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Abstract

In this article, we derive necessary and sufficient conditions for the existence of solutions to state-
constrained continuity inclusions in Wasserstein spaces whose right-hand sides may be discontinuous
in time. These latter are based on fine investigations of the infinitesimal behaviour of the underlying
reachable sets, through which we show that up to a negligible set of times, every admissible velocity
of the inclusion can be approximately realised as the metric derivative of a solution of the dynamics,
and vice versa. Building on these results, we are able to establish necessary and sufficient geometric
conditions for the viability and invariance of stationary and time-dependent constraints, which
involve a suitable notion of contingent cones in Wasserstein spaces, presented in ascending order
of generality. We then close the article by exhibiting two prototypical examples of constraints sets
appearing in applications for which one can compute relevant subfamilies of contingent directions.
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1 Introduction

Recent times have witnessed a surge of interest for the mathematical analysis of macroscopic approx-
imations of particle systems. During the past two decades, a series of seminal works concerned with
the mean-field approximation of cooperative dynamics [37, 38, 61], the theory of mean-field games
[35, 64, 69] and the sparse control of multiagent systems [32, 33, 53] have given rise to several re-
search currents focusing on dynamical and variational problems whose aim are to describe the global
behaviour of many-body systems. Amongst these latter, mean-field control is a research branch that
focuses on large-scale control systems, and whose main interest lies in designing scale-free and effi-
cient control signals for large microscopic systems by finely understanding the interplay that exists
between discrete models and their continuous approximations. From a technical standpoint, these
inquiries often boil down to studying variational problems in the space of probability measures, and
are commonly approached using optimal transport techniques and Wasserstein geometry, in the spirit
of the reference treatises [5, 78, 79]. Without aiming at full exhaustivity, we point the reader to the
manuscripts [27, 40, 52, 54] for various existence and qualitative regularity results on deterministic
mean-field optimal control problems, as well as to the following broad series of works dealing with
optimality conditions, either in the form of Pontryagin’s maximum principle [17, 19, 20, 22, 26, 75, 76]
or of Hamilton-Jacobi-Bellman equations [12, 41, 66]. We also mention the references [2, 34, 39, 74]
which propose astute control strategies to stir collective systems towards specific asymptotic patterns,
and finally [1, 20, 29, 30] for general numerical methods in the context of mean-field optimal control.

Motivated by this blooming interest for variational problems in measure spaces, several research
groups have been investigating relevant generalisations of the core concepts of set-valued analysis to
the setting of mean-field control [12, 21, 22, 23, 24, 42, 43, 66], a lively trend that reached more recently
other closely related topics such as mean-field games [6, 31] and the study of sufficient conditions for
the well-posedness of measure dynamics [44, 67]. It is de facto widely accepted that the language of
correspondences, differential inclusions and generalised gradients provides in many cases a synthetic
and powerful framework in which most problems stemming from the calculus of variations, games and
control theory can be encompassed, as supported e.g. by series of reference monographs [8, 9, 45,
80] tracing back to the nineteen eighties. For these reasons, the authors of the present manuscript
introduced in [21, 23] a notion of differential inclusion in Wasserstein spaces, tailored to the study of
mean-field control problems. Therein, given a correspondence V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd), we
defined continuity inclusions as the set-valued dynamical systems

∂tµ(t) ∈ −divx

(

V (t, µ(t))µ(t)
)

,

whose solutions are defined as absolutely continuous curves µ(·) ∈ AC([0, T ], Pp(Rd)) for which there
exists a measurable selection t ∈ [0, T ] 7→ v(t) ∈ V (t, µ(t)) such that the continuity equation

∂tµ(t) + divx(v(t)µ(t)) = 0

holds in the sense of distributions. While other notions of solutions for differential inclusions in
measures spaces had already been proposed in some preexisting works, see e.g. [10, 42, 66], the
approach we just described seemed more natural as well as necessary for several reasons. On the
one hand, it remained coherent with the classical theory of set-valued dynamics, see e.g. [8] and [9,
Chapter 11], as well as with the geometric interpretation of Wasserstein spaces developed in [5, 71],
wherein (Pp(Rd), Wp) is described as a fiber bundle over which continuity equations essentially play
the same role as ODEs for differential manifolds. On the other hand, it complied with one of the most
important and desired features of differential inclusions, already formulated in the pioneering article
[51], which stipulates that solutions of control systems should be in one-to-one correspondence with
those of their set-valued counterparts. In [21, 23], based on this definition of differential inclusions, we
proved analogues in the setting of Wasserstein spaces of the Filippov estimates and Peano existence
theorem, as well as a relaxation principle and a compactness criterion for the solution sets. These
fundamental results are known to be extremely useful to investigate the fine properties of optimal
control problems, both in the classical deterministic [58, 80] and stochastic [16] settings, while enjoying
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natural generalisations to study e.g. evolution equations in Banach spaces [55, 57] or mutational
dynamics in metric spaces [13, 56]. We also point to the recent works [22, 24], in which we successfully
applied such set-theoretic approaches to derive optimality conditions for optimal control problems in
Wasserstein spaces and to study certain qualitative properties of their solutions.

While allowing to handle a variety of relevant dynamical models in measure spaces, the afore-
described framework did not yet permit to consider systems incorporating state-constraints, which
appear nonetheless in a wide variety of applications ranging from game theory [36], pedestrian dy-
namics [46], traffic flows [65] and more recently to the dynamical formulations of deep neural networks
[49]. Historically, the problem of ensuring that a differential inclusion admits trajectories that remain
within a given set starting from any initial condition was coined viability, whereas that of ensuring
that all such trajectories be viable is usually called invariance. The first result in this direction was
established in [70] for differential equations, while its natural counterpart for differential inclusions
with stationary right-hand sides later followed in [14] and [62]. To this day, the farthest-reaching
viability theorems for classical differential inclusions can be found in [59, 60] – which inspired several
of our contributions –, wherein the viability of general time-dependent constraint tubes is proven both
in the Carathéodory and Cauchy-Lipschitz frameworks. Besides modelling incentives, viability and
invariance results can be used to study the existence and uniqueness of viscosity solutions for several
nonlinear partial differential equations, see e.g. [28, 60], as well as to investigate sufficient stability
conditions for differential inclusions [7]. These viewpoints – like many others stemming from set-valued
analysis – present the advantage of being readily transposable beyond the setting of finite-dimensional
vector spaces, as illustrated by their recent applications to problems in metric spaces [10, 12, 13, 43].

In this article, we study the viability and invariance properties of constraints sets under the action of
continuity inclusions in the Wasserstein space (Pp(Rd), Wp) for some p ∈ (1, +∞). Given a constraint
tube Q : [0, T ] ⇒ Pp(Rd) with proper images (see Definition 2.4 below), we provide necessary and
sufficient conditions ensuring that either all or some of the solutions of the Cauchy problem







∂tµ(t) ∈ −divx

(

V (t, µ(t))µ(t)
)

,

µ(τ) = µτ ,
(1.1)

satisfy µ(t) ∈ Q(t) for all times t ∈ [τ, T ], where τ ∈ [0, T ] and µτ ∈ Q(τ) are both arbitrary. These
results, which are discussed in Section 4, rely on a careful analysis of the infinitesimal behaviour of
the reachable sets of (1.1). This latter is the object of Section 3, and can be heuristically summarised
as follows. In Theorem 3.1, we show that for each element vτ ∈ V (τ, µτ ) taken at some adequate pair
(τ, µτ ) ∈ [0, T ] × Pp(Rd) and every ε > 0, there exists a solution µε(·) of (1.1) which satisfies

Wp

(

µε(τ + hε), (Id + hεvτ )♯µτ

)

≤ εhε

whenever hε > 0 is sufficiently small. In other words, each admissible velocity can be realised – on a
subset of times of full L 1-measure, up to an arbitrarily small error – as the right metric derivative of
an admissible curve. In Theorem 3.2, we complete this result by showing that for L 1-almost every
τ ∈ [0, T ], each solution µε(·) of (1.1) and any sequence hi → 0, there exists vε

τ ∈ V (τ, µτ ) such that

Wp

(

µε(τ + hε
ik

), (Id + hε
ik

vε
τ )♯µτ

)

≤ ε|hε
ik

|,

along a subsequence hε
ik

→ 0. Stated otherwise, up to considering a subsequence, one can always
find an admissible velocity which approximately represents the metric derivative of a solution of the
Cauchy problem. It is worth noting that while in the present paper, these results are proven under
Cauchy-Lipschitz assumptions, we do believe that they remain valid under weaker Carathéodory-
Peano hypotheses as in [23, Section 4]. The main issue in proving so would be to replace the estimates
on flow maps by their analogues for measures concentrated on characteristic curves, whose existence
are ensured by the famed superposition principle of Ambrosio, see e.g. [3, Theorem 3.4].

Let us now discuss the main contributions of this article, which are the necessary and sufficient
conditions ensuring that a constraints tube Q : [0, T ] ⇒ Pp(Rd) is either viable or invariant under
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the dynamics of V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd). For the sake of clarity, we start our investigation
thereof by considering stationary constraints sets. In this context, the relevant geometric object
allowing to study viability and invariance properties is the contingent cones to Q, defined by

TQ(ν) :=

{

ξ ∈ Lp(Rd,Rd, ν) s.t. lim inf
h→0+

1
hdistPp(Rd)

(

(Id + hξ)♯ν ;Q
)

= 0

}

for each ν ∈ Q, where Lp(Rd,Rd; ν) stands for the seminormed space of Borel measurable and ν-
integrable maps, and whose expression is akin to that recently introduced in [12]. Building on this
notion, we show in Theorem 4.4 that if the following geometric compatibility condition

V (t, ν) ∩ coTQ(ν) 6= ∅ (1.2)

is satisfied for L 1-almost every t ∈ [0, T ] and each ν ∈ Q, where “co” stands for the closed convex
hull, then Q is viable. That is, there exists for every (τ, µτ ) ∈ [0, T ] ×Q a solution µ(·) of the Cauchy
problem (1.1) satisfying µ(t) ∈ Q for all times t ∈ [τ, T ]. Reciprocally, we prove in Theorem 4.6 that
if Q is viable, then it necessarily holds that

V (t, ν) ∩ TQ(ν) 6= ∅, (1.3)

for L 1-almost every t ∈ [0, T ] and each ν ∈ Q. We point the interested reader to our recent work [25],
where we leveraged a weaker version of these viability theorems to prove the existence of exponentially
stable solutions to a class of continuity inclusions via the second method of Lyapunov, see also Section
the example second example in Section 5 below. In Theorem 4.7, we subsequently show that the
stronger geometric condition

V (t, ν) ⊂ coTQ(ν), (1.4)

that is assumed to hold for L 1-almost every t ∈ [0, T ] and each ν ∈ Q, is equivalent to the invariance
of Q under the dynamics of (1.1), namely to the fact that µ(t) ∈ Q for all times t ∈ [τ, T ] and every
admissible curve µ(·) starting from µτ ∈ Q at time τ ∈ [0, T ].

We then turn our attention to the more involved scenario in which the constraints are allowed to
be time-dependent. In Theorem 4.8, we start by showing that regardless of its regularity, if the tube
Q : [0, T ] ⇒ Pp(Rd) is viable for (1.1), namely if given any τ ∈ [0, T ] and µτ ∈ Q(τ), there exists a
solution of (1.1) satisfying µ(t) ∈ Q(t) for all time t ∈ [τ, T ], then necessarily

(

{1} × V (t, ν)
)

∩ TGraph(Q)(t, ν) 6= ∅ (1.5)

for L 1-almost every t ∈ [0, T ] and all ν ∈ Q(t), where

Graph(Q) :=
{

(t, ν) ∈ [0, T ] × Pp(Rd) s.t. ν ∈ Q(t)
}

denotes the graph of the constraints tube. In addition, it follows in this context that Q : [0, T ] ⇒
Pp(Rd) is actually left absolutely continuous (see Definition 2.7 below), as it inherits some of the
regularity properties of the reachable sets of (1.1). Similarly, if one posits that Q : [0, T ] ⇒ Pp(Rd)
is invariant for (1.1), that is if µ(t) ∈ Q(t) for all times t ∈ [τ, T ] along every solution of (1.1) starting
from µτ ∈ Q(τ) at time τ ∈ [0, T ], it must then hold that

(

{1} × V (t, ν)
)

⊂ TGraph(Q)(t, ν) (1.6)

for L 1-almost every t ∈ [0, T ] and all ν ∈ Q(t).
Unlike the aforedescribed necessary implications, sufficient viability and invariance conditions call

for separate analyses depending on the regularity of the tube Q : [0, T ] ⇒ Pp(Rd). When the
latter is absolutely continuous (see Definition 2.7 below), we are able to prove in Theorem 4.10 that
Q : [0, T ] ⇒ Pp(Rd) is viable for (1.1) whenever the geometric condition

(

{1} × V (t, ν)
)

∩ coTGraph(Q)(t, ν) 6= ∅ (1.7)
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holds for L 1-almost every t ∈ [0, T ] and all ν ∈ Q(t). We stress that in this context, the convexification
of the contingent directions requires much more care than in the stationary case, as one must take into
account tangent velocities taken at different time instants. Similarly to what precedes, we proceed to
show in Theorem 4.11 below that Q : [0, T ] ⇒ Pp(Rd) is invariant for (1.1) provided that

V (t, ν) ⊂ coTGraph(Q)(t, ν) (1.8)

for L 1-almost every t ∈ [0, T ] and all ν ∈ Q(t). Finally in Theorem 4.12, we address sufficient viability
and invariance conditions when the tube Q : [0, T ] ⇒ Pp(Rd) is merely left absolutely continuous.
This regularity framework – which as already illustrated above appears naturally when studying state-
constrained continuity inclusions, see Theorem 4.8 – is very similar to the one we previously discussed,
with the added subtlety that in this context, one cannot convexify the contingent directions anymore.
Thence, the sufficient condition which ensures that Q : [0, T ] ⇒ Pp(Rd) is viable for (1.1) becomes

(

{1} × V (t, ν)
)

∩ TGraph(Q)(t, ν) 6= ∅ (1.9)

for L 1-almost every t ∈ [0, T ] and all ν ∈ Q(t). Similarly to the stationary and absolutely continuous
cases, one can show that Q : [0, T ] ⇒ Pp(Rd) is invariant for (1.1) if the geometric condition

(

{1} × V (t, ν)
)

⊂ TGraph(Q)(t, ν) (1.10)

holds for L 1-almost every t ∈ [0, T ] and each ν ∈ Q(t). At this stage, it is worth noting that
while conditions (1.2) to (1.10) involve the whole contingent cone to the constraints, it is sufficient
in practice to test their validity only for some nice subsets of tangent directions which are easy to
compute. This fact is expounded in Section 5, in which we exhibit relevant collections of tangents
to two simple yet frequently encountered families of constraints sets, defined respectively in terms of
support inclusions or as lifted epigraphs. In the first situation, we display certain adjacent directions
which are amenable to computations, while in the second one we are able to completely characterise
a subset of the contingent cone that is amenable to computations.

In terms of bibliographical positioning, this work can be seen as a far-reaching extension of [12]
by the second author, in which viability and invariance properties are established as a means to
prove the well-posedness of general Hamilton-Jacobi-Bellman equations for optimal control problems
in Wasserstein spaces, under more restrictive regularity assumptions on the data. We also point to
the independent works [10, 11, 43] which focus on the study of viability properties for another class of
set-valued dynamics in Wasserstein spaces to which we already alluded earlier. The main differences
between the latter notion and the one considered in the present article and the related works of both
authors is thoroughly discussed in [21].

The paper is organised as follows. In Section 2, we start by recalling a list of preliminary material
pertaining to optimal transport, set-valued analysis, and continuity inclusions. Subsequently, we dis-
cuss in Section 3 the infinitesimal behaviour of reachable sets to continuity inclusions, which constitute
novel contributions to the theory on which the main results of Section 4 crucially rely. The latter is
then split into two parts, in which we discuss viability and invariance results for continuity inclusions,
starting with the case of stationary constraints in Section 4.1. We then approach time-dependent con-
straints in Section 4.2, wherein the sufficient viability conditions are exposed separately for absolutely
continuous and left absolutely continuous constraints. Finally, we show a couple of relevant examples
of constraints sets and compute some of their tangent directions in Section 5, and close the paper by
an appendix that contains the proofs of two technical results.

2 Preliminaries

In this section, we fix the notations that will be used throughout the manuscript, and list a series of
prerequisites of optimal transport theory, set-valued analysis and Wasserstein geometry.
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2.1 Measure theory and optimal transport

In this first preliminary section, we recollect common notions of measure theory and optimal transport,
for which we refer to the monographs [4, 50] and [5, 78, 79] respectively.

Function spaces and measure theory. Given two complete separable metric spaces (X, dX(·, ·))
and (Y, dY (·, ·)), we denote by C0(X, Y ) the space of continuous functions from X into Y , and by
C0

b (X, Y ) the subspace of continuous and bounded maps. In this context, we will use the notation
Lip(ϕ ; Ω) ∈ R+ ∪ {+∞} for the Lipschitz constant of a function ϕ : X → Y over some subset Ω ⊂ X.
In the particular case where (X, dX(·, ·)) = (I, | · |) for a closed interval I ⊂ R, we shall write AC(I, Y )
for the collection of absolutely continuous maps valued in Y . We shall also denote by C∞

c (Rd,Rm)
the space of infinitely differentiable functions with compact support from R

d into R
m.

In what follows, we let P(Rd) be the space of Borel probability measures defined over (Rd, | · |).
Recalling that the latter is a subset of the topological dual of C0

b (Rd,R), it can be endowed with the
usual weak-∗ or narrow topology, which is the coarsest topology such that

µ ∈ P(Rd) 7→
∫

Rd
ϕ(x)dµ(x) ∈ R

defines a continuous mapping for every ϕ ∈ C0
b (Rd,R). In this context, given µ ∈ P(Rd) and some

p ∈ [1, +∞), the notation (Lp(Rd,Rd; µ), ‖·‖Lp(Rd,Rd ;µ)) will refer to the seminormed vector space of

Borel maps from R
d into itself which are p-integrable with respect to µ (see e.g. [15, Chapter 2.4]).

