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1D APPROXIMATION OF MEASURES IN WASSERSTEIN

SPACES

ANTONIN CHAMBOLLE, VINCENT DUVAL, AND JOÃO MIGUEL MACHADO

Abstract. We propose a variational approach to approximate measures with

measures uniformly distributed over a 1 dimensional set. The problem consists
in minimizing a Wasserstein distance as a data term with a regularization

given by the length of the support. As it is challenging to prove existence

of solutions to this problem, we propose a relaxed formulation, which always
admits a solution. In the sequel we show that, under some assumption on the

original measure, a solution to the relaxed problem is solution to the original

one. Finally we prove that any optimal solution is supported by an Ahlfors
regular set.

1. Introduction

In this paper we study the following 1D-shape optimization problem: given a
reference probability measure ρ0 ∈ Pp(Rd) (the set of probability measures ρ with∫
Rd |x|pdρ < +∞, p ≥ 1), we seek to approximate ρ0 with measures supported over

a connected subset of Rd. This approximation is done by means of the following
variational problem

(PΛ) inf
Σ∈A

W p
p (ρ0, νΣ) + ΛH1(Σ),

where the measure νΣ is defined as

(1.1) νΣ :=
1

H1(Σ)
H1 Σ, for Σ ∈ A :=

{
Σ ⊂ Rd :

0 < H1(Σ) < +∞
compact, connected.

}
,

and H1 denotes the 1-dimensional Hausdorff measure in Rd. The term Wp denotes
the usual Wasserstein distance on the space of probability measures (see [29, 31]
and Section 2.1.2).

One can trace the idea of approximating a probability measure by a 1D set back
to the concept of principal curves from the seminal paper [16], which extends linear
regression to regression using general curves, and introduces a variational problem
to define such curves. In this variational sense, a principal curve minimizes the
expectation of the distance to the curve, w.r.t. a probability measure describing
a data set (with some regularization to ensure existence). As proposed in [17], a
length constraint is a simple and intrinsic way to ensure existence. The properties
of such minimizers have been studied in detail in e.g. [20, 11].

A further generalization consists in replacing the curve with a more general one-
dimensional compact and connected set, yielding the average distance minimizer
problem introduced in [7], and its dual counterpart maximum distance minimizer
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Σn
dH−−−−→

n→∞
Σ

H1 Σn
⋆−−−−⇀

n→∞
2H1 Σ + δx0

1/n

Figure 1. Concentration effects on the weak convergence of mea-
sures. In this image, Σn consists on two strips becoming closer
and closer and a spiral converging very rapidly to a single point.
In the Hausdorff convergence this gives only a segment, we lose the
information of the total mass.

problem [25, 19]. Such problems were conceived for applications in urban planning,
where one seeks to minimize the average distance to a transportation network,
giving rise to the need for a larger class of 1D sets allowing for bifurcations.

While the above-mentioned problems only focus on some geometric approxima-
tion of the support of the measure, approximating a measure in the sense of weak
convergence is sometimes more desirable. In [18, 8], the authors have proposed
optimal transport based methods for the projection of probability measures onto
classes of measures supported on simple curves, using the Wasserstein distance as a
data term. Potential applications range from 3D printing to image compression and
reconstruction. In [12], the data fidelity term is chosen to be a discrepancy, see also
[24]. The advantage of using discrepancies is that approximation rates can be given
independently from the dimension, being therefore a good alternative to overcome
the curse of dimensionality. The problem we study is an attempt to generalize this
class of problems to the approximation with one-dimensional connected sets.

One difficulty when studying (PΛ) is that the class of measures νΣ is not closed in
the usual weak topologies considered for the space of probability measures. While
a sequence of sets (Σn)n∈N in A with uniformly bounded length will have subse-
quences converging (in the Hausdorff sense) either to a point or a set in A, the
corresponding measures νΣn

might converge to a measure which is not necessarily
uniform on that set: longer parts of Σn might concentrate in the limit on shorter
parts of Σ, as illustrated in Figure 1.

