open science

On the Viability and Invariance of Proper Sets under Continuity Inclusions in Wasserstein Spaces

Benoît Bonnet-Weill, Hélène Frankowska

To cite this version:

Benoît Bonnet-Weill, Hélène Frankowska. On the Viability and Invariance of Proper Sets under Continuity Inclusions in Wasserstein Spaces. 2023. hal-04082985

HAL Id: hal-04082985

https://hal.science/hal-04082985

Preprint submitted on 26 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the Viability and Invariance of Proper Sets under Continuity Inclusions in Wasserstein Spaces

Benoît Bonnet-Weill* and Hélène Frankowska ${ }^{\dagger}$

April 26, 2023

Abstract

In this article, we derive necessary and sufficient conditions for the existence of solutions to stateconstrained continuity inclusions in Wasserstein spaces whose right-hand sides may be discontinuous in time. These latter are based on fine investigations of the infinitesimal behaviour of the underlying reachable sets, through which we show that up to a negligible set of times, every admissible velocity of the inclusion can be approximately realised as the metric derivative of a solution of the dynamics, and vice versa. Building on these results, we are able to establish necessary and sufficient geometric conditions for the viability and invariance of stationary and time-dependent constraints, which involve a suitable notion of contingent cones in Wasserstein spaces, presented in ascending order of generality. We then close the article by exhibiting two prototypical examples of constraints sets appearing in applications for which one can compute relevant subfamilies of contingent directions.

> Keywords: Continuity Inclusions, Optimal Transport, Viability, Invariance, Wasserstein Geometry, Dynamics with Time Discontinuities.

MSC2020 Subject Classification: 28B20, 34G25, 46N20, 49Q22

Contents

1 Introduction 2
2 Preliminaries 5
2.1 Measure theory and optimal transport 6
2.2 Set-valued analysis and topological properties of the space $C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ 8
2.3 Continuity equations and inclusions in Wasserstein spaces 12
3 Infinitesimal behaviour of the reachable sets 15
4 Viability and invariance theorems for proper constraints sets 22
4.1 The case of stationary constraints 22
4.2 The case of time-dependent constraints 26
5 Examples of constraints sets and computations of tangents 34
Appendices 37
A Proof of Proposition 2.3 37
B Proof of Proposition 2.8 38

[^0]
1 Introduction

Recent times have witnessed a surge of interest for the mathematical analysis of macroscopic approximations of particle systems. During the past two decades, a series of seminal works concerned with the mean-field approximation of cooperative dynamics [37, 38, 61], the theory of mean-field games [35, 64, 69] and the sparse control of multiagent systems [32, 33, 53] have given rise to several research currents focusing on dynamical and variational problems whose aim are to describe the global behaviour of many-body systems. Amongst these latter, mean-field control is a research branch that focuses on large-scale control systems, and whose main interest lies in designing scale-free and efficient control signals for large microscopic systems by finely understanding the interplay that exists between discrete models and their continuous approximations. From a technical standpoint, these inquiries often boil down to studying variational problems in the space of probability measures, and are commonly approached using optimal transport techniques and Wasserstein geometry, in the spirit of the reference treatises [5, 78, 79]. Without aiming at full exhaustivity, we point the reader to the manuscripts [27, 40, 52, 54] for various existence and qualitative regularity results on deterministic mean-field optimal control problems, as well as to the following broad series of works dealing with optimality conditions, either in the form of Pontryagin's maximum principle [17, 19, 20, 22, 26, 75, 76] or of Hamilton-Jacobi-Bellman equations [12, 41, 66]. We also mention the references [2, 34, 39, 74] which propose astute control strategies to stir collective systems towards specific asymptotic patterns, and finally $[1,20,29,30]$ for general numerical methods in the context of mean-field optimal control.

Motivated by this blooming interest for variational problems in measure spaces, several research groups have been investigating relevant generalisations of the core concepts of set-valued analysis to the setting of mean-field control [$12,21,22,23,24,42,43,66]$, a lively trend that reached more recently other closely related topics such as mean-field games [6,31] and the study of sufficient conditions for the well-posedness of measure dynamics [44, 67]. It is de facto widely accepted that the language of correspondences, differential inclusions and generalised gradients provides in many cases a synthetic and powerful framework in which most problems stemming from the calculus of variations, games and control theory can be encompassed, as supported e.g. by series of reference monographs $[8,9,45$, 80] tracing back to the nineteen eighties. For these reasons, the authors of the present manuscript introduced in [21, 23] a notion of differential inclusion in Wasserstein spaces, tailored to the study of mean-field control problems. Therein, given a correspondence $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, we defined continuity inclusions as the set-valued dynamical systems

$$
\partial_{t} \mu(t) \in-\operatorname{div}_{x}(V(t, \mu(t)) \mu(t))
$$

whose solutions are defined as absolutely continuous curves $\mu(\cdot) \in \mathrm{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ for which there exists a measurable selection $t \in[0, T] \mapsto v(t) \in V(t, \mu(t))$ such that the continuity equation

$$
\partial_{t} \mu(t)+\operatorname{div}_{x}(v(t) \mu(t))=0
$$

holds in the sense of distributions. While other notions of solutions for differential inclusions in measures spaces had already been proposed in some preexisting works, see e.g. [10, 42, 66], the approach we just described seemed more natural as well as necessary for several reasons. On the one hand, it remained coherent with the classical theory of set-valued dynamics, see e.g. [8] and [9, Chapter 11], as well as with the geometric interpretation of Wasserstein spaces developed in [5, 71], wherein $\left(\mathscr{P}_{p}\left(\mathbb{R}^{d}\right), W_{p}\right)$ is described as a fiber bundle over which continuity equations essentially play the same role as ODEs for differential manifolds. On the other hand, it complied with one of the most important and desired features of differential inclusions, already formulated in the pioneering article [51], which stipulates that solutions of control systems should be in one-to-one correspondence with those of their set-valued counterparts. In [21, 23], based on this definition of differential inclusions, we proved analogues in the setting of Wasserstein spaces of the Filippov estimates and Peano existence theorem, as well as a relaxation principle and a compactness criterion for the solution sets. These fundamental results are known to be extremely useful to investigate the fine properties of optimal control problems, both in the classical deterministic $[58,80]$ and stochastic [16] settings, while enjoying
natural generalisations to study e.g. evolution equations in Banach spaces [55,57] or mutational dynamics in metric spaces $[13,56]$. We also point to the recent works [22, 24], in which we successfully applied such set-theoretic approaches to derive optimality conditions for optimal control problems in Wasserstein spaces and to study certain qualitative properties of their solutions.

While allowing to handle a variety of relevant dynamical models in measure spaces, the aforedescribed framework did not yet permit to consider systems incorporating state-constraints, which appear nonetheless in a wide variety of applications ranging from game theory [36], pedestrian dynamics [46], traffic flows [65] and more recently to the dynamical formulations of deep neural networks [49]. Historically, the problem of ensuring that a differential inclusion admits trajectories that remain within a given set starting from any initial condition was coined viability, whereas that of ensuring that all such trajectories be viable is usually called invariance. The first result in this direction was established in [70] for differential equations, while its natural counterpart for differential inclusions with stationary right-hand sides later followed in [14] and [62]. To this day, the farthest-reaching viability theorems for classical differential inclusions can be found in [59, 60] - which inspired several of our contributions -, wherein the viability of general time-dependent constraint tubes is proven both in the Carathéodory and Cauchy-Lipschitz frameworks. Besides modelling incentives, viability and invariance results can be used to study the existence and uniqueness of viscosity solutions for several nonlinear partial differential equations, see e.g. [28, 60], as well as to investigate sufficient stability conditions for differential inclusions [7]. These viewpoints - like many others stemming from set-valued analysis - present the advantage of being readily transposable beyond the setting of finite-dimensional vector spaces, as illustrated by their recent applications to problems in metric spaces $[10,12,13,43]$.

In this article, we study the viability and invariance properties of constraints sets under the action of continuity inclusions in the Wasserstein space $\left(\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right.$, W_{p}) for some $p \in(1,+\infty)$. Given a constraint tube $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ with proper images (see Definition 2.4 below), we provide necessary and sufficient conditions ensuring that either all or some of the solutions of the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} \mu(t) \in-\operatorname{div}_{x}(V(t, \mu(t)) \mu(t)) \tag{1.1}\\
\mu(\tau)=\mu_{\tau}
\end{array}\right.
$$

satisfy $\mu(t) \in \mathcal{Q}(t)$ for all times $t \in[\tau, T]$, where $\tau \in[0, T]$ and $\mu_{\tau} \in \mathcal{Q}(\tau)$ are both arbitrary. These results, which are discussed in Section 4, rely on a careful analysis of the infinitesimal behaviour of the reachable sets of (1.1). This latter is the object of Section 3, and can be heuristically summarised as follows. In Theorem 3.1, we show that for each element $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$ taken at some adequate pair $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and every $\varepsilon>0$, there exists a solution $\mu_{\varepsilon}(\cdot)$ of (1.1) which satisfies

$$
W_{p}\left(\mu_{\varepsilon}\left(\tau+h^{\varepsilon}\right),\left(\operatorname{Id}+h^{\varepsilon} v_{\tau}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon h^{\varepsilon}
$$

whenever $h^{\varepsilon}>0$ is sufficiently small. In other words, each admissible velocity can be realised - on a subset of times of full \mathscr{L}^{1}-measure, up to an arbitrarily small error - as the right metric derivative of an admissible curve. In Theorem 3.2, we complete this result by showing that for \mathscr{L}^{1}-almost every $\tau \in[0, T]$, each solution $\mu_{\varepsilon}(\cdot)$ of (1.1) and any sequence $h_{i} \rightarrow 0$, there exists $v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right)$ such that

$$
W_{p}\left(\mu_{\varepsilon}\left(\tau+h_{i_{k}}^{\varepsilon}\right),\left(\operatorname{Id}+h_{i_{k}}^{\varepsilon} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon\left|h_{i_{k}}^{\varepsilon}\right|
$$

along a subsequence $h_{i_{k}}^{\varepsilon} \rightarrow 0$. Stated otherwise, up to considering a subsequence, one can always find an admissible velocity which approximately represents the metric derivative of a solution of the Cauchy problem. It is worth noting that while in the present paper, these results are proven under Cauchy-Lipschitz assumptions, we do believe that they remain valid under weaker CarathéodoryPeano hypotheses as in [23, Section 4]. The main issue in proving so would be to replace the estimates on flow maps by their analogues for measures concentrated on characteristic curves, whose existence are ensured by the famed superposition principle of Ambrosio, see e.g. [3, Theorem 3.4].

Let us now discuss the main contributions of this article, which are the necessary and sufficient conditions ensuring that a constraints tube $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is either viable or invariant under
the dynamics of $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. For the sake of clarity, we start our investigation thereof by considering stationary constraints sets. In this context, the relevant geometric object allowing to study viability and invariance properties is the contingent cones to \mathcal{Q}, defined by

$$
T_{\mathcal{Q}}(\nu):=\left\{\xi \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d}, \nu\right) \text { s.t. } \liminf _{h \rightarrow 0^{+}} \frac{1}{h} \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left((\operatorname{Id}+h \xi)_{\sharp} \nu ; \mathcal{Q}\right)=0\right\}
$$

for each $\nu \in \mathcal{Q}$, where $\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu\right)$ stands for the seminormed space of Borel measurable and ν integrable maps, and whose expression is akin to that recently introduced in [12]. Building on this notion, we show in Theorem 4.4 that if the following geometric compatibility condition

$$
\begin{equation*}
V(t, \nu) \cap \overline{\operatorname{co}} T_{\mathcal{Q}}(\nu) \neq \emptyset \tag{1.2}
\end{equation*}
$$

is satisfied for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}$, where " $\overline{c o}$ " stands for the closed convex hull, then \mathcal{Q} is viable. That is, there exists for every $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathcal{Q}$ a solution $\mu(\cdot)$ of the Cauchy problem (1.1) satisfying $\mu(t) \in \mathcal{Q}$ for all times $t \in[\tau, T]$. Reciprocally, we prove in Theorem 4.6 that if \mathcal{Q} is viable, then it necessarily holds that

$$
\begin{equation*}
V(t, \nu) \cap T_{\mathcal{Q}}(\nu) \neq \emptyset \tag{1.3}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}$. We point the interested reader to our recent work [25], where we leveraged a weaker version of these viability theorems to prove the existence of exponentially stable solutions to a class of continuity inclusions via the second method of Lyapunov, see also Section the example second example in Section 5 below. In Theorem 4.7, we subsequently show that the stronger geometric condition

$$
\begin{equation*}
V(t, \nu) \subset \overline{\operatorname{co}} T_{\mathcal{Q}}(\nu) \tag{1.4}
\end{equation*}
$$

that is assumed to hold for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}$, is equivalent to the invariance of \mathcal{Q} under the dynamics of (1.1), namely to the fact that $\mu(t) \in \mathcal{Q}$ for all times $t \in[\tau, T]$ and every admissible curve $\mu(\cdot)$ starting from $\mu_{\tau} \in \mathcal{Q}$ at time $\tau \in[0, T]$.

We then turn our attention to the more involved scenario in which the constraints are allowed to be time-dependent. In Theorem 4.8, we start by showing that regardless of its regularity, if the tube $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is viable for (1.1), namely if given any $\tau \in[0, T]$ and $\mu_{\tau} \in \mathcal{Q}(\tau)$, there exists a solution of (1.1) satisfying $\mu(t) \in \mathcal{Q}(t)$ for all time $t \in[\tau, T]$, then necessarily

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \cap T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \neq \emptyset \tag{1.5}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $\nu \in \mathcal{Q}(t)$, where

$$
\operatorname{Graph}(\mathcal{Q}):=\left\{(t, \nu) \in[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \text { s.t. } \nu \in \mathcal{Q}(t)\right\}
$$

denotes the graph of the constraints tube. In addition, it follows in this context that $\mathcal{Q}:[0, T] \rightrightarrows$ $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is actually left absolutely continuous (see Definition 2.7 below), as it inherits some of the regularity properties of the reachable sets of (1.1). Similarly, if one posits that $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is invariant for (1.1), that is if $\mu(t) \in \mathcal{Q}(t)$ for all times $t \in[\tau, T]$ along every solution of (1.1) starting from $\mu_{\tau} \in \mathcal{Q}(\tau)$ at time $\tau \in[0, T]$, it must then hold that

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \subset T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \tag{1.6}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $\nu \in \mathcal{Q}(t)$.
Unlike the aforedescribed necessary implications, sufficient viability and invariance conditions call for separate analyses depending on the regularity of the tube $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$. When the latter is absolutely continuous (see Definition 2.7 below), we are able to prove in Theorem 4.10 that $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is viable for (1.1) whenever the geometric condition

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \cap \overline{\operatorname{co}} T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \neq \emptyset \tag{1.7}
\end{equation*}
$$

holds for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $\nu \in \mathcal{Q}(t)$. We stress that in this context, the convexification of the contingent directions requires much more care than in the stationary case, as one must take into account tangent velocities taken at different time instants. Similarly to what precedes, we proceed to show in Theorem 4.11 below that $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is invariant for (1.1) provided that

$$
\begin{equation*}
V(t, \nu) \subset \overline{\operatorname{co}} T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \tag{1.8}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $\nu \in \mathcal{Q}(t)$. Finally in Theorem 4.12, we address sufficient viability and invariance conditions when the tube $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is merely left absolutely continuous. This regularity framework - which as already illustrated above appears naturally when studying stateconstrained continuity inclusions, see Theorem 4.8 - is very similar to the one we previously discussed, with the added subtlety that in this context, one cannot convexify the contingent directions anymore. Thence, the sufficient condition which ensures that $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is viable for (1.1) becomes

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \cap T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \neq \emptyset \tag{1.9}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $\nu \in \mathcal{Q}(t)$. Similarly to the stationary and absolutely continuous cases, one can show that $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is invariant for (1.1) if the geometric condition

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \subset T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \tag{1.10}
\end{equation*}
$$

holds for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}(t)$. At this stage, it is worth noting that while conditions (1.2) to (1.10) involve the whole contingent cone to the constraints, it is sufficient in practice to test their validity only for some nice subsets of tangent directions which are easy to compute. This fact is expounded in Section 5, in which we exhibit relevant collections of tangents to two simple yet frequently encountered families of constraints sets, defined respectively in terms of support inclusions or as lifted epigraphs. In the first situation, we display certain adjacent directions which are amenable to computations, while in the second one we are able to completely characterise a subset of the contingent cone that is amenable to computations.

In terms of bibliographical positioning, this work can be seen as a far-reaching extension of [12] by the second author, in which viability and invariance properties are established as a means to prove the well-posedness of general Hamilton-Jacobi-Bellman equations for optimal control problems in Wasserstein spaces, under more restrictive regularity assumptions on the data. We also point to the independent works $[10,11,43]$ which focus on the study of viability properties for another class of set-valued dynamics in Wasserstein spaces to which we already alluded earlier. The main differences between the latter notion and the one considered in the present article and the related works of both authors is thoroughly discussed in [21].

The paper is organised as follows. In Section 2, we start by recalling a list of preliminary material pertaining to optimal transport, set-valued analysis, and continuity inclusions. Subsequently, we discuss in Section 3 the infinitesimal behaviour of reachable sets to continuity inclusions, which constitute novel contributions to the theory on which the main results of Section 4 crucially rely. The latter is then split into two parts, in which we discuss viability and invariance results for continuity inclusions, starting with the case of stationary constraints in Section 4.1. We then approach time-dependent constraints in Section 4.2, wherein the sufficient viability conditions are exposed separately for absolutely continuous and left absolutely continuous constraints. Finally, we show a couple of relevant examples of constraints sets and compute some of their tangent directions in Section 5, and close the paper by an appendix that contains the proofs of two technical results.

2 Preliminaries

In this section, we fix the notations that will be used throughout the manuscript, and list a series of prerequisites of optimal transport theory, set-valued analysis and Wasserstein geometry.

2.1 Measure theory and optimal transport

In this first preliminary section, we recollect common notions of measure theory and optimal transport, for which we refer to the monographs $[4,50]$ and $[5,78,79]$ respectively.

Function spaces and measure theory. Given two complete separable metric spaces ($X, \mathrm{~d}_{X}(\cdot, \cdot)$) and $\left(Y, \mathrm{~d}_{Y}(\cdot, \cdot)\right)$, we denote by $C^{0}(X, Y)$ the space of continuous functions from X into Y, and by $C_{b}^{0}(X, Y)$ the subspace of continuous and bounded maps. In this context, we will use the notation $\operatorname{Lip}(\varphi ; \Omega) \in \mathbb{R}_{+} \cup\{+\infty\}$ for the Lipschitz constant of a function $\varphi: X \rightarrow Y$ over some subset $\Omega \subset X$. In the particular case where $\left(X, \mathrm{~d}_{X}(\cdot, \cdot)\right)=(I,|\cdot|)$ for a closed interval $I \subset \mathbb{R}$, we shall write $\mathrm{AC}(I, Y)$ for the collection of absolutely continuous maps valued in Y. We shall also denote by $C_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{m}\right)$ the space of infinitely differentiable functions with compact support from \mathbb{R}^{d} into \mathbb{R}^{m}.

In what follows, we let $\mathscr{P}\left(\mathbb{R}^{d}\right)$ be the space of Borel probability measures defined over $\left(\mathbb{R}^{d},|\cdot|\right)$. Recalling that the latter is a subset of the topological dual of $C_{b}^{0}\left(\mathbb{R}^{d}, \mathbb{R}\right)$, it can be endowed with the usual weak-* or narrow topology, which is the coarsest topology such that

$$
\mu \in \mathscr{P}\left(\mathbb{R}^{d}\right) \mapsto \int_{\mathbb{R}^{d}} \varphi(x) \mathrm{d} \mu(x) \in \mathbb{R}
$$

defines a continuous mapping for every $\varphi \in C_{b}^{0}\left(\mathbb{R}^{d}, \mathbb{R}\right)$. In this context, given $\mu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ and some $p \in[1,+\infty)$, the notation $\left(\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right),\|\cdot\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}\right)$ will refer to the seminormed vector space of Borel maps from \mathbb{R}^{d} into itself which are p-integrable with respect to μ (see e.g. [15, Chapter 2.4]). We will also denote by \mathscr{L}^{1} the standard 1-dimensional Lebesgue measure, and given a closed interval $I \subset \mathbb{R}$ and a separable Banach space $\left(X,\|\cdot\|_{X}\right)$, we let $\left(L^{1}(I, X),\|\cdot\|_{L^{1}(I)}\right)$ stand for the Banach space of maps which are \mathscr{L}^{1}-measurable and p-integrable in the sense of Bochner, see e.g. [47, Chapter II].

In the following definition, we recall the classical notions of one-sided density points of an \mathscr{L}^{1} measurable subset of $I \subset \mathbb{R}$, along with that of one-sided Lebesgue points of a Lebesgue integrable map. It is a well-known result in measure theory that these sets both have full \mathscr{L}^{1}-measure in I.

Definition 2.1 (Lebesgue and density points). Given a Lebesgue measurable set $\mathscr{A} \subset I$, its one-sided density points are defined as the elements $\tau \in \mathscr{A}$ satisfying

$$
\frac{\mathscr{L}^{1}([\tau, \tau+h] \cap \mathscr{A})}{|h|} \underset{h \rightarrow 0}{\longrightarrow} 1 .
$$

Similarly, given a map $f \in L^{1}(I, X)$, we denote by $\mathscr{T}_{f} \subset I$ the subset of its one-sided Lebesgue points, which are the elements $\tau \in I$ at which

$$
\frac{1}{h} \int_{\tau}^{\tau+h}\|f(t)-f(\tau)\|_{X} \mathrm{~d} t \underset{h \rightarrow 0}{\longrightarrow} 0
$$

For any real number $p \in[1,+\infty)$, we denote by $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ the subset of Borel probability measures whose momentum of order p, defined by

$$
\mathcal{M}_{p}(\mu):=\left(\int_{\mathbb{R}^{d}}|x|^{p} \mathrm{~d} \mu(x)\right)^{1 / p}
$$

is finite. In what follows, we write $f_{\sharp} \mu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ for the image measure of an element $\mu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ through a Borel map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, which is characterised in a unique way by the identity

$$
\int_{\mathbb{R}^{d}} \varphi(x) \mathrm{d}\left(f_{\sharp} \mu\right)(x)=\int_{\mathbb{R}^{d}} \varphi \circ f(x) \mathrm{d} \mu(x)
$$

satisfied for every Borel mapping $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, where " \circ " stands for the composition operation between functions. Then, the set of transport plans between two measures $\mu, \nu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ is defined by

$$
\Gamma(\mu, \nu):=\left\{\gamma \in \mathscr{P}_{p}\left(\mathbb{R}^{2 d}\right) \text { s.t. } \pi_{\sharp}^{1} \gamma=\mu \text { and } \pi_{\sharp}^{2} \gamma=\nu\right\} \text {, }
$$

wherein $\pi^{1}, \pi^{2}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ represent the projections onto the first and second factors respectively. In this context, the Wasserstein distance of order p between μ and ν is the quantity defined by

$$
W_{p}(\mu, \nu):=\min _{\gamma \in \Gamma(\mu, \nu)}\left(\int_{\mathbb{R}^{2 d}}|x-y|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p},
$$

and we henceforth denote by $\Gamma_{o}(\mu, \nu)$ the set of p-optimal transport plans at which the minimum is reached. Owing to the definition of this distance in the form of an infimum, it can be checked straightforwardly following e.g. [5, Chapter 7] that

$$
\begin{equation*}
W_{p}\left(\zeta_{\sharp} \mu, \xi_{\sharp} \mu\right) \leq\|\xi-\zeta\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)} \tag{2.1}
\end{equation*}
$$

for any $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and each pair of elements $\zeta, \xi \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$. In the following proposition, we recall elementary facts regarding the topology of Wasserstein spaces, see e.g. [5, Proposition 7.1.5].

Proposition 2.2 (Topological properties of Wasserstein spaces). The metric spaces $\left(\mathscr{P}_{p}\left(\mathbb{R}^{d}\right), W_{p}\right)$ are complete and separable, and their topology is stronger than the narrow topology. Moreover, a set $\mathcal{K} \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is relatively compact for the W_{p}-metric if and only if

$$
\sup _{\mu \in \mathcal{K}} \int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq k\right\}}|x|^{p} \mathrm{~d} \mu(x) \underset{k \rightarrow+\infty}{\longrightarrow} 0,
$$

that is, if and only if it is p-uniformly integrable.
Wasserstein geometry. In addition to their convenient topological properties, the Wasserstein spaces can be endowed with a geometric structure that greatly resembles that of a Riemannian manifold when $p=2$. For a general $p \in[1,+\infty)$, it is discussed in depth throughout [5, Chapter 8] that $\left(\mathscr{P}_{p}\left(\mathbb{R}^{d}\right), W_{p}\right)$ can be seen as a bundle whose fibers are the closed cones

$$
\operatorname{Tan}_{\mu} \mathscr{P}_{p}\left(\mathbb{R}^{d}\right):=\overline{\left\{j_{q}(\nabla \varphi) \text { s.t. } \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)\right\}} \hat{\mathcal{L}}^{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}
$$

defined at each $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$. Therein, $q \in(1,+\infty]$ stands for the conjugate exponent of $p \in[1,+\infty)$, and $j_{q}: \mathcal{L}^{q}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right) \rightarrow \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$ refers to the so-called duality map, which is given by

$$
j_{q}(\xi):=\left\{\begin{array}{lr}
0 & \text { if } \xi=0 \tag{2.2}\\
|\xi|^{q-2} \xi & \text { otherwise }
\end{array}\right.
$$

for each $\xi \in \mathcal{L}^{q}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$. In the following proposition, we provide an adhoc version of the joint directional superdifferentiability inequalities satisfied by the p-Wasserstein distance whenever $p>1$. We point to [5 , Theorem 10.2.2] for the general case.