We will also denote by L 1 the standard 1-dimensional Lebesgue measure, and given a closed interval
I ⊂ R and a separable Banach space (X, ‖·‖X ), we let (L1(I, X), ‖·‖L1(I)) stand for the Banach space
of maps which are L 1-measurable and p-integrable in the sense of Bochner, see e.g. [47, Chapter II].

In the following definition, we recall the classical notions of one-sided density points of an L 1-
measurable subset of I ⊂ R, along with that of one-sided Lebesgue points of a Lebesgue integrable
map. It is a well-known result in measure theory that these sets both have full L 1-measure in I.

Definition 2.1 (Lebesgue and density points). Given a Lebesgue measurable set A ⊂ I, its one-sided
density points are defined as the elements τ ∈ A satisfying

L 1([τ, τ + h] ∩ A )

|h|
−→
h→0

1.

Similarly, given a map f ∈ L1(I, X), we denote by Tf ⊂ I the subset of its one-sided Lebesgue points,
which are the elements τ ∈ I at which

1

h

∫ τ+h

τ
‖f(t) − f(τ)‖X dt −→

h→0
0.

For any real number p ∈ [1, +∞), we denote by Pp(Rd) the subset of Borel probability measures
whose momentum of order p, defined by

Mp(µ) :=

(
∫

Rd
|x|pdµ(x)

)1/p

,

is finite. In what follows, we write f♯µ ∈ P(Rd) for the image measure of an element µ ∈ P(Rd)
through a Borel map f : Rd → R

d, which is characterised in a unique way by the identity

∫

Rd
ϕ(x)d(f♯µ)(x) =

∫

Rd
ϕ ◦ f(x)dµ(x)

satisfied for every Borel mapping ϕ : R
d → R

d, where “◦” stands for the composition operation
between functions. Then, the set of transport plans between two measures µ, ν ∈ P(Rd) is defined by

Γ(µ, ν) :=
{

γ ∈ Pp(R2d) s.t. π1
♯ γ = µ and π2

♯ γ = ν
}

,
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wherein π1, π2 : Rd ×R
d → R

d represent the projections onto the first and second factors respectively.
In this context, the Wasserstein distance of order p between µ and ν is the quantity defined by

Wp(µ, ν) := min
γ∈Γ(µ,ν)

(
∫

R2d
|x − y|pdγ(x, y)

)1/p

,

and we henceforth denote by Γo(µ, ν) the set of p-optimal transport plans at which the minimum
is reached. Owing to the definition of this distance in the form of an infimum, it can be checked
straightforwardly following e.g. [5, Chapter 7] that

Wp(ζ♯µ, ξ♯µ) ≤ ‖ξ − ζ‖Lp(Rd,Rd; µ) (2.1)

for any µ ∈ Pp(Rd) and each pair of elements ζ, ξ ∈ Lp(Rd,Rd; µ). In the following proposition, we
recall elementary facts regarding the topology of Wasserstein spaces, see e.g. [5, Proposition 7.1.5].

Proposition 2.2 (Topological properties of Wasserstein spaces). The metric spaces (Pp(Rd), Wp)
are complete and separable, and their topology is stronger than the narrow topology. Moreover, a set
K ⊂ Pp(Rd) is relatively compact for the Wp-metric if and only if

sup
µ∈K

∫

{x∈Rd s.t. |x|≥k}
|x|pdµ(x) −→

k→+∞
0,

that is, if and only if it is p-uniformly integrable.

Wasserstein geometry. In addition to their convenient topological properties, the Wasserstein
spaces can be endowed with a geometric structure that greatly resembles that of a Riemannian manifold
when p = 2. For a general p ∈ [1, +∞), it is discussed in depth throughout [5, Chapter 8] that
(Pp(Rd), Wp) can be seen as a bundle whose fibers are the closed cones

TanµPp(Rd) :=
{

jq(∇ϕ) s.t. ϕ ∈ C∞
c (Rd,R)

}Lp(Rd,Rd; µ)

defined at each µ ∈ Pp(Rd). Therein, q ∈ (1, +∞] stands for the conjugate exponent of p ∈ [1, +∞),
and jq : Lq(Rd,Rd; µ) → Lp(Rd,Rd; µ) refers to the so-called duality map, which is given by

jq(ξ) :=

{

0 if ξ = 0,

|ξ|q−2 ξ otherwise,
(2.2)

for each ξ ∈ Lq(Rd,Rd; µ). In the following proposition, we provide an adhoc version of the joint
directional superdifferentiability inequalities satisfied by the p-Wasserstein distance whenever p > 1.
We point to [5, Theorem 10.2.2] for the general case.

Proposition 2.3 (Joint directional superdifferentiability of the Wasserstein distance). Fix an element
p ∈ (1, +∞) and µ, ν ∈ Pp(Rd). Then for each ξ ∈ Lp(Rd,Rd; µ) and ζ ∈ Lp(Rd,Rd; ν), it holds that

1
pW p

p

(

(Id + hζ)♯µ, (Id + hξ)♯ν
)

− 1
pW p

p (µ, ν) ≤ h

∫

R2d

〈

ζ(x) − ξ(y), jp(x − y)
〉

dγ(x, y) + rp(h, ζ, ξ)

for any h ∈ R and every γ ∈ Γo(µ, ν), where the remainder term rp(h, ζ, ξ) is given explicitly by

rp(h, ζ, ξ) := (p − 1)

(

Wp(µ, ν) + |h|
(

‖ζ‖Lp(Rd,Rd; µ) + ‖ξ‖Lp(Rd,Rd; ν)

)

)p−2

×
(

‖ζ‖2
Lp(Rd,Rd; µ) + ‖ξ‖2

Lp(Rd,Rd; ν)

)

|h|2
(2.3)

when p ∈ [2, +∞), and

rp(h, ζ, ξ) := 2
p−1

(

‖ζ‖p
Lp(Rd,Rd; µ)

+ ‖ξ‖p
Lp(Rd,Rd; ν)

)

|h|p (2.4)

7



for p ∈ (1, 2]. In particular, there exists a constant Cp > 0 which depends only on the magnitudes of
p,Mp(µ),Mp(ν), ‖ζ‖Lp(Rd,Rd ;µ) and ‖ξ‖Lp(Rd,Rd ;ν) such that

rp(h, ζ, ξ) ≤ Cp|h|min{p,2}

whenever h ∈ (0, 1], and moreover rp(h, ζ, ξ) = 0 if ζ = ξ = 0.

Proof. For the sake of readability, the proof of this result is deferred to Appendix A.

2.2 Set-valued analysis and topological properties of the space C0(Rd,Rd)

In this second preliminary section, we recollect pivotal concepts of set-valued analysis, and discuss
some of the topological features of the space C0(Rd,Rd) that will prove useful in the sequel. We point
the reader to the reference treatises [8, 9] for the former topics, and to [68, 77] for the latter.

Elementary notations. Given a metric space (X, dX(·, ·)), we will denote the closed ball of radius
R > 0 centered at x ∈ X by BX(x, R) :=

{

x′ ∈ X s.t. dX(x, x′) ≤ R
}

, and write

distX(Q ;Q′) := inf
(x,x′)∈Q×Q′

dX(x, x′)

for the usual distance between two closed sets Q,Q′ ⊂ X. Throughout the article, we will also work
with the Hausdorff metric, which is defined by

dH(K,K′) := inf
{

ε > 0 s.t. K ⊂ BX(K′, ε) and K′ ⊂ BX(K, ε)
}

(2.5)

for each pair of compact sets K,K′ ⊂ X, where we used the condensed notation

BX
(

K, ε
)

:=
⋃

x∈K

BX(x, ε).

In our subsequent developments, we will denote by int(Q) and ∂Q := Q\int(Q) the interior and the
topological boundary of Q. In the particular case where (X, dX(·, ·)) exhibits a linear structure – e.g.
when it is a Banach or a Fréchet space, see for instance [63] –, we define the closed convex hull of one
of some of its subsets B ⊂ X as

co(B) = co(B)
X

:=
⋃

N≥1

{

N
∑

j=1
αjbj s.t. bj ∈ B, αj ≥ 0 for j ∈ {1, . . . , N} and

N
∑

j=1
αj = 1

}
X

,

wherein “•X” stands for the sequential closure with respect to dX(·, ·). We finally recall the definition
of the so-called proper subsets of a metric space.

Definition 2.4 (Proper subsets). A closed set Q ⊂ X is proper provided that Q∩BX(x, R) is compact
for each x ∈ X and every R > 0.

Note that one could alternatively require that Q∩BX(x, R) be compact for each x ∈ Q instead of
x ∈ X, without altering the previous definition.

Set-valued analysis. We recall that a set-valued map – or correspondence – between two metric
spaces (X, dX(·, ·)) and (Y, dY (·, ·)) is an application F : X ⇒ Y whose images are subsets of Y ,
namely F(x) ⊂ Y for all x ∈ X. In this context, the graph of F is the subset of X × Y defined by

Graph(F) :=
{

(x, y) ∈ X × Y s.t. y ∈ F(x)
}

.

In the coming definitions, we recall the main regularity notions for set-valued mappings with values
in metric spaces, starting with those of continuity and Lipschitz regularity.
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Definition 2.5 (Continuity of set-valued maps). A correspondence F : X ⇒ Y is said to be continuous
at x ∈ X if both the following conditions hold.

(i) F is lower-semicontinuous at x, i.e. for any ε > 0 and all y ∈ F(x), there exists δ > 0 such that

F(x′) ∩ BY (y, ε) 6= ∅

for each x′ ∈ BX(x, δ).

(ii) F is upper-semicontinuous at x, i.e. for any ε > 0, there exists δ > 0 such that

F(x′) ⊂ BY

(

F(x), ε
)

for each x′ ∈ BX(x, δ).

Definition 2.6 (Lipschitz continuity of set-valued maps). A correspondence F : X ⇒ Y is said to be
Lipschitz continuous with constant L > 0 provided that

F(x′) ⊂ BY

(

F(x), L dX(x, x′)
)

for all x, x′ ∈ X. In the case where F : X ⇒ Y has compact images, one can equivalently require that

dH(F(x),F(x′)) ≤ L d(x, x′)

for all x, x′ ∈ X.

As for functions defined over the real line and valued in metric spaces, it is possible to formulate
relevant notions of absolute continuity for set-valued maps. Some of them will involve the quantity

∆x,R(Q ;Q′) := inf
{

ε > 0 s.t. Q ∩ BX(x, R) ⊂ BX(Q′, ε)
}

∈ R+ ∪ {+∞},

defined for each x ∈ X, R > 0 and every pair of nonempty closed sets Q,Q′ ⊂ X, which can be seen
as a sort of asymmetric and localised version of the Hausdorff metric (2.5).

Definition 2.7 (Notions of absolute continuity for set-valued mappings). We say that a correspon-
dence F : I ⇒ X with closed nonempty images is absolutely continuous if for every x ∈ X and each
R > 0, there exists a map mx,R(·) ∈ L1(I,R+) such that

max
{

∆x,R
(

F(τ) ;F(t)
)

, ∆x,R
(

F(t2) ;F(t1)
)

}

≤
∫ t

τ
mx,R(s)ds

for all times τ, t ∈ I satisfying τ ≤ t. Analogously, we say that F : I ⇒ X is left absolutely continuous
if only the one-sided inequality

∆x,R
(

F(τ) ;F(t)
)

≤
∫ t

τ
mx,R(s)ds

holds. In the case where F : I ⇒ X has compact images, we say that it is absolutely continuous in
the Hausdorff metric if there exists a map mF (·) ∈ L1(I,R+) such that

dH(F(τ),F(t)) ≤
∫ t

τ
mF (s)ds

for all times τ, t ∈ I such that τ ≤ t.

These notions of absolute continuity permit to formulate the following regularity statement on the
distance function between set-valued maps, which will prove crucial in our subsequent developments.
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Proposition 2.8 (Regularity of the distance between set-valued maps). Let K : I ⇒ X be a set-
valued map with compact nonempty images that is absolutely continuous in the Hausdorff metric and
Q : I ⇒ X be an absolutely continuous set-valued map with closed nonempty images. Then, the map

g : t ∈ I 7→ distX(K(t) ;Q(t)) ∈ R+

is absolutely continuous. In the case where Q : [0, T ] ⇒ X is only left absolutely continuous, the
set-valued map

E : t ∈ I ⇒

{

α ∈ R+ s.t. α = g(t) + r for some r ≥ 0
}

is left absolutely continuous as well.

Proof. Being somewhat long and technical, the proof of this statement is deferred to Appendix B.

Analogously to the classical notions of regularity exposed hereinabove, it is possible to generalise
the concept of measurability to set-valued mappings, as highlighted by the following definition.

Definition 2.9 (Measurability of set-valued maps). A set-valued map F : I ⇒ X is said to be
L 1-measurable provided that the sets

F−1(O) :=
{

t ∈ I s.t. F(t) ∩ O 6= ∅
}

are L 1-measurable for each open set O ⊂ X. Moreover, we say that an L 1-measurable map f : I → X
is a measurable selection of F : I ⇒ X if f(t) ∈ F(t) for L 1-almost every t ∈ I.

In the following theorem, we recall an instrumental result of set-valued analysis excerpted from [9,
Theorem 8.1.3], which asserts that measurable correspondences always admit measurable selections.

Theorem 2.10 (Existence of measurable selections). Suppose that (X, dX(·, ·)) is a complete separable
metric space. Then every L 1-measurable set-valued map F : I ⇒ X with closed nonempty images
admits a measurable selection.

We end this primer in set-valued analysis by recollecting a fine adaptation of the Scorza-Dragoni
theorem for set-valued mappings between metric spaces, for which we refer to [18, Theorem 1].

Theorem 2.11 (Scorza-Dragoni property for set-valued mappings). Suppose that (X, dX(·, ·)) and
(Y, dY (·, ·)) are complete separable metric spaces, and let F : I × X ⇒ Y be a set-valued map with
closed nonempty images such that t ∈ I ⇒ F(t, x) is L 1-measurable for all x ∈ X and x ⇒ F(t, x)
is continuous for L 1-almost every t ∈ I.

Then for every ε > 0, there exists a compact set Aε ⊂ I such that L 1(I\Aε) < ε, and for which
the following holds.

(i) The restriction of the set-valued mapping F : Aε × X ⇒ Y is lower-semicontinuous.

(ii) The restriction of the graph of the set-valued mapping

Graph(F)|Aε×X×Y :=
{

(t, x, y) ∈ Aε × X × Y s.t. y ∈ F(t, x)
}

is closed in Aε × X × Y .

Topological structures and metrics for continuous maps. Throughout the coming paragraphs,
we recall some useful topological properties of the space C0(Rd,Rd). In what follows, we denote by

dsup(v, w) := sup
x∈Rd

|v(x) − w(x)| ∈ R+ ∪ {+∞}

the supremum extended-distance between a pair of elements v, w ∈ C0(Rd,Rd). While this latter
is useful to control the global discrepancy between two continuous functions – which can be equal
to +∞ –, the topology that it induces is not separable and thus not adapted to the application of
measurable selection theorems. For this reason, we will systematically endow the space C0(Rd,Rd)
with the topology of local uniform convergence, whose definition is recalled here.
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Definition 2.12 (The topology of local uniform convergence). A sequence of maps (vn) ⊂ C0(Rd,Rd)
converges locally uniformly – or uniformly on compact sets – to some v ∈ C0(Rd,Rd) provided that

‖v − vn‖C0(K,Rd) −→
n→+∞

0

for each compact set K ⊂ R
d. This notion of convergence endows C0(Rd,Rd) with the structure of a

separable Fréchet space, whose topology is induced by the translation invariant metric

dcc(v, w) :=
+∞
∑

k=1

2−k min
{

1 , ‖v − w‖C0(B(0,k),Rd)

}

(2.6)

that is well-defined for any v, w ∈ C0(Rd,Rd).

Amongst its interesting properties, the topology of local uniform convergence enjoys a very explicit
and amenable characterisation of compactness, for which we refer to [68, Chapter 7, Theorem 18].

Theorem 2.13 (Ascoli-Arzelà compactness criterion). A closed set V ⊂ C0(Rd,Rd) is compact for
the topology induced by dcc(·, ·) if and only if its elements are locally uniformly equicontinuous and if,
for every x ∈ R

d, there exists a relatively compact set Kx ⊂ R
d such that v(x) ∈ Kx for each v ∈ V .

We recall below a fact whose proof can be found in [72], which establishes a one-to-one correspon-
dence between L 1-measurable maps t ∈ I 7→ v(t) ∈ C0(Rd,Rd) and Carathéodory vector fields. We
recall that a map v : I × R

d → R
d is Carathéodory if t ∈ I 7→ v(t, x) is L 1-measurable for all x ∈ R

d

and x ∈ R
d 7→ v(t, x) is continuous for L 1-almost every t ∈ [0, T ].

Lemma 2.14 (Measurable selections in C0(Rd,Rd) and Carathéodory vector fields). A vector field
(t, x) ∈ I×R

d 7→ v(t, x) ∈ R
d is Carathéodory if and only if its functional lift t ∈ I 7→ v(t) ∈ C0(Rd,Rd)

is L 1-measurable with respect to the topology induced by dcc(·, ·).

Lastly, we prove a technical result which states that for sequences of sublinear continuous functions,
the convergence with respect to dcc(·, ·) yields the convergence in Lp(Rd,Rd; µ) for every µ ∈ Pp(Rd).

Lemma 2.15 (Link between local uniform and Lebesgue convergences). Let (vn) ⊂ C0(Rd,Rd) be a
sequence of maps such that

|vn(x)| ≤ m(1 + |x|)

for all x ∈ R
d and some m > 0. Moreover, suppose that dcc(vn, v) → 0 as n → +∞ for some

v ∈ C0(Rd,Rd). Then for each µ ∈ Pp(Rd), it holds that {vn}+∞
n=1 ⊂ Lp(Rd,Rd; µ) and

‖v − vn‖Lp(Rd,Rd; µ) −→
n→+∞

0.