Hence minimizing sequences might in general converge to measures which are
not of the form νΣ, and we need to determine a proper relaxation of our energy.
The relaxed energy has the form

(PΛ) inf
ν∈Pp(Rd)

W p
p (ρ0, ν) + ΛL(ν)

where L, the length functional, defined in Section 3.1, generalizes the notion of
length of the support of a measure, having the property that L(ν) <∞ if and only
if supp ν ∈ A or ν is a Dirac mass. The following theorem gathers the various
results proved throughout this paper.

Theorem 1.1. Let ρ0 ∈ Pp(Rd), Λ > 0. Then (PΛ) admits a solution ν, and there
exists Λ⋆ ≥ 0 such that if Λ > Λ⋆, ν is a Dirac mass. For Λ < Λ⋆, ν is supported
by a set Σ ∈ A and the following properties hold.

(1) If ρ0 is absolutely continuous w.r.t. H1, or has a L∞ density w.r.t. H1,
then so does ν.
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(2) If ρ0 does not give mass to 1D sets, then ν = νΣ and therefore is a solution
to the original problem (PΛ).

(3) If ρ0 ∈ L
d

d−1 (Rd), then Σ is Ahlfors regular, i.e. there is r0 depending on
d, p, ρ0 and L(ν) and C depending only on d, p such that for any x ∈ Σ and
r ≤ r0 it holds that

r ≤ H1(Σ ∩Br(x)) ≤ Cr.

The paper is organized as follows: in Section 2 we recall a few tools from optimal
transport and geometric measure theory. Next, in Section 3 we go through the
definition of the length functional and its properties as well as the relaxed problem
and existence of solution for it. In Section 4 we discuss the existence of Λ∗. In
Section 5 (Theorem 5.4) we prove point (1) from Theorem 1.1, while the existence is
proved in Section 6 (Theorem 6.4), and the Ahlfors regularity is studied in Section 7.

2. Preliminaries

We start by introducing notions of convergence for sets and measures which
will be useful to study problem (PΛ) as well as the relaxed one (PΛ). Next we
describe some intrumental properties of the objects we shall use throughout the
paper, namely the rectifiable sets and measures.

2.1. Convergence of sets and measures.

2.1.1. Hausdorff and Kuratowski convergence. We recall some useful definitions of
convergence for sets, see for instance [27, Chap. 4], [3, Chap. 6].

A sequence of closed subsets of Rd (An)n∈N converges in the Hausdorff sense to
A if dH(An, A) −−−−→

n→∞
0, where dH is called the Hausdorff distance and is defined

as

(2.1) dH(A,B)
def.
= max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
, we write An

dH−−−−→
n→∞

A,

where dist(·, A) denotes the distance function to the set A. One can prove that this
notion of convergence is equivalent to uniform convergence of the distance functions.
Since the latter are all 1-Lipschitz, as a consequence of Arzela-Ascoli’s Theorem it
follows that if the sequence is contained in a compact set, one can always extract a
convergent subsequence. This compactness result is known as Blaschke’s Theorem,
see [3, Theorem 6.1].

A sequence of closed sets Cn converges in the sense of Kuratowski to C, and we

write Cn
K−−−−→

n→∞
C, whenever the two properties hold:

(1) Given a sequence xn ∈ Cn, all its cluster points are contained in C.
(2) For all points x ∈ C there exists a sequence xn ∈ Cn, converging to x.

Again, one can show that Cn → C in the sense of Kuratowski if and only if
dist(x,Cn) → dist(x,C) (possibly infinite if C = ∅) locally uniformly (see [27,
Cor. 4.7]). In addition, Kuratowski convergence also induces a compact topology,
i.e. any sequence of closed sets has a subsequence which converges, possibly to the
empty set.

The following Lemma describes a relation between Hausdorff and Kuratowski
convergences. We prove it in Appendix B.
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Lemma 2.1. Let (Cn)n∈N be a sequence of closed sets in Rd, converging to C in
the sense of Kuratowski. Then, for any x ∈ Rd,

Cn ∩BR(x)
dH−−−−→

n→∞
C ∩BR(x),

for every radius R > 0 such that C ∩BR(x) = C∩BR(x). Moreover, that condition
holds for all R > 0 except in a countable set.