Proposition 2.3 (Joint directional superdifferentiability of the Wasserstein distance). Fix an element $p \in(1,+\infty)$ and $\mu, \nu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$. Then for each $\xi \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$ and $\zeta \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu\right)$, it holds that

$$
\frac{1}{p} W_{p}^{p}\left((\operatorname{Id}+h \zeta)_{\sharp} \mu,(\operatorname{Id}+h \xi)_{\sharp} \nu\right)-\frac{1}{p} W_{p}^{p}(\mu, \nu) \leq h \int_{\mathbb{R}^{2 d}}\left\langle\zeta(x)-\xi(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma(x, y)+r_{p}(h, \zeta, \xi)
$$

for any $h \in \mathbb{R}$ and every $\gamma \in \Gamma_{o}(\mu, \nu)$, where the remainder term $r_{p}(h, \zeta, \xi)$ is given explicitly by

$$
\begin{align*}
& r_{p}(h, \zeta, \xi):=(p-1)\left(W_{p}(\mu, \nu)+|h|\left(\|\zeta\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}+\|\xi\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu\right)}\right)\right)^{p-2} \tag{2.3}\\
& \times\left(\|\zeta\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}^{2}+\|\xi\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu\right)}^{2}\right)|h|^{2}
\end{align*}
$$

when $p \in[2,+\infty)$, and

$$
\begin{equation*}
r_{p}(h, \zeta, \xi):=\frac{2}{p-1}\left(\|\zeta\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}^{p}+\|\xi\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu\right)}^{p}\right)|h|^{p} \tag{2.4}
\end{equation*}
$$

for $p \in(1,2]$. In particular, there exists a constant $C_{p}>0$ which depends only on the magnitudes of $p, \mathcal{M}_{p}(\mu), \mathcal{M}_{p}(\nu),\|\zeta\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}$ and $\|\xi\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu\right)}$ such that

$$
r_{p}(h, \zeta, \xi) \leq C_{p}|h|^{\min \{p, 2\}}
$$

whenever $h \in(0,1]$, and moreover $r_{p}(h, \zeta, \xi)=0$ if $\zeta=\xi=0$.
Proof. For the sake of readability, the proof of this result is deferred to Appendix A.

2.2 Set-valued analysis and topological properties of the space $C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$

In this second preliminary section, we recollect pivotal concepts of set-valued analysis, and discuss some of the topological features of the space $C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ that will prove useful in the sequel. We point the reader to the reference treatises $[8,9]$ for the former topics, and to $[68,77]$ for the latter.

Elementary notations. Given a metric space $\left(X, \mathrm{~d}_{X}(\cdot, \cdot)\right)$, we will denote the closed ball of radius $R>0$ centered at $x \in X$ by $\mathbb{B}_{X}(x, R):=\left\{x^{\prime} \in X\right.$ s.t. $\left.\mathrm{d}_{X}\left(x, x^{\prime}\right) \leq R\right\}$, and write

$$
\operatorname{dist}_{X}\left(\mathcal{Q} ; \mathcal{Q}^{\prime}\right):=\inf _{\left(x, x^{\prime}\right) \in \mathcal{Q} \times \mathcal{Q}^{\prime}} \mathrm{d}_{X}\left(x, x^{\prime}\right)
$$

for the usual distance between two closed sets $\mathcal{Q}, \mathcal{Q}^{\prime} \subset X$. Throughout the article, we will also work with the Hausdorff metric, which is defined by

$$
\begin{equation*}
\mathrm{d}_{\mathcal{H}}\left(\mathcal{K}, \mathcal{K}^{\prime}\right):=\inf \left\{\varepsilon>0 \text { s.t. } \mathcal{K} \subset \mathbb{B}_{X}\left(\mathcal{K}^{\prime}, \varepsilon\right) \text { and } \mathcal{K}^{\prime} \subset \mathbb{B}_{X}(\mathcal{K}, \varepsilon)\right\} \tag{2.5}
\end{equation*}
$$

for each pair of compact sets $\mathcal{K}, \mathcal{K}^{\prime} \subset X$, where we used the condensed notation

$$
\mathbb{B}_{X}(\mathcal{K}, \varepsilon):=\bigcup_{x \in \mathcal{K}} \mathbb{B}_{X}(x, \varepsilon)
$$

In our subsequent developments, we will denote by $\operatorname{int}(\mathcal{Q})$ and $\partial \mathcal{Q}:=\mathcal{Q} \backslash \operatorname{int}(\mathcal{Q})$ the interior and the topological boundary of \mathcal{Q}. In the particular case where $\left(X, \mathrm{~d}_{X}(\cdot, \cdot)\right)$ exhibits a linear structure - e.g. when it is a Banach or a Fréchet space, see for instance [63] -, we define the closed convex hull of one of some of its subsets $\mathcal{B} \subset X$ as

$$
\overline{\operatorname{co}}(\mathcal{B})=\overline{\operatorname{co}(\mathcal{B})}^{X}:={\overline{\bigcup_{N \geq 1}\left\{\sum_{j=1}^{N} \alpha_{j} b_{j} \quad \text { s.t. } \quad b_{j} \in \mathcal{B}, \alpha_{j} \geq 0 \text { for } j \in\{1, \ldots, N\} \text { and } \sum_{j=1}^{N} \alpha_{j}=1\right\}}}^{X}
$$

wherein " $\bar{\sigma}^{X}$ " stands for the sequential closure with respect to $\mathrm{d}_{X}(\cdot, \cdot)$. We finally recall the definition of the so-called proper subsets of a metric space.

Definition 2.4 (Proper subsets). A closed set $\mathcal{Q} \subset X$ is proper provided that $\mathcal{Q} \cap \mathbb{B}_{X}(x, R)$ is compact for each $x \in X$ and every $R>0$.

Note that one could alternatively require that $\mathcal{Q} \cap \mathbb{B}_{X}(x, R)$ be compact for each $x \in \mathcal{Q}$ instead of $x \in X$, without altering the previous definition.

Set-valued analysis. We recall that a set-valued map - or correspondence - between two metric spaces $\left(X, \mathrm{~d}_{X}(\cdot, \cdot)\right)$ and $\left(Y, \mathrm{~d}_{Y}(\cdot, \cdot)\right)$ is an application $\mathcal{F}: X \rightrightarrows Y$ whose images are subsets of Y, namely $\mathcal{F}(x) \subset Y$ for all $x \in X$. In this context, the graph of \mathcal{F} is the subset of $X \times Y$ defined by

$$
\operatorname{Graph}(\mathcal{F}):=\{(x, y) \in X \times Y \text { s.t. } y \in \mathcal{F}(x)\}
$$

In the coming definitions, we recall the main regularity notions for set-valued mappings with values in metric spaces, starting with those of continuity and Lipschitz regularity.

Definition 2.5 (Continuity of set-valued maps). A correspondence $\mathcal{F}: X \rightrightarrows Y$ is said to be continuous at $x \in X$ if both the following conditions hold.
(i) \mathcal{F} is lower-semicontinuous at x, i.e. for any $\varepsilon>0$ and all $y \in \mathcal{F}(x)$, there exists $\delta>0$ such that

$$
\mathcal{F}\left(x^{\prime}\right) \cap \mathbb{B}_{Y}(y, \varepsilon) \neq \emptyset
$$

for each $x^{\prime} \in \mathbb{B}_{X}(x, \delta)$.
(ii) \mathcal{F} is upper-semicontinuous at x, i.e. for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
\mathcal{F}\left(x^{\prime}\right) \subset \mathbb{B}_{Y}(\mathcal{F}(x), \varepsilon)
$$

for each $x^{\prime} \in \mathbb{B}_{X}(x, \delta)$.
Definition 2.6 (Lipschitz continuity of set-valued maps). A correspondence $\mathcal{F}: X \rightrightarrows Y$ is said to be Lipschitz continuous with constant $L>0$ provided that

$$
\mathcal{F}\left(x^{\prime}\right) \subset \mathbb{B}_{Y}\left(\mathcal{F}(x), L \mathrm{~d}_{X}\left(x, x^{\prime}\right)\right)
$$

for all $x, x^{\prime} \in X$. In the case where $\mathcal{F}: X \rightrightarrows Y$ has compact images, one can equivalently require that

$$
\mathrm{d}_{\mathcal{H}}\left(\mathcal{F}(x), \mathcal{F}\left(x^{\prime}\right)\right) \leq L \mathrm{~d}\left(x, x^{\prime}\right)
$$

for all $x, x^{\prime} \in X$.
As for functions defined over the real line and valued in metric spaces, it is possible to formulate relevant notions of absolute continuity for set-valued maps. Some of them will involve the quantity

$$
\Delta_{x, R}\left(\mathcal{Q} ; \mathcal{Q}^{\prime}\right):=\inf \left\{\varepsilon>0 \text { s.t. } \mathcal{Q} \cap \mathbb{B}_{X}(x, R) \subset \mathbb{B}_{X}\left(\mathcal{Q}^{\prime}, \varepsilon\right)\right\} \in \mathbb{R}_{+} \cup\{+\infty\}
$$

defined for each $x \in X, R>0$ and every pair of nonempty closed sets $\mathcal{Q}, \mathcal{Q}^{\prime} \subset X$, which can be seen as a sort of asymmetric and localised version of the Hausdorff metric (2.5).

Definition 2.7 (Notions of absolute continuity for set-valued mappings). We say that a correspondence $\mathcal{F}: I \rightrightarrows X$ with closed nonempty images is absolutely continuous if for every $x \in X$ and each $R>0$, there exists a map $m_{x, R}(\cdot) \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that

$$
\max \left\{\Delta_{x, R}(\mathcal{F}(\tau) ; \mathcal{F}(t)), \Delta_{x, R}\left(\mathcal{F}\left(t_{2}\right) ; \mathcal{F}\left(t_{1}\right)\right)\right\} \leq \int_{\tau}^{t} m_{x, R}(s) \mathrm{d} s
$$

for all times $\tau, t \in I$ satisfying $\tau \leq t$. Analogously, we say that $\mathcal{F}: I \rightrightarrows X$ is left absolutely continuous if only the one-sided inequality

$$
\Delta_{x, R}(\mathcal{F}(\tau) ; \mathcal{F}(t)) \leq \int_{\tau}^{t} m_{x, R}(s) \mathrm{d} s
$$

holds. In the case where $\mathcal{F}: I \rightrightarrows X$ has compact images, we say that it is absolutely continuous in the Hausdorff metric if there exists a map $m_{\mathcal{F}}(\cdot) \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that

$$
\mathrm{d}_{\mathcal{H}}(\mathcal{F}(\tau), \mathcal{F}(t)) \leq \int_{\tau}^{t} m_{\mathcal{F}}(s) \mathrm{d} s
$$

for all times $\tau, t \in I$ such that $\tau \leq t$.
These notions of absolute continuity permit to formulate the following regularity statement on the distance function between set-valued maps, which will prove crucial in our subsequent developments.

Proposition 2.8 (Regularity of the distance between set-valued maps). Let $\mathcal{K}: I \rightrightarrows X$ be a setvalued map with compact nonempty images that is absolutely continuous in the Hausdorff metric and $\mathcal{Q}: I \rightrightarrows X$ be an absolutely continuous set-valued map with closed nonempty images. Then, the map

$$
g: t \in I \mapsto \operatorname{dist}_{X}(\mathcal{K}(t) ; \mathcal{Q}(t)) \in \mathbb{R}_{+}
$$

is absolutely continuous. In the case where $\mathcal{Q}:[0, T] \rightrightarrows X$ is only left absolutely continuous, the set-valued map

$$
\mathscr{E}: t \in I \rightrightarrows\left\{\alpha \in \mathbb{R}_{+} \text {s.t. } \alpha=g(t)+r \text { for some } r \geq 0\right\}
$$

is left absolutely continuous as well.
Proof. Being somewhat long and technical, the proof of this statement is deferred to Appendix B.
Analogously to the classical notions of regularity exposed hereinabove, it is possible to generalise the concept of measurability to set-valued mappings, as highlighted by the following definition.

Definition 2.9 (Measurability of set-valued maps). A set-valued map $\mathcal{F}: I \rightrightarrows X$ is said to be \mathscr{L}^{1}-measurable provided that the sets

$$
\mathcal{F}^{-1}(\mathcal{O}):=\{t \in I \text { s.t. } \mathcal{F}(t) \cap \mathcal{O} \neq \emptyset\}
$$

are \mathscr{L}^{1}-measurable for each open set $\mathcal{O} \subset X$. Moreover, we say that an \mathscr{L}^{1}-measurable map $f: I \rightarrow X$ is a measurable selection of $\mathcal{F}: I \rightrightarrows X$ if $f(t) \in \mathcal{F}(t)$ for \mathscr{L}^{1}-almost every $t \in I$.

In the following theorem, we recall an instrumental result of set-valued analysis excerpted from [9, Theorem 8.1.3], which asserts that measurable correspondences always admit measurable selections.

Theorem 2.10 (Existence of measurable selections). Suppose that $\left(X, \mathrm{~d}_{X}(\cdot, \cdot)\right)$ is a complete separable metric space. Then every \mathscr{L}^{1}-measurable set-valued map $\mathcal{F}: I \rightrightarrows X$ with closed nonempty images admits a measurable selection.

We end this primer in set-valued analysis by recollecting a fine adaptation of the Scorza-Dragoni theorem for set-valued mappings between metric spaces, for which we refer to [18, Theorem 1].

Theorem 2.11 (Scorza-Dragoni property for set-valued mappings). Suppose that $\left(X, \mathrm{~d}_{X}(\cdot, \cdot)\right)$ and $\left(Y, \mathrm{~d}_{Y}(\cdot, \cdot)\right)$ are complete separable metric spaces, and let $\mathcal{F}: I \times X \rightrightarrows Y$ be a set-valued map with closed nonempty images such that $t \in I \rightrightarrows \mathcal{F}(t, x)$ is \mathscr{L}^{1}-measurable for all $x \in X$ and $x \rightrightarrows \mathcal{F}(t, x)$ is continuous for \mathscr{L}^{1}-almost every $t \in I$.

Then for every $\varepsilon>0$, there exists a compact set $\mathscr{A}_{\varepsilon} \subset I$ such that $\mathscr{L}^{1}\left(I \backslash \mathscr{A}_{\varepsilon}\right)<\varepsilon$, and for which the following holds.
(i) The restriction of the set-valued mapping $\mathcal{F}: \mathscr{A}_{\varepsilon} \times X \rightrightarrows Y$ is lower-semicontinuous.
(ii) The restriction of the graph of the set-valued mapping

$$
\operatorname{Graph}(\mathcal{F})_{\mid \mathscr{A} \varepsilon} \times X \times Y:=\left\{(t, x, y) \in \mathscr{A}_{\varepsilon} \times X \times Y \text { s.t. } y \in \mathcal{F}(t, x)\right\}
$$

is closed in $\mathscr{A}_{\varepsilon} \times X \times Y$.

Topological structures and metrics for continuous maps. Throughout the coming paragraphs, we recall some useful topological properties of the space $C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. In what follows, we denote by

$$
\mathrm{d}_{\sup }(v, w):=\sup _{x \in \mathbb{R}^{d}}|v(x)-w(x)| \in \mathbb{R}_{+} \cup\{+\infty\}
$$

the supremum extended-distance between a pair of elements $v, w \in C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. While this latter is useful to control the global discrepancy between two continuous functions - which can be equal to $+\infty-$, the topology that it induces is not separable and thus not adapted to the application of measurable selection theorems. For this reason, we will systematically endow the space $C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ with the topology of local uniform convergence, whose definition is recalled here.

Definition 2.12 (The topology of local uniform convergence). A sequence of maps $\left(v_{n}\right) \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ converges locally uniformly - or uniformly on compact sets - to some $v \in C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ provided that

$$
\left\|v-v_{n}\right\|_{C^{0}\left(K, \mathbb{R}^{d}\right)} \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

for each compact set $K \subset \mathbb{R}^{d}$. This notion of convergence endows $C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ with the structure of a separable Fréchet space, whose topology is induced by the translation invariant metric

$$
\begin{equation*}
\mathrm{d}_{c c}(v, w):=\sum_{k=1}^{+\infty} 2^{-k} \min \left\{1,\|v-w\|_{C^{0}\left(B(0, k), \mathbb{R}^{d}\right)}\right\} \tag{2.6}
\end{equation*}
$$

that is well-defined for any $v, w \in C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.
Amongst its interesting properties, the topology of local uniform convergence enjoys a very explicit and amenable characterisation of compactness, for which we refer to [68, Chapter 7, Theorem 18].

Theorem 2.13 (Ascoli-Arzelà compactness criterion). A closed set $V \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is compact for the topology induced by $\mathrm{d}_{c c}(\cdot, \cdot)$ if and only if its elements are locally uniformly equicontinuous and if, for every $x \in \mathbb{R}^{d}$, there exists a relatively compact set $K_{x} \subset \mathbb{R}^{d}$ such that $v(x) \in K_{x}$ for each $v \in V$.

We recall below a fact whose proof can be found in [72], which establishes a one-to-one correspondence between \mathscr{L}^{1}-measurable maps $t \in I \mapsto v(t) \in C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and Carathéodory vector fields. We recall that a map $v: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is Carathéodory if $t \in I \mapsto v(t, x)$ is \mathscr{L}^{1}-measurable for all $x \in \mathbb{R}^{d}$ and $x \in \mathbb{R}^{d} \mapsto v(t, x)$ is continuous for \mathscr{L}^{1}-almost every $t \in[0, T]$.
Lemma 2.14 (Measurable selections in $C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and Carathéodory vector fields). A vector field $(t, x) \in I \times \mathbb{R}^{d} \mapsto v(t, x) \in \mathbb{R}^{d}$ is Carathéodory if and only if its functional lift $t \in I \mapsto v(t) \in C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is \mathscr{L}^{1}-measurable with respect to the topology induced by $\mathrm{d}_{c c}(\cdot, \cdot)$.

Lastly, we prove a technical result which states that for sequences of sublinear continuous functions, the convergence with respect to $\mathrm{d}_{c c}(\cdot, \cdot)$ yields the convergence in $\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$ for every $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$.
Lemma 2.15 (Link between local uniform and Lebesgue convergences). Let $\left(v_{n}\right) \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a sequence of maps such that

$$
\left|v_{n}(x)\right| \leq m(1+|x|)
$$

for all $x \in \mathbb{R}^{d}$ and some $m>0$. Moreover, suppose that $\mathrm{d}_{c c}\left(v_{n}, v\right) \rightarrow 0$ as $n \rightarrow+\infty$ for some $v \in C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. Then for each $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, it holds that $\left\{v_{n}\right\}_{n=1}^{+\infty} \subset \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$ and

$$
\left\|v-v_{n}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)} \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

Proof. The fact that $v_{n} \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$ simply follows from the observation that

$$
\left\|v_{n}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)} \leq m\left(\int_{\mathbb{R}^{d}}(1+|x|)^{p} \mathrm{~d} \mu(x)\right)^{1 / p}<+\infty
$$

and likewise $v \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$. Fix now some $\varepsilon>0$ and let $R_{\varepsilon}>0$ be a radius such that

$$
\left(\int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq R_{\varepsilon}\right\}}(1+|x|)^{p} \mathrm{~d} \mu(x)\right)^{1 / p} \leq \frac{\varepsilon}{4 m}
$$

whose existence follows from Proposition 2.2. Then, choose an integer $N_{\varepsilon} \geq 1$ such that

$$
\left\|v-v_{n}\right\|_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)} \leq \frac{\varepsilon}{2}
$$

for each $n \geq N_{\varepsilon}$, which is always possible by the definition (2.6) of the $\mathrm{d}_{c c}(\cdot, \cdot)$. Whence, one recovers

$$
\left\|v-v_{n}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)} \leq\left\|v-v_{n}\right\|_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}+2 m\left(\int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq R_{\varepsilon}\right\}}(1+|x|)^{p} \mathrm{~d} \mu(x)\right)^{1 / p} \leq \varepsilon
$$

for each $n \geq N_{\varepsilon}$, which yields the desired convergence result.

2.3 Continuity equations and inclusions in Wasserstein spaces

In this last preliminary section, we expose well-posedness results and estimates for solutions of continuity equations and inclusions in Wasserstein spaces. These latter are mostly borrowed from our previous works $[21,23]$, and we point to [5, Chapter 8$]$ and $[3,73]$ for more classical versions thereof.

Continuity equations in the Carathéodory framework. In the ensuing paragraphs, we recall some elementary results pertaining to the qualitative properties of continuity equations of the form

$$
\partial_{t} \mu(t)+\operatorname{div}_{x}(v(t) \mu(t))=0,
$$

defined over some time interval $[0, T]$ with $T>0$, and whose solutions are understood in the sense of distributions, namely

$$
\int_{0}^{T} \int_{\mathbb{R}^{d}}\left(\partial_{t} \varphi(t, x)+\left\langle\nabla_{x} \varphi(t, x), v(t, x)\right\rangle\right) \mathrm{d} \mu(t)(x) \mathrm{d} t=0
$$

for every $\varphi \in C_{c}^{\infty}\left((0, T) \times \mathbb{R}^{d}, \mathbb{R}\right)$. Given a fixed real number $p \in[1,+\infty)$ and a pair of elements $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, we will more generally study the well-posedness of the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} \mu(t)+\operatorname{div}_{x}(v(t) \mu(t))=0 \tag{2.7}\\
\mu(\tau)=\mu_{\tau}
\end{array}\right.
$$

in the case where the velocity field $v:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ satisfies the following standard assumptions or some of their variants.

Hypotheses (CE).

(i) The velocity field $v:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is Carathéodory, i.e. $t \in[0, T] \mapsto v(t, x)$ is \mathscr{L}^{1}-measurable for all $x \in \mathbb{R}^{d}$ while $x \in \mathbb{R}^{d} \mapsto v(t, x)$ is continuous for \mathscr{L}^{1}-almost every $t \in[0, T]$. Moreover, there exists a map $m(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$such that

$$
|v(t, x)| \leq m(t)(1+|x|)
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $x \in \mathbb{R}^{d}$.
(ii) There exists a map $l(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$such that

$$
\operatorname{Lip}\left(v ; \mathbb{R}^{d}\right) \leq l(t)
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$.
In their strongest form, the well-posedness results stated in Theorem 2.17 below for continuity equations involve the notion of characteristic flow generated by the velocity field.
Definition 2.16 (Characteristic flow). Given a velocity field $v:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ satisfying Hypotheses (CE), we define the characteristic flows $\left(\Phi_{(\tau, t)}^{v}\right)_{\tau, t \in[0, T]} \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ as the unique maps satisfying

$$
\begin{equation*}
\Phi_{(\tau, t)}^{v}(x)=x+\int_{\tau}^{t} v\left(s, \Phi_{(\tau, s)}^{v}(x)\right) \mathrm{d} s \tag{2.8}
\end{equation*}
$$

for all times $\tau, t \in[0, T]$ and any $x \in \mathbb{R}^{d}$.
Theorem 2.17 (Well-posedness in the Carathéodory framework). Let $v:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a velocity field satisfying Hypothesis $(\mathbf{C E})-(i)$, and fix some $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathbb{R}^{d}$.

Then, the Cauchy problem (2.7) admits solutions $\mu(\cdot) \in \mathrm{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$. In the case where Hypothesis (CE)-(ii) holds as well, then the latter is unique and represented explicitly by the formula

$$
\mu(t)=\Phi_{(\tau, t) \sharp}^{v} \mu_{\tau}
$$

for all times $t \in[0, T]$.

Set-valued dynamics in Wasserstein spaces. In the next paragraphs, we recollect for the sake of completeness the definition of continuity inclusions introduced in our earlier works [21, 23], along with several estimates on which our main contributions strongly rely. In what follows, we focus on set-valued Cauchy problems of the form

$$
\left\{\begin{array}{l}
\partial_{t} \mu(t) \in-\operatorname{div}_{x}(V(t, \mu(t)) \mu(t)), \tag{2.9}\\
\mu(\tau)=\mu_{\tau}
\end{array}\right.
$$

wherein $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ are given, and whose solutions are understood in the following sense.

Definition 2.18 (Solutions to continuity inclusions). A curve of measures $\mu(\cdot) \in \mathrm{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ is said to be a solution of the Cauchy problem (2.9) if there exists an \mathscr{L}^{1}-measurable selection $t \in$ $[0, T] \mapsto v(t) \in V(t, \mu(t))$ such that the trajectory-selection pair $(\mu(\cdot), v(\cdot))$ satisfies

$$
\left\{\begin{array}{l}
\partial_{t} \mu(t)+\operatorname{div}_{x}(v(t) \mu(t))=0 \\
\mu(\tau)=\mu_{\tau}
\end{array}\right.
$$

in the sense of distributions.
Based on our earlier contributions, we will assume throughout this article that the dynamics satisfies the following assumptions. Therein and in what follows, $C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ will be systematically endowed with the separable Fréchet structure induced by $\mathrm{d}_{c c}(\cdot, \cdot)$, and exposed in Definition 2.12.

Hypotheses (CI).

(i) For any $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, the set-valued map $t \in[0, T] \rightrightarrows V(t, \mu) \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is \mathscr{L}^{1}-measurable with closed nonempty images.
(ii) There exists a map $m(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$such that for \mathscr{L}^{1}-almost every $t \in[0, T]$, any $\mu \in$ $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, every $v \in V(t, \mu)$ and all $x \in \mathbb{R}^{d}$, it holds

$$
|v(x)| \leq m(t)\left(1+|x|+\mathcal{M}_{p}(\mu)\right)
$$

(iii) There exists a map $l(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$such that for \mathscr{L}^{1}-almost every $t \in[0, T]$, any $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and every $v \in V(t, \mu)$, it holds

$$
\operatorname{Lip}\left(v ; \mathbb{R}^{d}\right) \leq l(t) .
$$

(iv) There exists a map $L(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$such that for \mathscr{L}^{1}-almost every $t \in[0, T]$, any $\mu, \nu \in$ $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and each $v \in V(t, \mu)$, there exists an element $w \in V(t, \nu)$ for which

$$
\mathrm{d}_{\mathrm{sup}}(v, w) \leq L(t) W_{p}(\mu, \nu)
$$

Examples of classical set-valued mappings defined in terms of control systems satisfying localised variants of (CI) are provided in [21, Section 4]. In our subsequent developments, we will frequently refer to solutions of (2.9) by using the terminology of reachable and solutions sets, defined as follows.

Definition 2.19 (Reachable and solution sets of continuity inclusions). Given a pair of elements $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, we define the (forward) solution set of the Cauchy problem (2.9) as

$$
\mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right):=\left\{\mu(\cdot) \in \mathrm{AC}\left([\tau, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right) \text { s.t. } \mu(\cdot) \text { is a solution of }(2.9)\right\}
$$

and denote by

$$
\mathcal{R}_{(\tau, t)}\left(\mu_{\tau}\right):=\left\{\mu(t) \text { s.t. } \mu(\cdot) \in \mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right)\right\}
$$

the corresponding reachable sets at time $t \in[0, T]$.

By combining classical concatenation results for solutions of continuity equations (see e.g. [48, Lemma 4.4]) and Definition 2.18, it can be shown that the reachable sets satisfy the semigroup property

$$
\begin{equation*}
\mathcal{R}_{(\tau, t)}\left(\mu_{\tau}\right)=\mathcal{R}_{(s, t)} \circ \mathcal{R}_{(\tau, s)}\left(\mu_{\tau}\right) \tag{2.10}
\end{equation*}
$$

for all times $\tau \leq s \leq t \leq T$. Besides, it follows from Hypotheses (CI) and Theorem 2.17 that solution curves are also well-defined and unique backward in time. Hence, each element of $\mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right)$ can be seen as a restriction to $[\tau, T]$ of some other curve in $\mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$

In the next propositions, we recall several a priori estimates for solutions of (2.9), along with some useful topological properties for the reachable and solution sets. Therein and in what follows, we will frequently use the shorthand notation $\|m(\cdot)\|_{1}:=\|m(\cdot)\|_{L^{1}([0, T], \mathbb{R})}$ given a map $m(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$.