Proof. The fact that vn ∈ Lp(Rd,Rd; µ) simply follows from the observation that

‖vn‖Lp(Rd,Rd; µ)≤ m

(
∫

Rd
(1 + |x|)pdµ(x)

)1/p

< +∞,

and likewise v ∈ Lp(Rd,Rd; µ). Fix now some ε > 0 and let Rε > 0 be a radius such that

(
∫

{x∈Rd s.t. |x|≥Rε}
(1 + |x|)pdµ(x)

)1/p

≤
ε

4m
,

whose existence follows from Proposition 2.2. Then, choose an integer Nε ≥ 1 such that

‖v − vn‖C0(B(0,Rε),Rd) ≤
ε

2

for each n ≥ Nε, which is always possible by the definition (2.6) of the dcc(·, ·). Whence, one recovers

‖v − vn‖Lp(Rd,Rd; µ) ≤ ‖v − vn‖C0(B(0,Rε),Rd) + 2m

(
∫

{x∈Rd s.t. |x|≥Rε}
(1 + |x|)pdµ(x)

)1/p

≤ ε

for each n ≥ Nε, which yields the desired convergence result.
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2.3 Continuity equations and inclusions in Wasserstein spaces

In this last preliminary section, we expose well-posedness results and estimates for solutions of con-
tinuity equations and inclusions in Wasserstein spaces. These latter are mostly borrowed from our
previous works [21, 23], and we point to [5, Chapter 8] and [3, 73] for more classical versions thereof.

Continuity equations in the Carathéodory framework. In the ensuing paragraphs, we recall
some elementary results pertaining to the qualitative properties of continuity equations of the form

∂tµ(t) + divx(v(t)µ(t)) = 0,

defined over some time interval [0, T ] with T > 0, and whose solutions are understood in the sense of
distributions, namely

∫ T

0

∫

Rd

(

∂tϕ(t, x) +
〈

∇xϕ(t, x), v(t, x)
〉

)

dµ(t)(x)dt = 0

for every ϕ ∈ C∞
c ((0, T ) × R

d,R). Given a fixed real number p ∈ [1, +∞) and a pair of elements
(τ, µτ ) ∈ [0, T ] × Pp(Rd), we will more generally study the well-posedness of the Cauchy problem

{

∂tµ(t) + divx(v(t)µ(t)) = 0,

µ(τ) = µτ ,
(2.7)

in the case where the velocity field v : [0, T ] × R
d → R

d satisfies the following standard assumptions
or some of their variants.

Hypotheses (CE).

(i) The velocity field v : [0, T ]×R
d → R

d is Carathéodory, i.e. t ∈ [0, T ] 7→ v(t, x) is L 1-measurable
for all x ∈ R

d while x ∈ R
d 7→ v(t, x) is continuous for L 1-almost every t ∈ [0, T ]. Moreover,

there exists a map m(·) ∈ L1([0, T ],R+) such that

|v(t, x)| ≤ m(t)(1 + |x|)

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d.

(ii) There exists a map l(·) ∈ L1([0, T ],R+) such that

Lip(v ;Rd) ≤ l(t)

for L 1-almost every t ∈ [0, T ].

In their strongest form, the well-posedness results stated in Theorem 2.17 below for continuity
equations involve the notion of characteristic flow generated by the velocity field.

Definition 2.16 (Characteristic flow). Given a velocity field v : [0, T ]×R
d → R

d satisfying Hypotheses
(CE), we define the characteristic flows (Φv

(τ,t))τ,t∈[0,T ] ⊂ C0(Rd,Rd) as the unique maps satisfying

Φv
(τ,t)(x) = x +

∫ t

τ
v

(

s, Φv
(τ,s)(x)

)

ds (2.8)

for all times τ, t ∈ [0, T ] and any x ∈ R
d.

Theorem 2.17 (Well-posedness in the Carathéodory framework). Let v : [0, T ] × R
d → R

d be a
velocity field satisfying Hypothesis (CE)-(i), and fix some (τ, µτ ) ∈ [0, T ] × R

d.
Then, the Cauchy problem (2.7) admits solutions µ(·) ∈ AC([0, T ], Pp(Rd)). In the case where

Hypothesis (CE)-(ii) holds as well, then the latter is unique and represented explicitly by the formula

µ(t) = Φv
(τ,t) ♯µτ

for all times t ∈ [0, T ].
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Set-valued dynamics in Wasserstein spaces. In the next paragraphs, we recollect for the sake
of completeness the definition of continuity inclusions introduced in our earlier works [21, 23], along
with several estimates on which our main contributions strongly rely. In what follows, we focus on
set-valued Cauchy problems of the form







∂tµ(t) ∈ −divx

(

V (t, µ(t))µ(t)
)

,

µ(τ) = µτ ,
(2.9)

wherein (τ, µτ ) ∈ [0, T ]×Pp(Rd) and V : [0, T ]×Pp(Rd) ⇒ C0(Rd,Rd) are given, and whose solutions
are understood in the following sense.

Definition 2.18 (Solutions to continuity inclusions). A curve of measures µ(·) ∈ AC([0, T ], Pp(Rd))
is said to be a solution of the Cauchy problem (2.9) if there exists an L 1-measurable selection t ∈
[0, T ] 7→ v(t) ∈ V (t, µ(t)) such that the trajectory-selection pair (µ(·), v(·)) satisfies

{

∂tµ(t) + divx(v(t)µ(t)) = 0,

µ(τ) = µτ ,

in the sense of distributions.

Based on our earlier contributions, we will assume throughout this article that the dynamics
satisfies the following assumptions. Therein and in what follows, C0(Rd,Rd) will be systematically
endowed with the separable Fréchet structure induced by dcc(·, ·), and exposed in Definition 2.12.

Hypotheses (CI).

(i) For any µ ∈ Pp(Rd), the set-valued map t ∈ [0, T ] ⇒ V (t, µ) ⊂ C0(Rd,Rd) is L 1-measurable
with closed nonempty images.

(ii) There exists a map m(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any µ ∈
Pp(Rd), every v ∈ V (t, µ) and all x ∈ R

d, it holds

|v(x)| ≤ m(t)
(

1 + |x| + Mp(µ)
)

.

(iii) There exists a map l(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any µ ∈ Pp(Rd)
and every v ∈ V (t, µ), it holds

Lip(v ;Rd) ≤ l(t).

(iv) There exists a map L(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any µ, ν ∈
Pp(Rd) and each v ∈ V (t, µ), there exists an element w ∈ V (t, ν) for which

dsup(v, w) ≤ L(t)Wp(µ, ν).

Examples of classical set-valued mappings defined in terms of control systems satisfying localised
variants of (CI) are provided in [21, Section 4]. In our subsequent developments, we will frequently
refer to solutions of (2.9) by using the terminology of reachable and solutions sets, defined as follows.

Definition 2.19 (Reachable and solution sets of continuity inclusions). Given a pair of elements
(τ, µτ ) ∈ [0, T ] × Pp(Rd), we define the (forward) solution set of the Cauchy problem (2.9) as

S[τ,T ](τ, µτ ) :=

{

µ(·) ∈ AC([τ, T ], Pp(Rd)) s.t. µ(·) is a solution of (2.9)

}

,

and denote by

R(τ,t)(µτ ) :=
{

µ(t) s.t. µ(·) ∈ S[τ,T ](τ, µτ )
}

the corresponding reachable sets at time t ∈ [0, T ].
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By combining classical concatenation results for solutions of continuity equations (see e.g. [48,
Lemma 4.4]) and Definition 2.18, it can be shown that the reachable sets satisfy the semigroup property

R(τ,t)(µτ ) = R(s,t) ◦ R(τ,s)(µτ ) (2.10)

for all times τ ≤ s ≤ t ≤ T . Besides, it follows from Hypotheses (CI) and Theorem 2.17 that solution
curves are also well-defined and unique backward in time. Hence, each element of S[τ,T ](τ, µτ ) can be
seen as a restriction to [τ, T ] of some other curve in S[0,T ](τ, µτ )

In the next propositions, we recall several a priori estimates for solutions of (2.9), along with some
useful topological properties for the reachable and solution sets. Therein and in what follows, we will
frequently use the shorthand notation ‖m(·)‖1:=‖m(·)‖L1([0,T ],R) given a map m(·) ∈ L1([0, T ],R+).

Proposition 2.20 (Momentum, equi-integrability and absolute continuity estimates). Let V : [0, T ]×
Pp(Rd) ⇒ C0(Rd,Rd) be a set-valued map satisfying Hypotheses (CI) and (τ, µτ ) ∈ [0, T ] × Pp(Rd).

Then, there exists a constant CT > 0 which only depends on the magnitudes of p,Mp(µτ ) and
‖m(·)‖1 such that every curve µ(·) ∈ S[0,T ](τ, µτ ) complies with the a priori momentum bound

Mp(µ(t)) ≤ CT , (2.11)

as well as the uniform equi-integrability estimate
∫

{x∈Rd s.t. |x|≥R}
|x|pdµ(t)(x) ≤ C

p
T

∫

{x∈Rd s.t. |x|≥R/CT −1}
(1 + |x|)pdµτ (x) (2.12)

for all times t ∈ [0, T ] and each R > 0. Moreover, the following uniform absolute continuity inequality

Wp(µ(t1), µ(t2)) ≤ (1 + CT )

∫ t2

t1

m(s)ds (2.13)

holds for all times 0 ≤ t1 ≤ t2 ≤ T and every µ(·) ∈ S[0,T ](τ, µτ ).

Proposition 2.21 (Topological properties of the reachable and solution sets). Assume that the hy-
potheses of Proposition 2.20 hold and that V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) has convex images.
Then, the reachable sets R(τ,t)(µτ ) ⊂ Pp(Rd) are compact for all times t ∈ [0, T ], and the solution set

S[0,T ](τ, µτ ) ⊂ C0([τ, T ], Pp(Rd)) is compact for the topology of uniform convergence.

Proof. The fact that the solution set S[0,T ](τ, µτ ) ⊂ C0([τ, T ], Pp(Rd)) is compact when V : [0, T ] ×

Pp(Rd) ⇒ C0(Rd,Rd) has convex images was proven in [23, Theorem 3.5]. It is then straightforward
to show that the underlying reachable sets are compact for all times t ∈ [0, T ].

We end this preliminary section by recalling a simplified and condensed version of one of the main
results of [23], which combines an existence result for (2.9) together with a powerful estimate “à la
Grönwall” involving the distance to an a priori fixed curved of measures.

Theorem 2.22 (Local Filippov estimates for continuity inclusions). Let V : [0, T ] × Pp(Rd) ⇒

C0(Rd,Rd) be a set-valued map satisfying Hypotheses (CI) and ν(·) ∈ AC([0, T ], Pp(Rd)) be a solution
of the continuity equation

∂tν(t) + divy(w(t)ν(t)) = 0

driven by a Carathéodory vector field w : [0, T ] × R
d → R

d satisfying the sublinearity estimate

|w(t, y)| ≤ m(t)(1 + |y|)

for L 1-almost every t ∈ [0, T ] and all y ∈ R
d. For every R > 0, denote by ηR(·) ∈ L1([0, T ],R+) the

local mismatch function, defined by

ηR(t) := distC0(B(0,R),Rd)

(

w(t) ; V (t, ν(t))
)

for L 1-almost every t ∈ [0, T ].
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Then for every (τ, µτ ) ∈ [0, T ] × Pp(Rd) and each R > 0, there exists a curve of measures
µ(·) ∈ S[0,T ](τ, µτ ) which satisfies the a priori estimate

Wp(µ(t), ν(t)) ≤ C ′
T

(

Wp(µτ , ν(τ)) +

∫ t

τ
ηR(s)ds + Eν(τ, t, R)

)

(2.14)

for all times t ∈ [τ, T ]. Therein, the constant C ′
T > 0 solely depends on the magnitudes of the data

p,Mp(µ0), ‖m(·)‖1, ‖l(·)‖1 and ‖L(·)‖1, while the error term Eν(τ, t, R) is given explicitly by

Eν(τ, t, R) := 2 ‖m(·)‖L1([τ,t]) (1 + CT )

(
∫

{y s.t. |y|≥R/CT −1}
(1 + |y|)pdν(τ)(y)

)1/p

for all times t ∈ [τ, T ], where CT > 0 is the constant appearing in Proposition 2.20.

Remark 2.23 (Link between continuity equations and inclusions). In the particular case in which
V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) happens to be single valued and independent of µ – that is if
V (t, µ) = {v(t)} for L 1-almost every t ∈ [0, T ] and each µ ∈ Pp(Rd) –, then the corresponding
velocity field satisfies Hypotheses (CE). In addition, the solution of (2.9) is then unique, coincides
with that of (2.7), and complies with the a priori estimates of Proposition 2.20 and Theorem 2.22.

3 Infinitesimal behaviour of the reachable sets

In this section, we prove two fundamental results concerning the local properties of solutions to (2.9),
largely inspired by the analysis carried out in [60, Section 2]. The first one, discussed in the ensuing
theorem, deals with the existence of curves with (approximately) prescribed initial velocities.

Theorem 3.1 (Existence of admissible curves with approximate initial velocities). Let V : [0, T ] ×
Pp(Rd) ⇒ C0(Rd,Rd) be a set-valued map with convex images satisfying Hypotheses (CI).

Then, there exists a subset T ⊂ (0, T ) of full L 1-measure such that for every τ ∈ T , all µτ ∈
Pp(Rd), each vτ ∈ V (τ, µτ ) and any ε > 0, there exists a curve µε(·) ∈ S[0,T ](τ, µτ ) such that

Wp

(

µε(τ + hε), (Id + hεvτ )♯µτ

)

≤ εhε, (3.1)

for any sufficiently small hε > 0 depending on ε > 0.

Proof. To begin with, denote by Tm, Tl, TL ⊂ (0, T ) the sets of one-sided Lebesgue points of the
maps m(·), l(·) and L(·) respectively, and by TH ⊂ (0, T ) the subset of full L 1-measure over which
Hypotheses (CI)-(ii), (iii) and (iv) hold. By Theorem 2.11, there exists for every k ≥ 1 a compact
set Ak ⊂ [0, T ] satisfying L 1([0, T ]\Ak) < 1

2k , and such that V : Ak × Pp(Rd) ⇒ C0(Rd,Rd) is
lower-semicontinuous in the sense of Definition 2.5-(i). For each n ≥ 1, we then define An ⊂ [0, T ] by

An :=
⋂

k>n

Ak, (3.2)

and denote by Ãn ⊂ An its subset of one-sided density points understood in the sense of Definition
2.1, which can be characterised as set of full L 1-measure in An such that

lim
h→0+

L 1([τ, τ + h]\An)

h
= 0 (3.3)

for each τ ∈ Ãn. Upon noting that for each n ≥ 1, one has

L
1([0, T ]\Ãn) = L

1
(

⋃

k>n
[0, T ]\Ak

)

≤
+∞
∑

k=n+1

L
1([0, T ]\Ak) ≤

1

2n
,
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while observing that the sequence of measurable sets (Ãn) is increasing by construction, it holds that

L
1
(

[0, T ]\
(

⋃

n≥1
Ãn

)

)

= lim
n→+∞

L
1([0, T ]\Ãn) = 0.

Therefore, the set T ⊂ (0, T ) defined by

T :=

(

⋃

n≥1
Ãn

)

∩ Tm ∩ Tl ∩ TL ∩ TH, (3.4)

has full L 1-measure in [0, T ], and in the sequel we fix an element τ ∈ T . We also let Rε > 0 be
chosen in such a way that

2m(τ)(1 + CT )

(
∫

{x∈Rd s.t. |x|≥Rε/CT −1}

(

1 + |x|p
)

dµτ (x)

)1/p

≤ ε, (3.5)

where CT > 0 is given as in Proposition 2.20 and Theorem 2.22.

Step 1 – Construction of an admissible curve. Observe that under Hypotheses (CI), each
element vτ ∈ V (τ, µτ ) is a time-independent vector field satisfying Hypotheses (CE), with constant
m(τ), l(τ) ≥ 0. Thus by Theorem 2.17, there exists a unique solution ν(·) ∈ AC([0, T ], Pp(Rd)) of

{

∂tν(t) + divx(vτ ν(t)) = 0,

ν(τ) = µτ ,

and which can further be represented explicitly as

ν(t) = Φvτ

(τ,t) ♯µτ

for all times t ∈ [0, T ]. Therein, the maps (Φvτ

(τ,t))t∈[0,T ] ⊂ C0(Rd,Rd) denote the characteristic flow

generated by vτ ∈ V (τ, µτ ) in the sense of Definition 2.16. By standard linearisation techniques (see
e.g. [24, Appendix A]), it can moreover be shown that

Φvτ

(τ,τ+h)(x) = x + hvτ (x) + oτ,x(h)

for all x ∈ R
d and any sufficiently small h > 0, where

∫

Rd |oτ,x(h)|pdµτ (x) = oτ (|h|p). Thence, upon
remarking that

(

Id + hvτ , Φvτ

(τ,τ+h)

)

♯µτ ∈ Γ
(

(Id + hvτ )♯µτ , ν(τ + h)
)

,

we straightforwardly deduce from (2.1) the following distance estimate

Wp

(

ν(τ + h), (Id + hvτ )♯µτ

)

= oτ (h), (3.6)

which holds for every sufficiently small h > 0. Moreover, since ν(τ) = µτ by construction, there exists
by the Filippov estimates of Theorem 2.22 a curve µε(·) ∈ S[0,T ](τ, µτ ) which satisfies

Wp(µε(t), ν(t)) ≤ C ′
T

(
∫ t

τ
distC0(B(0,Rε),Rd)

(

vτ ; V (s, ν(s))
)

ds + Eν(τ, t, Rε)

)

(3.7)

for all times t ∈ [τ, T ], where C ′
T > 0 only depends on the magnitudes of p,Mp(µ0), ‖m(·)‖1, ‖l(·)‖1

and ‖L(·)‖1.
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Step 2 – Distance estimate in the vicinity of τ ∈ T . In order to conclude, we need to show
that the right-hand side of (3.7) is bounded from above by εh + oτ (h) for t = τ + h, when h > 0 is
sufficiently small. Observe first that by our choice of Rε > 0 via (3.5), one has that

Eν(τ, τ + h, Rε) = 2(1 + CT ) ‖m(·)‖L1([τ,τ+h])

(
∫

{x∈Rd s.t. |x|≥Rε/CT −1}

(

1 + |x|p
)

dµτ (x)

)1/p

≤ εh + oτ (h)

(3.8)

for each sufficiently small h > 0, since τ ∈ T is a one-sided Lebesgue point of m(·) ∈ L1([0, T ],R+).
In order to derive an upper-bound on the integral of the mismatch function, recall that by the

definition (3.4) of T ⊂ (0, T ), there exists an integer n ≥ 1 such that τ ∈ Ãn and the set-valued map
t ∈ An ⇒ V (t, µτ ) is lower-semicontinuous. Hence for each ε′ > 0, there exists some δn > 0 for which

distC0(Rd,Rd)

(

vτ ; V (t, µτ )
)

≤ ε′

for L 1-almost every t ∈ [τ, τ + δn] ∩ An, where we recall that (C0(Rd,Rd), dcc(·, ·)) is equipped with
the Fréchet structure described in Definition 2.12. In particular, by choosing ε′ > 0 to be sufficiently
small, it follows from the definition (2.6) of the metric dcc(·, ·) that

distC0(B(0,Rε),Rd)

(

vτ ; V (t, µτ )
)

≤ ε, (3.9)

for L 1-almost every t ∈ [τ, τ +δn]∩An, where (C0(B(0, Rε),Rd), ‖·‖C0(B(0,Rε),Rd)) is endowed with its
usual Banach space structure. As a consequence of Hypothesis (CI)-(iv), there exists a measurable
selection t ∈ [0, T ] 7→ wτ (t) ∈ V (t, ν(t)) satisfying

distC0(B(0,Rε),Rd)

(

wτ (t) ; V (t, µτ )
)

≤ L(t)Wp(µτ , ν(t)),

for L 1-almost every t ∈ [0, T ], which together with (3.9) further yields

distC0(B(0,Rε),Rd)

(

vτ ; V (t, ν(t))
)

≤ ε + L(t)Wp(µτ , ν(t)) (3.10)

for L 1-almost every t ∈ [τ, τ + δn] ∩ An. There now remains to estimate the integral over [τ, τ + h] of
the local mismatch function. The latter can be decomposed into the sum of two terms as

∫ τ+h

τ
distC0(B(0,Rε),Rd)

(

vτ ; V (t, ν(t))
)

dt =

∫

[τ,τ+h]\An

distC0(B(0,Rε),Rd)

(

vτ ; V (t, ν(t))
)

dt

+

∫

[τ,τ+h]∩An

distC0(B(0,Rε),Rd)

(

vτ ; V (t, ν(t))
)

dt.

