absolutely continuous as well. To do so, we first need to establish some preliminary facts. Observe
that since K(0) is compact, there exist zy € X and some rg > 0 such that

K(0) € Bx(zo,70) (B.1)

for all times ¢t € [0,7]. In what follows, we show that the map t € [0,7] — distx(z; Q(¢)) is
continuous. Indeed, fixing 7 € [0, 77, setting R, := distx(zo; Q(7)) and recalling that Q : [0,7] = X
is absolutely continuous, for each € > 0 there exists some J > 0 such that

Q(T)ﬂBx(xo,Rq——F&) CB)((Q(t),e) and Q(t)ﬂIng($0,RT—|—6) CB)((Q(T),c?)

whenever |t — 7| < §. Noticing in turn that Q(7) NBx (zo, R; +¢) # 0 and Q(t) NBx (zo, Ry +¢) # 0
by construction, the first of these inclusions implies that

distx (w0 ; Q(t)) < distx (wo; Q(7)) + distx (Q(T) N Bx (zo, Rr +¢€); Q(t))
< distx(z0;Q(7)) +e,
while the second one analogously yields
distx (xo; Q(7)) < distx(zo; Q(t)) + ¢,

from whence we can deduce that ¢ — distx(zo; Q(t)) is continuous at 7 € [0,7]. Recalling that
IC :[0,7] = X has compact images and that it satisfies

(K7 0) < [ mi(s)as (B2)

for all times 0 < 7 < ¢t < T and some my(-) € L'([0,T],R,), it follows from (B.1) that K(t) C
Bx (zo,ri) for all times ¢ € [0,T] with ric := ro+ ||mx(-)||1. Notice then that

distx(z; Q(t)) < rr + max distx(zg; Q(t))
te[0,T)

)
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for all t € [0,T] and every = € Bx(xo, ), so that the quantity

Ry = (rc + 1) + sup {distX(:c; Q(t)) st. (t,z) € [0,T] x Bx (o, r,c)} (B.3)
is well-defined and such that

distx (K(t) ; 0Bx (zo, Rr)) > sup distx(K(7);9Q(s)) +1
7,5€[0,T]

for all times ¢t € [0, 7.
We now prove that g : [0,7] — R is absolutely continuous. For all times 7,¢ € [0,T] satisfying
0<7<t<T,it holds that

l9(t) — g(7)| < |distx (K(t); Q(t)) — distx (K(7); Q(t))]

+ |distx (K(7) ; Q(¢)) — distx (K(7) ; Q(7))]- (B-4)

In order to estimate the first term in (B.4), note that for each £ > 0, there exist yi € Q(t) and
xZ € K(7) such that
dx (27, ;) < distx (K(7); Q(t)) +e.

Furthermore, it stems from (B.2) that there exists an element x§ € K(t) for which

t
dy (25, 25) < / myc(s)ds.
Merging both estimates, it then follows that
distx (K(t) ; Q(¢)) — distx (K(7); Q(t)) < dx (a7, y;) — dx (a7, 45) +¢

t
< / my(s)ds + ¢

and repeating the same argument while exchanging the roles of 7 and ¢ further yields
¢
distx (K(8) ; Q(8)) — distx (K(r); Q(8))] < / my(s)ds (B.5)

T

since € > 0 was arbitrary. Concerning the second term in (B.4), it stems from our choice of Ry > 0
n (B.3) that

distx (K(7); Q(r)) = distx (K(7); Q(r) N Bx (zo, Rr))

and

distx (K(r); Q(1)) = distx (K(7): Q1) N Bx (a0, Br))

Moreover, since Q : [0,7] = X is absolutely continuous in the sense of Definition 2.7, there exists a
map My, gy (-) € L1([0,T],R,) for which

Q(7)NB(zo, Rr) C IB%X(Q(t), It mmO,RT(s)ds) and  Q(t)NB(zo, Rr) C IB%X(Q(T), I me,RT(s)ds).
Combining these few latter facts together, we further obtain
t
|distx (K(7) ; Q(t)) — distx (K(7); Q(7))| < / Mo, Ry (5)ds, (B.6)

which along with (B.4) and (B.5) finally yields that
t

96) = 9 < [ () + g g (5)) s,

T

for all times 7, ¢ € [0,T] satisfying 0 < 7 < ¢ < T, which equivalently means that g(-) € AC([0, T],R4).

40



We finally conclude by showing that whenever Q : [0,7] = X is left absolutely continuous, then
the set-valued map

&:te[0,T] :i{aE]RJr st.a=g(t)+r forsomerZO}

is left absolutely continuous as well. To do so, let g € K(0) and Ry > 0 be as above, fix an element
a, € &(7), and observe that

g(7) = distx (}C(T) ;9Q(7)N Bx(ﬂjo,RT)) <.

by construction. It then follows from elementary applications of the triangle inequality that

g(t) = distx (K(t); (1))
< disty (KC(8) : K(r)) + distx (K(7); Q(r) N B (o, Br) ) + distx (Q(r) 0 Bx (w0, Rr) : Q1))

<oar+ /Tt (m/C(S) + Mo, Ry (3))d87

for all times t € [0,T] such that 7 < ¢. In particular, we have shown that

Berl@();60) < [ (mc(s) + g () ds

for all times 0 <7 <t < T, every a € Ry and each R > 0, which yields the desired claim |
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