Proposition 2.20 (Momentum, equi-integrability and absolute continuity estimates). Let $V:[0, T] \times$ $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a set-valued map satisfying Hypotheses (CI) and $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$.

Then, there exists a constant $\mathcal{C}_{T}>0$ which only depends on the magnitudes of $p, \mathcal{M}_{p}\left(\mu_{\tau}\right)$ and $\|m(\cdot)\|_{1}$ such that every curve $\mu(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$ complies with the a priori momentum bound

$$
\begin{equation*}
\mathcal{M}_{p}(\mu(t)) \leq \mathcal{C}_{T}, \tag{2.11}
\end{equation*}
$$

as well as the uniform equi-integrability estimate

$$
\begin{equation*}
\int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq R\right\}}|x|^{p} \mathrm{~d} \mu(t)(x) \leq \mathcal{C}_{T}^{p} \int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq R / \mathcal{C}_{T}-1\right\}}(1+|x|)^{p} \mathrm{~d} \mu_{\tau}(x) \tag{2.12}
\end{equation*}
$$

for all times $t \in[0, T]$ and each $R>0$. Moreover, the following uniform absolute continuity inequality

$$
\begin{equation*}
W_{p}\left(\mu\left(t_{1}\right), \mu\left(t_{2}\right)\right) \leq\left(1+\mathcal{C}_{T}\right) \int_{t_{1}}^{t_{2}} m(s) \mathrm{d} s \tag{2.13}
\end{equation*}
$$

holds for all times $0 \leq t_{1} \leq t_{2} \leq T$ and every $\mu(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$.
Proposition 2.21 (Topological properties of the reachable and solution sets). Assume that the hypotheses of Proposition 2.20 hold and that $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ has convex images. Then, the reachable sets $\mathcal{R}_{(\tau, t)}\left(\mu_{\tau}\right) \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ are compact for all times $t \in[0, T]$, and the solution set $\mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right) \subset C^{0}\left([\tau, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ is compact for the topology of uniform convergence.

Proof. The fact that the solution set $\mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right) \subset C^{0}\left([\tau, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ is compact when $V:[0, T] \times$ $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ has convex images was proven in [23, Theorem 3.5]. It is then straightforward to show that the underlying reachable sets are compact for all times $t \in[0, T]$.

We end this preliminary section by recalling a simplified and condensed version of one of the main results of [23], which combines an existence result for (2.9) together with a powerful estimate "à la Grönwall" involving the distance to an a priori fixed curved of measures.

Theorem 2.22 (Local Filippov estimates for continuity inclusions). Let $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows$ $C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a set-valued map satisfying Hypotheses (CI) and $\nu(\cdot) \in \mathrm{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ be a solution of the continuity equation

$$
\partial_{t} \nu(t)+\operatorname{div}_{y}(w(t) \nu(t))=0
$$

driven by a Carathéodory vector field $w:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ satisfying the sublinearity estimate

$$
|w(t, y)| \leq m(t)(1+|y|)
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $y \in \mathbb{R}^{d}$. For every $R>0$, denote by $\eta_{R}(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$the local mismatch function, defined by

$$
\eta_{R}(t):=\operatorname{dist}_{C^{0}\left(B(0, R), \mathbb{R}^{d}\right)}(w(t) ; V(t, \nu(t)))
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$.

Then for every $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and each $R>0$, there exists a curve of measures $\mu(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$ which satisfies the a priori estimate

$$
\begin{equation*}
W_{p}(\mu(t), \nu(t)) \leq \mathcal{C}_{T}^{\prime}\left(W_{p}\left(\mu_{\tau}, \nu(\tau)\right)+\int_{\tau}^{t} \eta_{R}(s) \mathrm{d} s+\mathcal{E}_{\nu}(\tau, t, R)\right) \tag{2.14}
\end{equation*}
$$

for all times $t \in[\tau, T]$. Therein, the constant $\mathcal{C}_{T}^{\prime}>0$ solely depends on the magnitudes of the data $p, \mathcal{M}_{p}\left(\mu^{0}\right),\|m(\cdot)\|_{1},\|l(\cdot)\|_{1}$ and $\|L(\cdot)\|_{1}$, while the error term $\mathcal{E}_{\nu}(\tau, t, R)$ is given explicitly by

$$
\mathcal{E}_{\nu}(\tau, t, R):=2\|m(\cdot)\|_{L^{1}([\tau, t])}\left(1+\mathcal{C}_{T}\right)\left(\int_{\left\{y \text { s.t. }|y| \geq R / \mathcal{C}_{T}-1\right\}}(1+|y|)^{p} \mathrm{~d} \nu(\tau)(y)\right)^{1 / p}
$$

for all times $t \in[\tau, T]$, where $\mathcal{C}_{T}>0$ is the constant appearing in Proposition 2.20.
Remark 2.23 (Link between continuity equations and inclusions). In the particular case in which $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ happens to be single valued and independent of μ - that is if $V(t, \mu)=\{v(t)\}$ for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$-, then the corresponding velocity field satisfies Hypotheses (CE). In addition, the solution of (2.9) is then unique, coincides with that of (2.7), and complies with the a priori estimates of Proposition 2.20 and Theorem 2.22.

3 Infinitesimal behaviour of the reachable sets

In this section, we prove two fundamental results concerning the local properties of solutions to (2.9), largely inspired by the analysis carried out in [60, Section 2]. The first one, discussed in the ensuing theorem, deals with the existence of curves with (approximately) prescribed initial velocities.

Theorem 3.1 (Existence of admissible curves with approximate initial velocities). Let $V:[0, T] \times$ $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a set-valued map with convex images satisfying Hypotheses (CI).

Then, there exists a subset $\mathscr{T} \subset(0, T)$ of full \mathscr{L}^{1}-measure such that for every $\tau \in \mathscr{T}$, all $\mu_{\tau} \in$ $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, each $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$ and any $\varepsilon>0$, there exists a curve $\mu_{\varepsilon}(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$ such that

$$
\begin{equation*}
W_{p}\left(\mu_{\varepsilon}\left(\tau+h_{\varepsilon}\right),\left(\operatorname{Id}+h_{\varepsilon} v_{\tau}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon h_{\varepsilon}, \tag{3.1}
\end{equation*}
$$

for any sufficiently small $h_{\varepsilon}>0$ depending on $\varepsilon>0$.
Proof. To begin with, denote by $\mathscr{T}_{m}, \mathscr{T}_{l}, \mathscr{T}_{L} \subset(0, T)$ the sets of one-sided Lebesgue points of the maps $m(\cdot), l(\cdot)$ and $L(\cdot)$ respectively, and by $\mathscr{T}_{\mathrm{H}} \subset(0, T)$ the subset of full \mathscr{L}^{1}-measure over which Hypotheses (CI)-(ii), (iii) and (iv) hold. By Theorem 2.11, there exists for every $k \geq 1$ a compact set $\mathcal{A}^{k} \subset[0, T]$ satisfying $\mathscr{L}^{1}\left([0, T] \backslash \mathcal{A}^{k}\right)<\frac{1}{2^{k}}$, and such that $V: \mathcal{A}^{k} \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is lower-semicontinuous in the sense of Definition 2.5-(i). For each $n \geq 1$, we then define $\mathscr{A}_{n} \subset[0, T]$ by

$$
\begin{equation*}
\mathscr{A}_{n}:=\bigcap_{k>n} \mathcal{A}^{k} \tag{3.2}
\end{equation*}
$$

and denote by $\tilde{\mathscr{A}}_{n} \subset \mathscr{A}_{n}$ its subset of one-sided density points understood in the sense of Definition 2.1, which can be characterised as set of full \mathscr{L}^{1}-measure in \mathscr{A}_{n} such that

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \frac{\mathscr{L}^{1}\left([\tau, \tau+h] \backslash \mathscr{A}_{n}\right)}{h}=0 \tag{3.3}
\end{equation*}
$$

for each $\tau \in \tilde{\mathscr{A}}_{n}$. Upon noting that for each $n \geq 1$, one has

$$
\begin{aligned}
\mathscr{L}^{1}\left([0, T] \backslash \tilde{\mathscr{A}}_{n}\right) & =\mathscr{L}^{1}\left(\bigcup_{k>n}[0, T] \backslash \mathcal{A}^{k}\right) \\
& \leq \sum_{k=n+1}^{+\infty} \mathscr{L}^{1}\left([0, T] \backslash \mathcal{A}^{k}\right) \leq \frac{1}{2^{n}}
\end{aligned}
$$

while observing that the sequence of measurable sets $\left(\tilde{\mathscr{A}}_{n}\right)$ is increasing by construction, it holds that

$$
\mathscr{L}^{1}\left([0, T] \backslash\left(\bigcup_{n \geq 1} \tilde{\mathscr{A}}_{n}\right)\right)=\lim _{n \rightarrow+\infty} \mathscr{L}^{1}\left([0, T] \backslash \tilde{\mathscr{A}}_{n}\right)=0 .
$$

Therefore, the set $\mathscr{T} \subset(0, T)$ defined by

$$
\begin{equation*}
\mathscr{T}:=\left(\bigcup_{n \geq 1} \tilde{\mathscr{A}}_{n}\right) \cap \mathscr{T}_{m} \cap \mathscr{T}_{l} \cap \mathscr{T}_{L} \cap \mathscr{T}_{\mathrm{H}}, \tag{3.4}
\end{equation*}
$$

has full \mathscr{L}^{1}-measure in $[0, T]$, and in the sequel we fix an element $\tau \in \mathscr{T}$. We also let $R_{\varepsilon}>0$ be chosen in such a way that

$$
\begin{equation*}
2 m(\tau)\left(1+\mathcal{C}_{T}\right)\left(\int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq R_{\varepsilon} / \mathcal{C}_{T}-1\right\}}\left(1+|x|^{p}\right) \mathrm{d} \mu_{\tau}(x)\right)^{1 / p} \leq \varepsilon \tag{3.5}
\end{equation*}
$$

where $\mathcal{C}_{T}>0$ is given as in Proposition 2.20 and Theorem 2.22.
Step 1 - Construction of an admissible curve. Observe that under Hypotheses (CI), each element $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$ is a time-independent vector field satisfying Hypotheses (CE), with constant $m(\tau), l(\tau) \geq 0$. Thus by Theorem 2.17, there exists a unique solution $\nu(\cdot) \in \mathrm{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ of

$$
\left\{\begin{array}{l}
\partial_{t} \nu(t)+\operatorname{div}_{x}\left(v_{\tau} \nu(t)\right)=0 \\
\nu(\tau)=\mu_{\tau}
\end{array}\right.
$$

and which can further be represented explicitly as

$$
\nu(t)=\Phi_{(\tau, t) \sharp}^{v_{\tau}} \mu_{\tau}
$$

for all times $t \in[0, T]$. Therein, the maps $\left(\Phi_{(\tau, t)}^{v_{\tau}}\right)_{t \in[0, T]} \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ denote the characteristic flow generated by $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$ in the sense of Definition 2.16. By standard linearisation techniques (see e.g. [24, Appendix A]), it can moreover be shown that

$$
\Phi_{(\tau, \tau+h)}^{v_{\tau}}(x)=x+h v_{\tau}(x)+o_{\tau, x}(h)
$$

for all $x \in \mathbb{R}^{d}$ and any sufficiently small $h>0$, where $\int_{\mathbb{R}^{d}}\left|o_{\tau, x}(h)\right|^{p} \mathrm{~d} \mu_{\tau}(x)=o_{\tau}\left(|h|^{p}\right)$. Thence, upon remarking that

$$
\left(\operatorname{Id}+h v_{\tau}, \Phi_{(\tau, \tau+h)}^{v_{\tau}}\right)_{\sharp} \mu_{\tau} \in \Gamma\left(\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}, \nu(\tau+h)\right),
$$

we straightforwardly deduce from (2.1) the following distance estimate

$$
\begin{equation*}
W_{p}\left(\nu(\tau+h),\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}\right)=o_{\tau}(h), \tag{3.6}
\end{equation*}
$$

which holds for every sufficiently small $h>0$. Moreover, since $\nu(\tau)=\mu_{\tau}$ by construction, there exists by the Filippov estimates of Theorem 2.22 a curve $\mu_{\varepsilon}(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$ which satisfies

$$
\begin{equation*}
W_{p}\left(\mu_{\varepsilon}(t), \nu(t)\right) \leq \mathcal{C}_{T}^{\prime}\left(\int_{\tau}^{t} \operatorname{dist}_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\left(v_{\tau} ; V(s, \nu(s))\right) \mathrm{d} s+\mathcal{E}_{\nu}\left(\tau, t, R_{\varepsilon}\right)\right) \tag{3.7}
\end{equation*}
$$

for all times $t \in[\tau, T]$, where $\mathcal{C}_{T}^{\prime}>0$ only depends on the magnitudes of $p, \mathcal{M}_{p}\left(\mu^{0}\right),\|m(\cdot)\|_{1},\|l(\cdot)\|_{1}$ and $\|L(\cdot)\|_{1}$.

Step 2 - Distance estimate in the vicinity of $\tau \in \mathscr{T}$. In order to conclude, we need to show that the right-hand side of (3.7) is bounded from above by $\varepsilon h+o_{\tau}(h)$ for $t=\tau+h$, when $h>0$ is sufficiently small. Observe first that by our choice of $R_{\varepsilon}>0$ via (3.5), one has that

$$
\begin{align*}
\mathcal{E}_{\nu}\left(\tau, \tau+h, R_{\varepsilon}\right) & =2\left(1+\mathcal{C}_{T}\right)\|m(\cdot)\|_{L^{1}([\tau, \tau+h])}\left(\int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq R_{\varepsilon} / \mathcal{C}_{T}-1\right\}}\left(1+|x|^{p}\right) \mathrm{d} \mu_{\tau}(x)\right)^{1 / p} \tag{3.8}\\
& \leq \varepsilon h+o_{\tau}(h)
\end{align*}
$$

for each sufficiently small $h>0$, since $\tau \in \mathscr{T}$ is a one-sided Lebesgue point of $m(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$.
In order to derive an upper-bound on the integral of the mismatch function, recall that by the definition (3.4) of $\mathscr{T} \subset(0, T)$, there exists an integer $n \geq 1$ such that $\tau \in \tilde{\mathscr{A}}_{n}$ and the set-valued map $t \in \mathscr{A}_{n} \rightrightarrows V\left(t, \mu_{\tau}\right)$ is lower-semicontinuous. Hence for each $\varepsilon^{\prime}>0$, there exists some $\delta_{n}>0$ for which

$$
\operatorname{dist}_{C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}\left(v_{\tau} ; V\left(t, \mu_{\tau}\right)\right) \leq \varepsilon^{\prime}
$$

for \mathscr{L}^{1}-almost every $t \in\left[\tau, \tau+\delta_{n}\right] \cap \mathscr{A}_{n}$, where we recall that $\left(C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \mathrm{d}_{c c}(\cdot, \cdot)\right)$ is equipped with the Fréchet structure described in Definition 2.12. In particular, by choosing $\varepsilon^{\prime}>0$ to be sufficiently small, it follows from the definition (2.6) of the metric $\mathrm{d}_{c c}(\cdot, \cdot)$ that

$$
\begin{equation*}
\operatorname{dist}_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\left(v_{\tau} ; V\left(t, \mu_{\tau}\right)\right) \leq \varepsilon, \tag{3.9}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in\left[\tau, \tau+\delta_{n}\right] \cap \mathscr{A}_{n}$, where $\left(C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right),\|\cdot\|_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\right)$ is endowed with its usual Banach space structure. As a consequence of Hypothesis (CI)-(iv), there exists a measurable selection $t \in[0, T] \mapsto w_{\tau}(t) \in V(t, \nu(t))$ satisfying

$$
\operatorname{dist}_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\left(w_{\tau}(t) ; V\left(t, \mu_{\tau}\right)\right) \leq L(t) W_{p}\left(\mu_{\tau}, \nu(t)\right)
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$, which together with (3.9) further yields

$$
\begin{equation*}
\operatorname{dist}_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\left(v_{\tau} ; V(t, \nu(t))\right) \leq \varepsilon+L(t) W_{p}\left(\mu_{\tau}, \nu(t)\right) \tag{3.10}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in\left[\tau, \tau+\delta_{n}\right] \cap \mathscr{A}_{n}$. There now remains to estimate the integral over $[\tau, \tau+h]$ of the local mismatch function. The latter can be decomposed into the sum of two terms as

$$
\begin{align*}
\int_{\tau}^{\tau+h} \operatorname{dist}_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\left(v_{\tau} ; V(t, \nu(t))\right) \mathrm{d} t= & \int_{[\tau, \tau+h] \backslash \mathscr{A}_{n}} \operatorname{dist}_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\left(v_{\tau} ; V(t, \nu(t))\right) \mathrm{d} t \tag{3.11}\\
& +\int_{[\tau, \tau+h] \cap \mathscr{A}_{n}} \operatorname{dist}_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\left(v_{\tau} ; V(t, \nu(t))\right) \mathrm{d} t .
\end{align*}
$$

As a consequence of Hypothesis (CI)-(ii), the first of these two integrals can be estimated as

$$
\begin{align*}
\int_{[\tau, \tau+h] \backslash \mathscr{A}_{n}} & \operatorname{dist}_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\left(v_{\tau} ; V(t, \nu(t))\right) \mathrm{d} t \\
& \leq \int_{[\tau, \tau+h] \backslash \mathscr{A}_{n}}\left(\left\|v_{\tau}\right\|_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}+\sup _{w \in V(t, \nu(t))}\|w\|_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\right) \mathrm{d} t \\
& \leq\left(1+R_{\varepsilon}+\mathcal{C}_{T}\right) \int_{[\tau, \tau+h] \backslash \mathscr{A}_{n}}(m(\tau)+m(t)) \mathrm{d} t \tag{3.12}\\
& \leq\left(1+R_{\varepsilon}+\mathcal{C}_{T}\right)\left(2 m(\tau) \mathscr{L}^{1}\left([\tau, \tau+h] \backslash \mathscr{A}_{n}\right)+\int_{[\tau, \tau+h] \backslash \mathscr{A}_{n}}(m(t)-m(\tau)) \mathrm{d} t\right) \\
& =o_{\tau, \varepsilon}(h)
\end{align*}
$$

where we used the characterisation (3.3) of the one-sided density points of \mathscr{A}_{n} along with the fact that $\tau \in \mathscr{T}$ is a one-sided Lebesgue point of $m(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$, as well as the momentum bound
of Proposition 2.20. By (3.10), the second term in (3.11) can be bounded from above as

$$
\begin{align*}
& \int_{[\tau, \tau+h] \cap \mathscr{Q}_{n}} \operatorname{dist}_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}\left(v_{\tau} ; V(t, \nu(t))\right) \mathrm{d} t \\
& \leq \int_{[\tau, \tau+h] \cap \mathscr{A}_{n}}\left(\varepsilon+L(t) W_{p}\left(\mu_{\tau}, \nu(t)\right)\right) \mathrm{d} t \\
& \leq \varepsilon h+\mathcal{C}_{T}^{\prime} \int_{\tau}^{\tau+h} L(t) \int_{\tau}^{t}\left\|v_{\tau}\right\|_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)} \mathrm{d} s \mathrm{~d} t \tag{3.13}\\
& \quad \quad+\mathcal{C}_{T}^{\prime} \int_{\tau}^{\tau+h} 2\|m(\cdot)\|_{L^{1}([\tau, \tau+h])}\left(\int_{\left\{x \text { s.t. }|x| \geq R_{\varepsilon} / \mathcal{C}_{T}-1\right\}}(1+|x|)^{p} \mathrm{~d} \mu_{\tau}(x)\right)^{1 / p} \mathrm{~d} t \\
& \leq \varepsilon h+o_{\tau, \varepsilon}(h),
\end{align*}
$$

where we used the single-valued version of the distance estimate of Theorem 2.22 - see Remark 2.23 - along with the fact that $\tau \in \mathscr{T}$ is a one-sided Lebesgue point of $m(\cdot), L(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$. By plugging (3.12) and (3.13) into (3.11) and combining the resulting estimate with (3.7), one then obtains

$$
\begin{equation*}
W_{p}\left(\mu_{\varepsilon}(\tau+h), \nu(\tau+h)\right) \leq \varepsilon h+o_{\tau, \varepsilon}(h) \tag{3.14}
\end{equation*}
$$

for every small $h \in\left(0, \delta_{n}\right]$, and upon merging (3.14) with (3.6), one finally has that

$$
W_{p}\left(\mu_{\varepsilon}\left(\tau+h_{\varepsilon}\right),\left(\operatorname{Id}+h_{\varepsilon} v_{\tau}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon h_{\varepsilon},
$$

for $h_{\varepsilon}>0$ taken sufficiently small so that $o_{\tau, \varepsilon}\left(h_{\varepsilon}\right) \leq \varepsilon h_{\varepsilon}$, and up to rescaling $\varepsilon>0$ by a constant. This concludes the proof.

In the following theorem, we establish a property that is complementary to the one discussed hereinabove, which ensures the existence of an admissible velocity representing (approximately) the local behaviour of any given solution of (2.9).

Theorem 3.2 (Infinitesimal behaviour of reachable sets). Let $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a set-valued map with convex images satisfying Hypotheses (CI).

Then, there exists a subset $\mathscr{T} \subset(0, T)$ of full \mathscr{L}^{1}-measure such that for every $\tau \in \mathscr{T}$, all $\mu_{\tau} \in$ $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, each solution $\mu(\cdot) \in \mathrm{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ of (4.1), any $\varepsilon>0$ and every sequence $h_{i} \rightarrow 0$, there exists an element $v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right)$ such that

$$
\begin{equation*}
W_{p}\left(\mu\left(\tau+h_{i_{k}}^{\varepsilon}\right),\left(\operatorname{Id}+h_{i_{k}}^{\varepsilon} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon\left|h_{i_{k}}^{\varepsilon}\right| \tag{3.15}
\end{equation*}
$$

along a subsequence $h_{i_{k}}^{\varepsilon} \rightarrow 0$ which depends both on $v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right)$ and $\varepsilon>0$.
Proof. As in the proof of Theorem 3.1, we start by defining the subset $\mathscr{T} \subset(0, T)$ of full \mathscr{L}^{1}-measure over which (3.15) will hold. To this end, denote by $\mathscr{T}_{m}, \mathscr{T}_{l}$ and \mathscr{T}_{L} the sets of one-sided Lebesgue points of the maps $m(\cdot), l(\cdot)$ and $L(\cdot)$ respectively, and by $\mathscr{T}_{\mathrm{H}} \subset(0, T)$ the subset of full \mathscr{L}^{1}-measure over which Hypotheses (CI)-(ii), (iii) and (iv) hold. By Theorem 2.11, there exists for each $k \geq 1$ a compact set $\mathcal{A}^{k} \subset[0, T]$ satisfying $\mathscr{L}^{1}\left([0, T] \backslash \mathcal{A}^{k}\right)<\frac{1}{2^{k}}$, and such that the graph

$$
\operatorname{Graph}(V)_{\mid \mathcal{A}^{k} \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \times C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)}:=\left\{(t, \mu, v) \in \mathcal{A}^{k} \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \times C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \text { s.t. } v \in V(t, \mu)\right\}
$$

of the restriction of $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is closed in $\mathcal{A}^{k} \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \times C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. For each $n \geq 1$, consider the increasing sequence of \mathscr{L}^{1}-measurable sets $\left(\mathcal{B}_{n}\right)$ defined by

$$
\mathcal{B}_{n}:=\{t \in[0, T] \text { s.t. } m(t)+l(t) \leq n\}
$$

and observe that

$$
\mathscr{L}^{1}\left([0, T] \backslash \mathcal{B}_{n}\right) \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

By the inner regularity of the Lebesgue measure, one can find an increasing sequence of closed sets $\left(\mathcal{C}_{n}\right) \subset[0, T]$ satisfying $\mathcal{C}_{n} \subset \mathcal{B}_{n}$ for each $n \geq 1$, as well as

$$
\mathscr{L}^{1}\left(\mathcal{C}_{n}\right) \geq\left(1-\frac{1}{T} \mathscr{L}^{1}\left([0, T] \backslash \mathcal{B}_{n}\right)\right) \mathscr{L}^{1}\left(\mathcal{B}_{n}\right) .
$$

Then, for each $n \geq 1$, we define the closed set $\mathscr{A}_{n} \subset[0, T]$ by

$$
\mathscr{A}_{n}:=\left(\bigcap_{k>n} \mathcal{A}^{k}\right) \cap \mathcal{C}_{n}
$$

and as in the proof of Theorem 3.1, we denote by $\tilde{\mathscr{A}}_{n}$ the subset of one-sided density points of \mathscr{A}_{n}. Noting that the sequence of measurable sets $\left(\tilde{\mathscr{A}}_{n}\right)$ is increasing by construction, and that is satisfies

$$
\begin{aligned}
\mathscr{L}^{1}\left([0, T] \backslash \tilde{\mathscr{A}}_{n}\right) & =\mathscr{L}^{1}\left(\bigcup_{k>n}\left([0, T] \backslash \mathcal{A}^{k}\right) \cup\left([0, T] \backslash \mathcal{C}_{n}\right)\right) \\
& \leq \sum_{k=n+1}^{+\infty} \mathscr{L}^{1}\left([0, T] \backslash \mathcal{A}^{k}\right)+T-\mathscr{L}^{1}\left(\mathcal{B}_{n}\right)+\mathscr{L}^{1}\left([0, T] \backslash \mathcal{B}_{n}\right) \\
& \leq \frac{1}{2^{n}}+2 \mathscr{L}^{1}\left([0, T] \backslash \mathcal{B}_{n}\right) \underset{n \rightarrow+\infty}{\longrightarrow} 0,
\end{aligned}
$$

it follows that the set $\mathscr{T} \subset(0, T)$ defined by

$$
\mathscr{T}:=\left(\bigcup_{n \geq 1} \tilde{\mathscr{A}}_{n}\right) \cap \mathscr{T}_{m} \cap \mathscr{T}_{l} \cap \mathscr{T}_{L} \cap \mathscr{T}_{\mathrm{H}}
$$

has full \mathscr{L}^{1}-measure in $[0, T]$. Fix now some $\tau \in \mathscr{T}$, a measure $\mu_{\tau} \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ as well as a solution $\mu(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$ of (4.1) and a sequence $h_{i} \rightarrow 0^{+}$. Again, choose $R_{\varepsilon}>0$ in such a way that

$$
\begin{equation*}
2 m(\tau)\left(1+\mathcal{C}_{T}\right)\left(\int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq R_{\varepsilon}\right\}}\left(1+|x|^{p}\right) \mathrm{d} \mu_{\tau}(x)\right)^{1 / p} \leq \varepsilon \tag{3.16}
\end{equation*}
$$

where $\mathcal{C}_{T}>0$ is the constant appearing in Proposition 2.20, which only depends on the magnitudes of $p, \mathcal{M}_{p}\left(\mu_{\tau}\right)$ and $\|m(\cdot)\|_{1}$.