(3.11)

As a consequence of Hypothesis (CI)-(ii), the first of these two integrals can be estimated as

∫

[τ,τ+h]\An

distC0(B(0,Rε),Rd)

(

vτ ; V (t, ν(t))
)

dt

≤
∫

[τ,τ+h]\An

(

‖vτ ‖C0(B(0,Rε),Rd) + sup
w∈V (t,ν(t))

‖w‖C0(B(0,Rε),Rd)

)

dt

≤ (1 + Rε + CT )

∫

[τ,τ+h]\An

(

m(τ) + m(t)
)

dt

≤ (1 + Rε + CT )

(

2m(τ)L 1([τ, τ + h]\An) +

∫

[τ,τ+h]\An

(

m(t) − m(τ)
)

dt

)

= oτ,ε(h)

(3.12)

where we used the characterisation (3.3) of the one-sided density points of An along with the fact
that τ ∈ T is a one-sided Lebesgue point of m(·) ∈ L1([0, T ],R+), as well as the momentum bound
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of Proposition 2.20. By (3.10), the second term in (3.11) can be bounded from above as

∫

[τ,τ+h]∩An

distC0(B(0,Rε),Rd)

(

vτ ; V (t, ν(t))
)

dt

≤
∫

[τ,τ+h]∩An

(

ε + L(t)Wp(µτ , ν(t))
)

dt

≤ εh + C ′
T

∫ τ+h

τ
L(t)

∫ t

τ
‖vτ ‖C0(B(0,Rε),Rd) ds dt

+ C ′
T

∫ τ+h

τ
2 ‖m(·)‖L1([τ,τ+h])

(
∫

{x s.t. |x|≥Rε/CT −1}

(

1 + |x|
)p

dµτ (x)

)1/p

dt

≤ εh + oτ,ε(h),

(3.13)

where we used the single-valued version of the distance estimate of Theorem 2.22 – see Remark 2.23
– along with the fact that τ ∈ T is a one-sided Lebesgue point of m(·), L(·) ∈ L1([0, T ],R+). By
plugging (3.12) and (3.13) into (3.11) and combining the resulting estimate with (3.7), one then obtains

Wp

(

µε(τ + h), ν(τ + h)
)

≤ εh + oτ,ε(h) (3.14)

for every small h ∈ (0, δn], and upon merging (3.14) with (3.6), one finally has that

Wp

(

µε(τ + hε), (Id + hεvτ )♯µτ

)

≤ εhε,

for hε > 0 taken sufficiently small so that oτ,ε(hε) ≤ εhε, and up to rescaling ε > 0 by a constant.
This concludes the proof.

In the following theorem, we establish a property that is complementary to the one discussed
hereinabove, which ensures the existence of an admissible velocity representing (approximately) the
local behaviour of any given solution of (2.9).

Theorem 3.2 (Infinitesimal behaviour of reachable sets). Let V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) be a
set-valued map with convex images satisfying Hypotheses (CI).

Then, there exists a subset T ⊂ (0, T ) of full L 1-measure such that for every τ ∈ T , all µτ ∈
Pp(Rd), each solution µ(·) ∈ AC([0, T ], Pp(Rd)) of (4.1), any ε > 0 and every sequence hi → 0, there
exists an element vε

τ ∈ V (τ, µτ ) such that

Wp

(

µ(τ + hε
ik

), (Id + hε
ik

vε
τ )♯µτ

)

≤ ε|hε
ik

| (3.15)

along a subsequence hε
ik

→ 0 which depends both on vε
τ ∈ V (τ, µτ ) and ε > 0.

Proof. As in the proof of Theorem 3.1, we start by defining the subset T ⊂ (0, T ) of full L 1-measure
over which (3.15) will hold. To this end, denote by Tm, Tl and TL the sets of one-sided Lebesgue
points of the maps m(·), l(·) and L(·) respectively, and by TH ⊂ (0, T ) the subset of full L 1-measure
over which Hypotheses (CI)-(ii), (iii) and (iv) hold. By Theorem 2.11, there exists for each k ≥ 1 a
compact set Ak ⊂ [0, T ] satisfying L 1([0, T ]\Ak) < 1

2k , and such that the graph

Graph(V )|Ak×Pp(Rd)×C0(Rd,Rd) :=
{

(t, µ, v) ∈ Ak × Pp(Rd) × C0(Rd,Rd) s.t. v ∈ V (t, µ)
}

of the restriction of V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) is closed in Ak × Pp(Rd) × C0(Rd,Rd). For
each n ≥ 1, consider the increasing sequence of L 1-measurable sets (Bn) defined by

Bn :=
{

t ∈ [0, T ] s.t. m(t) + l(t) ≤ n
}

and observe that
L

1([0, T ]\Bn) −→
n→+∞

0.
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By the inner regularity of the Lebesgue measure, one can find an increasing sequence of closed sets
(Cn) ⊂ [0, T ] satisfying Cn ⊂ Bn for each n ≥ 1, as well as

L
1(Cn) ≥

(

1 − 1
T L

1([0, T ]\Bn)
)

L
1(Bn).

Then, for each n ≥ 1, we define the closed set An ⊂ [0, T ] by

An :=

(

⋂

k>n
Ak

)

∩ Cn,

and as in the proof of Theorem 3.1, we denote by Ãn the subset of one-sided density points of An.
Noting that the sequence of measurable sets (Ãn) is increasing by construction, and that is satisfies

L
1([0, T ]\Ãn) = L

1
(

⋃

k>n

(

[0, T ]\Ak
)

∪
(

[0, T ]\Cn

)

)

≤
+∞
∑

k=n+1

L
1([0, T ]\Ak) + T − L

1(Bn) + L
1([0, T ]\Bn)

≤
1

2n
+ 2 L

1([0, T ]\Bn) −→
n→+∞

0,

it follows that the set T ⊂ (0, T ) defined by

T :=

(

⋃

n≥1
Ãn

)

∩ Tm ∩ Tl ∩ TL ∩ TH

has full L 1-measure in [0, T ]. Fix now some τ ∈ T , a measure µτ ∈ Pp(Rd) as well as a solution
µ(·) ∈ S[0,T ](τ, µτ ) of (4.1) and a sequence hi → 0+. Again, choose Rε > 0 in such a way that

2m(τ)(1 + CT )

(
∫

{x∈Rd s.t. |x|≥Rε}

(

1 + |x|p
)

dµτ (x)

)1/p

≤ ε, (3.16)

where CT > 0 is the constant appearing in Proposition 2.20, which only depends on the magnitudes
of p,Mp(µτ ) and ‖m(·)‖1.

By the definition of solutions to (2.9), there exists an L 1-measurable selection t ∈ [0, T ] 7→ v(t) ∈
V (t, µ(t)) ⊂ C0(Rd,Rd) for which

{

∂tµ(t) + div(v(t)µ(t)) = 0,

µ(τ) = µτ .

Besides, it can be deduced from Lemma 2.14 that (t, x) ∈ [0, T ]×R
d 7→ v(t, x) ∈ R

d is a Carathéodory
vector field which satisfies Hypotheses (CE), see for instance [23]. Hence by Theorem 2.17, the curve
µ(·) ∈ AC([0, T ], Pp(Rd)) is given explicitly by

µ(t) = Φv
(τ,t) ♯µτ

for all times t ∈ [0, T ]. Moreover, there exists by construction an integer n ≥ 1 such that τ ∈ Ãn

and the restricted set-valued map t ∈ An ⇒ V (t, µ(t)) has closed graph. Since m(·) and l(·) are both
bounded from above over An, it stems from Hypotheses (CI)-(i), (ii) and (iii) together with Theorem
2.13 that there exists a compact set Kn ⊂ C0(Rd,Rd) such that

V (t, µ(t)) ⊂ Kn

for all times t ∈ An. Thence, it follows e.g. from [9, Proposition 1.4.8] that t ∈ An ⇒ V (t, µ(t)) is
upper-semicontinuous in the sense of Definition 2.5-(ii). In particular, for each ε > 0, there exists a
measurable selection t ∈ [0, T ] 7→ ṽε

τ (t) ∈ V (τ, µτ ) along with some δn > 0 such that

‖v(t) − ṽε
τ (t)‖C0(B(0,Rε),Rd) ≤ ε (3.17)
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for L 1-almost every t ∈ An ∩ [τ, τ + δn], where we leveraged the expression (2.6) of the metric dcc(·, ·).
In what follows, we use the selection ṽε

τ (·) to build an element vε
τ ∈ V (τ, µτ ) satisfying (3.15) along

some subsequence hε
ik

→ 0. We assume without loss of generality that hi → 0+, the general case being
completely similar. By the definition (2.8) of characteristic flows, one has that

Φv
(τ,τ+hi)

(x) = x +

∫ τ+hi

τ
v(t, x)dt +

∫ τ+hi

τ

(

v
(

t, Φv
(τ,t)(x)

)

− v(t, x)

)

dt (3.18)

for all x ∈ R
d. As a consequence of Hypothesis (CE)-(ii), the second integral term in the right-hand

side of (3.18) can be estimated from above for all x ∈ B(0, Rε) as

∣

∣

∣

∣

∫ τ+hi

τ

(

v
(

t, Φv
(τ,t)(x)

)

− v(t, x)

)

dt

∣

∣

∣

∣

≤
∫ τ+hi

τ
l(t)

∣

∣Φv
(τ,t)(x) − x

∣

∣dt

≤ (1 + Rε + CT )

∫ τ+hi

τ
l(t)

(
∫ t

τ
m(s)ds

)

dt

= oτ,ε(hi)

(3.19)

for hi > 0 sufficiently small, since τ ∈ T is a one-sided Lebesgue point of m(·), l(·) ∈ L1([0, T ],R+).
At this stage, one may further decompose the first integral in the right-hand side of (3.18) into

∫ τ+hi

τ
v(t, x)dt =

∫ τ+hi

τ
ṽε

τ (t, x)dt +

∫

[τ,τ+hi]\An

(

v(t, x) − ṽε
τ (t, x)

)

dt

+

∫

[τ,τ+hi]∩An

(

v(t, x) − ṽε
τ (t, x)

)

dt

(3.20)

and use Hypothesis (CI)-(ii) to estimate the second expression in (3.20) as

∣

∣

∣

∣

∫

[τ,τ+hi]\An

(

v(t, x) − ṽε
τ (t, x)

)

dt

∣

∣

∣

∣

≤ 2(1 + Rε + CT )

∫

[τ,τ+hi]\An

m(t)dt = oτ,ε(hi) (3.21)

for all x ∈ B(0, Rε), since τ ∈ T is a one-sided Lebesgue point of m(·) as well as a one-sided density
point of An. Regarding the third term in the right-hand side of (3.20), it follows from (3.17) that

∥

∥

∥

∥

∫

[τ,τ+hi]∩An

(

v(t) − ṽε
τ (t)

)

dt

∥

∥

∥

∥

C0(B(0,Rε),Rd)

≤ εhi, (3.22)

and by merging the estimates of (3.21)-(3.22) with (3.20) while inserting the resulting expression
together with (3.19) inside (3.18), one further obtains that

∣

∣

∣

∣

Φv
(τ,τ+hi)

(x) − x −
∫ τ+hi

τ
ṽε

τ (t, x)dt

∣

∣

∣

∣

≤ εhi + oτ,ε(hi) (3.23)

for all x ∈ B(0, Rε). Observe now that since V (τ, µτ )|B(0,Rε) ⊂ C0(B(0, Rε),Rd) is convex and closed,
there exists by the separation theorem a family of elements (vε

τ (hi)) ⊂ V (τ, µτ ) such that

1

hi

∫ τ+hi

τ
ṽε

τ (t)|B(0,Rε)dt = vε
τ (hi)|B(0,Rε).

Besides, noting that V (τ, µτ ) ⊂ C0(Rd,Rd) is a compact set as a consequence of Hypotheses (CI)-(ii)
and (iii) and Theorem 2.13, there exists some vε

τ ∈ V (τ, µτ ) for which

dcc

(

vε
τ (hε

ik
), vε

τ

)

−→
hε

ik
→ 0+

0

along a subsequence hε
ik

→ 0+. In particular for hε
ik

> 0 sufficiently small, one has that

∥

∥

∥

∥

∫ τ+hε
ik

τ
ṽε

τ (t)dt − hε
ik

vε
τ

∥

∥

∥

∥

C0(B(0,Rε),Rd)

= oτ,ε(h
ε
ik

),
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which together with (3.23) finally yields that
∣

∣

∣

∣

Φv
(τ,τ+hε

ik
)(x) − x − hε

ik
vε

τ (x)

∣

∣

∣

∣

≤ εhε
ik

+ oτ,ε(h
ε
ik

), (3.24)

for all x ∈ B(0, Rε). To conclude the proof, there remains to observe that
(

Φv
(τ,τ+hε

ik
), Id + hε

ik
vε

τ

)

♯µτ ∈ Γ
(

µ(τ + hε
ik

), (Id + hε
ik

vε
τ )♯µτ

)

(3.25)

and to use the standard Wasserstein inequality (2.1) along with the estimate

(
∫

{

x∈Rd s.t. |x|≥Rε

}

∣

∣Φv
(τ,τ+hε

ik
)(x) − x − hε

ik
vε

τ (x)
∣

∣

p
dµτ (x)

)1/p

≤ (1 + CT )
(

‖m(·)‖L1([τ,τ+hε
ik

]) +hε
ik

m(τ)
)

(
∫

{

x∈Rd s.t. |x|≥Rε

}
(1 + |x|)pdµτ (x)

)1/p

≤ εhε
ik

+ oτ,ε(h
ε
ik

)
(3.26)

which holds as a consequence of Hypothesis (CI)-(ii) combined with the equi-integrability bound of
Proposition 2.20, the definition (3.16) of Rε > 0, and the fact that τ ∈ T is a one-sided Lebesgue
point of m(·) ∈ L1([0, T ],R+). Thence, by merging (3.24), (3.25) and (3.26), one finally recovers that

Wp

(

µ(τ + hε
ik

), (Id + hε
ik

vε
τ )♯µτ

)

≤ εhε
ik

whenever hε
ik

> 0 is taken sufficiently small, in particular to ensure that oτ,ε(hε
ik

) = εhε
ik

, and up to
rescaling the free parameter ε > 0 by a fixed constant. The case of an unsigned sequences hi → 0
being similar, this concludes the proof.

Remark 3.3 (More general assumptions for Theorem 3.1 and Theorem 3.2). While the two theorems
displayed in this section have been proven under the Cauchy-Lipschtz regularity assumptions (CI),
we expect them to hold under less stringent requirements, where one only asks for the local uniform
continuity of the dynamics with respect to the space and measure variables in the spirit of [23, Section
4]. For the sake of conciseness, we postpone these refinements to an ulterior work.

Remark 3.4 (Exact differential formulations for compactly supported measures). When the initial
data µτ ∈ Pp(Rd) are compactly supported, the quantitative difference quotients derived in Theorem
3.1 and Theorem 3.2 can be expressed more simply as differential estimates. In this case, following
e.g. [21, Proposition 3], there exists for each r > 0 a radius Rr > 0 such that each µ(·) ∈ S[0,T ](τ, µτ )
satisfies µ(t) ∈ P(B(0, Rr)) for all times t ∈ [0, T ], whenever µτ ∈ P(B(0, r)). Owing to this
uniform support bound, one can check that the error terms oτ,ε(h) in the proofs of both Theorem
3.1 and Theorem 3.2 become independent of ε > 0, which consequently means that their statement
respectively hold for every small h > 0 for the former, and along a subsequence hik

→ 0 for the latter,
which are both independent of ε > 0.

In the statement of Theorem 3.1, recalling that S[0,T ](µτ ) is compact by Proposition 2.21, one can
then let ε → 0+ up to considering a subsequence. Then, taking the limit as h → 0+, one recovers that
for every vτ ∈ V (τ, µτ ), there exists a solution µ(·) ∈ AC([0, T ], Pp(Rd)) of (4.1) such that

lim
h→0+

1
hWp

(

µ(τ + h), (Id + hvτ )♯µτ

)

= 0.

Similarly for Theorem 3.2, upon observing that under Hypotheses (CI) the set V (τ, µτ ) is compact
for the topology of local uniform convergence by the Ascoli-Arzelà theorem, one can let ε → 0+ in
conjunction with Lemma 2.15 to obtain that, for each solution µ(·) ∈ AC([0, T ], Pp(Rd)) of (4.1) and
every sequence hi → 0, there exists an element vτ ∈ V (τ, µτ ) such that

lim
hik

→0

1
|hik

|Wp

(

µ(τ + hik
), (Id + hik

vτ )♯µτ

)

= 0,

along a subsequence hik
→ 0.
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4 Viability and invariance theorems for proper constraints sets

In this section, we discuss several necessary and sufficient conditions for the viability and invariance
of general constraint tubes Q : [0, T ] ⇒ Pp(Rd) under the action of the dynamics







∂tµ(t) ∈ −divx

(

V (t, µ(t))µ(t)
)

,

µ(τ) = µτ .
(4.1)

In this context, we will always assume that V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) is a set-valued map
satisfying Hypotheses (CI) for some p ∈ (1, +∞), and that (τ, µτ ) ∈ [0, T ] × Pp(Rd) represent a free
initial condition obeying the constraint µτ ∈ Q(τ).

Definition 4.1 (Viability and invariance). We say that the tube Q : [0, T ] ⇒ Pp(Rd) is viable for
(4.1) if for every τ ∈ [0, T ] and any µτ ∈ Q(τ), there exists a solution µ(·) ∈ S[τ,T ](τ, µτ ) of the
Cauchy problem such that

µ(t) ∈ Q(t)

for all times t ∈ [τ, T ]. Similarly, we say Q : [0, T ] ⇒ Pp(Rd) is invariant for (4.1) if all the solution
curves µ(·) ∈ S[τ,T ](τ, µτ ) satisfy µ(t) ∈ Q(t) for all times t ∈ [τ, T ].

In what follows, we split the exposition of our main results into two separate parts, starting in
Section 4.1 with the simpler case in which the constraints sets are stationary, and treating then the
more involved situation in which they are time-dependent in Section 4.2.

4.1 The case of stationary constraints

We start our discussion on viability and invariance under the action of continuity inclusions by consid-
ering the case in which the constraints are represented by a fixed and proper subset Q ⊂ Pp(Rd). In
this context, the crucial geometric object which allows to characterise the viability or the invariance
of the latter is its contingent cone, whose definition is inspired by [12] and presented below.

Definition 4.2 (Contingent cone in Wasserstein spaces). Given a closed set Q ⊂ Pp(Rd), we define
its contingent cone at some µ ∈ Q by

TQ(µ) :=

{

ξ ∈ Lp(Rd,Rd; µ) s.t. lim inf
h→0+

1
hdistPp(Rd)

(

(Id + hξ)♯µ ;Q
)

= 0

}

.

The latter can also be characterised as

TQ(µ) =

{

ξ ∈ Lp(Rd,Rd; µ) s.t. there exists a sequence hi → 0+ for which

distPp(Rd)

(

(Id + hiξ)♯µ ;Q
)

= o(hi)

}

.

Remark 4.3 (On the choice of defining contingent cones using Borel maps). It is worth noting that
eventhough Lp(Rd,Rd; µ) is merely a seminormed space for any µ ∈ Pp(Rd), the contingent cones
introduced in Definition 4.2 are closed for the convergence induced by the pseudometric ‖·‖Lp(Rd,Rd; µ).
Indeed, while the limit of a sequence (ξn) ⊂ TQ(µ) should be a µ-measurable map (see e.g. [4, Definition
1.12]) by construction, the latter always coincides with a Borel function outside of a Borel set with zero
µ-measure by [15, Proposition 2.1.11]. In what ensues, the closures of the convex hulls of contingent
cones will therefore always be understood in with respect to the pseudometric ‖·‖Lp(Rd,Rd; µ).

By leveraging this notion, we are able to prove the following sufficient viability conditions for
proper time-independent constraints sets, which is one of our main contributions. We chose to start
by presenting this latter separately, as it thoroughly illustrates the main key ideas supporting the
more general results of Section 4.2, but in a simpler setting.
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Theorem 4.4 (Sufficient viability conditions for stationary constraints). Suppose that p ∈ (1, +∞),
let V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) be a set-valued map with convex images satisfying Hypotheses
(CI) and Q ⊂ Pp(Rd) be a proper set such that

V (t, ν) ∩ coTQ(ν) 6= ∅ (4.2)

for L 1-almost every t ∈ [0, T ] and each ν ∈ Q. Then, Q is viable for (4.1).

In the proof of this theorem and several others in the manuscript, we will extensively use the
following regularity property of the reachable sets.

Lemma 4.5 (Regularity in time of the reachable sets). If V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) is a
set-valued map with convex images satisfying Hypotheses (CI), then the reachable sets t ∈ [τ, T ] ⇒
R(τ,t)(µτ ) ⊂ Pp(Rd) are absolutely continuous in the Hausdorff metric for all (τ, µτ ) ∈ [0, T ]×Pp(Rd).

Proof. Let t1, t2 ∈ [τ, T ] be such that τ ≤ t1 < t2 ≤ T , and observe that for each µt2 ∈ R(τ,t2)(µτ ),
there exists some µt1 ∈ R(τ,t1)(µτ ) such that µt2 ∈ R(t1,t2)(µt1). Thence, it follows from the regularity
estimate (2.13) of Proposition 2.20 that

distPp(Rd)

(

µt2 ;R(τ,t1)(µτ )
)

≤ Wp(µt2 , µt1) ≤ (1 + CT )

∫ t2

t1

m(s)ds

for some constant CT > 0 that only depends on the magnitudes of p,M(µτ ) and ‖m(·)‖1. Analogously,
it can be shown that

distPp(Rd)

(

µt1 ;R(τ,t2)(µτ )
)

≤ (1 + CT )

∫ t2

t1

m(s)ds,

for every µt1 ∈ R(τ,t1)(µτ ). By combining both estimates while remarking that

dH

(

R(τ,t1)(µτ ),R(τ,t2)(µτ )
)

= max

{

sup
{

distPp(Rd)

(

µt1 ;R(τ,t2)(µτ )
)

s.t. µt1 ∈ R(τ,t1)(µτ )
}

,

sup
{

distPp(Rd)

(

µt2 ;R(τ,t1)(µτ )
)

s.t. µt2 ∈ R(τ,t2)(µτ )
}

}

,

it then holds that

dH

(

R(τ,t1)(µτ ),R(τ,t2)(µτ )
)

≤ (1 + CT )

∫ t2

t1

m(s)ds,

which concludes the proof.

This technical result being established, we can move on to the proof of Theorem 4.4.

Proof of Theorem 4.4. In what follows, we assume without loss of generality that (τ, µτ ) = (0, µ0) in
(4.1) for some µ0 ∈ Q. Our goal will be to show that the function measuring the distance between Q

and the reachable sets, defined by

g(t) := distPp(Rd)

(

R(0,t)(µ
0) ;Q

)

for all times t ∈ [0, T ], is identically equal to zero. By Proposition 2.8 and Lemma 4.5, it holds
that g(·) ∈ AC([0, T ],R+), and we denote by D ⊂ (0, T ) the set of full L 1-measure on which it is
differentiable. Note also that the set ∪t∈[0,T ]R(0,t)(µ

0) ⊂ Pp(Rd) is compact by Proposition 2.21 and
Lemma 4.5. Since µ0 ∈ Q, it is possible to choose a radius R > 0 such that

distPp(Rd)

(

R(0,t)(µ
0) ; ∂BPp(Rd)(µ

0, R)
)

≥ distPp(Rd)

(

R(0,t)(µ
0) ;Q

)

+ 1 (4.3)

for all times t ∈ [0, T ], by following e.g. the arguments detailed in Appendix B. Besides, one has that
QR := Q ∩ BPp(Rd)(µ

0, R) is nonempty as well as compact by construction set, and such that

g(t) = distPp(Rd)

(

R(0,t)(µ
0) ;QR

)

for all times t ∈ [0, T ].
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Step 1 – A Grönwall estimate on the distance function. In this first step, we show by
contradiction that the map g : [0, T ] → R+ is identically equal to zero. Noting that g(0) = 0, there
should otherwise exist a time t ∈ [0, T ) and some δ > 0 such that g(t) = 0 and g(τ) > 0 for τ ∈ (t, t+δ).

Let T ⊂ (0, T ) be the subset of L 1-measure over which the statement of Theorem 3.1 and
Hypotheses (CI)-(ii), (iii) and (iv) hold, and fix an element τ ∈ (t, t + δ) ∩ T ∩ D . Since R(0,τ)(µ

0)
and QR are both compact, one has that

g(τ) = Wp(µτ , ντ ) (4.4)

for some µτ ∈ R(0,τ)(µ
0) and ντ ∈ QR. Moreover, recalling that R > 0 is defined in such a way that

(4.3) is satisfied, it necessarily holds

ντ ∈ Q ∩ int
(

BPp(Rd)(µ
0, R)

)

,

which implies in particular that TQR
(ντ ) = TQ(ν). Hence, by using the definition of contingent cones

provided in Definition 4.2, there exists for each ξτ ∈ TQ(ντ ) a sequence hi → 0+ such that

Wp

(

µτ , (Id + hiξτ )♯ντ

)

≥ distPp(Rd)

(

µτ ;QR
)

+ oτ (hi)

= Wp(µτ , ντ ) + oτ (hi).
(4.5)

Besides, by the directional superdifferentiability property of Proposition 2.3 above, one further has

1
pW p

p

(

µτ , (Id + hiξτ )♯ντ

)

− 1
pW p

p (µτ , ντ ) ≤ hi

∫

R2d

〈

ξτ (y), jp(y − x)
〉

dγτ (x, y) + oτ (hi) (4.6)

for any small hi > 0 and every γτ ∈ Γo(µτ , ντ ). Hence, by combining the estimates of (4.5) and (4.6),
dividing the resulting expression by hi > 0 and letting hi → 0+, one obtains the following inequality

∫

R2d

〈

ξτ (y), jp(x − y)
〉

dγτ (x, y) ≤ 0, (4.7)

which holds for every ξτ ∈ TQ(ντ ) and each γτ ∈ Γo(µτ , ντ ).
Observe now that by Theorem 3.1, there exists for any ε > 0 and every vτ ∈ V (τ, µτ ) a curve of

measures µε(·) ∈ S[0,T ](τ, µτ ) such that

Wp

(

µε(τ + h), (Id + hvτ )♯µτ

)

≤ εh, (4.8)

whenever h > 0 is sufficiently small. Furthermore, since µε(τ + h) ∈ R(τ,τ+h)(µτ ) ⊂ R(0,τ+h)(µ
0), one

can estimate from above the forward difference quotient of 1
pgp(·) at τ ∈ (t, t + δ) ∩ T ∩ D as

1
pgp(τ + h) − 1

pgp(τ) ≤ 1
pW p

p

(

µε(τ + h), ντ
)

− 1
pW p

p (µτ , ντ ) (4.9)

Besides, assuming without loss of generality that ε, h ∈ (0, 1] and noting that vτ ∈ Lp(Rd,Rd; µτ ) by
Hypothesis (CI)-(ii), it can be deduced from (4.8) along with the estimates of Lemma A.1 below that

1
pW p

p

(

µε(τ + h), ντ
)

− 1
pW p

p

(

(Id + hvτ )♯µτ , ντ

)

≤ W p−1
p

(

(Id + hvτ )♯µτ , ντ

)

(

Wp
(

µε(τ + h), ντ
)

− Wp

(

(Id + hvτ )♯µτ , ντ

)

)

+ Cp

∣

∣

∣Wp
(

µε(τ + h), ντ
)

− Wp

(

(Id + hvτ )♯µτ , ντ

)
∣

∣

∣

min{p,2}

≤ C ′
p

(

Wp

(

µε(τ + h), (Id + hvτ )♯µτ

)

+ Wp

(

µε(τ + h), (Id + hvτ )♯µτ

)min{p,2}
)

≤ C ′
pεh + oτ,ε(h)

(4.10)
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for h > 0 sufficiently small, and where Cp, C ′
p > 0 only depend on the magnitudes of p,M(µτ ),M(ντ ),

‖m(·)‖1 and ‖vτ ‖Lp(Rd,Rd; µτ ). Thus, by merging the estimate of (4.10) with (4.9), one further obtains
up to rescaling ε > 0 by a positive constant that

1
pgp(τ + h) − 1

pgp(τ) ≤ 1
pW p

p

(

(Id + hvτ )♯µτ , ντ

)

− 1
pW p

p (µτ , ντ ) + εh + oτ (h) (4.11)

Besides, it follows again from the directional superdifferentiability property of Proposition 2.3 that

1
pW p

p

(

(Id + hvτ )♯µτ , ντ

)

− 1
pW p

p (µτ , ντ ) ≤ h

∫

R2d

〈

vτ (x), jp(x − y)
〉

dγτ (x, y) + oτ,ε(h) (4.12)

for each optimal transport plan γτ ∈ Γo(µτ , ντ ). Therefore, by combining the estimates of (4.11) and
(4.12), dividing the resulting expression by h > and then letting h → 0+ while recalling that 1

pgp(·) is
differentiable at τ ∈ D , we recover the following differential inequality

gp−1(τ)ġ(τ) ≤
∫

R2d

〈

vτ (x), jp(x − y)
〉

dγτ (x, y) (4.13)

that holds at every τ ∈ (t, t + δ) ∩ T ∩ D , and where we used the fact that ε > 0 was arbitrary.
Our goal in what follows is to refine the differential estimate derived in (4.13). By inserting suitable

crossed terms in the latter expression, one can easily check that

gp−1(τ)ġ(τ) ≤
∫

R2d

〈

vτ (x) − vτ (y), jp(x − y)
〉

dγτ (x, y)

+

∫

R2d

〈

vτ (y) − ξτ (y), jp(x − y)
〉

dγτ (x, y)

+

∫

R2d

〈

ξτ (y), jp(x − y)
〉

dγτ (x, y)

≤ l(τ)gp(τ) +

∫

R2d

〈

vτ (y) − ξτ (y), jp(x − y)
〉

dγτ (x, y)

(4.14)

by resorting to (4.7) and Hypothesis (CI)-(iii), as well as to the elementary observation that

∫

R2d
|x − y||jp(x − y)|dγτ (x, y) =

∫

R2d
|x − y|pdγτ (x, y) = gp(τ),

which follows from (4.4) together with the fact that γτ ∈ Γo(µτ , ντ ). Recall now that as a consequence
of Hypothesis (CI)-(iv), there exists for each wτ ∈ V (τ, ντ ) an element vτ ∈ V (τ, µτ ) such that

dsup(vτ , wτ ) ≤ L(τ)Wp(µτ , ντ ).

This, together with the fact that the estimates in (4.14) hold for every vτ ∈ V (τ, µτ ), further yields

gp−1(τ)ġ(τ) ≤
(

l(τ) + L(τ)
)

gp(τ) +

∫

R2d

〈

wτ (y) − ξτ (y), jp(x − y)
〉

dγτ (x, y) (4.15)

for all times τ ∈ (t, t+δ)∩T ∩D , each ξτ ∈ TQ(ντ ) and every wτ ∈ V (τ, ντ ). Noting that the right-hand
side of the previous expression is linear and strongly continuous with respect to ξτ ∈ Lp(Rd,Rd; ντ ),
one has that (4.15) also holds for all ξτ ∈ coTQ(ντ ). Thus, by choosing

ξτ = wτ ∈ V (τ, ντ ) ∩ coTQ(ντ ),

where the intersection is nonempty as a consequence of our standing assumption (4.2), one finally has

ġ(τ) ≤
(

l(τ) + L(τ)
)

g(τ)

for L 1-almost every τ ∈ (t, t + δ). As we assumed that g(t) = 0, a direct application of Grönwall’s
lemma yields that g(τ) = 0 for all times τ ∈ (t, t + δ), thus leading to a contradiction.
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Step 2 – Existence of a viable curve. In the first step of this proof, we have shown that

g(t) = distPp(Rd)

(

R(0,t)(µ
0) ;QR

)

= 0, (4.16)

for all times t ∈ [0, T ], which equivalently means that R(0,t)(µ
0) ∩ Q 6= ∅. Given an integer n ≥ 1,

consider the following dyadic subdivision [0, T ] := ∪2n−1
k=0 [tk, tk+1] of the time interval, wherein tk :=

T k/2n for k ∈ {0, . . . , 2n − 1}. By inductively leveraging (4.16) along with the semigroup property
(2.10) of the reachable sets, we can build for each n ≥ 1 a curve µn(·) ∈ S[0,T ](0, µ0) that is such that

µn(tk) ∈ Q, (4.17)

for each k ∈ {0, . . . , 2n − 1}. At this stage recall that, as a consequence of Proposition 2.21, the
solution set S[0,T ](0, µ0) is compact for the topology of uniform convergence, so that

sup
t∈[0,T ]

Wp(µnj
(t), µ(t)) −→

nj→+∞
0

for some µ(·) ∈ S[0,T ](µ
0), along a subsequence (µnj

(·)) ⊂ AC([0, T ], Pp(Rd)). In particular, it follows
from (4.17) that

µ
( kT

2m

)

∈ Q,

for every integer m ≥ 1 and each k ∈ {0, . . . , 2m − 1}. From there, we conclude by a classical density
argument that µ(t) ∈ Q for all times t ∈ [0, T ].

To complement to the sufficient viability conditions stated in Theorem 4.4, we describe in the fol-
lowing result a necessary viability condition which also involves the contingent cone to the constraints.