By the definition of solutions to (2.9), there exists an \mathscr{L}^{1}-measurable selection $t \in[0, T] \mapsto v(t) \in$ $V(t, \mu(t)) \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ for which

$$
\left\{\begin{array}{l}
\partial_{t} \mu(t)+\operatorname{div}(v(t) \mu(t))=0, \\
\mu(\tau)=\mu_{\tau} .
\end{array}\right.
$$

Besides, it can be deduced from Lemma 2.14 that $(t, x) \in[0, T] \times \mathbb{R}^{d} \mapsto v(t, x) \in \mathbb{R}^{d}$ is a Carathéodory vector field which satisfies Hypotheses (CE), see for instance [23]. Hence by Theorem 2.17, the curve $\mu(\cdot) \in \mathrm{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ is given explicitly by

$$
\mu(t)=\Phi_{(\tau, t) \sharp}^{v} \mu_{\tau}
$$

for all times $t \in[0, T]$. Moreover, there exists by construction an integer $n \geq 1$ such that $\tau \in \tilde{\mathscr{A}}_{n}$ and the restricted set-valued map $t \in \mathscr{A}_{n} \rightrightarrows V(t, \mu(t))$ has closed graph. Since $m(\cdot)$ and $l(\cdot)$ are both bounded from above over \mathscr{A}_{n}, it stems from Hypotheses (CI)-(i), (ii) and (iii) together with Theorem 2.13 that there exists a compact set $\mathcal{K}_{n} \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that

$$
V(t, \mu(t)) \subset \mathcal{K}_{n}
$$

for all times $t \in \mathscr{A}_{n}$. Thence, it follows e.g. from [9, Proposition 1.4.8] that $t \in \mathscr{A}_{n} \rightrightarrows V(t, \mu(t))$ is upper-semicontinuous in the sense of Definition 2.5-(ii). In particular, for each $\varepsilon>0$, there exists a measurable selection $t \in[0, T] \mapsto \tilde{v}_{\tau}^{\varepsilon}(t) \in V\left(\tau, \mu_{\tau}\right)$ along with some $\delta_{n}>0$ such that

$$
\begin{equation*}
\left\|v(t)-\tilde{v}_{\tau}^{\varepsilon}(t)\right\|_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)} \leq \varepsilon \tag{3.17}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in \mathscr{A}_{n} \cap\left[\tau, \tau+\delta_{n}\right]$, where we leveraged the expression (2.6) of the metric $\mathrm{d}_{c c}(\cdot, \cdot)$.
In what follows, we use the selection $\tilde{v}_{\tau}^{\varepsilon}(\cdot)$ to build an element $v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right)$ satisfying (3.15) along some subsequence $h_{i_{k}}^{\varepsilon} \rightarrow 0$. We assume without loss of generality that $h_{i} \rightarrow 0^{+}$, the general case being completely similar. By the definition (2.8) of characteristic flows, one has that

$$
\begin{equation*}
\Phi_{\left(\tau, \tau+h_{i}\right)}^{v}(x)=x+\int_{\tau}^{\tau+h_{i}} v(t, x) \mathrm{d} t+\int_{\tau}^{\tau+h_{i}}\left(v\left(t, \Phi_{(\tau, t)}^{v}(x)\right)-v(t, x)\right) \mathrm{d} t \tag{3.18}
\end{equation*}
$$

for all $x \in \mathbb{R}^{d}$. As a consequence of Hypothesis (CE)-(ii), the second integral term in the right-hand side of (3.18) can be estimated from above for all $x \in B\left(0, R_{\varepsilon}\right)$ as

$$
\begin{align*}
\left|\int_{\tau}^{\tau+h_{i}}\left(v\left(t, \Phi_{(\tau, t)}^{v}(x)\right)-v(t, x)\right) \mathrm{d} t\right| & \leq \int_{\tau}^{\tau+h_{i}} l(t)\left|\Phi_{(\tau, t)}^{v}(x)-x\right| \mathrm{d} t \\
& \leq\left(1+R_{\varepsilon}+\mathcal{C}_{T}\right) \int_{\tau}^{\tau+h_{i}} l(t)\left(\int_{\tau}^{t} m(s) \mathrm{d} s\right) \mathrm{d} t \tag{3.19}\\
& =o_{\tau, \varepsilon}\left(h_{i}\right)
\end{align*}
$$

for $h_{i}>0$ sufficiently small, since $\tau \in \mathscr{T}$ is a one-sided Lebesgue point of $m(\cdot), l(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$. At this stage, one may further decompose the first integral in the right-hand side of (3.18) into

$$
\begin{align*}
\int_{\tau}^{\tau+h_{i}} v(t, x) \mathrm{d} t=\int_{\tau}^{\tau+h_{i}} \tilde{v}_{\tau}^{\varepsilon}(t, x) \mathrm{d} t & +\int_{\left[\tau, \tau+h_{i}\right] \backslash \mathscr{A}_{n}}\left(v(t, x)-\tilde{v}_{\tau}^{\varepsilon}(t, x)\right) \mathrm{d} t \tag{3.20}\\
& +\int_{\left[\tau, \tau+h_{i}\right] \cap \mathscr{A}_{n}}\left(v(t, x)-\tilde{v}_{\tau}^{\varepsilon}(t, x)\right) \mathrm{d} t
\end{align*}
$$

and use Hypothesis (CI)-(ii) to estimate the second expression in (3.20) as

$$
\begin{equation*}
\left|\int_{\left[\tau, \tau+h_{i}\right] \backslash \mathscr{A}_{n}}\left(v(t, x)-\tilde{v}_{\tau}^{\varepsilon}(t, x)\right) \mathrm{d} t\right| \leq 2\left(1+R_{\varepsilon}+\mathcal{C}_{T}\right) \int_{\left[\tau, \tau+h_{i}\right] \backslash \mathscr{A}_{n}} m(t) \mathrm{d} t=o_{\tau, \varepsilon}\left(h_{i}\right) \tag{3.21}
\end{equation*}
$$

for all $x \in B\left(0, R_{\varepsilon}\right)$, since $\tau \in \mathscr{T}$ is a one-sided Lebesgue point of $m(\cdot)$ as well as a one-sided density point of \mathscr{A}_{n}. Regarding the third term in the right-hand side of (3.20), it follows from (3.17) that

$$
\begin{equation*}
\left\|\int_{\left[\tau, \tau+h_{i}\right] \cap \mathscr{A}_{n}}\left(v(t)-\tilde{v}_{\tau}^{\varepsilon}(t)\right) \mathrm{d} t\right\|_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)} \leq \varepsilon h_{i} \tag{3.22}
\end{equation*}
$$

and by merging the estimates of (3.21)-(3.22) with (3.20) while inserting the resulting expression together with (3.19) inside (3.18), one further obtains that

$$
\begin{equation*}
\left|\Phi_{\left(\tau, \tau+h_{i}\right)}^{v}(x)-x-\int_{\tau}^{\tau+h_{i}} \tilde{v}_{\tau}^{\varepsilon}(t, x) \mathrm{d} t\right| \leq \varepsilon h_{i}+o_{\tau, \varepsilon}\left(h_{i}\right) \tag{3.23}
\end{equation*}
$$

for all $x \in B\left(0, R_{\varepsilon}\right)$. Observe now that since $V\left(\tau, \mu_{\tau}\right)_{\mid B\left(0, R_{\varepsilon}\right)} \subset C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)$ is convex and closed, there exists by the separation theorem a family of elements $\left(v_{\tau}^{\varepsilon}\left(h_{i}\right)\right) \subset V\left(\tau, \mu_{\tau}\right)$ such that

$$
\frac{1}{h_{i}} \int_{\tau}^{\tau+h_{i}} \tilde{v}_{\tau}^{\varepsilon}(t)_{\mid B\left(0, R_{\varepsilon}\right)} \mathrm{d} t=v_{\tau}^{\varepsilon}\left(h_{i}\right)_{\mid B\left(0, R_{\varepsilon}\right)}
$$

Besides, noting that $V\left(\tau, \mu_{\tau}\right) \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is a compact set as a consequence of Hypotheses (CI)-(ii) and (iii) and Theorem 2.13, there exists some $v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right)$ for which

$$
\mathrm{d}_{c c}\left(v_{\tau}^{\varepsilon}\left(h_{i_{k}}^{\varepsilon}\right), v_{\tau}^{\varepsilon}\right) \underset{h_{i_{k}}^{\varepsilon} \rightarrow 0^{+}}{\longrightarrow} 0
$$

along a subsequence $h_{i_{k}}^{\varepsilon} \rightarrow 0^{+}$. In particular for $h_{i_{k}}^{\varepsilon}>0$ sufficiently small, one has that

$$
\left\|\int_{\tau}^{\tau+h_{i_{k}}^{\varepsilon}} \tilde{v}_{\tau}^{\varepsilon}(t) \mathrm{d} t-h_{i_{k}}^{\varepsilon} v_{\tau}^{\varepsilon}\right\|_{C^{0}\left(B\left(0, R_{\varepsilon}\right), \mathbb{R}^{d}\right)}=o_{\tau, \varepsilon}\left(h_{i_{k}}^{\varepsilon}\right)
$$

which together with (3.23) finally yields that

$$
\begin{equation*}
\left|\Phi_{\left(\tau, \tau+h_{i_{k}}^{\varepsilon}\right)}^{v}(x)-x-h_{i_{k}}^{\varepsilon} v_{\tau}^{\varepsilon}(x)\right| \leq \varepsilon h_{i_{k}}^{\varepsilon}+o_{\tau, \varepsilon}\left(h_{i_{k}}^{\varepsilon}\right), \tag{3.24}
\end{equation*}
$$

for all $x \in B\left(0, R_{\varepsilon}\right)$. To conclude the proof, there remains to observe that

$$
\begin{equation*}
\left(\Phi_{\left(\tau, \tau+h_{i_{k}}^{\varepsilon}\right)}^{v}, \operatorname{Id}+h_{i_{k}}^{\varepsilon} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau} \in \Gamma\left(\mu\left(\tau+h_{i_{k}}^{\varepsilon}\right),\left(\operatorname{Id}+h_{i_{k}}^{\varepsilon} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau}\right) \tag{3.25}
\end{equation*}
$$

and to use the standard Wasserstein inequality (2.1) along with the estimate

$$
\begin{align*}
& \left(\int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq R_{\varepsilon}\right\}}\left|\Phi_{\left(\tau, \tau+h_{i_{k}}^{\varepsilon}\right)}^{v}(x)-x-h_{i_{k}}^{\varepsilon} v_{\tau}^{\varepsilon}(x)\right|^{p} \mathrm{~d} \mu_{\tau}(x)\right)^{1 / p} \\
& \quad \leq\left(1+\mathcal{C}_{T}\right)\left(\|m(\cdot)\|_{L^{1}\left(\left[\tau, \tau+h_{i_{k}}^{\varepsilon}\right]\right)}+h_{i_{k}}^{\varepsilon} m(\tau)\right)\left(\int_{\left\{x \in \mathbb{R}^{d} \text { s.t. }|x| \geq R_{\varepsilon}\right\}}(1+|x|)^{p} \mathrm{~d} \mu_{\tau}(x)\right)^{1 / p} \\
& \quad \leq \varepsilon h_{i_{k}}^{\varepsilon}+o_{\tau, \varepsilon}\left(h_{i_{k}}^{\varepsilon}\right) \tag{3.26}
\end{align*}
$$

which holds as a consequence of Hypothesis (CI)-(ii) combined with the equi-integrability bound of Proposition 2.20, the definition (3.16) of $R_{\varepsilon}>0$, and the fact that $\tau \in \mathscr{T}$ is a one-sided Lebesgue point of $m(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$. Thence, by merging (3.24), (3.25) and (3.26), one finally recovers that

$$
W_{p}\left(\mu\left(\tau+h_{i_{k}}^{\varepsilon}\right),\left(\operatorname{Id}+h_{i_{k}}^{\varepsilon} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon h_{i_{k}}^{\varepsilon}
$$

whenever $h_{i_{k}}^{\varepsilon}>0$ is taken sufficiently small, in particular to ensure that $o_{\tau, \varepsilon}\left(h_{i_{k}}^{\varepsilon}\right)=\varepsilon h_{i_{k}}^{\varepsilon}$, and up to rescaling the free parameter $\varepsilon>0$ by a fixed constant. The case of an unsigned sequences $h_{i} \rightarrow 0$ being similar, this concludes the proof.

Remark 3.3 (More general assumptions for Theorem 3.1 and Theorem 3.2). While the two theorems displayed in this section have been proven under the Cauchy-Lipschtz regularity assumptions (CI), we expect them to hold under less stringent requirements, where one only asks for the local uniform continuity of the dynamics with respect to the space and measure variables in the spirit of [23, Section 4]. For the sake of conciseness, we postpone these refinements to an ulterior work.

Remark 3.4 (Exact differential formulations for compactly supported measures). When the initial data $\mu_{\tau} \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ are compactly supported, the quantitative difference quotients derived in Theorem 3.1 and Theorem 3.2 can be expressed more simply as differential estimates. In this case, following e.g. [21, Proposition 3], there exists for each $r>0$ a radius $R_{r}>0$ such that each $\mu(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$ satisfies $\mu(t) \in \mathscr{P}\left(B\left(0, R_{r}\right)\right)$ for all times $t \in[0, T]$, whenever $\mu_{\tau} \in \mathscr{P}(B(0, r))$. Owing to this uniform support bound, one can check that the error terms $o_{\tau, \varepsilon}(h)$ in the proofs of both Theorem 3.1 and Theorem 3.2 become independent of $\varepsilon>0$, which consequently means that their statement respectively hold for every small $h>0$ for the former, and along a subsequence $h_{i_{k}} \rightarrow 0$ for the latter, which are both independent of $\varepsilon>0$.

In the statement of Theorem 3.1, recalling that $\mathcal{S}_{[0, T]}\left(\mu_{\tau}\right)$ is compact by Proposition 2.21, one can then let $\varepsilon \rightarrow 0^{+}$up to considering a subsequence. Then, taking the limit as $h \rightarrow 0^{+}$, one recovers that for every $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$, there exists a solution $\mu(\cdot) \in \mathrm{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ of (4.1) such that

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{h} W_{p}\left(\mu(\tau+h),\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}\right)=0 .
$$

Similarly for Theorem 3.2, upon observing that under Hypotheses (CI) the set $V\left(\tau, \mu_{\tau}\right)$ is compact for the topology of local uniform convergence by the Ascoli-Arzelà theorem, one can let $\varepsilon \rightarrow 0^{+}$in conjunction with Lemma 2.15 to obtain that, for each solution $\mu(\cdot) \in \mathrm{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ of (4.1) and every sequence $h_{i} \rightarrow 0$, there exists an element $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$ such that

$$
\lim _{h_{i_{k}} \rightarrow 0} \frac{1}{\left|h_{i_{k}}\right|} W_{p}\left(\mu\left(\tau+h_{i_{k}}\right),\left(\operatorname{Id}+h_{i_{k}} v_{\tau}\right)_{\sharp} \mu_{\tau}\right)=0,
$$

along a subsequence $h_{i_{k}} \rightarrow 0$.

4 Viability and invariance theorems for proper constraints sets

In this section, we discuss several necessary and sufficient conditions for the viability and invariance of general constraint tubes $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ under the action of the dynamics

$$
\left\{\begin{array}{l}
\partial_{t} \mu(t) \in-\operatorname{div}_{x}(V(t, \mu(t)) \mu(t)) \tag{4.1}\\
\mu(\tau)=\mu_{\tau}
\end{array}\right.
$$

In this context, we will always assume that $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is a set-valued map satisfying Hypotheses (CI) for some $p \in(1,+\infty)$, and that $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ represent a free initial condition obeying the constraint $\mu_{\tau} \in \mathcal{Q}(\tau)$.

Definition 4.1 (Viability and invariance). We say that the tube $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is viable for (4.1) if for every $\tau \in[0, T]$ and any $\mu_{\tau} \in \mathcal{Q}(\tau)$, there exists a solution $\mu(\cdot) \in \mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right)$ of the Cauchy problem such that

$$
\mu(t) \in \mathcal{Q}(t)
$$

for all times $t \in[\tau, T]$. Similarly, we say $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is invariant for (4.1) if all the solution curves $\mu(\cdot) \in \mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right)$ satisfy $\mu(t) \in \mathcal{Q}(t)$ for all times $t \in[\tau, T]$.

In what follows, we split the exposition of our main results into two separate parts, starting in Section 4.1 with the simpler case in which the constraints sets are stationary, and treating then the more involved situation in which they are time-dependent in Section 4.2.

4.1 The case of stationary constraints

We start our discussion on viability and invariance under the action of continuity inclusions by considering the case in which the constraints are represented by a fixed and proper subset $\mathcal{Q} \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$. In this context, the crucial geometric object which allows to characterise the viability or the invariance of the latter is its contingent cone, whose definition is inspired by [12] and presented below.

Definition 4.2 (Contingent cone in Wasserstein spaces). Given a closed set $\mathcal{Q} \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, we define its contingent cone at some $\mu \in \mathcal{Q}$ by

$$
T_{\mathcal{Q}}(\mu):=\left\{\xi \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right) \text { s.t. } \liminf _{h \rightarrow 0^{+}} \frac{1}{h} \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left((\operatorname{Id}+h \xi)_{\sharp} \mu ; \mathcal{Q}\right)=0\right\} .
$$

The latter can also be characterised as

$$
\begin{aligned}
& T_{\mathcal{Q}}(\mu)=\left\{\xi \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right) \text { s.t. there exists a sequence } h_{i} \rightarrow 0^{+}\right. \text {for which } \\
& \left.\qquad \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\operatorname{Id}+h_{i} \xi\right)_{\sharp} \mu ; \mathcal{Q}\right)=o\left(h_{i}\right)\right\} .
\end{aligned}
$$

Remark 4.3 (On the choice of defining contingent cones using Borel maps). It is worth noting that eventhough $\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$ is merely a seminormed space for any $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, the contingent cones introduced in Definition 4.2 are closed for the convergence induced by the pseudometric $\|\cdot\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}$. Indeed, while the limit of a sequence $\left(\xi_{n}\right) \subset T_{\mathcal{Q}}(\mu)$ should be a μ-measurable map (see e.g. [4, Definition 1.12]) by construction, the latter always coincides with a Borel function outside of a Borel set with zero μ-measure by [15, Proposition 2.1.11]. In what ensues, the closures of the convex hulls of contingent cones will therefore always be understood in with respect to the pseudometric $\|\cdot\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}$.

By leveraging this notion, we are able to prove the following sufficient viability conditions for proper time-independent constraints sets, which is one of our main contributions. We chose to start by presenting this latter separately, as it thoroughly illustrates the main key ideas supporting the more general results of Section 4.2, but in a simpler setting.

Theorem 4.4 (Sufficient viability conditions for stationary constraints). Suppose that $p \in(1,+\infty)$, let $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a set-valued map with convex images satisfying Hypotheses (CI) and $\mathcal{Q} \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ be a proper set such that

$$
\begin{equation*}
V(t, \nu) \cap \overline{\operatorname{co}} T_{\mathcal{Q}}(\nu) \neq \emptyset \tag{4.2}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}$. Then, \mathcal{Q} is viable for (4.1).
In the proof of this theorem and several others in the manuscript, we will extensively use the following regularity property of the reachable sets.
Lemma 4.5 (Regularity in time of the reachable sets). If $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is a set-valued map with convex images satisfying Hypotheses (CI), then the reachable sets $t \in[\tau, T] \rightrightarrows$ $\mathcal{R}_{(\tau, t)}\left(\mu_{\tau}\right) \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ are absolutely continuous in the Hausdorff metric for all $\left(\tau, \mu_{\tau}\right) \in[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$. Proof. Let $t_{1}, t_{2} \in[\tau, T]$ be such that $\tau \leq t_{1}<t_{2} \leq T$, and observe that for each $\mu_{t_{2}} \in \mathcal{R}_{\left(\tau, t_{2}\right)}\left(\mu_{\tau}\right)$, there exists some $\mu_{t_{1}} \in \mathcal{R}_{\left(\tau, t_{1}\right)}\left(\mu_{\tau}\right)$ such that $\mu_{t_{2}} \in \mathcal{R}_{\left(t_{1}, t_{2}\right)}\left(\mu_{t_{1}}\right)$. Thence, it follows from the regularity estimate (2.13) of Proposition 2.20 that

$$
\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu_{t_{2}} ; \mathcal{R}_{\left(\tau, t_{1}\right)}\left(\mu_{\tau}\right)\right) \leq W_{p}\left(\mu_{t_{2}}, \mu_{t_{1}}\right) \leq\left(1+\mathcal{C}_{T}\right) \int_{t_{1}}^{t_{2}} m(s) \mathrm{d} s
$$

for some constant $\mathcal{C}_{T}>0$ that only depends on the magnitudes of $p, \mathcal{M}\left(\mu_{\tau}\right)$ and $\|m(\cdot)\|_{1}$. Analogously, it can be shown that

$$
\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu_{t_{1}} ; \mathcal{R}_{\left(\tau, t_{2}\right)}\left(\mu_{\tau}\right)\right) \leq\left(1+\mathcal{C}_{T}\right) \int_{t_{1}}^{t_{2}} m(s) \mathrm{d} s
$$

for every $\mu_{t_{1}} \in \mathcal{R}_{\left(\tau, t_{1}\right)}\left(\mu_{\tau}\right)$. By combining both estimates while remarking that

$$
\begin{aligned}
\mathrm{d}_{\mathcal{H}}\left(\mathcal{R}_{\left(\tau, t_{1}\right)}\left(\mu_{\tau}\right), \mathcal{R}_{\left(\tau, t_{2}\right)}\left(\mu_{\tau}\right)\right)=\max \{ & \sup \left\{\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu_{t_{1}} ; \mathcal{R}_{\left(\tau, t_{2}\right)}\left(\mu_{\tau}\right)\right) \text { s.t. } \mu_{t_{1}} \in \mathcal{R}_{\left(\tau, t_{1}\right)}\left(\mu_{\tau}\right)\right\}, \\
& \left.\sup \left\{\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu_{t_{2}} ; \mathcal{R}_{\left(\tau, t_{1}\right)}\left(\mu_{\tau}\right)\right) \text { s.t. } \mu_{t_{2}} \in \mathcal{R}_{\left(\tau, t_{2}\right)}\left(\mu_{\tau}\right)\right\}\right\},
\end{aligned}
$$

it then holds that

$$
\mathrm{d}_{\mathcal{H}}\left(\mathcal{R}_{\left(\tau, t_{1}\right)}\left(\mu_{\tau}\right), \mathcal{R}_{\left(\tau, t_{2}\right)}\left(\mu_{\tau}\right)\right) \leq\left(1+\mathcal{C}_{T}\right) \int_{t_{1}}^{t_{2}} m(s) \mathrm{d} s
$$

which concludes the proof.
This technical result being established, we can move on to the proof of Theorem 4.4.
Proof of Theorem 4.4. In what follows, we assume without loss of generality that $\left(\tau, \mu_{\tau}\right)=\left(0, \mu^{0}\right)$ in (4.1) for some $\mu^{0} \in \mathcal{Q}$. Our goal will be to show that the function measuring the distance between \mathcal{Q} and the reachable sets, defined by

$$
g(t):=\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \mathcal{Q}\right)
$$

for all times $t \in[0, T]$, is identically equal to zero. By Proposition 2.8 and Lemma 4.5, it holds that $g(\cdot) \in \mathrm{AC}\left([0, T], \mathbb{R}_{+}\right)$, and we denote by $\mathscr{D} \subset(0, T)$ the set of full \mathscr{L}^{1}-measure on which it is differentiable. Note also that the set $\cup_{t \in[0, T]} \mathcal{R}_{(0, t)}\left(\mu^{0}\right) \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is compact by Proposition 2.21 and Lemma 4.5. Since $\mu^{0} \in \mathcal{Q}$, it is possible to choose a radius $R>0$ such that

$$
\begin{equation*}
\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \partial \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu^{0}, R\right)\right) \geq \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \mathcal{Q}\right)+1 \tag{4.3}
\end{equation*}
$$

for all times $t \in[0, T]$, by following e.g. the arguments detailed in Appendix B. Besides, one has that $\mathcal{Q}_{R}:=\mathcal{Q} \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu^{0}, R\right)$ is nonempty as well as compact by construction set, and such that

$$
g(t)=\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \mathcal{Q}_{R}\right)
$$

for all times $t \in[0, T]$.

Step 1 - A Grönwall estimate on the distance function. In this first step, we show by contradiction that the map $g:[0, T] \rightarrow \mathbb{R}_{+}$is identically equal to zero. Noting that $g(0)=0$, there should otherwise exist a time $t \in[0, T)$ and some $\delta>0$ such that $g(t)=0$ and $g(\tau)>0$ for $\tau \in(t, t+\delta)$.