Theorem 4.6 (Necessary viability conditions for stationary constraints). Suppose that p ∈ (1, +∞),
let V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) be a set-valued map with convex images satisfying Hypotheses
(CI) and Q ⊂ Pp(Rd) be a proper set. Then, if Q is viable for (4.1), it necessarily holds that

V (t, ν) ∩ TQ(ν) 6= ∅

for L 1-almost every t ∈ [0, T ] and each ν ∈ Q.

Proof. This result is a particular case of Theorem 4.8 whose proof is detailed in Section 4.2 below.

Lastly, we end this section by providing necessary and sufficient conditions for the invariance of a
stationary constraints set, based on a geometric condition that is stronger than that of Theorem 4.4.

Theorem 4.7 (Invariance conditions for stationary constraint sets). Under the assumptions of The-
orem 4.4, the set Q ⊂ Pp(Rd) is invariant for (4.1) if and only if

V (t, ν) ⊂ coTQ(ν)

for L 1-almost every t ∈ [0, T ] and all ν ∈ Q.

Proof. This result is a particular case of Theorem 4.8 and Theorem 4.12, whose proofs are discussed
in great details in Section 4.2 below.

4.2 The case of time-dependent constraints

As mentioned hereinabove, the viability and invariance results exposed in Theorem 4.4, Theorem 4.6
and Theorem 4.7 can be generalised to time-dependent constraint tubes Q : [0, T ] ⇒ Pp(Rd). In this
setting, the geometric objects which support these statements are the contingent cone

TGraph(Q)(τ, µ) :=

{

(ζ, ξ) ∈ R × Lp(Rd,Rd; µ) s.t.

lim inf
h→0+

1
hdist[0,T ]×Pp(Rd)

(

(

τ + hζ, (Id + hξ)♯µ
)

; Graph(Q)
)

= 0

}
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to the graph of the constraints, defined for each (τ, µ) ∈ Graph(Q). By a simple adaptation of [9,
Proposition 5.1.4] following [12, Sections 2.3 and 2.4], this set can be equivalently characterised as

TGraph(Q)(τ, µ) =

{

(ζ, ξ) ∈ R × Lp(Rd,Rd; µ) s.t. there exist sequences hi → 0+ and ζi → ζ for

which distPp(Rd)

(

(Id + hiξ)♯µ ;Q(τ + hiζi)
)

= oτ (hi)

}

.

(4.18)
In the following theorem, we start our investigations by a discussion centered on necessary viability
and invariance conditions, as these latter do not depend on the regularity of the constraints tubes.

Theorem 4.8 (Necessary viability, invariance and regularity conditions for constraints tubes). Sup-
pose that p ∈ (1, +∞), let V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) be a set-valued map with convex images
satisfying Hypotheses (CI) and Q : [0, T ] ⇒ Pp(Rd) be a constraints tube with proper images.

Then if Q : [0, T ] ⇒ Pp(Rd) is viable for (4.1), it must be left absolutely continuous and satisfy

(

{1} × V (t, ν)
)

∩ TGraph(Q)(t, ν) 6= ∅ (4.19)

for L 1-almost every t ∈ [0, T ] and each ν ∈ Q(t). Analogously if Q : [0, T ] ⇒ Pp(Rd) is invariant
for (4.1), it necessarily holds that

(

{1} × V (t, ν)
)

⊂ TGraph(Q)(t, ν) (4.20)

for L 1-almost every t ∈ [0, T ] and each ν ∈ Q(t).

Proof. Let us start by showing the necessity of (4.19) when Q : [0, T ] ⇒ Pp(Rd) is viable for (4.1).
Let T ⊂ (0, T ) be the set of full L 1-measure over which the statements of Theorem 3.1 and Theorem
3.2 as well as Hypotheses (CI)-(ii), (iii) and (iv) hold. Fix some τ ∈ T , an element µτ ∈ Q(τ), a
sequence hi → 0+ and a viable curve µ(·) ∈ S[τ,T ](τ, µτ ). By Theorem 3.2, there exists for each ε > 0
a velocity vε

τ ∈ V (τ, µτ ) such that

Wp

(

µε(τ + hε
ik

), (Id + hε
ik

vε
τ )♯µ(τ)

)

≤ εhε
ik

along an adequate subsequence hε
ik

→ 0+. Observe that by Theorem 2.13 and our choice of τ ∈ T ,

the set V (τ, µτ ) ⊂ C0(Rd,Rd) is compact for the topology induced by dcc(·, ·). In particular for each
sequence εn → 0+, there exists a subsequence that we do not relabel and some vτ ∈ V (τ, µτ ) for which

‖vτ − vεn
τ ‖Lp(Rd,Rd; µτ ) −→

εn→0+
0,

where we used Lemma 2.15. Note that for every εn > 0, one can choose δn := hεn
ik

in such a way that
oτ,εn(hεn

ik
) ≤ εnhεn

ik
. Thus, recalling that µ(t) ∈ Q(t) for all times t ∈ [τ, T ], one further has

distPp(Rd)

(

(Id + δnvτ )♯µτ ;Q(τ + δn)
)

≤ distPp(Rd)

(

(Id + δnvεn
τ )♯µτ ;Q(τ + δn)

)

+ Wp

(

(Id + δnvεn
τ )♯µτ , (Id + δnvτ )♯µτ

)

≤ Wp

(

µ(τ + δn), (Id + δnvεn
τ )♯µτ

)

+ δn ‖vτ − vεn
τ ‖Lp(Rd,Rd; µτ )

≤ δn

(

2εn+ ‖vτ − vεn
τ ‖Lp(Rd,Rd; µτ )

)

which in turn implies that

lim inf
δn→0+

1
δn

distPp(Rd)

(

(Id + δnvτ )♯µτ ;Q(τ + δn)
)

= 0.

By (4.18), this is tantamount to the fact that (1, vτ ) ∈ TGraph(Q)(τ, µτ ), and thus yields (4.19).
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Suppose now that Q : [0, T ] ⇒ Pp(Rd) is invariant for (4.1), fix an arbitrary vτ ∈ V (τ, µτ ), and
observe that by Theorem 3.1, there exists for every ε > 0 a curve µε(·) ∈ S[τ,T ](τ, µτ ) such that

Wp

(

µε(τ + hε), (Id + hεvτ )♯µτ

)

≤ εhε

whenever hε > 0 is sufficiently small. This estimate combined with the fact that µε(t) ∈ Q(t) for all
times t ∈ [τ, T ], owing to the invariance of the tube, implies then that

distPp(Rd)

(

(Id + hεvτ )♯µτ ;Q(τ + h)
)

≤ Wp

(

µε(τ + hε), (Id + hεvτ )♯µτ

)

≤ εhε.

Thus, dividing by h > 0 and letting h → 0+ while recalling that ε > 0 is arbitrary, we finally obtain

lim inf
h→0+

1
hdistPp(Rd)

(

(Id + hvτ )♯µτ ;Q(τ + h)
)

= 0,

which equivalently means that (1, vτ ) ∈ TGraph(Q)(τ, µτ ) for all vτ ∈ V (τ, µτ ), and thus yields (4.20).

Let us finally prove that Q : [0, T ] ⇒ Pp(Rd) is left absolutely continuous. Fix µ ∈ Pp(Rd) and
R > 0 in such a way that Q(τ) ∩ BPp(Rd)(µ, R) 6= ∅. Then, since Q : [0, T ] ⇒ Pp(Rd) is viable,
there exists for all τ ∈ [0, T ] and each µτ ∈ Q(τ) ∩BPp(Rd)(µ, R) a curve µ(·) ∈ S[τ,T ](τ, µτ ) such that
µ(t) ∈ Q(t) for all times t ∈ [τ, T ]. In particular by Proposition 2.20, there exists Cµ,R > 0 depending
only on the magnitudes of p,Mp(µ), R and ‖m(·)‖1 such that

Wp(µτ , µ(t)) ≤ (1 + Cµ,R)

∫ t

τ
m(s)ds

for all times t ∈ [τ, T ]. Thus, noting by construction that, for any 0 ≤ τ ≤ t ≤ T , there holds

∆µ,R(Q(τ),Q(t)) ≤ sup

{

distPp(Rd)

(

µτ ;Q(t)
)

s.t. µτ ∈ Q(τ) ∩ BPp(Rd)(µ, R)

}

≤ sup

{

Wp(µτ , µ(t)) s.t. µτ ∈ Q(τ) ∩ BPp(Rd)(µ, R) and µ(·) ∈ S[τ,T ](τ, µτ )

satisfies µ(t) ∈ Q(t)

}

≤ (1 + Cµ,R)

∫ t

τ
m(s)ds,

we obtain that Q : [0, T ] ⇒ Pp(Rd) is left absolutely continuous.

Remark 4.9 (On the role of left absolute continuity). It is worth noting that in the previous theorem,
we have shown that being viable for (4.1) under Hypotheses (CI) entails the left absolute continuity of
the constraint tube. This supports the fact that this regularity framework – for which we provide suf-
ficient viability conditions in Theorem 4.12 – appears quite naturally when studying Cauchy-Lipschitz
continuity inclusions with state-constraints.

In the next theorem, we provide sufficient viability conditions for absolutely continuous constraint
tubes, which can be seen as the natural counterparts of Theorem 4.4 in the time-dependent setting.

Theorem 4.10 (Sufficient viability conditions for absolutely continuous constraints tubes). Suppose
that p ∈ (1, +∞), let V : [0, T ] × Pp(Rd) ⇒ C0(Rd,Rd) be a set-valued map with convex images
satisfying Hypotheses (CI) and Q : [0, T ] ⇒ Pp(Rd) be an absolutely continuous tube with proper
images such that

({1} × V (t, ν)) ∩ coTGraph(Q)(t, ν) 6= ∅ (4.21)

for L 1-almost every t ∈ [0, T ] and all ν ∈ Q(t). Then, Q : [0, T ] ⇒ Pp(Rd) is viable for (4.1).
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Proof. As in the proof of Theorem 4.4, we assume without loss of generality that (τ, µτ ) = (0, µ0) for
some µ0 ∈ Q(0). From there on, the arguments will essentially follow the same conceptual line as
those of Theorem 4.4, in which one aims at showing that the distance function, defined by

g(t) := distPp(Rd)

(

R(0,t)(µ
0) ;Q(t)

)

for all times t ∈ [0, T ], is identically equal to 0.
In what follows, we let T ⊂ (0, T ) be the set of full L 1-measure on which the statements of

Theorem 3.1 and Theorem 3.2 as well as Hypotheses (CI)-(ii), (iii) as well as (iv) hold. Observing
that g(·) ∈ AC([0, T ],R+) by Proposition 2.8 and Lemma 4.5 , we also denote by D ⊂ (0, T ) the
subset of full L 1-measure where it is differentiable. Moreover, owing to the absolute continuity of
Q : [0, T ] ⇒ Pp(Rd) and to the fact that ∪t∈[0,T ]R(0,t)(µ

0) is compact by Proposition 2.21 and Lemma
4.5, one can find some radius R > 0 satisfying

distPp(Rd)

(

R(0,t)(µ
0) ; ∂BPp(Rd)(µ0, R)

)

≥ distPp(Rd)

(

R(0,t)(µ
0) ;Q(t)

)

+ 1 (4.22)

for all times t ∈ [0, T ], by following e.g. the arguments detailed in Appendix B below. Note that by
construction, the sets QR(t) := Q(t) ∩ BPp(Rd)(µ

0, R) are nonempty and such that

g(t) = distPp(Rd)

(

R(0,t)(µ
0) ;QR(t)

)

for all times t ∈ [0, T ].

Step 1 – Local variations of the distance along contingent directions. Suppose by contra-
diction that there exist some t ∈ [0, T ) and a small δ > 0 such that g(t) = 0 and g(τ) > 0 for all times
τ ∈ (t, t + δ), and fix an arbitrary element τ ∈ (t, t + δ) ∩ T ∩ D . Since R(0,τ)(µ

0) and QR(τ) are
both compact since Q(τ) is proper, one has that

g(τ) = Wp(µτ , ντ )

for some µτ ∈ R(0,τ)(µ
0) and ντ ∈ QR(τ). By (4.18) along with the property (4.22) imposed on R > 0,

there exists for every (ζτ , ξτ ) ∈ TGraph(Q)(τ, ντ ) two sequences hi → 0+ and ζ i
τ → ζτ for which

distPp(Rd)

(

(Id + hiξτ )♯ντ ;QR(τ + hiζ
i
τ )

)

= oτ (hi).

This allows us to estimate the variation of gp(·) around τ as

1
pgp(τ + hiζ

i
τ ) − 1

pgp(τ) = 1
pdistp

Pp(Rd)

(

R(0,τ+hiζ i
τ )(µ

0) ;QR(τ + hiζ
i
τ )

)

− 1
pW p

p (µτ , ντ )

≤ 1
pdistp

Pp(Rd)

(

R(0,τ+hiζ i
τ )(µ

0) ; (Id + hiξτ )♯ντ

)

− 1
pW p

p (µτ , ντ ) + oτ (hi)

(4.23)
for any hi > 0 that is sufficiently small.

In order to extract further information from (4.23), we need to discriminate between two possible
scenarios depending on the asymptotic behaviour of the sequence (ζi

τ ). If there exists a subsequence
ik → +∞ for which ζ ik

τ ≥ 0, it follows from Theorem 3.1 that for every ε > 0 and any vτ ∈ V (τ, µτ ),
there exists a curve µε(·) ∈ S[τ,T ](τ, µτ ) such that

Wp

(

µε(τ + hik
ζ ik

τ ), (Id + hik
ζ ik

τ vτ )♯µτ

)

≤ εhik
ζ ik

τ . (4.24)

On the other hand, if ζi
τ < 0 for all large i ≥ 1, we can apply Theorem 3.2 to obtain for each curve

µ(·) ∈ S[0,T ](τ, µτ ) the existence of an element vε
τ ∈ V (τ, µτ ) and of a subsequence ik → +∞, both

depending on ε > 0, for which

Wp

(

µ(τ + hik
ζ ik

τ ),
(

Id + hik
ζ ik

τ vε
τ

)

♯
µτ

)

≤ εhik
|ζ ik

τ |. (4.25)
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Thus by combining (4.24) and (4.25), one may assert that there exist a curve µε(·) ∈ S[0,T ](τ, µτ ) and
subsequences hik

→ 0+ and ζ ik
τ → ζτ all possibly depending on ε > 0 such that

Wp

(

µε(τ + hik
ζ ik

τ ), (Id + hik
ζ ik

τ vε
τ )♯µτ

)

≤ εhik
|ζ ik

τ | for

{

every vε
τ ∈ V (τ, µτ ) if ζik

τ ≥ 0,

some vε
τ ∈ V (τ, µτ ) if ζik

τ < 0,
(4.26)

for ik ≥ 1 large enough. Furthermore, observing that

µε(τ + hik
ζ ik

τ ) ∈ R
(0,τ+hik

ζ
ik

τ )
(µ0)

by construction, one may recast the estimate of (4.23) as

1
pgp(τ + hik

ζ ik
τ ) − 1

pgp(τ) ≤ 1
pW p

p

(

µε(τ + hik
ζ ik

τ ), (Id + hik
ξτ )♯ντ

)

− 1
pW p

p (µτ , ντ ) + εhik
|ζ ik

τ | + oτ,ε(hik
).

(4.27)

Noting that vτ ∈ Lp(Rd,Rd; µτ ) by Hypothesis (CI)-(ii) while ξτ ∈ Lp(Rd,Rd; ντ ) by definition and
assuming without loss of generality that ε ∈ (0, 1] and hik

∈ (0, 1], one can reproduce the estimates
of (4.10) in the proof of Theorem 4.4 – which are based on the quantitative p-norm inequalities of
Lemma A.1 below – and combine these latter with (4.26) to recover that

1
pW p

p

(

µε(τ + hik
ζ ik

τ ), (Id + hik
ξτ )♯ντ

)

− 1
pW p

p

(

(Id + hik
ζ ik

τ vε
τ )♯µτ , (Id + hik

ξτ )♯ντ

)

≤ εhik
+ oτ,ε(hik

)

(4.28)
for hik

> 0 small enough, and up to rescaling ε > 0 by a constant since the sequence (ζ ik
τ ) is bounded.

Whence, by combining (4.27) and (4.28), it holds that

1
pgp(τ + hik

ζ ik
τ ) − 1

pgp(τ) ≤ 1
pW p

p

(

(Id + hik
ζ ik

τ vε
τ )♯µτ , (Id + hik

ξτ )♯ντ

)

− 1
pW p

p (µτ , ντ ) + εhik
+ oτ,ε(hik

),

(4.29)
for ik ≥ 1 sufficiently large, with vε

τ ∈ V (τ, µτ ) being either fixed or arbitrary depending on (ζ ik
τ ). At

this stage, one can apply the joint superdifferentiability inequality of Proposition 2.3 to obtain

1
pW p

p

(

(Id + hik
ζ ik

τ vε
τ )♯µτ , (Id+hik

ξτ )♯ντ

)

− 1
pW p

p (µτ , ντ )

≤ hik

∫

R2d

〈

ζ ik
τ vε

τ (x) − ξτ (y), jp(x − y)
〉

dγτ (x, y) + oτ,ε(hik
),

(4.30)

for any hik
> 0 sufficiently small and each γτ ∈ Γo(µτ , ντ ), where we used the analytical expressions

(2.3)-(2.4) of the remainder term, along with the fact that (ζ ik
τ ) is bounded. In turn, by combining

(4.29) and (4.30), letting ik → +∞ and recalling that 1
pgp(·) is differentiable at τ ∈ D , one finally gets

ζτ gp−1(τ)ġ(τ) ≤
∫

R2d

〈

ζτ vε
τ (x)−ξτ (y), jp(x−y)

〉

dγτ (x, y) + ε for

{

every vε
τ ∈ V (τ, µτ ) if ζτ ≥ 0,

some vε
τ ∈ V (τ, µτ ) if ζτ < 0,

(4.31)
where (ζτ , ξτ ) ∈ TGraph(Q)(τ, ντ ) and γτ ∈ Γo(µτ , ντ ) are arbitrary while vε

τ ∈ V (τ, µτ ) may possibly
depend on ζτ ∈ R as well as on the free parameter ε > 0.