Let $\mathscr{T} \subset(0, T)$ be the subset of \mathscr{L}^{1}-measure over which the statement of Theorem 3.1 and Hypotheses (CI)-(ii), (iii) and (iv) hold, and fix an element $\tau \in(t, t+\delta) \cap \mathscr{T} \cap \mathscr{D}$. Since $\mathcal{R}_{(0, \tau)}\left(\mu^{0}\right)$ and \mathcal{Q}_{R} are both compact, one has that

$$
\begin{equation*}
g(\tau)=W_{p}\left(\mu_{\tau}, \nu_{\tau}\right) \tag{4.4}
\end{equation*}
$$

for some $\mu_{\tau} \in \mathcal{R}_{(0, \tau)}\left(\mu^{0}\right)$ and $\nu_{\tau} \in \mathcal{Q}_{R}$. Moreover, recalling that $R>0$ is defined in such a way that (4.3) is satisfied, it necessarily holds

$$
\nu_{\tau} \in \mathcal{Q} \cap \operatorname{int}\left(\mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu^{0}, R\right)\right),
$$

which implies in particular that $T_{\mathcal{Q}_{R}}\left(\nu_{\tau}\right)=T_{\mathcal{Q}}(\nu)$. Hence, by using the definition of contingent cones provided in Definition 4.2, there exists for each $\xi_{\tau} \in T_{\mathcal{Q}}\left(\nu_{\tau}\right)$ a sequence $h_{i} \rightarrow 0^{+}$such that

$$
\begin{align*}
W_{p}\left(\mu_{\tau},\left(\operatorname{Id}+h_{i} \xi_{\tau}\right)_{\sharp} \nu_{\tau}\right) & \geq \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu_{\tau} ; \mathcal{Q}_{R}\right)+o_{\tau}\left(h_{i}\right) \tag{4.5}\\
& =W_{p}\left(\mu_{\tau}, \nu_{\tau}\right)+o_{\tau}\left(h_{i}\right) .
\end{align*}
$$

Besides, by the directional superdifferentiability property of Proposition 2.3 above, one further has

$$
\begin{equation*}
\frac{1}{p} W_{p}^{p}\left(\mu_{\tau},\left(\operatorname{Id}+h_{i} \xi_{\tau}\right)_{\sharp} \nu_{\tau}\right)-\frac{1}{p} W_{p}^{p}\left(\mu_{\tau}, \nu_{\tau}\right) \leq h_{i} \int_{\mathbb{R}^{2 d}}\left\langle\xi_{\tau}(y), j_{p}(y-x)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)+o_{\tau}\left(h_{i}\right) \tag{4.6}
\end{equation*}
$$

for any small $h_{i}>0$ and every $\gamma_{\tau} \in \Gamma_{o}\left(\mu_{\tau}, \nu_{\tau}\right)$. Hence, by combining the estimates of (4.5) and (4.6), dividing the resulting expression by $h_{i}>0$ and letting $h_{i} \rightarrow 0^{+}$, one obtains the following inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{2 d}}\left\langle\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y) \leq 0 \tag{4.7}
\end{equation*}
$$

which holds for every $\xi_{\tau} \in T_{\mathcal{Q}}\left(\nu_{\tau}\right)$ and each $\gamma_{\tau} \in \Gamma_{o}\left(\mu_{\tau}, \nu_{\tau}\right)$.
Observe now that by Theorem 3.1, there exists for any $\varepsilon>0$ and every $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$ a curve of measures $\mu_{\varepsilon}(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$ such that

$$
\begin{equation*}
W_{p}\left(\mu_{\varepsilon}(\tau+h),\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon h, \tag{4.8}
\end{equation*}
$$

whenever $h>0$ is sufficiently small. Furthermore, since $\mu_{\varepsilon}(\tau+h) \in \mathcal{R}_{(\tau, \tau+h)}\left(\mu_{\tau}\right) \subset \mathcal{R}_{(0, \tau+h)}\left(\mu^{0}\right)$, one can estimate from above the forward difference quotient of $\frac{1}{p} g^{p}(\cdot)$ at $\tau \in(t, t+\delta) \cap \mathscr{T} \cap \mathscr{D}$ as

$$
\begin{equation*}
\frac{1}{p} g^{p}(\tau+h)-\frac{1}{p} g^{p}(\tau) \leq \frac{1}{p} W_{p}^{p}\left(\mu_{\varepsilon}(\tau+h), \nu_{\tau}\right)-\frac{1}{p} W_{p}^{p}\left(\mu_{\tau}, \nu_{\tau}\right) \tag{4.9}
\end{equation*}
$$

Besides, assuming without loss of generality that $\varepsilon, h \in(0,1]$ and noting that $v_{\tau} \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu_{\tau}\right)$ by Hypothesis (CI)-(ii), it can be deduced from (4.8) along with the estimates of Lemma A. 1 below that

$$
\begin{align*}
\frac{1}{p} W_{p}^{p}\left(\mu_{\varepsilon}(\tau+h), \nu_{\tau}\right)- & \frac{1}{p} W_{p}^{p}\left(\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}, \nu_{\tau}\right) \\
\leq & W_{p}^{p-1}\left(\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}, \nu_{\tau}\right)\left(W_{p}\left(\mu_{\varepsilon}(\tau+h), \nu_{\tau}\right)-W_{p}\left(\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}, \nu_{\tau}\right)\right) \\
& +C_{p}\left|W_{p}\left(\mu_{\varepsilon}(\tau+h), \nu_{\tau}\right)-W_{p}\left(\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}, \nu_{\tau}\right)\right|^{\min \{p, 2\}} \\
\leq & C_{p}^{\prime}\left(W_{p}\left(\mu_{\varepsilon}(\tau+h),\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}\right)+W_{p}\left(\mu_{\varepsilon}(\tau+h),\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}\right)^{\min \{p, 2\}}\right) \\
\leq & C_{p}^{\prime} \varepsilon h+o_{\tau, \varepsilon}(h) \tag{4.10}
\end{align*}
$$

for $h>0$ sufficiently small, and where $C_{p}, C_{p}^{\prime}>0$ only depend on the magnitudes of $p, \mathcal{M}\left(\mu_{\tau}\right), \mathcal{M}\left(\nu_{\tau}\right)$, $\|m(\cdot)\|_{1}$ and $\left\|v_{\tau}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu_{\tau}\right)}$. Thus, by merging the estimate of (4.10) with (4.9), one further obtains up to rescaling $\varepsilon>0$ by a positive constant that

$$
\begin{equation*}
\frac{1}{p} g^{p}(\tau+h)-\frac{1}{p} g^{p}(\tau) \leq \frac{1}{p} W_{p}^{p}\left(\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}, \nu_{\tau}\right)-\frac{1}{p} W_{p}^{p}\left(\mu_{\tau}, \nu_{\tau}\right)+\varepsilon h+o_{\tau}(h) \tag{4.11}
\end{equation*}
$$

Besides, it follows again from the directional superdifferentiability property of Proposition 2.3 that

$$
\begin{equation*}
\frac{1}{p} W_{p}^{p}\left(\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau}, \nu_{\tau}\right)-\frac{1}{p} W_{p}^{p}\left(\mu_{\tau}, \nu_{\tau}\right) \leq h \int_{\mathbb{R}^{2 d}}\left\langle v_{\tau}(x), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)+o_{\tau, \varepsilon}(h) \tag{4.12}
\end{equation*}
$$

for each optimal transport plan $\gamma_{\tau} \in \Gamma_{o}\left(\mu_{\tau}, \nu_{\tau}\right)$. Therefore, by combining the estimates of (4.11) and (4.12), dividing the resulting expression by $h>$ and then letting $h \rightarrow 0^{+}$while recalling that $\frac{1}{p} g^{p}(\cdot)$ is differentiable at $\tau \in \mathscr{D}$, we recover the following differential inequality

$$
\begin{equation*}
g^{p-1}(\tau) \dot{g}(\tau) \leq \int_{\mathbb{R}^{2 d}}\left\langle v_{\tau}(x), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y) \tag{4.13}
\end{equation*}
$$

that holds at every $\tau \in(t, t+\delta) \cap \mathscr{T} \cap \mathscr{D}$, and where we used the fact that $\varepsilon>0$ was arbitrary.
Our goal in what follows is to refine the differential estimate derived in (4.13). By inserting suitable crossed terms in the latter expression, one can easily check that

$$
\begin{align*}
g^{p-1}(\tau) \dot{g}(\tau) \leq & \int_{\mathbb{R}^{2 d}}\left\langle v_{\tau}(x)-v_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y) \\
& +\int_{\mathbb{R}^{2 d}}\left\langle v_{\tau}(y)-\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y) \tag{4.14}\\
& +\int_{\mathbb{R}^{2 d}}\left\langle\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y) \\
\leq & l(\tau) g^{p}(\tau)+\int_{\mathbb{R}^{2 d}}\left\langle v_{\tau}(y)-\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)
\end{align*}
$$

by resorting to (4.7) and Hypothesis (CI)-(iii), as well as to the elementary observation that

$$
\int_{\mathbb{R}^{2 d}}|x-y|\left|j_{p}(x-y)\right| \mathrm{d} \gamma_{\tau}(x, y)=\int_{\mathbb{R}^{2 d}}|x-y|^{p} \mathrm{~d} \gamma_{\tau}(x, y)=g^{p}(\tau)
$$

which follows from (4.4) together with the fact that $\gamma_{\tau} \in \Gamma_{o}\left(\mu_{\tau}, \nu_{\tau}\right)$. Recall now that as a consequence of Hypothesis (CI)-(iv), there exists for each $w_{\tau} \in V\left(\tau, \nu_{\tau}\right)$ an element $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$ such that

$$
\mathrm{d}_{\sup }\left(v_{\tau}, w_{\tau}\right) \leq L(\tau) W_{p}\left(\mu_{\tau}, \nu_{\tau}\right)
$$

This, together with the fact that the estimates in (4.14) hold for every $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$, further yields

$$
\begin{equation*}
g^{p-1}(\tau) \dot{g}(\tau) \leq(l(\tau)+L(\tau)) g^{p}(\tau)+\int_{\mathbb{R}^{2 d}}\left\langle w_{\tau}(y)-\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y) \tag{4.15}
\end{equation*}
$$

for all times $\tau \in(t, t+\delta) \cap \mathscr{T} \cap \mathscr{D}$, each $\xi_{\tau} \in T_{\mathcal{Q}}\left(\nu_{\tau}\right)$ and every $w_{\tau} \in V\left(\tau, \nu_{\tau}\right)$. Noting that the right-hand side of the previous expression is linear and strongly continuous with respect to $\xi_{\tau} \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu_{\tau}\right)$, one has that (4.15) also holds for all $\xi_{\tau} \in \overline{\operatorname{co}} T_{\mathcal{Q}}\left(\nu_{\tau}\right)$. Thus, by choosing

$$
\xi_{\tau}=w_{\tau} \in V\left(\tau, \nu_{\tau}\right) \cap \overline{\operatorname{co}} T_{\mathcal{Q}}\left(\nu_{\tau}\right)
$$

where the intersection is nonempty as a consequence of our standing assumption (4.2), one finally has

$$
\dot{g}(\tau) \leq(l(\tau)+L(\tau)) g(\tau)
$$

for \mathscr{L}^{1}-almost every $\tau \in(t, t+\delta)$. As we assumed that $g(t)=0$, a direct application of Grönwall's lemma yields that $g(\tau)=0$ for all times $\tau \in(t, t+\delta)$, thus leading to a contradiction.

Step 2 - Existence of a viable curve. In the first step of this proof, we have shown that

$$
\begin{equation*}
g(t)=\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \mathcal{Q}_{R}\right)=0 \tag{4.16}
\end{equation*}
$$

for all times $t \in[0, T]$, which equivalently means that $\mathcal{R}_{(0, t)}\left(\mu^{0}\right) \cap \mathcal{Q} \neq \emptyset$. Given an integer $n \geq 1$, consider the following dyadic subdivision $[0, T]:=\cup_{k=0}^{2^{n}-1}\left[t_{k}, t_{k+1}\right]$ of the time interval, wherein $t_{k}:=$ $T k / 2^{n}$ for $k \in\left\{0, \ldots, 2^{n}-1\right\}$. By inductively leveraging (4.16) along with the semigroup property (2.10) of the reachable sets, we can build for each $n \geq 1$ a curve $\mu_{n}(\cdot) \in \mathcal{S}_{[0, T]}\left(0, \mu^{0}\right)$ that is such that

$$
\begin{equation*}
\mu_{n}\left(t_{k}\right) \in \mathcal{Q}, \tag{4.17}
\end{equation*}
$$

for each $k \in\left\{0, \ldots, 2^{n}-1\right\}$. At this stage recall that, as a consequence of Proposition 2.21, the solution set $\mathcal{S}_{[0, T]}\left(0, \mu^{0}\right)$ is compact for the topology of uniform convergence, so that

$$
\sup _{t \in[0, T]} W_{p}\left(\mu_{n_{j}}(t), \mu(t)\right) \underset{n_{j} \rightarrow+\infty}{\longrightarrow} 0
$$

for some $\mu(\cdot) \in \mathcal{S}_{[0, T]}\left(\mu^{0}\right)$, along a subsequence $\left(\mu_{n_{j}}(\cdot)\right) \subset \operatorname{AC}\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$. In particular, it follows from (4.17) that

$$
\mu\left(\frac{k T}{2^{m}}\right) \in \mathcal{Q}
$$

for every integer $m \geq 1$ and each $k \in\left\{0, \ldots, 2^{m}-1\right\}$. From there, we conclude by a classical density argument that $\mu(t) \in \mathcal{Q}$ for all times $t \in[0, T]$.

To complement to the sufficient viability conditions stated in Theorem 4.4, we describe in the following result a necessary viability condition which also involves the contingent cone to the constraints.

Theorem 4.6 (Necessary viability conditions for stationary constraints). Suppose that $p \in(1,+\infty)$, let $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a set-valued map with convex images satisfying Hypotheses (CI) and $\mathcal{Q} \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ be a proper set. Then, if \mathcal{Q} is viable for (4.1), it necessarily holds that

$$
V(t, \nu) \cap T_{\mathcal{Q}}(\nu) \neq \emptyset
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}$.
Proof. This result is a particular case of Theorem 4.8 whose proof is detailed in Section 4.2 below.
Lastly, we end this section by providing necessary and sufficient conditions for the invariance of a stationary constraints set, based on a geometric condition that is stronger than that of Theorem 4.4.

Theorem 4.7 (Invariance conditions for stationary constraint sets). Under the assumptions of Theorem 4.4, the set $\mathcal{Q} \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is invariant for (4.1) if and only if

$$
V(t, \nu) \subset \overline{\operatorname{co}} T_{\mathcal{Q}}(\nu)
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $\nu \in \mathcal{Q}$.
Proof. This result is a particular case of Theorem 4.8 and Theorem 4.12, whose proofs are discussed in great details in Section 4.2 below.

4.2 The case of time-dependent constraints

As mentioned hereinabove, the viability and invariance results exposed in Theorem 4.4, Theorem 4.6 and Theorem 4.7 can be generalised to time-dependent constraint tubes $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$. In this setting, the geometric objects which support these statements are the contingent cone

$$
\begin{aligned}
T_{\operatorname{Graph}(\mathcal{Q})}(\tau, \mu):=\{(\zeta, \xi) \in & \mathbb{R} \times \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right) \text { s.t. } \\
& \left.\liminf _{h \rightarrow 0^{+}} \frac{1}{h} \operatorname{dist}_{[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\tau+h \zeta,(\operatorname{Id}+h \xi)_{\sharp} \mu\right) ; \operatorname{Graph}(\mathcal{Q})\right)=0\right\}
\end{aligned}
$$

to the graph of the constraints, defined for each $(\tau, \mu) \in \operatorname{Graph}(\mathcal{Q})$. By a simple adaptation of $[9$, Proposition 5.1.4] following [12, Sections 2.3 and 2.4], this set can be equivalently characterised as
$T_{\operatorname{Graph}(\mathcal{Q})}(\tau, \mu)=\left\{(\zeta, \xi) \in \mathbb{R} \times \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)\right.$ s.t. there exist sequences $h_{i} \rightarrow 0^{+}$and $\zeta_{i} \rightarrow \zeta$ for

$$
\begin{equation*}
{\text { which } \left.\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\operatorname{Id}+h_{i} \xi\right)_{\sharp \mu} ; \mathcal{Q}\left(\tau+h_{i} \zeta_{i}\right)\right)=o_{\tau}\left(h_{i}\right)\right\} . ~ . ~ . ~} \tag{4.18}
\end{equation*}
$$

In the following theorem, we start our investigations by a discussion centered on necessary viability and invariance conditions, as these latter do not depend on the regularity of the constraints tubes.

Theorem 4.8 (Necessary viability, invariance and regularity conditions for constraints tubes). Suppose that $p \in(1,+\infty)$, let $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a set-valued map with convex images satisfying Hypotheses $(\mathbf{C I})$ and $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ be a constraints tube with proper images.

Then if $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is viable for (4.1), it must be left absolutely continuous and satisfy

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \cap T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \neq \emptyset \tag{4.19}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}(t)$. Analogously if $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is invariant for (4.1), it necessarily holds that

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \subset T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \tag{4.20}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}(t)$.
Proof. Let us start by showing the necessity of (4.19) when $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is viable for (4.1). Let $\mathscr{T} \subset(0, T)$ be the set of full \mathscr{L}^{1}-measure over which the statements of Theorem 3.1 and Theorem 3.2 as well as Hypotheses (CI)-(ii), (iii) and (iv) hold. Fix some $\tau \in \mathscr{T}$, an element $\mu_{\tau} \in \mathcal{Q}(\tau)$, a sequence $h_{i} \rightarrow 0^{+}$and a viable curve $\mu(\cdot) \in \mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right)$. By Theorem 3.2, there exists for each $\varepsilon>0$ a velocity $v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right)$ such that

$$
W_{p}\left(\mu_{\varepsilon}\left(\tau+h_{i_{k}}^{\varepsilon}\right),\left(\operatorname{Id}+h_{i_{k}}^{\varepsilon} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu(\tau)\right) \leq \varepsilon h_{i_{k}}^{\varepsilon}
$$

along an adequate subsequence $h_{i_{k}}^{\varepsilon} \rightarrow 0^{+}$. Observe that by Theorem 2.13 and our choice of $\tau \in \mathscr{T}$, the set $V\left(\tau, \mu_{\tau}\right) \subset C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is compact for the topology induced by $\mathrm{d}_{c c}(\cdot, \cdot)$. In particular for each sequence $\varepsilon_{n} \rightarrow 0^{+}$, there exists a subsequence that we do not relabel and some $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$ for which

$$
\left\|v_{\tau}-v_{\tau}^{\varepsilon_{n}}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu_{\tau}\right)}^{\varepsilon_{n} \rightarrow 0^{+}} \longrightarrow 0
$$

where we used Lemma 2.15. Note that for every $\varepsilon_{n}>0$, one can choose $\delta_{n}:=h_{i_{k}}^{\varepsilon_{n}}$ in such a way that $o_{\tau, \varepsilon_{n}}\left(h_{i_{k}}^{\varepsilon_{n}}\right) \leq \varepsilon_{n} h_{i_{k}}^{\varepsilon_{n}}$. Thus, recalling that $\mu(t) \in \mathcal{Q}(t)$ for all times $t \in[\tau, T]$, one further has

$$
\begin{aligned}
& \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\operatorname{Id}+\delta_{n} v_{\tau}\right)_{\sharp} \mu_{\tau} ; \mathcal{Q}\left(\tau+\delta_{n}\right)\right) \\
& \quad \leq \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\operatorname{Id}+\delta_{n} v_{\tau}^{\varepsilon_{n}}\right)_{\sharp} \mu_{\tau} ; \mathcal{Q}\left(\tau+\delta_{n}\right)\right)+W_{p}\left(\left(\operatorname{Id}+\delta_{n} v_{\tau}^{\varepsilon_{n}}\right)_{\sharp} \mu_{\tau},\left(\operatorname{Id}+\delta_{n} v_{\tau}\right)_{\sharp} \mu_{\tau}\right) \\
& \quad \leq W_{p}\left(\mu\left(\tau+\delta_{n}\right),\left(\operatorname{Id}+\delta_{n} v_{\tau}^{\varepsilon_{n}}\right)_{\sharp} \mu_{\tau}\right)+\delta_{n}\left\|v_{\tau}-v_{\tau}^{\varepsilon_{n}}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu_{\tau}\right)} \\
& \quad \leq \delta_{n}\left(2 \varepsilon_{n}+\left\|v_{\tau}-v_{\tau}^{\varepsilon_{n}}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu_{\tau}\right)}\right)
\end{aligned}
$$

which in turn implies that

$$
\liminf _{\delta_{n} \rightarrow 0^{+}} \frac{1}{\delta_{n}} \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\operatorname{Id}+\delta_{n} v_{\tau}\right)_{\sharp} \mu_{\tau} ; \mathcal{Q}\left(\tau+\delta_{n}\right)\right)=0 .
$$

By (4.18), this is tantamount to the fact that $\left(1, v_{\tau}\right) \in T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \mu_{\tau}\right)$, and thus yields (4.19).

Suppose now that $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is invariant for (4.1), fix an arbitrary $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$, and observe that by Theorem 3.1, there exists for every $\varepsilon>0$ a curve $\mu_{\varepsilon}(\cdot) \in \mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right)$ such that

$$
W_{p}\left(\mu_{\varepsilon}\left(\tau+h^{\varepsilon}\right),\left(\operatorname{Id}+h^{\varepsilon} v_{\tau}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon h^{\varepsilon}
$$

whenever $h^{\varepsilon}>0$ is sufficiently small. This estimate combined with the fact that $\mu_{\varepsilon}(t) \in \mathcal{Q}(t)$ for all times $t \in[\tau, T]$, owing to the invariance of the tube, implies then that

$$
\begin{aligned}
\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\operatorname{Id}+h^{\varepsilon} v_{\tau}\right)_{\sharp} \mu_{\tau} ; \mathcal{Q}(\tau+h)\right) & \leq W_{p}\left(\mu_{\varepsilon}\left(\tau+h^{\varepsilon}\right),\left(\operatorname{Id}+h^{\varepsilon} v_{\tau}\right)_{\sharp} \mu_{\tau}\right) \\
& \leq \varepsilon h^{\varepsilon} .
\end{aligned}
$$

Thus, dividing by $h>0$ and letting $h \rightarrow 0^{+}$while recalling that $\varepsilon>0$ is arbitrary, we finally obtain

$$
\liminf _{h \rightarrow 0^{+}} \frac{1}{h} \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\operatorname{Id}+h v_{\tau}\right)_{\sharp} \mu_{\tau} ; \mathcal{Q}(\tau+h)\right)=0
$$

which equivalently means that $\left(1, v_{\tau}\right) \in T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \mu_{\tau}\right)$ for all $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$, and thus yields (4.20).
Let us finally prove that $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is left absolutely continuous. Fix $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and $R>0$ in such a way that $\mathcal{Q}(\tau) \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}(\mu, R) \neq \emptyset$. Then, since $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is viable, there exists for all $\tau \in[0, T]$ and each $\mu_{\tau} \in \mathcal{Q}(\tau) \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}(\mu, R)$ a curve $\mu(\cdot) \in \mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right)$ such that $\mu(t) \in \mathcal{Q}(t)$ for all times $t \in[\tau, T]$. In particular by Proposition 2.20 , there exists $\mathcal{C}_{\mu, R}>0$ depending only on the magnitudes of $p, \mathcal{M}_{p}(\mu), R$ and $\|m(\cdot)\|_{1}$ such that

$$
W_{p}\left(\mu_{\tau}, \mu(t)\right) \leq\left(1+\mathcal{C}_{\mu, R}\right) \int_{\tau}^{t} m(s) \mathrm{d} s
$$

for all times $t \in[\tau, T]$. Thus, noting by construction that, for any $0 \leq \tau \leq t \leq T$, there holds

$$
\left.\begin{array}{rl}
\Delta_{\mu, R}(\mathcal{Q}(\tau), \mathcal{Q}(t)) & \leq \sup \left\{\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu_{\tau} ; \mathcal{Q}(t)\right) \text { s.t. } \mu_{\tau} \in \mathcal{Q}(\tau) \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}(\mu, R)\right\} \\
& \leq \sup \left\{W_{p}\left(\mu_{\tau}, \mu(t)\right) \text { s.t. } \mu_{\tau} \in \mathcal{Q}(\tau) \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}(\mu, R) \text { and } \mu(\cdot) \in \mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right)\right. \\
& \leq\left(1+\mathcal{C}_{\mu, R}\right) \int_{\tau}^{t} m(s) \mathrm{d} s,
\end{array} \quad \text { satisfies } \mu(t) \in \mathcal{Q}(t)\right\}
$$

we obtain that $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is left absolutely continuous.
Remark 4.9 (On the role of left absolute continuity). It is worth noting that in the previous theorem, we have shown that being viable for (4.1) under Hypotheses (CI) entails the left absolute continuity of the constraint tube. This supports the fact that this regularity framework - for which we provide sufficient viability conditions in Theorem 4.12-appears quite naturally when studying Cauchy-Lipschitz continuity inclusions with state-constraints.

In the next theorem, we provide sufficient viability conditions for absolutely continuous constraint tubes, which can be seen as the natural counterparts of Theorem 4.4 in the time-dependent setting.

Theorem 4.10 (Sufficient viability conditions for absolutely continuous constraints tubes). Suppose that $p \in(1,+\infty)$, let $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a set-valued map with convex images satisfying Hypotheses (CI) and $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ be an absolutely continuous tube with proper images such that

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \cap \overline{\operatorname{co}} T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \neq \emptyset \tag{4.21}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $\nu \in \mathcal{Q}(t)$. Then, $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is viable for (4.1).

Proof. As in the proof of Theorem 4.4, we assume without loss of generality that $\left(\tau, \mu_{\tau}\right)=\left(0, \mu^{0}\right)$ for some $\mu^{0} \in \mathcal{Q}(0)$. From there on, the arguments will essentially follow the same conceptual line as those of Theorem 4.4, in which one aims at showing that the distance function, defined by

$$
g(t):=\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \mathcal{Q}(t)\right)
$$

for all times $t \in[0, T]$, is identically equal to 0 .
In what follows, we let $\mathscr{T} \subset(0, T)$ be the set of full \mathscr{L}^{1}-measure on which the statements of Theorem 3.1 and Theorem 3.2 as well as Hypotheses (CI)-(ii), (iii) as well as (iv) hold. Observing that $g(\cdot) \in \mathrm{AC}\left([0, T], \mathbb{R}_{+}\right)$by Proposition 2.8 and Lemma 4.5 , we also denote by $\mathscr{D} \subset(0, T)$ the subset of full \mathscr{L}^{1}-measure where it is differentiable. Moreover, owing to the absolute continuity of $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and to the fact that $\cup_{t \in[0, T]} \mathcal{R}_{(0, t)}\left(\mu^{0}\right)$ is compact by Proposition 2.21 and Lemma 4.5 , one can find some radius $R>0$ satisfying

$$
\begin{equation*}
\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \partial \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu^{0}, R\right)\right) \geq \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \mathcal{Q}(t)\right)+1 \tag{4.22}
\end{equation*}
$$

for all times $t \in[0, T]$, by following e.g. the arguments detailed in Appendix B below. Note that by construction, the sets $\mathcal{Q}_{R}(t):=\mathcal{Q}(t) \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mu^{0}, R\right)$ are nonempty and such that

$$
g(t)=\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \mathcal{Q}_{R}(t)\right)
$$

for all times $t \in[0, T]$.
Step 1 - Local variations of the distance along contingent directions. Suppose by contradiction that there exist some $t \in[0, T)$ and a small $\delta>0$ such that $g(t)=0$ and $g(\tau)>0$ for all times $\tau \in(t, t+\delta)$, and fix an arbitrary element $\tau \in(t, t+\delta) \cap \mathscr{T} \cap \mathscr{D}$. Since $\mathcal{R}_{(0, \tau)}\left(\mu^{0}\right)$ and $\mathcal{Q}_{R}(\tau)$ are both compact since $\mathcal{Q}(\tau)$ is proper, one has that

$$
g(\tau)=W_{p}\left(\mu_{\tau}, \nu_{\tau}\right)
$$

for some $\mu_{\tau} \in \mathcal{R}_{(0, \tau)}\left(\mu^{0}\right)$ and $\nu_{\tau} \in \mathcal{Q}_{R}(\tau)$. By (4.18) along with the property (4.22) imposed on $R>0$, there exists for every $\left(\zeta_{\tau}, \xi_{\tau}\right) \in T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)$ two sequences $h_{i} \rightarrow 0^{+}$and $\zeta_{\tau}^{i} \rightarrow \zeta_{\tau}$ for which

$$
\left.\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\operatorname{Id}+h_{i} \xi_{\tau}\right)\right)_{\sharp} \nu_{\tau} ; \mathcal{Q}_{R}\left(\tau+h_{i} \zeta_{\tau}^{i}\right)\right)=o_{\tau}\left(h_{i}\right) .
$$

This allows us to estimate the variation of $g^{p}(\cdot)$ around τ as

$$
\begin{align*}
\frac{1}{p} g^{p}\left(\tau+h_{i} \zeta_{\tau}^{i}\right)-\frac{1}{p} g^{p}(\tau) & =\frac{1}{p} \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}^{p}\left(\mathcal{R}_{\left(0, \tau+h_{i} \zeta_{\tau}^{i}\right)}\left(\mu^{0}\right) ; \mathcal{Q}_{R}\left(\tau+h_{i} \zeta_{\tau}^{i}\right)\right)-\frac{1}{p} W_{p}^{p}\left(\mu_{\tau}, \nu_{\tau}\right) \\
& \leq \frac{1}{p} \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}^{p}\left(\mathcal{R}_{\left(0, \tau+h_{i} S_{\tau}^{i}\right)}\left(\mu^{0}\right) ;\left(\operatorname{Id}+h_{i} \xi_{\tau}\right)_{\sharp} \nu_{\tau}\right)-\frac{1}{p} W_{p}^{p}\left(\mu_{\tau}, \nu_{\tau}\right)+o_{\tau}\left(h_{i}\right) \tag{4.23}
\end{align*}
$$

for any $h_{i}>0$ that is sufficiently small.
In order to extract further information from (4.23), we need to discriminate between two possible scenarios depending on the asymptotic behaviour of the sequence $\left(\zeta_{\tau}^{i}\right)$. If there exists a subsequence $i_{k} \rightarrow+\infty$ for which $\zeta_{\tau}^{i_{k}} \geq 0$, it follows from Theorem 3.1 that for every $\varepsilon>0$ and any $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$, there exists a curve $\mu_{\varepsilon}(\cdot) \in \mathcal{S}_{[\tau, T]}\left(\tau, \mu_{\tau}\right)$ such that

$$
\begin{equation*}
W_{p}\left(\mu_{\varepsilon}\left(\tau+h_{i_{k}} \zeta_{\tau}^{i_{k}}\right),\left(\operatorname{Id}+h_{i_{k}} \zeta_{\tau}^{i_{k}} v_{\tau}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon h_{i_{k}} \zeta_{\tau}^{i_{k}} . \tag{4.24}
\end{equation*}
$$

On the other hand, if $\zeta_{\tau}^{i}<0$ for all large $i \geq 1$, we can apply Theorem 3.2 to obtain for each curve $\mu(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$ the existence of an element $v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right)$ and of a subsequence $i_{k} \rightarrow+\infty$, both depending on $\varepsilon>0$, for which

$$
\begin{equation*}
W_{p}\left(\mu\left(\tau+h_{i_{k}} \zeta_{\tau}^{i_{k}}\right),\left(\operatorname{Id}+h_{i_{k}} \zeta_{\tau}^{i_{k}} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon h_{i_{k}}\left|\zeta_{\tau}^{i_{k}}\right| . \tag{4.25}
\end{equation*}
$$

Thus by combining (4.24) and (4.25), one may assert that there exist a curve $\mu_{\varepsilon}(\cdot) \in \mathcal{S}_{[0, T]}\left(\tau, \mu_{\tau}\right)$ and subsequences $h_{i_{k}} \rightarrow 0^{+}$and $\zeta_{\tau}^{i_{k}} \rightarrow \zeta_{\tau}$ all possibly depending on $\varepsilon>0$ such that

$$
W_{p}\left(\mu_{\varepsilon}\left(\tau+h_{i_{k}} \zeta_{\tau}^{i_{k}}\right),\left(\operatorname{Id}+h_{i_{k}} \zeta_{\tau}^{i_{k}} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau}\right) \leq \varepsilon h_{i_{k}}\left|\zeta_{\tau}^{i_{k}}\right| \quad \text { for } \quad \begin{cases}\text { every } v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right) & \text { if } \zeta_{\tau}^{i_{k}} \geq 0 \tag{4.26}\\ \text { some } v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right) & \text { if } \zeta_{\tau}^{i_{k}}<0,\end{cases}
$$

for $i_{k} \geq 1$ large enough. Furthermore, observing that

$$
\mu_{\varepsilon}\left(\tau+h_{i_{k}} \zeta_{\tau}^{i_{k}}\right) \in \mathcal{R}_{\left(0, \tau+h_{i_{k}} \zeta_{\tau}^{i_{k}}\right)}\left(\mu^{0}\right)
$$

by construction, one may recast the estimate of (4.23) as

$$
\begin{align*}
\frac{1}{p} g^{p}\left(\tau+h_{i_{k}} \zeta_{\tau}^{i_{k}}\right)-\frac{1}{p} g^{p}(\tau) \leq \frac{1}{p} W_{p}^{p} & \left(\mu_{\varepsilon}\left(\tau+h_{i_{k}} \zeta_{\tau}^{i_{k}}\right),\left(\operatorname{Id}+h_{i_{k}} \xi_{\tau}\right)_{\sharp} \nu_{\tau}\right) \tag{4.27}\\
& -\frac{1}{p} W_{p}^{p}\left(\mu_{\tau}, \nu_{\tau}\right)+\varepsilon h_{i_{k}}\left|\zeta_{\tau}^{i_{k}}\right|+o_{\tau, \varepsilon}\left(h_{i_{k}}\right) .
\end{align*}
$$

Noting that $v_{\tau} \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu_{\tau}\right)$ by Hypothesis $(\mathbf{C I})-(i i)$ while $\xi_{\tau} \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu_{\tau}\right)$ by definition and assuming without loss of generality that $\varepsilon \in(0,1]$ and $h_{i_{k}} \in(0,1]$, one can reproduce the estimates of (4.10) in the proof of Theorem 4.4 - which are based on the quantitative p-norm inequalities of Lemma A. 1 below - and combine these latter with (4.26) to recover that

$$
\begin{equation*}
\frac{1}{p} W_{p}^{p}\left(\mu_{\varepsilon}\left(\tau+h_{i_{k}} \zeta_{\tau}^{i_{k}}\right),\left(\operatorname{Id}+h_{i_{k}} \xi_{\tau}\right)_{\sharp} \nu_{\tau}\right)-\frac{1}{p} W_{p}^{p}\left(\left(\operatorname{Id}+h_{i_{k}} \zeta_{\tau}^{i_{k}} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau},\left(\operatorname{Id}+h_{i_{k}} \xi_{\tau}\right)_{\sharp} \nu_{\tau}\right) \leq \varepsilon h_{i_{k}}+o_{\tau, \varepsilon}\left(h_{i_{k}}\right) \tag{4.28}
\end{equation*}
$$

for $h_{i_{k}}>0$ small enough, and up to rescaling $\varepsilon>0$ by a constant since the sequence $\left(\zeta_{\tau}^{i_{k}}\right)$ is bounded. Whence, by combining (4.27) and (4.28), it holds that

$$
\begin{equation*}
\frac{1}{p} g^{p}\left(\tau+h_{i_{k}} \zeta_{\tau}^{i_{k}}\right)-\frac{1}{p} g^{p}(\tau) \leq \frac{1}{p} W_{p}^{p}\left(\left(\operatorname{Id}+h_{i_{k}} \zeta_{\tau}^{i_{k}} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau},\left(\operatorname{Id}+h_{i_{k}} \xi_{\tau}\right)_{\sharp} \nu_{\tau}\right)-\frac{1}{p} W_{p}^{p}\left(\mu_{\tau}, \nu_{\tau}\right)+\varepsilon h_{i_{k}}+o_{\tau, \varepsilon}\left(h_{i_{k}}\right), \tag{4.29}
\end{equation*}
$$

for $i_{k} \geq 1$ sufficiently large, with $v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right)$ being either fixed or arbitrary depending on $\left(\zeta_{\tau}^{i_{k}}\right)$. At this stage, one can apply the joint superdifferentiability inequality of Proposition 2.3 to obtain

$$
\begin{align*}
& \frac{1}{p} W_{p}^{p}\left(\left(\operatorname{Id}+h_{i_{k}} \zeta_{\tau}^{i_{k}} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu_{\tau},\left(\operatorname{Id}+h_{i_{k}} \xi_{\tau}\right)_{\sharp} \nu_{\tau}\right)-\frac{1}{p} W_{p}^{p}\left(\mu_{\tau}, \nu_{\tau}\right) \\
& \leq h_{i_{k}} \int_{\mathbb{R}^{2 d}}\left\langle\zeta_{\tau}^{i_{k}} v_{\tau}^{\varepsilon}(x)-\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)+o_{\tau, \varepsilon}\left(h_{i_{k}}\right), \tag{4.30}
\end{align*}
$$

for any $h_{i_{k}}>0$ sufficiently small and each $\gamma_{\tau} \in \Gamma_{o}\left(\mu_{\tau}, \nu_{\tau}\right)$, where we used the analytical expressions (2.3)-(2.4) of the remainder term, along with the fact that $\left(\zeta_{\tau}^{i_{k}}\right)$ is bounded. In turn, by combining (4.29) and (4.30), letting $i_{k} \rightarrow+\infty$ and recalling that $\frac{1}{p} g^{p}(\cdot)$ is differentiable at $\tau \in \mathscr{D}$, one finally gets
$\zeta_{\tau} g^{p-1}(\tau) \dot{g}(\tau) \leq \int_{\mathbb{R}^{2 d}}\left\langle\zeta_{\tau} v_{\tau}^{\varepsilon}(x)-\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)+\varepsilon \quad$ for $\quad \begin{cases}\text { every } v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right) & \text { if } \zeta_{\tau} \geq 0, \\ \text { some } v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right) & \text { if } \zeta_{\tau}<0,\end{cases}$
where $\left(\zeta_{\tau}, \xi_{\tau}\right) \in T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)$ and $\gamma_{\tau} \in \Gamma_{o}\left(\mu_{\tau}, \nu_{\tau}\right)$ are arbitrary while $v_{\tau}^{\varepsilon} \in V\left(\tau, \mu_{\tau}\right)$ may possibly depend on $\zeta_{\tau} \in \mathbb{R}$ as well as on the free parameter $\varepsilon>0$.

Step 2 - Convexification of the contingent directions and viability. In this second step, we show how one can convexify the contingent directions in (4.31) and then prove the existence of viable curves. With this goal in mind, we draw inspiration from [60, Lemma 4.9] and consider arbitrary collections of $N \geq 1$ elements

$$
\left(\zeta_{\tau}^{j}, \xi_{\tau}^{j}\right) \in T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right) \quad \text { and } \quad \alpha_{j} \in[0,1]
$$

indexed by $j \in\{1, \ldots, N\}$, which are chosen in such a way that

$$
\begin{equation*}
\sum_{j=1}^{N} \alpha_{j}=1 \quad \text { and } \quad \zeta_{\tau}:=\sum_{j=1}^{N} \alpha_{j} \zeta_{\tau}^{j}>0 \tag{4.32}
\end{equation*}
$$

Up to reordering the labels, we may posit that there exists an $m \in\{1, \ldots, N\}$ such that $\zeta_{\tau}^{j} \geq 0$ if $j \geq m$ and $\zeta_{\tau}^{j}<0$ otherwise. Applying (4.31) to each $\left(\zeta_{\tau}^{j}, \xi_{\tau}^{j}\right) \in T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)$ with $j \in\{1, \ldots, N\}$, and then summing the resulting expressions depending on whether $j<m$ or $j \geq m$, one has that

$$
\begin{equation*}
\sum_{j<m} \alpha_{j} \zeta_{\tau}^{j} g^{p-1}(\tau) \dot{g}(\tau) \leq \sum_{j<m} \alpha_{j}\left(\int_{\mathbb{R}^{2 d}}\left\langle\zeta_{\tau}^{j} \varepsilon_{\tau}^{\varepsilon, j}(x)-\xi_{\tau}^{j}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)+\varepsilon\right), \tag{4.33}
\end{equation*}
$$

for some fixed and potentially empty tuple $\left(v_{\tau}^{६, j}\right)_{j \leq m-1} \in V\left(\tau, \mu_{\tau}\right)^{m-1}$, as well as

$$
\begin{equation*}
\sum_{j \geq m} \alpha_{j} \zeta_{\tau}^{j} g^{p-1}(\tau) \dot{g}(\tau) \leq \sum_{j \geq m} \alpha_{j}\left(\int_{\mathbb{R}^{2 d}}\left\langle\zeta_{\tau}^{j} v_{\tau}(x)-\xi_{\tau}^{j}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)+\varepsilon\right) \tag{4.34}
\end{equation*}
$$

for every possible element $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$. Introducing in turn the coefficients

$$
\beta_{j}:=\frac{\alpha_{j}\left|\zeta_{\tau}^{j}\right|}{\sum_{j \geq m} \alpha_{j} \zeta_{\tau}^{j}} \in(0,1) \text { for each } j<m \quad \text { and } \quad \beta:=1-\sum_{j<m} \beta_{j},
$$

which are well-defined as a consequence of (4.32), while recalling that set $V\left(\tau, \mu_{\tau}\right)$ is convex by assumption, it holds for each $v_{\tau} \in V\left(\tau, \nu_{\tau}\right)$ that

$$
v_{\tau}^{\prime}:=\beta v_{\tau}+\sum_{j<m} \beta_{j} v_{\tau}^{\varepsilon, j} \in V\left(\tau, \nu_{\tau}\right) .
$$

Whence, by merging the estimate of (4.33) with that of (4.34) evaluated at $v_{\tau}^{\prime} \in V\left(\tau, \mu_{\tau}\right)$ defined via the previous expression, one eventually obtains

$$
\begin{equation*}
\zeta_{\tau} g^{p-1}(\tau) \dot{g}(\tau) \leq \int_{\mathbb{R}^{2 d}}\left\langle\zeta_{\tau} v_{\tau}(x)-\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)+\varepsilon \tag{4.35}
\end{equation*}
$$

for any given $\left(\zeta_{\tau}, \xi_{\tau}\right) \in \operatorname{co} T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)$ satisfying $\zeta_{\tau}>0$ and every $v_{\tau} \in V\left(\tau, \mu_{\tau}\right)$. Remarking that the right-hand side in (4.35) is linear and continuous with respect $\left(\zeta_{\tau}, \xi_{\tau}\right) \in \mathbb{R} \times \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu_{\tau}\right)$, the latter expression remains valid for every $\left(\zeta_{\tau}, \xi_{\tau}\right) \in \overline{\operatorname{co}} T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)$ such that $\zeta_{\tau}>0$.

At this stage, starting from (4.35), one may repeat the argument discussed at the end of Step 1 in the proof of Theorem 4.4 while using the facts that $\varepsilon>0$ is arbitrary and $\gamma_{\tau} \in \Gamma_{o}\left(\mu_{\tau}, \nu_{\tau}\right)$ to show that the latter estimate further yields

$$
\zeta_{\tau} g^{p-1}(\tau) \dot{g}(\tau) \leq \zeta_{\tau}(l(\tau)+L(\tau)) g^{p}(\tau)+\int_{\mathbb{R}^{2 d}}\left\langle\zeta_{\tau} w_{\tau}(y)-\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)
$$

for every $\left(\zeta_{\tau}, \xi_{\tau}\right) \in \overline{\operatorname{co}} T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)$ such that $\zeta_{\tau}>0$ and each $w_{\tau} \in V\left(\tau, \nu_{\tau}\right)$. Choosing in particular

$$
\left(\zeta_{\tau}, \xi_{\tau}\right)=\left(1, w_{\tau}\right) \in\left(\{1\} \times V\left(\tau, \nu_{\tau}\right)\right) \cap \overline{\operatorname{co}} T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right),
$$

which is licit under our standing assumption (4.21), one finally has that

$$
\dot{g}(\tau) \leq(l(\tau)+L(\tau)) g(\tau)
$$

for all times $\tau \in(t, t+\delta) \cap \mathscr{T} \cap \mathscr{D}$. Noting that $g(t)=0$ and $\mathscr{T}, \mathscr{D} \subset(0, T)$ both have full \mathscr{L}^{1}-measure, it follows from Grönwall's lemma that $g(\tau)=0$ for all $\tau \in[t, t+\delta)$, which implies that $g:[0, T] \rightarrow \mathbb{R}_{+}$ is identically equal to zero and thus leads to a contradiction. One can then deduce the existence of a viable curve by repeating the argument detailed above in Step 2 of the proof of Theorem 4.4.

In the following theorem, we state the natural counterpart of the sufficient part of the invariance result of Theorem 4.7 for absolutely continuous time-dependent constraint sets.

Theorem 4.11 (Sufficient invariance conditions for absolutely continuous constraints tubes). Suppose that the assumptions of Theorem 4.10 hold and that the tube $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is such that

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \subset \overline{\operatorname{co}} T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \tag{4.36}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and all $\nu \in \mathcal{Q}(t)$. Then, $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is invariant for (4.1).

Proof. In what follows, we let $\mathscr{T} \subset(0, T)$ and $R>0$ be given as in the proof of Theorem 4.10 above, and assume without loss of generality that $\left(\tau, \mu_{\tau}\right)=\left(0, \mu^{0}\right)$ for some $\mu^{0} \in \mathcal{Q}(0)$. Given an arbitrary curve $\mu(\cdot) \in \mathcal{S}_{[0, T]}\left(\mu^{0}\right)$, our goal is to show that the distance function, defined by

$$
g(t):=\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}(\mu(t) ; \mathcal{Q}(t))
$$

for all times $t \in[0, T]$, is identically equal to zero. Note that since $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is absolutely continuous, it can be easily verified that $g(\cdot) \in \mathrm{AC}\left([0, T], \mathbb{R}_{+}\right)$, and we denote by $\mathscr{D} \subset(0, T)$ the subset of full \mathscr{L}^{1}-measure over which it is differentiable. We posit by contradiction that $g(t)=0$ for some $t \in[0, T]$ and that there exists $\delta>0$ such that $g(\tau)>0$ for all $\tau \in(t, t+\delta)$. Observe now that by the compactness of $\mathcal{Q}_{R}(\tau)$, there exists an element $\nu_{\tau} \in \mathcal{Q}_{R}(\tau)$ such that

$$
g(\tau)=W_{p}\left(\mu(\tau), \nu_{\tau}\right)
$$

and owing to the choice of $R>0$ made via (4.3), one can fix some $\left(\zeta_{\tau}, \xi_{\tau}\right) \in T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)$ for which

$$
\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\left(\operatorname{Id}+h_{i} \xi_{\tau}\right)_{\sharp} \nu_{\tau} ; \mathcal{Q}_{R}\left(\tau+h_{i} \zeta_{\tau}^{i}\right)\right)=o_{\tau}\left(h_{i}\right)
$$

along two given sequences $h_{i} \rightarrow 0^{+}$and $\zeta_{\tau}^{i} \rightarrow \zeta_{\tau}$. By Theorem 3.2, there exists for every $\varepsilon>0$ some $v_{\tau}^{\varepsilon} \in V(\tau, \mu(\tau))$ such that

$$
W_{p}\left(\mu\left(\tau+h_{i_{k}}^{\varepsilon} \zeta_{\tau}^{i_{k}}\right),\left(\operatorname{Id}+h_{i_{k}}^{\varepsilon} \zeta_{\tau}^{i_{k}} v_{\tau}^{\varepsilon}\right)_{\sharp} \mu(\tau)\right) \leq \varepsilon h_{i_{k}}^{\varepsilon}\left|\zeta_{\tau}^{i_{k}}\right|+o_{\tau, \varepsilon}\left(h_{i_{k}}^{\varepsilon}\right)
$$

along a subsequence $h_{i_{k}}^{\varepsilon} \rightarrow 0^{+}$. By following the arguments leading to the differential estimate (4.31) on $\frac{1}{p} g^{p}(\cdot)$ in the proof of Theorem 4.10, one can further obtain

$$
\zeta_{\tau} g^{p-1}(\tau) \dot{g}(\tau) \leq \int_{\mathbb{R}^{2 d}}\left\langle\zeta_{\tau} v_{\tau}^{\varepsilon}(x)-\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)+\varepsilon
$$

for all $\gamma_{\tau} \in \Gamma_{o}\left(\mu(\tau), \nu_{\tau}\right)$, up to rescaling $\varepsilon>0$. Since the latter expression is linear and continuous with respect to $\left(\zeta_{\tau}, \xi_{\tau}\right) \in T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)$, it holds more generally for elements of $\overline{\operatorname{co}} T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)$. There now remains to observe that, by Hypothesis (CI)-(iv), there exists $w_{\tau}^{\varepsilon} \in V\left(\tau, \nu_{\tau}\right)$ such that

$$
\mathrm{d}_{\sup }\left(v_{\tau}^{\varepsilon}, w_{\tau}^{\varepsilon}\right) \leq L(\tau) W_{p}\left(\mu(\tau), \nu_{\tau}\right)
$$

which together with Hypothesis (CI)-(iii), the definition (2.2) of the duality map $j_{p}: \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right) \rightarrow$ $\mathcal{L}^{q}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$ and the fact that $\gamma_{\tau} \in \Gamma_{o}\left(\mu(\tau), \nu_{\tau}\right)$ yields the differential estimate

$$
\zeta_{\tau} g^{p-1}(\tau) \dot{g}(\tau) \leq \int_{\mathbb{R}^{2 d}}\left\langle\zeta_{\tau} w_{\tau}^{\varepsilon}(y)-\xi_{\tau}(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma_{\tau}(x, y)+\zeta_{\tau}(l(\tau)+L(\tau)) g^{p}(\tau)+\varepsilon
$$

whenever $\zeta_{\tau}>0$. Thence, choosing in particular

$$
\left(\zeta_{\tau}, \xi_{\tau}\right)=\left(1, w_{\tau}^{\varepsilon}\right) \in\left(\{1\} \times V\left(\tau, \nu_{\tau}\right)\right) \subset \overline{\operatorname{co}} T_{\operatorname{Graph}(\mathcal{Q})}\left(\tau, \nu_{\tau}\right)
$$

which is licit under our standing assumption (4.36), one can deduce that

$$
\dot{g}(\tau) \leq(l(\tau)+L(\tau)) g(\tau)+\varepsilon
$$

which finally yields $g(\tau)=0$ for each $\tau \in(t, t+\delta)$ by applying Grönwall's lemma while noting that $\varepsilon>0$ is arbitrary. This contradicts our initial choice of $t \in[0, T]$.

In the following result, we finally present sufficient viability and invariance conditions for constraints tubes which are merely left absolutely continuous. In order to treat this less regular case, we shall see that one must relinquish the convexification of the contingent directions which was present in both Theorem 4.4 and Theorem 4.10.

Theorem 4.12 (Sufficient viability and invariance conditions for left absolutely continuous tubes). Suppose that $p \in(1,+\infty)$, let $V:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightrightarrows C^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a set-valued map with convex images satisfying Hypotheses (CI), and $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ be a left absolutely continuous constraints tube with proper images such that

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \cap T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \neq \emptyset \tag{4.37}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}(t)$. Then, $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is viable for (4.1). Analogously, if the constraints satisfy the stronger condition

$$
\begin{equation*}
(\{1\} \times V(t, \nu)) \subset T_{\operatorname{Graph}(\mathcal{Q})}(t, \nu) \tag{4.38}
\end{equation*}
$$

for \mathscr{L}^{1}-almost every $t \in[0, T]$ and each $\nu \in \mathcal{Q}(t)$, then $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is invariant for (4.1).
Proof. In what follows, we only prove the viability of $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ under the sufficient condition (4.37), as its invariance under (4.38) follows from a straightforward transposition of the method detailed in the proof of Theorem 4.11 hereinabove.

Without loss of generality, we assume that $\left(\tau, \mu_{\tau}\right):=\left(0, \mu^{0}\right)$ for some $\mu^{0} \in \mathcal{Q}(0)$ and let $\mathscr{T} \subset(0, T)$ be the set of full \mathscr{L}^{1}-measure such that the statements of Theorem 3.1 as well as Hypotheses (CI)-(ii), (iii) and (iv) hold. By Proposition 2.8, since the constraint tube $\mathcal{Q}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is merely left absolutely continuous, the distance function

$$
g: t \in[0, T] \mapsto \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left(\mathcal{R}_{(0, t)}\left(\mu^{0}\right) ; \mathcal{Q}(t)\right)
$$

is not absolutely continuous in general. To estimate its local variations, we cannot resort to the usual Grönwall lemma and need to carry out a subtler viability analysis of its epigraph. By contradiction, assume that there exist $t \in[0, T]$ and $\delta>0$ such that $g(t)=0$ and $g(\tau)>0$ for $\tau \in(t, t+\delta)$. By combining the arguments detailed in the proof of Theorem 4.10 with (4.37), one can check that for each $\tau \in(t, t+\delta) \cap \mathscr{T}$, it holds that

$$
\begin{equation*}
\liminf _{h \rightarrow 0^{+}} \frac{g(\tau+h)-g(\tau)}{h} \leq(l(\tau)+L(\tau)) g(\tau) \tag{4.39}
\end{equation*}
$$

Consider now the auxiliary real-valued tube defined by

$$
\mathscr{E}(\tau):=\left\{\alpha \in \mathbb{R}_{+} \text {s.t. } \alpha=g(\tau)+r \text { for some } r \geq 0\right\}
$$

as well as the 1-dimensional linear velocity field

$$
f(\tau, \alpha):=(l(\tau)+L(\tau)) \alpha
$$

given for all times $\tau \in[t, t+\delta]$ and each $\alpha \in \mathbb{R}$, and notice that $\mathscr{E}:[t, t+\delta] \rightrightarrows \mathbb{R}$ is left absolutely continuous by Proposition 2.8. Given some $\tau \in(t, t+\delta) \cap \mathscr{T}$, remark that if $\alpha=g(\tau) \in \mathscr{E}(\tau)$, it can then be deduced from (4.39) and [9, Proposition 5.1.4] that

$$
\begin{equation*}
f(\tau, g(\tau))=(l(\tau)+L(\tau)) g(\tau) \in\left\{\xi \in \mathbb{R} \text { s.t. }(1, \xi) \in T_{\operatorname{Graph}(\mathscr{E})}(\tau, g(\tau))\right\} \tag{4.40}
\end{equation*}
$$

On the other hand, if $\alpha \in \mathscr{E}(\tau)$ is such that $\alpha>g(\tau)$, it is then clear that

$$
\begin{equation*}
f(\tau, \alpha) \in\left\{\xi \in \mathbb{R} \text { s.t. }(1, \xi) \in T_{\operatorname{Graph}(\mathscr{E})}(\tau, \alpha)\right\}=\mathbb{R} \tag{4.41}
\end{equation*}
$$

Hence, by combining (4.40) and (4.41), one then recovers

$$
f(\tau, \alpha) \in\left\{\xi \in \mathbb{R} \text { s.t. }(1, \xi) \in T_{\operatorname{Graph}(\mathscr{E})}(\tau, \alpha)\right\}
$$

for \mathscr{L}^{1}-almost every $\tau \in(t, t+\delta)$ and each $\alpha \in \mathscr{E}(\tau)$. Thus, observing that $0=g(t) \in \mathscr{E}(t)$, the classical measurable viability theorem of $[60$, Theorem 4.2] yields the existence of a curve $\alpha(\cdot) \in \mathrm{AC}([t, t+\delta], \mathbb{R})$ solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{\alpha}(\tau)=(l(\tau)+L(\tau)) \alpha(\tau) \tag{4.42}\\
\alpha(t)=0
\end{array}\right.
$$

such that $\alpha(\tau) \in \mathscr{E}(\tau)$ for all times $\tau \in[t, t+\delta]$. Noting that the unique solution of (4.42) is identically equal to zero, we conclude that $g(\tau)=0$ on that same interval, which contradicts our initial choice of $t \in[0, T]$. From there, the existence of a viable measure can be obtained by repeating the argument in Step 2 of the proof of Theorem 4.4 above.