Step 2 – Convexification of the contingent directions and viability. In this second step, we
show how one can convexify the contingent directions in (4.31) and then prove the existence of viable
curves. With this goal in mind, we draw inspiration from [60, Lemma 4.9] and consider arbitrary
collections of N ≥ 1 elements

(ζ j
τ , ξ j

τ ) ∈ TGraph(Q)(τ, ντ ) and αj ∈ [0, 1]

indexed by j ∈ {1, . . . , N}, which are chosen in such a way that

N
∑

j=1

αj = 1 and ζτ :=
N

∑

j=1

αjζ j
τ > 0. (4.32)
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Up to reordering the labels, we may posit that there exists an m ∈ {1, . . . , N} such that ζ j
τ ≥ 0 if

j ≥ m and ζ j
τ < 0 otherwise. Applying (4.31) to each (ζ j

τ , ξ j
τ ) ∈ TGraph(Q)(τ, ντ ) with j ∈ {1, . . . , N},

and then summing the resulting expressions depending on whether j < m or j ≥ m, one has that

∑

j<m

αjζ
j
τ gp−1(τ)ġ(τ) ≤

∑

j<m

αj

(
∫

R2d

〈

ζ j
τ vε,j

τ (x) − ξ j
τ (y), jp(x − y)

〉

dγτ (x, y) + ε

)

, (4.33)

for some fixed and potentially empty tuple (vε,j
τ )j≤m−1 ∈ V (τ, µτ )m−1, as well as

∑

j≥m

αjζ
j

τ gp−1(τ)ġ(τ) ≤
∑

j≥m

αj

(
∫

R2d

〈

ζ j
τ vτ (x) − ξ j

τ (y), jp(x − y)
〉

dγτ (x, y) + ε

)

(4.34)

for every possible element vτ ∈ V (τ, µτ ). Introducing in turn the coefficients

βj :=
αj |ζ j

τ |
∑

j≥m αjζ j
τ

∈ (0, 1) for each j < m and β := 1 −
∑

j<m

βj,

which are well-defined as a consequence of (4.32), while recalling that set V (τ, µτ ) is convex by
assumption, it holds for each vτ ∈ V (τ, ντ ) that

v′
τ := βvτ +

∑

j<m

βjvε,j
τ ∈ V (τ, ντ ).

Whence, by merging the estimate of (4.33) with that of (4.34) evaluated at v′
τ ∈ V (τ, µτ ) defined via

the previous expression, one eventually obtains

ζτ gp−1(τ)ġ(τ) ≤
∫

R2d

〈

ζτ vτ (x) − ξτ (y), jp(x − y)
〉

dγτ (x, y) + ε (4.35)

for any given (ζτ , ξτ ) ∈ coTGraph(Q)(τ, ντ ) satisfying ζτ > 0 and every vτ ∈ V (τ, µτ ). Remarking that

the right-hand side in (4.35) is linear and continuous with respect (ζτ , ξτ ) ∈ R × Lp(Rd,Rd; ντ ), the
latter expression remains valid for every (ζτ , ξτ ) ∈ coTGraph(Q)(τ, ντ ) such that ζτ > 0.

At this stage, starting from (4.35), one may repeat the argument discussed at the end of Step 1
in the proof of Theorem 4.4 while using the facts that ε > 0 is arbitrary and γτ ∈ Γo(µτ , ντ ) to show
that the latter estimate further yields

ζτ gp−1(τ)ġ(τ) ≤ ζτ

(

l(τ) + L(τ)
)

gp(τ) +

∫

R2d

〈

ζτ wτ (y) − ξτ (y), jp(x − y)
〉

dγτ (x, y),

for every (ζτ , ξτ ) ∈ coTGraph(Q)(τ, ντ ) such that ζτ > 0 and each wτ ∈ V (τ, ντ ). Choosing in particular

(ζτ , ξτ ) = (1, wτ ) ∈ ({1} × V (τ, ντ )) ∩ coTGraph(Q)(τ, ντ ),

which is licit under our standing assumption (4.21), one finally has that

ġ(τ) ≤
(

l(τ) + L(τ)
)

g(τ)

for all times τ ∈ (t, t+δ)∩T ∩D . Noting that g(t) = 0 and T , D ⊂ (0, T ) both have full L 1-measure,
it follows from Grönwall’s lemma that g(τ) = 0 for all τ ∈ [t, t + δ), which implies that g : [0, T ] → R+

is identically equal to zero and thus leads to a contradiction. One can then deduce the existence of a
viable curve by repeating the argument detailed above in Step 2 of the proof of Theorem 4.4.

In the following theorem, we state the natural counterpart of the sufficient part of the invariance
result of Theorem 4.7 for absolutely continuous time-dependent constraint sets.

Theorem 4.11 (Sufficient invariance conditions for absolutely continuous constraints tubes). Suppose
that the assumptions of Theorem 4.10 hold and that the tube Q : [0, T ] ⇒ Pp(Rd) is such that

(

{1} × V (t, ν)
)

⊂ coTGraph(Q)(t, ν) (4.36)

for L 1-almost every t ∈ [0, T ] and all ν ∈ Q(t). Then, Q : [0, T ] ⇒ Pp(Rd) is invariant for (4.1).
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Proof. In what follows, we let T ⊂ (0, T ) and R > 0 be given as in the proof of Theorem 4.10 above,
and assume without loss of generality that (τ, µτ ) = (0, µ0) for some µ0 ∈ Q(0). Given an arbitrary
curve µ(·) ∈ S[0,T ](µ

0), our goal is to show that the distance function, defined by

g(t) := distPp(Rd)

(

µ(t) ;Q(t)
)

for all times t ∈ [0, T ], is identically equal to zero. Note that since Q : [0, T ] ⇒ Pp(Rd) is absolutely
continuous, it can be easily verified that g(·) ∈ AC([0, T ],R+), and we denote by D ⊂ (0, T ) the subset
of full L 1-measure over which it is differentiable. We posit by contradiction that g(t) = 0 for some
t ∈ [0, T ] and that there exists δ > 0 such that g(τ) > 0 for all τ ∈ (t, t + δ). Observe now that by the
compactness of QR(τ), there exists an element ντ ∈ QR(τ) such that

g(τ) = Wp(µ(τ), ντ ),

and owing to the choice of R > 0 made via (4.3), one can fix some (ζτ , ξτ ) ∈ TGraph(Q)(τ, ντ ) for which

distPp(Rd)

(

(Id + hiξτ )♯ντ ;QR(τ + hiζ
i

τ )
)

= oτ (hi)

along two given sequences hi → 0+ and ζ i
τ → ζτ . By Theorem 3.2, there exists for every ε > 0 some

vε
τ ∈ V (τ, µ(τ)) such that

Wp

(

µ(τ + hε
ik

ζ ik
τ ), (Id + hε

ik
ζ ik

τ vε
τ )♯µ(τ)

)

≤ εhε
ik

|ζ ik
τ | + oτ,ε(h

ε
ik

)

along a subsequence hε
ik

→ 0+. By following the arguments leading to the differential estimate (4.31)

on 1
pgp(·) in the proof of Theorem 4.10, one can further obtain

ζτ gp−1(τ)ġ(τ) ≤
∫

R2d

〈

ζτ vε
τ (x) − ξτ (y), jp(x − y)

〉

dγτ (x, y) + ε

for all γτ ∈ Γo(µ(τ), ντ ), up to rescaling ε > 0. Since the latter expression is linear and continuous
with respect to (ζτ , ξτ ) ∈ TGraph(Q)(τ, ντ ), it holds more generally for elements of coTGraph(Q)(τ, ντ ).
There now remains to observe that, by Hypothesis (CI)-(iv), there exists wε

τ ∈ V (τ, ντ ) such that

dsup(vε
τ , wε

τ ) ≤ L(τ)Wp(µ(τ), ντ ),

which together with Hypothesis (CI)-(iii), the definition (2.2) of the duality map jp : Lp(Rd,Rd; µ) →
Lq(Rd,Rd; µ) and the fact that γτ ∈ Γo(µ(τ), ντ ) yields the differential estimate

ζτ gp−1(τ)ġ(τ) ≤
∫

R2d

〈

ζτwε
τ (y) − ξτ (y), jp(x − y)

〉

dγτ (x, y) + ζτ

(

l(τ) + L(τ)
)

gp(τ) + ε,

whenever ζτ > 0. Thence, choosing in particular

(ζτ , ξτ ) = (1, wε
τ ) ∈

(

{1} × V (τ, ντ )
)

⊂ coTGraph(Q)(τ, ντ )

which is licit under our standing assumption (4.36), one can deduce that

ġ(τ) ≤
(

l(τ) + L(τ)
)

g(τ) + ε,

which finally yields g(τ) = 0 for each τ ∈ (t, t + δ) by applying Grönwall’s lemma while noting that
ε > 0 is arbitrary. This contradicts our initial choice of t ∈ [0, T ].

In the following result, we finally present sufficient viability and invariance conditions for con-
straints tubes which are merely left absolutely continuous. In order to treat this less regular case, we
shall see that one must relinquish the convexification of the contingent directions which was present
in both Theorem 4.4 and Theorem 4.10.
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Theorem 4.12 (Sufficient viability and invariance conditions for left absolutely continuous tubes).
Suppose that p ∈ (1, +∞), let V : [0, T ]×Pp(Rd) ⇒ C0(Rd,Rd) be a set-valued map with convex images
satisfying Hypotheses (CI), and Q : [0, T ] ⇒ Pp(Rd) be a left absolutely continuous constraints tube
with proper images such that

(

{1} × V (t, ν)
)

∩ TGraph(Q)(t, ν) 6= ∅ (4.37)

for L 1-almost every t ∈ [0, T ] and each ν ∈ Q(t). Then, Q : [0, T ] ⇒ Pp(Rd) is viable for (4.1).
Analogously, if the constraints satisfy the stronger condition

(

{1} × V (t, ν)
)

⊂ TGraph(Q)(t, ν) (4.38)

for L 1-almost every t ∈ [0, T ] and each ν ∈ Q(t), then Q : [0, T ] ⇒ Pp(Rd) is invariant for (4.1).

Proof. In what follows, we only prove the viability of Q : [0, T ] ⇒ Pp(Rd) under the sufficient
condition (4.37), as its invariance under (4.38) follows from a straightforward transposition of the
method detailed in the proof of Theorem 4.11 hereinabove.

Without loss of generality, we assume that (τ, µτ ) := (0, µ0) for some µ0 ∈ Q(0) and let T ⊂ (0, T )
be the set of full L 1-measure such that the statements of Theorem 3.1 as well as Hypotheses (CI)-(ii),
(iii) and (iv) hold. By Proposition 2.8, since the constraint tube Q : [0, T ] ⇒ Pp(Rd) is merely left
absolutely continuous, the distance function

g : t ∈ [0, T ] 7→ distPp(Rd)

(

R(0,t)(µ
0) ;Q(t)

)

is not absolutely continuous in general. To estimate its local variations, we cannot resort to the usual
Grönwall lemma and need to carry out a subtler viability analysis of its epigraph. By contradiction,
assume that there exist t ∈ [0, T ] and δ > 0 such that g(t) = 0 and g(τ) > 0 for τ ∈ (t, t + δ). By
combining the arguments detailed in the proof of Theorem 4.10 with (4.37), one can check that for
each τ ∈ (t, t + δ) ∩ T , it holds that

lim inf
h→0+

g(τ + h) − g(τ)

h
≤

(

l(τ) + L(τ)
)

g(τ). (4.39)

Consider now the auxiliary real-valued tube defined by

E (τ) :=
{

α ∈ R+ s.t. α = g(τ) + r for some r ≥ 0
}

,

as well as the 1-dimensional linear velocity field

f(τ, α) :=
(

l(τ) + L(τ)
)

α

given for all times τ ∈ [t, t + δ] and each α ∈ R, and notice that E : [t, t + δ] ⇒ R is left absolutely
continuous by Proposition 2.8. Given some τ ∈ (t, t + δ) ∩ T , remark that if α = g(τ) ∈ E (τ), it can
then be deduced from (4.39) and [9, Proposition 5.1.4] that

f(τ, g(τ)) =
(

l(τ) + L(τ)
)

g(τ) ∈
{

ξ ∈ R s.t. (1, ξ) ∈ TGraph(E )(τ, g(τ))
}

. (4.40)

On the other hand, if α ∈ E (τ) is such that α > g(τ), it is then clear that

f(τ, α) ∈
{

ξ ∈ R s.t. (1, ξ) ∈ TGraph(E )(τ, α)
}

= R. (4.41)

Hence, by combining (4.40) and (4.41), one then recovers

f(τ, α) ∈
{

ξ ∈ R s.t. (1, ξ) ∈ TGraph(E )(τ, α)
}
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for L 1-almost every τ ∈ (t, t+δ) and each α ∈ E (τ). Thus, observing that 0 = g(t) ∈ E (t), the classical
measurable viability theorem of [60, Theorem 4.2] yields the existence of a curve α(·) ∈ AC([t, t+δ],R)
solution of the Cauchy problem







α̇(τ) =
(

l(τ) + L(τ)
)

α(τ),

α(t) = 0,
(4.42)

such that α(τ) ∈ E (τ) for all times τ ∈ [t, t+δ]. Noting that the unique solution of (4.42) is identically
equal to zero, we conclude that g(τ) = 0 on that same interval, which contradicts our initial choice of
t ∈ [0, T ]. From there, the existence of a viable measure can be obtained by repeating the argument
in Step 2 of the proof of Theorem 4.4 above.

5 Examples of constraints sets and computations of tangents

In this Section, we provide several examples of proper constraint sets Q ⊂ Pp(Rd) which arise in
applications, and compute in each case some of their relevant tangent directions.

Constraints sets defined by support inclusions. In this first example, we start by considering
the prototypical case in which the constraints set is given by

QK :=
{

µ ∈ Pp(Rd) s.t. supp(µ) ⊂ K
}

,

for some compact set K ⊂ R
d, where supp(µ) ⊂ R

d denotes the support of µ ∈ P(Rd) and is given by

supp(µ) :=

{

x ∈ R
d s.t. µ(Nx) > 0 for each neighbourhood Nx of x in R

d
}

.

By Proposition 2.2, it can easily be checked that QK ⊂ Pp(Rd) is compact and thus proper. In the
coming proposition, we characterise a subset of the adjacent cone to QK at µ ∈ Q, defined by

T ♭
QK

(µ) :=

{

ξ ∈ Lp(Rd,Rd; µ) s.t. lim
h→0+

1
hdistPp(Rd)

(

(Id + hξ)♯µ ;QK

)

= 0

}

. (5.1)

Notice that by construction, one clearly has that T ♭
QK

(µ) ⊂ TQK
(µ).

Proposition 5.1 (Computation of adjacent directions to QK). For every µ ∈ QK , it holds that

{

ξ ∈ Lp(Rd,Rd; µ) s.t. ξ(x) ∈ T ♭
K(x) for µ-almost every x ∈ K

}

⊂ T ♭
QK

(µ)

where T ♭
K(x) denotes the standard adjacent cone to K ⊂ R

d at x ∈ K.

Proof. Let ξ ∈ Lp(Rd,Rd; µ) be such that ξ(x) ∈ T ♭
K(x) for µ-almost every x ∈ K and h > 0 be given.

Observing that the map x 7→ x + hξ(x) is Borel and thus µ-measurable, see e.g. [4, Definition 1.12],
it follows from [9, Theorem 8.2.11] that the set-valued mapping

DK : x ∈ K ⇒ argmin
y∈K

|x + hξ(x) − y| ⊂ K

is µ-measurable as well. Because the latter has closed images and since the σ-algebra of µ-measurable
sets is complete, see e.g. [77, Theorem 1.36], it follows from [9, Theorem 8.1.3] that there exists a
µ-measurable selection x ∈ K 7→ d̃K(x) ∈ DK(x) ⊂ K which satisfies

|x + hξ(x) − d̃K(x)| = distRd

(

x + hξ(x) ; K
)

= ox(h)
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for µ-almost every x ∈ K as h → 0+ , where |ox(h)| ≤ h|ξ(x)|. Moreover, by [15, Proposition 2.1.11],
the latter coincides with a Borel map dK : K → K outside of a Borel set of zero µ-measure. Therefore,
noting in turn that

supp(dK ♯µ) ⊂
{

dK(x) s.t. x ∈ supp(µ)
}R

d

⊂ K

since d−1
K (B(y, ε)) = ∅ for every y ∈ R

d\K and ε > 0 for which B(y, ε) ∩ K = ∅ because K ⊂ R
d is

closed, it further holds that

distPp(Rd)

(

(Id + hξ)♯µ ;QK

)

≤ Wp

(

(Id + hξ)♯µ, dK ♯µ
)

≤ ‖Id + hξ − dK‖Lp(Rd,Rd; µ) = o(h)

as h → 0+ by Lebesgue’s dominated convergence theorem, which concludes the proof by definition
(5.1) of the adjacent cone T ♭

QK
(µ).

It is possible to generalise this example to time-dependent tubes K : [0, T ] ⇒ R
d. In this context,

we define the constraints tube by

QK(t) :=
{

µ ∈ Pp(Rd) s.t. supp(µ) ⊂ K(t)
}

for all times t ∈ [0, T ]. In what follows, we treat the case in which K : [0, T ] ⇒ R
d is left absolutely

continuous with nonempty compact images.

Proposition 5.2 (Regularity in time of the constraints). Under our assumptions on K : [0, T ] ⇒ R
d,

the constraints tube QK : [0, T ] ⇒ Pp(Rd) is left absolutely continuous.

Proof. Fix some τ ∈ [0, T ] along with µ ∈ Pp(Rd) and R > 0 for which QK(τ) ∩ BPp(Rd)(µ, R) 6= ∅,

and let µτ ∈ QK(τ) ∩ BPp(Rd)(µ, R). Since K : [0, T ] ⇒ R
d is left absolutely continuous, there exists

for each xτ ∈ supp(µτ ) and every t ∈ [0, T ] such that τ ≤ t some point xt ∈ K(t) for which

|xt − xτ | ≤
∫ t

τ
mK(s)ds

where mK(·) ∈ L1([0, T ],R+) only depends on K : [0, T ] ⇒ R
d. Thence, up to a trivial extension

argument outside supp(µτ ), it is possible to construct a Borel map φ(τ,t) : K(τ) → K(t) which satisfies

|φ(τ,t)(xτ ) − xτ | ≤
∫ t

τ
mK(s)ds

for each xτ ∈ supp(µτ ). Then, one can easily show that the measure µt := φ(τ,t) ♯µτ is such that
supp(µt) ⊂ K(t), and by (2.1) the latter also complies with the estimate

Wp(µτ , µt) ≤
∫ t

τ
mK(s)ds.