5 Examples of constraints sets and computations of tangents

In this Section, we provide several examples of proper constraint sets $\mathcal{Q} \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ which arise in applications, and compute in each case some of their relevant tangent directions.

Constraints sets defined by support inclusions. In this first example, we start by considering the prototypical case in which the constraints set is given by

$$
\mathcal{Q}_{K}:=\left\{\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \text { s.t. } \operatorname{supp}(\mu) \subset K\right\}
$$

for some compact set $K \subset \mathbb{R}^{d}$, where $\operatorname{supp}(\mu) \subset \mathbb{R}^{d}$ denotes the support of $\mu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$ and is given by

$$
\operatorname{supp}(\mu):=\left\{x \in \mathbb{R}^{d} \text { s.t. } \mu\left(\mathcal{N}_{x}\right)>0 \text { for each neighbourhood } \mathcal{N}_{x} \text { of } x \text { in } \mathbb{R}^{d}\right\}
$$

By Proposition 2.2 , it can easily be checked that $\mathcal{Q}_{K} \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is compact and thus proper. In the coming proposition, we characterise a subset of the adjacent cone to \mathcal{Q}_{K} at $\mu \in \mathcal{Q}$, defined by

$$
\begin{equation*}
T_{\mathcal{Q}_{K}}^{b}(\mu):=\left\{\xi \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right) \text { s.t. } \lim _{h \rightarrow 0^{+}} \frac{1}{h} \operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left((\operatorname{Id}+h \xi)_{\sharp} \mu ; \mathcal{Q}_{K}\right)=0\right\} . \tag{5.1}
\end{equation*}
$$

Notice that by construction, one clearly has that $T_{\mathcal{Q}_{K}}^{b}(\mu) \subset T_{\mathcal{Q}_{K}}(\mu)$.
Proposition 5.1 (Computation of adjacent directions to \mathcal{Q}_{K}). For every $\mu \in \mathcal{Q}_{K}$, it holds that

$$
\left\{\xi \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right) \text { s.t. } \xi(x) \in T_{K}^{b}(x) \text { for } \mu \text {-almost every } x \in K\right\} \subset T_{\mathcal{Q}_{K}}^{b}(\mu)
$$

where $T_{K}^{b}(x)$ denotes the standard adjacent cone to $K \subset \mathbb{R}^{d}$ at $x \in K$.
Proof. Let $\xi \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$ be such that $\xi(x) \in T_{K}^{b}(x)$ for μ-almost every $x \in K$ and $h>0$ be given. Observing that the map $x \mapsto x+h \xi(x)$ is Borel and thus μ-measurable, see e.g. [4, Definition 1.12], it follows from [9, Theorem 8.2.11] that the set-valued mapping

$$
\mathcal{D}_{K}: x \in K \rightrightarrows \underset{y \in K}{\operatorname{argmin}}|x+h \xi(x)-y| \subset K
$$

is μ-measurable as well. Because the latter has closed images and since the σ-algebra of μ-measurable sets is complete, see e.g. [77, Theorem 1.36], it follows from [9, Theorem 8.1.3] that there exists a μ-measurable selection $x \in K \mapsto \tilde{d}_{K}(x) \in \mathcal{D}_{K}(x) \subset K$ which satisfies

$$
\left|x+h \xi(x)-\tilde{d}_{K}(x)\right|=\operatorname{dist}_{\mathbb{R}^{d}}(x+h \xi(x) ; K)=o_{x}(h)
$$

for μ-almost every $x \in K$ as $h \rightarrow 0^{+}$, where $\left|o_{x}(h)\right| \leq h|\xi(x)|$. Moreover, by [15, Proposition 2.1.11], the latter coincides with a Borel map $d_{K}: K \rightarrow K$ outside of a Borel set of zero μ-measure. Therefore, noting in turn that

$$
\operatorname{supp}\left(d_{K \sharp} \mu\right) \subset \overline{\left\{d_{K}(x) \text { s.t. } x \in \operatorname{supp}(\mu)\right\}} \overline{\mathbb{R}}^{d} \subset K
$$

since $d_{K}^{-1}(B(y, \varepsilon))=\emptyset$ for every $y \in \mathbb{R}^{d} \backslash K$ and $\varepsilon>0$ for which $B(y, \varepsilon) \cap K=\emptyset$ because $K \subset \mathbb{R}^{d}$ is closed, it further holds that

$$
\begin{aligned}
\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left((\operatorname{Id}+h \xi)_{\sharp} \mu ; \mathcal{Q}_{K}\right) & \leq W_{p}\left((\operatorname{Id}+h \xi)_{\sharp} \mu, d_{K \sharp} \mu\right) \\
& \leq\left\|\operatorname{Id}+h \xi-d_{K}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}=o(h)
\end{aligned}
$$

as $h \rightarrow 0^{+}$by Lebesgue's dominated convergence theorem, which concludes the proof by definition (5.1) of the adjacent cone $T_{\mathcal{Q}_{K}}^{b}(\mu)$.

It is possible to generalise this example to time-dependent tubes $K:[0, T] \rightrightarrows \mathbb{R}^{d}$. In this context, we define the constraints tube by

$$
\mathcal{Q}_{K}(t):=\left\{\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \text { s.t. } \operatorname{supp}(\mu) \subset K(t)\right\}
$$

for all times $t \in[0, T]$. In what follows, we treat the case in which $K:[0, T] \rightrightarrows \mathbb{R}^{d}$ is left absolutely continuous with nonempty compact images.

Proposition 5.2 (Regularity in time of the constraints). Under our assumptions on $K:[0, T] \rightrightarrows \mathbb{R}^{d}$, the constraints tube $\mathcal{Q}_{K}:[0, T] \rightrightarrows \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is left absolutely continuous.

Proof. Fix some $\tau \in[0, T]$ along with $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and $R>0$ for which $\mathcal{Q}_{K}(\tau) \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}(\mu, R) \neq \emptyset$, and let $\mu_{\tau} \in \mathcal{Q}_{K}(\tau) \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}(\mu, R)$. Since $K:[0, T] \rightrightarrows \mathbb{R}^{d}$ is left absolutely continuous, there exists for each $x_{\tau} \in \operatorname{supp}\left(\mu_{\tau}\right)$ and every $t \in[0, T]$ such that $\tau \leq t$ some point $x_{t} \in K(t)$ for which

$$
\left|x_{t}-x_{\tau}\right| \leq \int_{\tau}^{t} m_{K}(s) \mathrm{d} s
$$

where $m_{K}(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$only depends on $K:[0, T] \rightrightarrows \mathbb{R}^{d}$. Thence, up to a trivial extension $\operatorname{argument}$ outside $\operatorname{supp}\left(\mu_{\tau}\right)$, it is possible to construct a Borel map $\phi_{(\tau, t)}: K(\tau) \rightarrow K(t)$ which satisfies

$$
\left|\phi_{(\tau, t)}\left(x_{\tau}\right)-x_{\tau}\right| \leq \int_{\tau}^{t} m_{K}(s) \mathrm{d} s
$$

for each $x_{\tau} \in \operatorname{supp}\left(\mu_{\tau}\right)$. Then, one can easily show that the measure $\mu_{t}:=\phi_{(\tau, t) \sharp} \mu_{\tau}$ is such that $\operatorname{supp}\left(\mu_{t}\right) \subset K(t)$, and by (2.1) the latter also complies with the estimate

$$
W_{p}\left(\mu_{\tau}, \mu_{t}\right) \leq \int_{\tau}^{t} m_{K}(s) \mathrm{d} s
$$

Repeating then the arguments supporting the regularity statement of Theorem 4.8 closes the proof.
Proposition 5.3 (Computation of adjacent directions to $\operatorname{Graph}\left(\mathcal{Q}_{K}\right)$). For all times $t \in[0, T]$ and each $\mu \in \mathcal{Q}_{K}(t)$, it holds that

$$
\begin{aligned}
\left\{(\zeta, \xi) \in \mathbb{R} \times \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right) \text { s.t. }(\zeta, \xi(x)) \in T_{\operatorname{Graph}(K)}^{b}(t, x) \text { for } \mu \text {-almost every } x\right. & \in K(t)\} \\
& \subset T_{\operatorname{Graph}\left(\mathcal{Q}_{K}\right)}^{b}(t, \mu)
\end{aligned}
$$

Proof. Given some $t \in[0, T]$, an element $\mu \in \mathcal{Q}(t)$ and some $(\zeta, \xi) \in \mathbb{R} \times \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$ such that $(\zeta, \xi(x)) \in T_{\operatorname{Graph}(K)}^{b}(t, x)$ for μ-almost every $x \in \mathbb{R}^{d}$, one can show by repeating the arguments in the proof of Proposition 5.1 that the set-valued map

$$
\mathcal{D}_{K(t)}: K(t) \rightrightarrows \underset{y \in K(t+h \zeta)}{\operatorname{argmin}}|x+h \xi(x)-y| \subset K(t+h \zeta)
$$

admits a Borel selection $x \in K(t) \mapsto d_{K(t)}(x) \in K(t+h \zeta)$ which satisfies

$$
\left|x+h \xi(x)-d_{K(t)}(x)\right|=o_{x}(h)
$$

for μ-almost every $x \in \mathbb{R}^{d}$ as $h \rightarrow 0^{+}$, where $\left|o_{x}(h)\right| \leq h|\xi(x)|$. Then, there simply remains to note that $d_{K(t) \sharp} \mu \in \mathcal{Q}_{K}(t+h)$ by construction while

$$
\begin{aligned}
\operatorname{dist}_{\mathscr{P}_{p}\left(\mathbb{R}^{d}\right)}\left((\operatorname{Id}+h \xi)_{\sharp \mu} \mu ; \mathcal{Q}_{K}(t+h)\right) & \leq W_{p}\left((\operatorname{Id}+h \xi)_{\sharp \mu}, d_{K(t) \sharp \mu}\right) \\
& \leq\left\|\operatorname{Id}+h \xi-d_{K(t)}\right\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}=o(h)
\end{aligned}
$$

by Lebesgue's dominated convergence theorem, which concludes the proof.
Constraints sets defined as lifted epigraphs. In this second example, which is discussed in our earlier work [25], we consider an extended-valued map $\mathcal{W}: \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R} \cup\{+\infty\}$ with compact sublevels that is continuous over its domain $\operatorname{dom}(\mathcal{W}) \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, and define its lifted epigraph by

$$
\mathcal{Q}_{\mathcal{W}}:=\left\{\boldsymbol{\mu} \in \mathscr{P}_{p}\left(\mathbb{R}^{d+1}\right) \text { s.t. } \boldsymbol{\mu}=\mu \times \delta_{\alpha} \text { with } \mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \text { and } \mathcal{W}(\mu) \leq \alpha\right\} .
$$

In what follows, we discuss the topological properties of this constraint set and provide a full characterisation of a relevant subset of its contingent directions.

Proposition 5.4 (Topological property of $\mathcal{Q}_{\mathcal{W}}$). Under the assumptions listed hereinabove for \mathcal{W} : $\mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$, the set $\mathcal{Q}_{\mathcal{W}} \subset \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ is proper.

Proof. Showing that $\mathcal{Q}_{\mathcal{W}}$ is closed under our assumptions is a matter of routine computations. Given $\boldsymbol{\nu} \in \mathscr{P}_{p}\left(\mathbb{R}^{d+1}\right)$, one has that
for any $\boldsymbol{\mu}=\in \mathcal{Q}_{\mathcal{W}}$ and all $\boldsymbol{\gamma} \in \Gamma_{o}(\boldsymbol{\mu}, \boldsymbol{\nu})$, where we used Jensen's inequality. In particular given $R>0$, it then holds for every $\boldsymbol{\mu}:=\mu \times \delta_{\alpha} \in \mathcal{Q} \mathcal{W} \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d+1}\right)}(\boldsymbol{\nu}, R)$ that

$$
\mathcal{W}(\mu) \leq \alpha \leq R+\left|\int_{\mathbb{R}^{d+1}} \beta \mathrm{~d} \boldsymbol{\nu}(y, \beta)\right|
$$

Since $\mathcal{W}: \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R} \cup\{+\infty\}$ has compact sublevels, we deduce that $\mathcal{Q} \mathcal{W} \cap \mathbb{B}_{\mathscr{P}_{p}\left(\mathbb{R}^{d+1}\right)}(\boldsymbol{\nu}, R)$ is compact for any $\boldsymbol{\nu} \in \mathscr{P}_{p}\left(\mathbb{R}^{d+1}\right)$ and $R>0$ and thus that $\mathcal{Q}_{\mathcal{W}}$ is proper.

Similarly to what is known in nonsmooth analysis, the contingent cone to $\mathcal{Q}_{\mathcal{W}}$ can be expressed in terms of lower directional derivatives of the functional. Following [13], we define these latter as

$$
\begin{equation*}
\mathrm{D}_{\uparrow} \mathcal{W}(\mu)(\xi):=\liminf _{\substack{h \rightarrow \lim ^{\prime}, \mu_{\in} \in \operatorname{dom}(\mathcal{W}) \\ W_{p}\left((\mathrm{Id}+h \xi) \notin \mu, \mu_{h}\right)=o(h)}} \frac{\mathcal{W}\left(\mu_{h}\right)-\mathcal{W}(\mu)}{h} \tag{5.2}
\end{equation*}
$$

for each $\mu \in \operatorname{dom}(\mathcal{W})$ and every $\xi \in T_{\operatorname{dom}(\mathcal{W})}(\mu) \subset \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)$.
Proposition 5.5 (Characterisation of contingent directions to $\mathcal{Q}_{\mathcal{W}}$). For every $\boldsymbol{\mu} \in \mathcal{Q}_{\mathcal{W}}$ and each $(\xi, \rho) \in \mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right) \times \mathbb{R}$, it holds that
$(\xi, \rho) \in T_{\mathcal{Q}_{\mathcal{W}}}(\boldsymbol{\mu}) \quad$ if and only if $\quad \begin{cases}\xi \in T_{\operatorname{dom}(\mathcal{W})}(\mu) \text { and } \mathrm{D}_{\uparrow} \mathcal{W}(\mu)(\xi) \leq \rho & \text { when } \alpha=\mathcal{W}(\mu), \\ \xi \in T_{\operatorname{dom}(\mathcal{W})}(\mu) & \text { when } \alpha>\mathcal{W}(\mu) .\end{cases}$

Proof. The ensuing arguments are largely inspired by those of [9, Proposition 6.1.4]. We only treat the case $\alpha=\mathcal{W}(\mu)$, the other being similar. Assume first that $(\xi, \rho) \in T_{\mathcal{Q}_{\mathcal{W}}}(\boldsymbol{\mu})$ so that one may find a sequence $h_{i} \rightarrow 0^{+}$and some $\boldsymbol{\mu}_{h_{i}}:=\mu_{h_{i}} \times \delta_{\alpha_{h_{i}}} \in \mathcal{Q}_{\mathcal{W}}$ which satisfy

$$
\begin{equation*}
W_{p}\left(\left(\operatorname{Id}+h_{i}(\xi, \rho)\right)_{\sharp} \boldsymbol{\mu}, \boldsymbol{\mu}_{h_{i}}\right) \leq o\left(h_{i}\right) \tag{5.3}
\end{equation*}
$$

for $h_{i}>0$ sufficiently small. Noting that up to a permutation of coordinates each optimal plan $\gamma_{h_{i}} \in \Gamma_{o}\left(\left(\operatorname{Id}+h_{i}(\xi, \rho)\right)_{\sharp} \boldsymbol{\mu}, \boldsymbol{\mu}_{h_{i}}\right)$ is of the form

$$
\gamma_{h_{i}}=\gamma_{h_{i}} \times \delta_{\left(\mathcal{W}(\mu)+h_{i} \rho, \alpha_{h_{i}}\right)}
$$

for some $\gamma_{h_{i}} \in \Gamma_{o}\left(\left(\operatorname{Id}+h_{i} \xi\right)_{\sharp} \mu, \mu_{h_{i}}\right)$ as a consequence of the disintegration theorem (see e.g. [5, Theorem 5.2.1]) along with the fact that the only transport plan between an arbitrary measure and a Dirac mass is the product plan, it necessarily holds that

$$
\begin{aligned}
W_{p}\left(\left(\operatorname{Id}+h_{i} \xi\right)_{\sharp} \mu, \mu_{h_{i}}\right) & =\left(\int_{\mathbb{R}^{2 d}}|x-y|^{p} \mathrm{~d} \gamma_{h_{i}}(x, y)\right)^{1 / p} \\
& \leq\left(\int_{\mathbb{R}^{2(d+1)}}|(x, \alpha)-(y, \beta)|^{p} \mathrm{~d} \gamma_{h_{i}}(x, \alpha, y, \beta)\right)^{1 / p}=W_{p}\left(\left(\operatorname{Id}+h_{i}(\xi, \rho)\right)_{\sharp} \boldsymbol{\mu}, \boldsymbol{\mu}_{h_{i}}\right) .
\end{aligned}
$$

Owing to (5.3), this implies in particular that $\xi \in T_{\operatorname{dom}(\mathcal{W})}(\mu)$. Similarly, one can show that

$$
\left|\alpha_{h_{i}}-\mathcal{W}(\mu)-h_{i} \rho\right| \leq W_{p}\left(\left(\operatorname{Id}+h_{i}(\xi, \rho)\right)_{\sharp} \boldsymbol{\mu}, \boldsymbol{\mu}_{h_{i}}\right)=o\left(h_{i}\right)
$$

which together with (5.2) and (5.3) finally yields that

$$
\mathrm{D}_{\uparrow} \mathcal{W}(\mu)(\rho) \leq \liminf _{h_{i} \rightarrow 0^{+}} \frac{\mathcal{W}\left(\mu_{h i}\right)-\mathcal{W}(\mu)}{h_{i}} \leq \rho
$$

Conversely, let $(\xi, \rho) \in T_{\operatorname{dom}(\mathcal{W})}(\mu) \times \mathbb{R}$ be such that $\mathrm{D}_{\uparrow} \mathcal{W}(\mu)(\xi) \leq \rho$, and observe that then, there exist sequences $h_{i} \rightarrow 0^{+}$and $\left(\mu_{h_{i}}\right) \subset \operatorname{dom}(\mathcal{W})$ satisfying $W_{p}\left(\mu_{h_{i}},\left(\operatorname{Id}+h_{i} \xi\right)_{\sharp} \mu\right)=o\left(h_{i}\right)$ and for which

$$
\mathcal{W}\left(\mu_{h_{i}}\right) \leq \mathcal{W}(\mu)+h_{i} \rho+o\left(h_{i}\right)
$$

when $h_{i}>0$ is small enough. Hence, there exists $\rho_{i} \rightarrow \rho$ such that $\boldsymbol{\mu}_{h_{i}}:=\mu_{h_{i}} \times \delta_{\mathcal{W}(\mu)+h_{i} \rho_{i}} \in \mathcal{Q}_{\mathcal{W}}$ and

$$
W_{p}\left(\left(\operatorname{Id}+h_{i}(\xi, \rho)\right)_{\sharp}\left(\mu \times \delta_{\mathcal{W}(\mu)}\right), \boldsymbol{\mu}_{h_{i}}\right) \leq W_{p}\left(\left(\operatorname{Id}+h_{i} \xi\right)_{\sharp} \mu, \mu_{h_{i}}\right)+h_{i}\left(\rho-\rho_{i}\right)=o\left(h_{i}\right)
$$

as $h_{i} \rightarrow 0^{+}$, which equivalently means that $(\xi, \rho) \in T_{\mathcal{Q}_{\mathcal{W}}}(\boldsymbol{\mu})$.

Appendices

A Proof of Proposition 2.3

In this Appendix, we detail the proof of Proposition 2.3. For the sake of self-containedness, we recall the following technical result taken from [5, Lemma 10.2.1].

Lemma A. 1 (Quantitative superdifferentiability estimates on powers of the euclidean norm). Given $x, y \in \mathbb{R}^{d}$, one has for $p \in(1,2]$ that

$$
\frac{1}{p}|y|^{p}-\frac{1}{p}|x|^{p}-\left\langle y-x, j_{p}(x)\right\rangle \leq \frac{2^{2-p}}{p-1}|x-y|^{p}
$$

whereas for $p \in[2,+\infty)$, it holds that

$$
\frac{1}{p}|y|^{p}-\frac{1}{p}|x|^{p}-\left\langle y-x, j_{p}(x)\right\rangle \leq \frac{p-1}{2}|x-y|^{2} \max \{|x|,|y|\}^{p-2}
$$

where $j_{p}(\cdot)$ is the duality map defined by

$$
j_{p}(x):=\left\{\begin{array}{lr}
0 & \text { if } x=0 \\
|x|^{p-2} x & \text { otherwise }
\end{array}\right.
$$

Proof of Proposition 2.3. Given an element $\gamma \in \Gamma_{o}(\mu, \nu)$ and some $h \in \mathbb{R}$, define the transport plan

$$
\gamma_{h}:=\left((\operatorname{Id}+h \zeta) \circ \pi^{1},(\operatorname{Id}+h \xi) \circ \pi^{2}\right)_{\sharp} \gamma \in \Gamma\left((\operatorname{Id}+h \zeta)_{\sharp} \mu,(\operatorname{Id}+h \xi)_{\sharp} \nu\right),
$$

and note that by construction, one has that

$$
\begin{align*}
\frac{1}{p} W_{p}^{p}\left((\operatorname{Id}+h \zeta)_{\sharp} \mu,(\operatorname{Id}+h \xi)_{\sharp \nu}\right)-\frac{1}{p} W_{p}^{p}(\mu, \nu) & \leq \int_{\mathbb{R}^{2 d}} \frac{1}{p}\left|x_{h}-y_{h}\right|^{p} \mathrm{~d} \gamma_{h}\left(x_{h}, y_{h}\right)-\int_{\mathbb{R}^{2 d}} \frac{1}{p}|x-y|^{p} \mathrm{~d} \gamma(x, y) \\
& \leq \int_{\mathbb{R}^{2 d}}\left(\frac{1}{p}|x-y+h(\zeta(x)-\xi(y))|^{p}-\frac{1}{p}|x-y|^{p}\right) \mathrm{d} \gamma(x, y) . \tag{A.1}
\end{align*}
$$

By leveraging the identities of Lemma A. 1 above, it can be checked that for $p \in(1,2]$, one has that

$$
\begin{align*}
\int_{\mathbb{R}^{2 d}}\left(\frac{1}{p}|x-y+h(\xi(x)-\xi(y))|^{p}-\frac{1}{p}|x-y|^{p}\right. & \left.-h\left\langle\zeta(x)-\xi(y), j_{p}(x-y)\right\rangle\right) \mathrm{d} \gamma(x, y) \\
& \leq \frac{2^{2-p}}{p-1} \int_{\mathbb{R}^{2 d}}|h(\zeta(x)-\xi(y))|^{p} \mathrm{~d} \gamma(x, y) \tag{A.2}\\
& \leq \frac{2}{p-1}|h|^{p}\left(\|\zeta\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}^{p}+\|\xi\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu\right)}^{p}\right),
\end{align*}
$$

whereas for $p \in[2,+\infty)$, it holds

$$
\begin{align*}
& \int_{\mathbb{R}^{2 d}}\left(\frac{1}{p}|x-y+h(\zeta(x)-\xi(y))|^{p}-\frac{1}{p}|x-y|^{p}-h\left\langle\zeta(x)-\xi(y), j_{p}(x-y)\right\rangle\right) \mathrm{d} \gamma(x, y) \\
& \leq \frac{p-1}{2} \int_{\mathbb{R}^{2 d}}|h(\zeta(x)-\xi(y))|^{2} \max \{|x-y|,|x-y+h(\zeta(x)-\xi(y))|\}^{p-2} \mathrm{~d} \gamma(x, y) \\
& \leq \frac{(p-1)}{2}|h|^{2} \int_{\mathbb{R}^{2 d}}|\zeta(x)-\xi(y)|^{2}(|x-y|+|x-y+h(\zeta(x)-\xi(y))|)^{p-2} \mathrm{~d} \gamma(x, y) \\
& \leq(p-1)|h|^{2}\left(W_{p}(\mu, \nu)+|h|\left(\|\zeta\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}+\|\xi\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu\right)}\right)\right)^{p-2}\left(\|\zeta\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu\right)}^{2}+\|\xi\|_{\mathcal{L}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \nu\right)}^{2}\right), \tag{A.3}
\end{align*}
$$

where we used elementary Hölder and convexity inequalities to derive both estimates. Thence, upon combining (A.2) and (A.3) with (A.1) depending on the value of $p \in(1,+\infty)$, one finally obtains that

$$
\frac{1}{p} W_{p}^{p}\left((\operatorname{Id}+h \xi)_{\sharp} \mu,(\operatorname{Id}+h \zeta)_{\sharp} \nu\right)-\frac{1}{p} W_{p}^{p}(\mu, \nu) \leq h \int_{\mathbb{R}^{2 d}}\left\langle\zeta(x)-\xi(y), j_{p}(x-y)\right\rangle \mathrm{d} \gamma(x, y)+r_{p}(h, \xi, \zeta)
$$

with $r_{p}(h, \zeta, \xi)$ being defined as in (2.3) or (2.4) depending on the value of $p \in(1,+\infty)$.

B Proof of Proposition 2.8

In this appendix section, we detail the proof of Proposition 2.8.
Proof of Proposition 2.8. In what follows, we assume without loss of generality that $I:=[0, T]$ for some $T>0$, and start by showing that when $\mathcal{Q}:[0, T] \rightrightarrows X$ is absolutley continuous, the map

$$
t \in[0, T] \mapsto g(t):=\operatorname{dist}_{X}(\mathcal{K}(t) ; \mathcal{Q}(t))
$$

is absolutely continuous as well. To do so, we first need to establish some preliminary facts. Observe that since $\mathcal{K}(0)$ is compact, there exist $x_{0} \in X$ and some $r_{0}>0$ such that

$$
\begin{equation*}
\mathcal{K}(0) \subset \mathbb{B}_{X}\left(x_{0}, r_{0}\right) . \tag{B.1}
\end{equation*}
$$

for all times $t \in[0, T]$. In what follows, we show that the map $t \in[0, T] \mapsto \operatorname{dist}_{X}\left(x_{0} ; \mathcal{Q}(t)\right)$ is continuous. Indeed, fixing $\tau \in[0, T]$, setting $R_{\tau}:=\operatorname{dist}_{X}\left(x_{0} ; \mathcal{Q}(\tau)\right)$ and recalling that $\mathcal{Q}:[0, T] \rightrightarrows X$ is absolutely continuous, there exists for each $\varepsilon>0$ some $\delta>0$ such that

$$
\mathcal{Q}(\tau) \cap \mathbb{B}_{X}\left(x_{0}, R_{\tau}+\varepsilon\right) \subset \mathbb{B}_{X}(\mathcal{Q}(t), \varepsilon) \quad \text { and } \quad \mathcal{Q}(t) \cap \mathbb{B}_{X}\left(x_{0}, R_{\tau}+\varepsilon\right) \subset \mathbb{B}_{X}(\mathcal{Q}(\tau), \varepsilon)
$$

whenever $|t-\tau| \leq \delta$. Noticing in turn that $\mathcal{Q}(\tau) \cap \mathbb{B}_{X}\left(x_{0}, R_{\tau}+\varepsilon\right) \neq \emptyset$ and $\mathcal{Q}(t) \cap \mathbb{B}_{X}\left(x_{0}, R_{\tau}+\varepsilon\right) \neq \emptyset$ by construction, the first of these inclusions implies that

$$
\begin{aligned}
\operatorname{dist}_{X}\left(x_{0} ; \mathcal{Q}(t)\right) & \leq \operatorname{dist}_{X}\left(x_{0} ; \mathcal{Q}(\tau)\right)+\operatorname{dist}_{X}\left(\mathcal{Q}(\tau) \cap \mathbb{B}_{X}\left(x_{0}, R_{\tau}+\varepsilon\right) ; \mathcal{Q}(t)\right) \\
& \leq \operatorname{dist}_{X}\left(x_{0} ; \mathcal{Q}(\tau)\right)+\varepsilon,
\end{aligned}
$$

while the second one analogously yields

$$
\operatorname{dist}_{X}\left(x_{0} ; \mathcal{Q}(\tau)\right) \leq \operatorname{dist}_{X}\left(x_{0} ; \mathcal{Q}(t)\right)+\varepsilon,
$$

from whence we can deduce that $t \mapsto \operatorname{dist}_{X}\left(x_{0} ; \mathcal{Q}(t)\right)$ is continuous at $\tau \in[0, T]$. Recalling that $\mathcal{K}:[0, T] \rightrightarrows X$ has compact images and satisfies

$$
\begin{equation*}
\mathrm{d}_{\mathcal{H}}(\mathcal{K}(\tau) ; \mathcal{K}(t)) \leq \int_{\tau}^{t} m_{\mathcal{K}}(s) \mathrm{d} s \tag{B.2}
\end{equation*}
$$

for all times $0 \leq \tau \leq t \leq T$ and some $m_{\mathcal{K}}(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$, it follows from (B.1) that $\mathcal{K}(t) \subset$ $\mathbb{B}_{X}\left(x_{0}, r_{\mathcal{K}}\right)$ for all times $t \in[0, T]$, where $r_{\mathcal{K}}:=r_{0}+\left\|m_{\mathcal{K}}(\cdot)\right\|_{1}$. Notice then that

$$
\operatorname{dist}_{X}(x ; \mathcal{Q}(t)) \leq r_{\mathcal{K}}+\max _{t \in[0, T]} \operatorname{dist}_{X}\left(x_{0} ; \mathcal{Q}(t)\right)
$$

for all $t \in[0, T]$ and every $x \in \mathbb{B}_{X}\left(x_{0}, r_{\mathcal{K}}\right)$, so that the quantity

$$
\begin{equation*}
R_{T}:=\left(r_{\mathcal{K}}+1\right)+\sup \left\{\operatorname{dist}_{X}(x ; \mathcal{Q}(t)) \text { s.t. }(t, x) \in[0, T] \times \mathbb{B}_{X}\left(x_{0}, r_{\mathcal{K}}\right)\right\} \tag{B.3}
\end{equation*}
$$

is well-defined and moreover

$$
\operatorname{dist}_{X}\left(\mathcal{K}(t) ; \partial \mathbb{B}_{X}\left(x_{0}, R_{T}\right)\right) \geq \sup _{\tau, s \in[0, T]} \operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(s))+1
$$

for all times $t \in[0, T]$.
We now prove that $g:[0, T] \rightarrow \mathbb{R}_{+}$is absolutely continuous. For all times $\tau, t \in[0, T]$ satisfying $0 \leq \tau \leq t \leq T$, it holds that

$$
\begin{align*}
|g(t)-g(\tau)| \leq & \left|\operatorname{dist}_{X}(\mathcal{K}(t) ; \mathcal{Q}(t))-\operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(t))\right| \\
& +\left|\operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(t))-\operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(\tau))\right| . \tag{B.4}
\end{align*}
$$

In order to estimate for first term in (B.4), note that for each $\varepsilon>0$, there exist $y_{t}^{\varepsilon} \in \mathcal{Q}(t)$ and $x_{\tau}^{\varepsilon} \in \mathcal{K}(\tau)$ such that

$$
\mathrm{d}_{X}\left(x_{\tau}^{\varepsilon}, y_{t}^{\varepsilon}\right) \leq \operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(t))+\varepsilon .
$$

Furthermore, it stems from (B.2) that there exists an element $x_{t}^{\varepsilon} \in \mathcal{K}(t)$ for which

$$
\mathrm{d}_{X}\left(x_{\tau}^{\varepsilon}, x_{t}^{\varepsilon}\right) \leq \int_{\tau}^{t} m_{\mathcal{K}}(s) \mathrm{d} s .
$$

Merging both estimates, it then follows that

$$
\begin{aligned}
\operatorname{dist}_{X}(\mathcal{K}(t) ; \mathcal{Q}(t))-\operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(t)) & \leq \mathrm{d}_{X}\left(x_{t}^{\varepsilon}, y_{t}^{\varepsilon}\right)-\mathrm{d}_{X}\left(x_{\tau}^{\varepsilon}, y_{t}^{\varepsilon}\right) \\
& \leq \int_{\tau}^{t} m_{\mathcal{K}}(s) \mathrm{d} s
\end{aligned}
$$

and repeating the same argument while switching the roles of τ and t further yields

$$
\begin{equation*}
\left|\operatorname{dist}_{X}(\mathcal{K}(t) ; \mathcal{Q}(t))-\operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(t))\right| \leq \int_{\tau}^{t} m_{\mathcal{K}}(s) \mathrm{d} s \tag{B.5}
\end{equation*}
$$

Concerning the second term in (B.4), it stems from our choice of $R_{T}>0$ in (B.3) that

$$
\operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(\tau))=\operatorname{dist}_{X}\left(\mathcal{K}(\tau) ; \mathcal{Q}(\tau) \cap \mathbb{B}_{X}\left(x_{0}, R_{T}\right)\right)
$$

and

$$
\operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(t))=\operatorname{dist}_{X}\left(\mathcal{K}(\tau) ; \mathcal{Q}(t) \cap \mathbb{B}_{X}\left(x_{0}, R_{T}\right)\right)
$$

Moreover, since $\mathcal{Q}:[0, T] \rightrightarrows X$ is absolutely continuous in the sense of Definition 2.7 , there exists a $\operatorname{map} m_{x_{0}, R_{T}}(\cdot) \in L^{1}\left([0, T], \mathbb{R}_{+}\right)$for which
$\mathcal{Q}(\tau) \cap \mathbb{B}\left(x_{0}, R_{T}\right) \subset \mathbb{B}_{X}\left(\mathcal{Q}(t), \int_{\tau}^{t} m_{x_{0}, R_{T}}(s) \mathrm{d} s\right) \quad$ and $\quad \mathcal{Q}(t) \cap \mathbb{B}\left(x_{0}, R_{T}\right) \subset \mathbb{B}_{X}\left(\mathcal{Q}(\tau), \int_{\tau}^{t} m_{x_{0}, R_{T}}(s) \mathrm{d} s\right)$.
Combining these few latter facts together, we further obtain

$$
\begin{equation*}
\left|\operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(t))-\operatorname{dist}_{X}(\mathcal{K}(\tau) ; \mathcal{Q}(\tau))\right| \leq \int_{\tau}^{t} m_{x_{0}, R_{T}}(s) \mathrm{d} s \tag{B.6}
\end{equation*}
$$

which along with (B.4) and (B.5) finally yields that

$$
|g(t)-g(\tau)| \leq \int_{\tau}^{t}\left(m_{\mathcal{K}}(s)+m_{x_{0}, R_{T}}(s)\right) \mathrm{d} s
$$

for all times $\tau, t \in[0, T]$ satisfying $0 \leq \tau \leq t \leq T$, which equivalently means that $g(\cdot) \in \mathrm{AC}\left([0, T], \mathbb{R}_{+}\right)$.
We finally conclude by showing that whenever $\mathcal{Q}:[0, T] \rightrightarrows X$ is left absolutely continuous, then the set-valued map

$$
\mathscr{E}: t \in[0, T] \rightrightarrows\left\{\alpha \in \mathbb{R}_{+} \text {s.t. } \alpha=g(t)+r \text { for some } r \geq 0\right\}
$$

is left absolutely continuous as well. To do so, let $x_{0} \in \mathcal{K}(0)$ and $R_{T}>0$ be as above, fix an element $\alpha_{\tau} \in \mathscr{E}(\tau)$, and observe that

$$
g(\tau)=\operatorname{dist}_{X}\left(\mathcal{K}(\tau) ; \mathcal{Q}(\tau) \cap \mathbb{B}_{X}\left(x_{0}, R_{T}\right)\right) \leq \alpha_{\tau}
$$

by construction. It then follows from elementary applications of the triangle inequality that

$$
\begin{aligned}
g(t) & =\operatorname{dist}_{X}(\mathcal{K}(t) ; \mathcal{Q}(t)) \\
& \leq \operatorname{dist}_{X}(\mathcal{K}(t) ; \mathcal{K}(\tau))+\operatorname{dist}_{X}\left(\mathcal{K}(\tau) ; \mathcal{Q}(\tau) \cap \mathbb{B}_{X}\left(x_{0}, R_{T}\right)\right)+\operatorname{dist}_{X}\left(\mathcal{Q}(\tau) \cap \mathbb{B}_{X}\left(x_{0}, R_{T}\right) ; \mathcal{Q}(t)\right) \\
& \leq \alpha_{\tau}+\int_{\tau}^{t}\left(m_{\mathcal{K}}(s)+m_{x_{0}, R_{T}}(s)\right) \mathrm{d} s
\end{aligned}
$$

for all times $t \in[0, T]$ such that $\tau \leq t$. In particular, we have shown that

$$
\Delta_{\alpha, R}(\mathscr{E}(\tau) ; \mathscr{E}(t)) \leq \int_{\tau}^{t}\left(m_{\mathcal{K}}(s)+m_{x_{0}, R_{T}}(s)\right) \mathrm{d} s
$$

for all times $0 \leq \tau \leq t \leq T$, every $\alpha \in \mathbb{R}_{+}$and each $R>0$, which yields the desired claim

References

[1] G. Albi, Y.P. Choi, M. Fornasier, and D. Kalise. Mean-Field Control Hierarchy. Applied Mathematics and Optimization, 76(1):93-135, 2017.
[2] G. Albi, L. Pareschi, and M. Zanella. Boltzmann type Control of Opinion Consensus through Leaders. Proceedings of the Royal Society A., 372, 2014.
[3] L. Ambrosio and G. Crippa. Continuity Equations and ODE Flows with Non-Smooth Velocities. Proceedings of the Royal Society of Edinburgh, 144(6):1191-1244, 2014.
[4] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variations and Free Discontinuity Problems. Oxford Mathematical Monographs, 2000.
[5] L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 2008.
[6] S.S. Arjmand and G. Mazanti. Nonsmooth Mean-Field Games with State Constraints. arxiv preprint arXiv: 2110.15713, 2021.
[7] J.-P. Aubin. A Survey of Viability Theory. SIAM Journal on Control and Optimization, 28(4):749-788, 1990.
[8] J.-P. Aubin and A. Cellina. Differential Inclusions. Springer-Verlag, 1984.
[9] J.-P. Aubin and H. Frankowska. Set-Valued Analysis. Modern Birkhäuser Classics. Birkhäuser Basel, 1990.
[10] Y. Averboukh. Viability Theorem for Deterministic Mean-Field Type Control Systems. Set-Valued and Variational Analysis, 26(4):993-1008, 2018.
[11] Y. Averboukh, A. Marigonda, and M. Quincampoix. Extremal Shift Rule and Viability Property for Mean FieldType Control Systems. Journal of Optimization Theory and Applications, 189(1):244-270, 2021.
[12] Z. Badreddine and H. Frankowska. Solutions to Hamilton-Jacobi Equation on a Wasserstein Space. Calculus of Variations and Partial Differential Equations, 61(1):1-41, 2022.
[13] Z. Badreddine and H. Frankowska. Viability and Invariance on Metric Spaces. Nonlinear Analysis, 225:113133, 2022.
[14] J.W. Bebernes and J.D. Schuur. The Wazewski Topological Method for Contingent Equations. Annali di Matematica Pura e Applicata, 87(1):271-279, 1970.
[15] V.I. Bogachev. Measure Theory, volume 1. Berlin: springer, 2007.
[16] R. Bonalli and B. Bonnet. First-Order Pontryagin Maximum Principle for Risk-Averse Stochastic Optimal Control Problems. arXiv preprint arXiv:2204.03036, 2022.
[17] M. Bongini, M. Fornasier, F. Rossi, and F. Solombrino. Mean Field Pontryagin Maximum Principle. Journal of Optimization Theory and Applications, 175:1-38, 2017.
[18] G. Bonnano. Two Theorems on the Scorza-Dragoni Property for Multifunctions. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, 83(1):51-56, 1989.
[19] B. Bonnet. A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems. ESAIM COCV, 25(52), 2019.
[20] B. Bonnet, C. Cipriani, M. Fornasier, and H. Huang. A Measure Theoretical Approach to the Mean-field Maximum Principle for Training NeurODEs. Submitted, ArXiv preprint arXiv:2107.08707, 2021.
[21] B. Bonnet and H. Frankowska. Differential Inclusions in Wasserstein Spaces: The Cauchy-Lipschitz Framework. Journal of Differential Equations, 271:594-637, 2021.
[22] B. Bonnet and H. Frankowska. Necessary Optimality Conditions for Optimal Control Problems in Wasserstein Spaces. Applied Mathematics and Optimization, 84:1281-1330, 2021.
[23] B. Bonnet and H. Frankowska. Carathéodory Theory and A Priori Estimates for Continuity Inclusions in the Space of Probability Measures. Submitted, 2022.
[24] B. Bonnet and H. Frankowska. Semiconcavity and Sensitivity Analysis in Mean-Field Optimal Control and Applications. Journal de Mathématiques Pures et Appliquées, 157:282-345, 2022.
[25] B. Bonnet and H. Frankowska. Viability and Exponentially Stable Trajectories for Differential Inclusions in Wasserstein Spaces. To appear in the Proceedings of the 2022 62nd Conference on Decision and Control (CDC), 2022.
[26] B. Bonnet and F. Rossi. The Pontryagin Maximum Principle in the Wasserstein Space. Calculus of Variations and Partial Differential Equations, 58:11, 2019.
[27] B. Bonnet and F. Rossi. Intrinsic Lipschitz Regularity of Mean-Field Optimal Controls. SIAM Journal on Control and Optimization, 59(3):2011-2046, 2021.
[28] R. Buckdahn, M. Quincampoix, and A. Rascanu. Viability Property for a Backward Stochastic Differential Equation and Applications to Partial Differential Equations. Probability Theory and Related Fields, 116:485-504, 2000.
[29] M. Burger, R. Pinnau, O. Totzeck, and O. Tse. Mean-Field Optimal Control and Optimality Conditions in the Space of Probability Measures. SIAM Journal on Control and Optimization, 59(2):977-1006, 2021.
[30] M. Burger, R. Pinnau, O. Totzeck, O. Tse, and A. Roth. Instantaneous Control of Interacting Particle Systems in the Mean-Field Limit. Journal of Computational Physics, 405:109-181, 2020.
[31] P. Cannarsa, R. Capuani, and P. Cardaliaguet. Mean-Field Games with State-Constraints: From Mild to Pointwise Solutions to the PDE System. Calculus of Variations and Partial Differential Equations, 60:108, 2021.
[32] M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse Stabilization and Optimal Control of the Cucker-Smale Model. Mathematical Control and Related Fields, 3(4):447-466, 2013.
[33] M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse Stabilization and Control of Alignment Models. Mathematical Models and Methods in Applied Sciences, 25 (3):521-564, 2015.
[34] M. Caponigro, B. Piccoli, F. Rossi, and E. Trélat. Mean-Field Sparse Jurdjevic-Quinn Control. Mathematical Models and Methods in Applied Sciences, 27(7):1223-1253, 2017.
[35] P. Cardaliaguet. Notes on Mean-Field Games. 2012. https://www.ceremade.dauphine.fr/ cardaliaguet/MFG20130420.pdf.
[36] P. Cardaliaguet, A. Mészarós, and F. Santambrogio. First Order Mean Field Games with Density Constraints: Pressure Equals Price. SIAM Journal on Control and Optimization, 54(5):2672-2709, 2016.
[37] J.A. Carrillo, M.R. D'Orsogna, and V. Panferov. Double Milling in Self-Propelled Swarms from Kinetic Theory. Kinetic \& Related Models, 2(2):363, 2009.
[38] J.A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani. Asymptotic Flocking for the Kinetic Cucker-Smale Model. SIAM Journal on Mathematical Analysis, 42(1):218-236, 2010.
[39] J.A. Carrillo, D. Kalise, F. Rossi, and E. Trélat. Controlling Swarms toward Flocks and Mills. SIAM Journal on Control and Optimization, 60(3):1863-1891, 2022.
[40] G. Cavagnari, S. Lisini, C. Orrieri, and G. Savaré. Lagrangian, Eulerian and Kantorovich Formulations of MultiAgent Optimal Control Problems: Equivalence and Gamma-Convergence. Journal of Differential Equations, 322:268-364, 2022.
[41] G. Cavagnari, A. Marigonda, K.T. Nguyen, and F.S. Priuli. Generalized Control Systems in the Space of Probability Measures. Set-Valued and Var. Analysis, 26(3):663-691, 2018.
[42] G. Cavagnari, A. Marigonda, and B. Piccoli. Superposition Principle for Differential Inclusions. In Large-Scale Scientific Computing, pages 201-209, 2018.
[43] G. Cavagnari, A. Marigonda, and M. Quincampoix. Compatibility of State Constraints and Dynamics for Multiagent Control Systems. Journal of Evolution Equations, 21(4):4491-4537, 2021.
[44] G. Cavagnari, G. Savaré, and G.E. Sodini. Dissipative Probability Vector Fields and Generation of Evolution Semigroups in Wasserstein Spaces. Probability Theory and Related Fields, pages 1-96, 2022.
[45] F Clarke. Functional Analysis, Calculus of Variations and Optimal Control, volume 264. Springer, 2013.
[46] E. Cristiani and D. Peri. Handling Obstacles in Pedestrian Simulations: Models and Optimization. Applied Mathematical Modelling, 45:285-302, 2017.
[47] J. Diestel and J.J.Jr Uhl. Vector Measures. Number 15 in Mathematical Surveys. American Mathematical Society, 1977.
[48] J. Dolbeault, B. Nazareth, and G. Savaré. A New Class of Transport Distances Between Measures. Calculus of Variations and Partial Differential Equations, 34(2):193-231, 2009.
[49] W. E. A Proposal on Machine Learning via Dynamical Systems. Communications in Mathematics and Statistics, 1(5):1-11, 2017.
[50] L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, 1992.
[51] A.L. Filippov. On Certain Questions in the Theory of Optimal Control. Journal of the Society for Industrial and Applied Mathematics, Series A: Control, 1(1):76-84, 1962.
[52] M. Fornasier, S. Lisini, C. Orrieri, and G. Savaré. Mean-Field Optimal Control as Gamma-Limit of Finite Agent Controls. European Journal of Applied Mathematics, 30(6):1153-1186, 2019.
[53] M. Fornasier, B. Piccoli, and F. Rossi. Mean-Field Sparse Optimal Control. Philosophical Transactions of the Royal Society A., 372(20130400), 2014.
[54] M. Fornasier and F. Solombrino. Mean Field Optimal Control. ESAIM COCV, 20(4):1123-1152, 2014.
[55] H. Frankowska. A Priori Estimates for Operational Differential Inclusions. Journal of Differential Equations, 84:100-128, 1990.
[56] H. Frankowska and T. Lorenz. Filippov's Theorem for Mutational Inclusions in a Metic Space. To appear in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2022.
[57] H. Frankowska, E.M. Marchini, and M. Mazzola. Necessary Optimality Conditions for Infinite Dimensional State Constrained Control Problems. Journal of Differential Equations, 264(12):7294-7327, 2018.
[58] H. Frankowska and N.P. Osmolovskii. Strong Local Minimizers in Optimal Control Problems with State Constraints: Second Order Necessary Conditions. SIAM Journal on Control and Optimization, 58(3):2353-2376, 2018.
[59] H. Frankowska and S. Plaskacz. A Measurable Upper Semicontinuous Viability Theorem for Tubes. Nonlinear Analysis. Theory, Methods \& Applications, 26(3):565-582, 1996.
[60] H. Frankowska, S. Plaskacz, and T. Rzezuchowski. Measurable Viability Theorems and the Hamilton-JacobiBellman Equation. Journal of Differential Equations, 116(2):265-305, 1995.
[61] S.-Y. Ha and J.G. Liu. A Simple Proof of the Cucker-Smale Flocking Dynamics and Mean-Field Limit. Comm. Math. Sci., 7(2):297-325, 2009.
[62] G. Haddad. Monotone Viable Trajectories for Functional Differential Inclusions. Journal of Differential Equations, 42(1):1-24, 1981.
[63] John Horváth. Topological Vector Spaces and Distributions. Courier Corporation, 2012.
[64] M.Y. Huang, R. Malhamé, and P.E. Caines. Large Population Stochastic Dynamic Games : Closed-Loop McKeanVlasov Systems and the Nash Certainty Equivalence Principle. Communications in Information and Systems, 6(3):221-252, 2006.
[65] C. Jimenez, G. Carlier, and F. Santambrogio. Optimal Transportation with Traffic Congestion and Wardrop Equilibria. SIAM Journal on Control and Optimization, 47(3):1330-1350, 2008.
[66] C. Jimenez, A. Marigonda, and M. Quincampoix. Optimal Control of Multiagent Systems in the Wasserstein Space. Calculus of Variations and Partial Differential Equations, 59:58, 2020.
[67] S. Karimghasemi, S. Müller, and M. Westdickenberg. Flow Solutions of Transport Equations. Communications in Partial Differential Equations, 46(1):98-134, 2021.
[68] J.L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics. Springer, 1975.
[69] J-M. Lasry and P.-L. Lions. Mean Field Games. Japanese Journal of Mathematics, 2(1):229-260, 2007.
[70] M. Nagumo. Über die Lage der Integralkurven Gewöhnlicher Differentialgleichungen. In Proceedings of the PhysicoMathematical Society of Japan, 3rd Series, volume 24, pages 551-559, 1942.
[71] F. Otto. The Geometry of Dissipative Equations : The Porous Medium Equation. Communications in Partial Differential Equations, 26:101-174, 2001.
[72] N.S. Papageorgiou. Random Fixed Point Theorems for Measurable Multifunctions in Banach Spaces. Proceedings of the American Mathematical Society, 97(3):507-514, 1986.
[73] B. Piccoli and F. Rossi. Transport Equation with Nonlocal Velocity in Wasserstein Spaces : Convergence of Numerical Schemes. Acta Applicandae Mathematicae, 124(1):73-105, 2013.
[74] B. Piccoli, F. Rossi, and E. Trélat. Control to Flocking of the Kinetic Cucker-Smale model. SIAM Journal on Mathematical Analysis, 47(6):4685-4719, 2015.
[75] N. Pogodaev. Optimal Control of Continuity Equations. Nonlinear Differential Equations and Applications, 23:21, 2016.
[76] N. Pogodaev and M. Saritsyn. Impulsive Control of Nonlocal Transport Equation. Journal of Differential Equations, 269(4):3585-3623, 2020.
[77] W. Rudin. Real and Complex Analysis. Mathematical Series. McGraw-Hill International Editions, 1987.
[78] F. Santambrogio. Optimal Transport for Applied Mathematicians, volume 87. Birkhauser Basel, 2015.
[79] C. Villani. Optimal Transport : Old and New. Springer-Verlag, Berlin, 2009.
[80] R.B. Vinter. Optimal Control. Systems and Control: Foundations and Applications. Birkhauser Basel, 2000.

[^0]: ${ }^{*}$ CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France. E-mail: benoit.bonnet@laas.fr (Corresponding author)
 ${ }^{\dagger}$ CNRS, IMJ-PRG, UMR 7586, Sorbonne Université, 4 place Jussieu, 75252 Paris, France. E-mail: helene.frankowska@imj-prg.fr