Repeating then the arguments supporting the regularity statement of Theorem 4.8 closes the proof.

Proposition 5.3 (Computation of adjacent directions to Graph(QK)). For all times t ∈ [0, T ] and
each µ ∈ QK(t), it holds that

{

(ζ, ξ) ∈ R × Lp(Rd,Rd; µ) s.t. (ζ, ξ(x)) ∈ T ♭
Graph(K)(t, x) for µ-almost every x ∈ K(t)

}

⊂ T ♭
Graph(QK)(t, µ).

Proof. Given some t ∈ [0, T ], an element µ ∈ Q(t) and some (ζ, ξ) ∈ R × Lp(Rd,Rd; µ) such that
(ζ, ξ(x)) ∈ T ♭

Graph(K)(t, x) for µ-almost every x ∈ R
d, one can show by repeating the arguments in the

proof of Proposition 5.1 that the set-valued map

DK(t) : K(t) ⇒ argmin
y∈K(t+hζ)

|x + hξ(x) − y| ⊂ K(t + hζ)
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admits a Borel selection x ∈ K(t) 7→ dK(t)(x) ∈ K(t + hζ) which satisfies

|x + hξ(x) − dK(t)(x)| = ox(h)

for µ-almost every x ∈ R
d as h → 0+, where |ox(h)| ≤ h|ξ(x)|. Then, there simply remains to note

that dK(t) ♯µ ∈ QK(t + h) by construction while

distPp(Rd)

(

(Id + hξ)♯µ ;QK(t + h)
)

≤ Wp

(

(Id + hξ)♯µ, dK(t) ♯µ
)

≤ ‖Id + hξ − dK(t)‖Lp(Rd,Rd; µ) = o(h)

by Lebesgue’s dominated convergence theorem, which concludes the proof.

Constraints sets defined as lifted epigraphs. In this second example, which is discussed in
our earlier work [25], we consider an extended-valued map W : Pp(Rd) → R ∪ {+∞} with compact
sublevels that is continuous over its domain dom(W) ⊂ Pp(Rd), and define its lifted epigraph by

QW :=

{

µ ∈ Pp(Rd+1) s.t. µ = µ × δα with µ ∈ Pp(Rd) and W(µ) ≤ α

}

.

In what follows, we discuss the topological properties of this constraint set and provide a full
characterisation of a relevant subset of its contingent directions.

Proposition 5.4 (Topological property of QW ). Under the assumptions listed hereinabove for W :
Pp(Rd) → R+ ∪ {+∞}, the set QW ⊂ Pp(Rd) is proper.

Proof. Showing that QW is closed under our assumptions is a matter of routine computations. Given
ν ∈ Pp(Rd+1), one has that

Wp(µ, ν) =

(
∫

R2(d+1)
|(x, α) − (y, β)|pdγ(x, α, y, β)

)1/p

≥

(
∫

R2(d+1)
|α − β|pdγ(x, α, y, β)

)1/p

≥
∣

∣

∣|α| −
∣

∣

∫

Rd+1 βdν(y, β)
∣

∣

∣

∣

∣

for any µ =∈ QW and all γ ∈ Γo(µ, ν), where we used Jensen’s inequality. In particular given R > 0,
it then holds for every µ := µ × δα ∈ QW ∩ BPp(Rd+1)(ν, R) that

W(µ) ≤ α ≤ R +
∣

∣

∫

Rd+1 βdν(y, β)
∣

∣.

Since W : Pp(Rd) → R ∪ {+∞} has compact sublevels, we deduce that QW ∩ BPp(Rd+1)(ν, R) is

compact for any ν ∈ Pp(Rd+1) and R > 0 and thus that QW is proper.

Similarly to what is known in nonsmooth analysis, the contingent cone to QW can be expressed
in terms of lower directional derivatives of the functional. Following [13], we define these latter as

D↑W(µ)(ξ) := lim inf
h→0+, µh∈dom(W)

Wp((Id+hξ)♯µ,µh)=o(h)

W(µh) − W(µ)

h
(5.2)

for each µ ∈ dom(W) and every ξ ∈ Tdom(W)(µ) ⊂ Lp(Rd,Rd; µ).

Proposition 5.5 (Characterisation of contingent directions to QW ). For every µ ∈ QW and each
(ξ, ρ) ∈ Lp(Rd,Rd; µ) × R, it holds that

(ξ, ρ) ∈ TQW
(µ) if and only if

{

ξ ∈ Tdom(W)(µ) and D↑W(µ)(ξ) ≤ ρ when α = W(µ),

ξ ∈ Tdom(W)(µ) when α > W(µ).
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Proof. The ensuing arguments are largely inspired by those of [9, Proposition 6.1.4]. We only treat
the case α = W(µ), the other being similar. Assume first that (ξ, ρ) ∈ TQW

(µ) so that one may find
a sequence hi → 0+ and some µhi

:= µhi
× δαhi

∈ QW which satisfy

Wp

(

(Id + hi(ξ, ρ))♯µ, µhi

)

≤ o(hi) (5.3)

for hi > 0 sufficiently small. Noting that up to a permutation of coordinates each optimal plan
γhi

∈ Γo((Id + hi(ξ, ρ))♯µ, µhi
) is of the form

γhi
= γhi

× δ(W(µ)+hiρ,αhi
)

for some γhi
∈ Γo((Id + hiξ)♯µ, µhi

) as a consequence of the disintegration theorem (see e.g. [5,
Theorem 5.2.1]) along with the fact that the only transport plan between an arbitrary measure and a
Dirac mass is the product plan, it necessarily holds that

Wp

(

(Id + hiξ)♯µ, µhi

)

=

(
∫

R2d
|x − y|pdγhi

(x, y)

)1/p

≤

(
∫

R2(d+1)
|(x, α) − (y, β)|pdγhi

(x, α, y, β)

)1/p

= Wp

(

(Id + hi(ξ, ρ))♯µ, µhi

)

.

Owing to (5.3), this implies in particular that ξ ∈ Tdom(W)(µ). Similarly, one can show that

|αhi
− W(µ) − hiρ| ≤ Wp

(

(Id + hi(ξ, ρ))♯µ, µhi

)

= o(hi)

which together with (5.2) and (5.3) finally yields that

D↑W(µ)(ρ) ≤ lim inf
hi→0+

W(µhi) − W(µ)

hi
≤ ρ.

Conversely, let (ξ, ρ) ∈ Tdom(W)(µ) × R be such that D↑W(µ)(ξ) ≤ ρ, and observe that then, there
exist sequences hi → 0+ and (µhi

) ⊂ dom(W) satisfying Wp(µhi
, (Id + hiξ)♯µ) = o(hi) and for which

W(µhi
) ≤ W(µ) + hiρ + o(hi)

when hi > 0 is small enough. Hence, there exists ρi → ρ such that µhi
:= µhi

× δW(µ)+hiρi
∈ QW and

Wp

(

(Id + hi(ξ, ρ))♯

(

µ × δW(µ)

)

, µhi

)

≤ Wp
(

(Id + hiξ)♯µ, µhi

)

+ hi(ρ − ρi) = o(hi)

as hi → 0+, which equivalently means that (ξ, ρ) ∈ TQW
(µ).

Appendices

A Proof of Proposition 2.3

In this Appendix, we detail the proof of Proposition 2.3. For the sake of self-containedness, we recall
the following technical result taken from [5, Lemma 10.2.1].

Lemma A.1 (Quantitative superdifferentiability estimates on powers of the euclidean norm). Given
x, y ∈ R

d, one has for p ∈ (1, 2] that

1
p |y|p − 1

p |x|p − 〈y − x, jp(x)〉 ≤ 22−p

p−1 |x − y|p,

whereas for p ∈ [2, +∞), it holds that

1
p |y|p − 1

p |x|p − 〈y − x, jp(x)〉 ≤ p−1
2 |x − y|2 max{|x|, |y|}p−2,

where jp(·) is the duality map defined by

jp(x) :=

{

0 if x = 0,

|x|p−2x otherwise.
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Proof of Proposition 2.3. Given an element γ ∈ Γo(µ, ν) and some h ∈ R, define the transport plan

γh :=
(

(Id + hζ) ◦ π1, (Id + hξ) ◦ π2
)

♯γ ∈ Γ
(

(Id + hζ)♯µ, (Id + hξ)♯ν
)

,

and note that by construction, one has that

1
pW p

p

(

(Id + hζ)♯µ, (Id + hξ)♯ν
)

− 1
pW p

p (µ, ν) ≤
∫

R2d

1
p |xh − yh|pdγh(xh, yh) −

∫

R2d

1
p |x − y|pdγ(x, y)

≤
∫

R2d

(

1
p |x − y + h(ζ(x) − ξ(y))|p − 1

p |x − y|p
)

dγ(x, y).

(A.1)
By leveraging the identities of Lemma A.1 above, it can be checked that for p ∈ (1, 2], one has that

∫

R2d

(

1
p |x − y + h(ξ(x) − ξ(y))|p − 1

p |x − y|p − h
〈

ζ(x) − ξ(y), jp(x − y)
〉

)

dγ(x, y)

≤ 22−p

p−1

∫

R2d
|h(ζ(x) − ξ(y))|pdγ(x, y)

≤ 2
p−1 |h|p

(

‖ζ‖p
Lp(Rd,Rd; µ)

+ ‖ξ‖p
Lp(Rd,Rd; ν)

)

,

(A.2)

whereas for p ∈ [2, +∞), it holds

∫

R2d

(

1
p |x − y + h(ζ(x) − ξ(y))|p − 1

p |x − y|p − h
〈

ζ(x) − ξ(y), jp(x − y)
〉

)

dγ(x, y)

≤ p−1
2

∫

R2d
|h(ζ(x) − ξ(y))|2 max

{

|x − y|, |x − y + h(ζ(x) − ξ(y))|
}p−2

dγ(x, y)

≤ (p−1)
2 |h|2

∫

R2d
|ζ(x) − ξ(y)|2

(

|x − y| + |x − y + h(ζ(x) − ξ(y))|
)p−2

dγ(x, y)

≤ (p − 1)|h|2
(

Wp(µ, ν) + |h|
(

‖ζ‖Lp(Rd,Rd; µ) + ‖ξ‖Lp(Rd,Rd; ν)

)

)p−2
(

‖ζ‖2
Lp(Rd,Rd; µ) + ‖ξ‖2

Lp(Rd,Rd; ν)

)

,

(A.3)
where we used elementary Hölder and convexity inequalities to derive both estimates. Thence, upon
combining (A.2) and (A.3) with (A.1) depending on the value of p ∈ (1, +∞), one finally obtains that

1
pW p

p

(

(Id + hξ)♯µ, (Id + hζ)♯ν
)

− 1
pW p

p (µ, ν) ≤ h

∫

R2d

〈

ζ(x) − ξ(y), jp(x − y)
〉

dγ(x, y) + rp(h, ξ, ζ)

with rp(h, ζ, ξ) being defined as in (2.3) or (2.4) depending on the value of p ∈ (1, +∞).

B Proof of Proposition 2.8

In this appendix section, we detail the proof of Proposition 2.8.

Proof of Proposition 2.8. In what follows, we assume without loss of generality that I := [0, T ] for
some T > 0, and start by showing that when Q : [0, T ] ⇒ X is absolutley continuous, the map

t ∈ [0, T ] 7→ g(t) := distX(K(t) ;Q(t))

is absolutely continuous as well. To do so, we first need to establish some preliminary facts. Observe
that since K(0) is compact, there exist x0 ∈ X and some r0 > 0 such that

K(0) ⊂ BX(x0, r0). (B.1)

for all times t ∈ [0, T ]. In what follows, we show that the map t ∈ [0, T ] 7→ distX(x0 ;Q(t)) is
continuous. Indeed, fixing τ ∈ [0, T ], setting Rτ := distX(x0 ;Q(τ)) and recalling that Q : [0, T ] ⇒ X
is absolutely continuous, there exists for each ε > 0 some δ > 0 such that

Q(τ) ∩ BX(x0, Rτ + ε) ⊂ BX
(

Q(t), ε
)

and Q(t) ∩ BX(x0, Rτ + ε) ⊂ BX
(

Q(τ), ε
)
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whenever |t − τ | ≤ δ. Noticing in turn that Q(τ) ∩BX(x0, Rτ + ε) 6= ∅ and Q(t) ∩BX(x0, Rτ + ε) 6= ∅
by construction, the first of these inclusions implies that

distX(x0 ;Q(t)) ≤ distX(x0 ;Q(τ)) + distX

(

Q(τ) ∩ BX(x0, Rτ + ε) ;Q(t)
)

≤ distX(x0 ;Q(τ)) + ε,

while the second one analogously yields

distX(x0 ;Q(τ)) ≤ distX(x0 ;Q(t)) + ε,

from whence we can deduce that t 7→ distX(x0 ;Q(t)) is continuous at τ ∈ [0, T ]. Recalling that
K : [0, T ] ⇒ X has compact images and satisfies

dH(K(τ) ;K(t)) ≤
∫ t

τ
mK(s)ds (B.2)

for all times 0 ≤ τ ≤ t ≤ T and some mK(·) ∈ L1([0, T ],R+), it follows from (B.1) that K(t) ⊂
BX(x0, rK) for all times t ∈ [0, T ], where rK := r0 + ‖mK(·)‖1. Notice then that

distX(x ;Q(t)) ≤ rK + max
t∈[0,T ]

distX(x0 ;Q(t))

for all t ∈ [0, T ] and every x ∈ BX(x0, rK), so that the quantity

RT := (rK + 1) + sup
{

distX(x ;Q(t)) s.t. (t, x) ∈ [0, T ] × BX(x0, rK)
}

(B.3)

is well-defined and moreover

distX(K(t) ; ∂BX (x0, RT )) ≥ sup
τ,s∈[0,T ]

distX(K(τ) ;Q(s)) + 1

for all times t ∈ [0, T ].
We now prove that g : [0, T ] → R+ is absolutely continuous. For all times τ, t ∈ [0, T ] satisfying

0 ≤ τ ≤ t ≤ T , it holds that

|g(t) − g(τ)| ≤
∣

∣distX(K(t) ;Q(t)) − distX(K(τ) ;Q(t))
∣

∣

+
∣

∣distX(K(τ) ;Q(t)) − distX(K(τ) ;Q(τ))
∣

∣.
(B.4)

In order to estimate for first term in (B.4), note that for each ε > 0, there exist yε
t ∈ Q(t) and

xε
τ ∈ K(τ) such that

dX(xε
τ , yε

t ) ≤ distX(K(τ) ;Q(t)) + ε.

Furthermore, it stems from (B.2) that there exists an element xε
t ∈ K(t) for which

dX(xε
τ , xε

t ) ≤
∫ t

τ
mK(s)ds.

Merging both estimates, it then follows that

distX(K(t) ;Q(t)) − distX(K(τ) ;Q(t)) ≤ dX(xε
t , yε

t ) − dX(xε
τ , yε

t )

≤
∫ t

τ
mK(s)ds

and repeating the same argument while switching the roles of τ and t further yields

∣

∣distX(K(t) ;Q(t)) − distX(K(τ) ;Q(t))
∣

∣ ≤
∫ t

τ
mK(s)ds. (B.5)

Concerning the second term in (B.4), it stems from our choice of RT > 0 in (B.3) that

distX(K(τ) ;Q(τ)) = distX

(

K(τ) ;Q(τ) ∩ BX(x0, RT )
)
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and
distX(K(τ) ;Q(t)) = distX

(

K(τ) ;Q(t) ∩ BX(x0, RT )
)

Moreover, since Q : [0, T ] ⇒ X is absolutely continuous in the sense of Definition 2.7, there exists a
map mx0,RT

(·) ∈ L1([0, T ],R+) for which

Q(τ)∩B(x0, RT ) ⊂ BX

(

Q(t),
∫ t

τ mx0,RT
(s)ds

)

and Q(t)∩B(x0, RT ) ⊂ BX

(

Q(τ),
∫ t

τ mx0,RT
(s)ds

)

.

Combining these few latter facts together, we further obtain

∣

∣distX(K(τ) ;Q(t)) − distX(K(τ) ;Q(τ))
∣

∣ ≤
∫ t

τ
mx0,RT

(s)ds, (B.6)

which along with (B.4) and (B.5) finally yields that

|g(t) − g(τ)| ≤
∫ t

τ

(

mK(s) + mx0,RT
(s)

)

ds,

for all times τ, t ∈ [0, T ] satisfying 0 ≤ τ ≤ t ≤ T , which equivalently means that g(·) ∈ AC([0, T ],R+).
We finally conclude by showing that whenever Q : [0, T ] ⇒ X is left absolutely continuous, then

the set-valued map

E : t ∈ [0, T ] ⇒
{

α ∈ R+ s.t. α = g(t) + r for some r ≥ 0
}

is left absolutely continuous as well. To do so, let x0 ∈ K(0) and RT > 0 be as above, fix an element
ατ ∈ E (τ), and observe that

g(τ) = distX

(

K(τ) ;Q(τ) ∩ BX(x0, RT )
)

≤ ατ

by construction. It then follows from elementary applications of the triangle inequality that

g(t) = distX(K(t) ;Q(t))

≤ distX(K(t) ;K(τ)) + distX

(

K(τ) ;Q(τ) ∩ BX(x0, RT )
)

+ distX

(

Q(τ) ∩ BX(x0, RT ) ;Q(t)
)

≤ ατ +

∫ t

τ

(

mK(s) + mx0,RT
(s)

)

ds,

for all times t ∈ [0, T ] such that τ ≤ t. In particular, we have shown that

∆α,R(E (τ) ; E (t)) ≤
∫ t

τ

(

mK(s) + mx0,RT
(s)

)

ds

for all times 0 ≤ τ ≤ t ≤ T , every α ∈ R+ and each R > 0, which yields the desired claim
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