2.1.2. Optimal transport and the Wasserstein distance. The Wasserstein distances
Wp are defined through the value function of an optimal transport problem, see
[1, 29, 31] for details. Given two probability measures µ, ν ∈ Pp(Rd), we set

(2.2) W p
p (µ, ν)

def.
= min

γ∈Π(µ,ν)

∫
Rd×Rd

|x− y|pdγ,

where Π(µ, ν)
def.
=
{
γ ∈ P

(
Rd × Rd

)
: π0♯γ = µ, π1♯γ = ν

}
is the space of trans-

port couplings, and πi denote the projections, i.e. π0(x, y) = x and π1(x, y) = y.
Whenever µ does not have atoms, the value of (2.2) coincides with

(2.3) inf
T♯µ=ν

∫
Rd

|x− T (x)|pdµ,

where the inf is taken over all measurable maps T such that T♯µ(A) = ν(A) =
µ(T−1(A)) for any Borel set A.

The optimal transport problem can be analogously defined for any pair of positive
µ, ν on the space M(Rd) of Radon measures. In this case the Wasserstein distance
becomes a 1-homogeneous functional and is finite if and only if the measures have
finite p-moments and the same total mass µ(Rd) = ν(Rd).

Definition 2.1. Given a sequence (µn)n∈N ⊂ P(Rd), we say it converges in a weak
sense to µ, if for a suitable space of functions X we have∫

Rd

ϕdµn −−−−→
n→∞

∫
Rd

ϕdµ for all ϕ ∈ X.

When X = Cb(Rd), the space of bounded continuous functions, we say that µn

converges narrowly to µ and we write µ −−−−⇀
n→∞

µ.

When X = C0(Rd), the space of continuous functions converging to 0 at infinity,

we say that µn converges to µ in the weak-⋆ sense and we write µ
⋆−−−−⇀

n→∞
µ.

The Wasserstein distance is l.s.c. with respect to the narrow convergence, and
continuous in a compact domain, [31, Lemma 4.3], on the other hand probability
measures are compact for the weak-⋆ convergence (but the limit might not be a
probability measure) [28, 13]. Compactness for the narrow convergence needs the
assumptions of Prokhorov’s Theorem, see [2, Theorem 2.8].

For a general (open) domain Ω we have Cc(Ω) ⊂ C0(Ω) ⊂ Cb(Ω) with strict
inclusion. If on the other hand Ω is a compact domain all these spaces coincide and
so the notions of narrow and weak-⋆ convergence are equivalent.

2.2. Golab’s Theorem. We now study the lower semicontinuity of (PΛ). First,
“Go lab’s Theorem” [15] shows that along sequences of connected sets, H1 is l.s.c. with
respect to the Hausdorff convergence [22, Chapter 10]. It is of course also true if
the sequence has a uniformly bounded number of connected components.
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The issue is that the compactness of Hausdorff convergence is not transfered to
the weak convergence of measures of the form H1 Σ which may concentrate in the
limit. In general, one can prove the following:

Theorem 2.2 (Density version of Golab’s Theorem). Let (Σn)n∈N be a sequence of

closed and connected subsets of Rd converging in the sense of Kuratowski to some
closed set Σ and having locally uniform finite length, i.e. for all R > 0

sup
n∈N

H1(Σn ∩BR(x0)) < +∞.

Define the measures µn
def.
= H1 Σn, and let µ be a weak-⋆ cluster point of this

sequence. Then suppµ ⊂ Σ and it holds that

µ ≥ H1 Σ,

in the sense of measures.

This result is hidden in the proof in [4] of the usual thesis of Golab’s Theorem,
see also [26]. For the reader’s convenience we give a simple proof in Appendix B.

Remark 2.3. As we have not used any properties from the vector space structure
of Rd, this proof works in the case a locally compact metric space, as in [4].

2.3. Rectifiable sets and measures. We now introduce the notions of rectifi-
able sets and rectifiable measure, which will be crucial for understanding the fine
properties of the elements of A.

Definition 2.2. Let M ⊂ Rd be a Borel set and k ∈ N, we say that M is count-
ably Hk-rectifiable, or shortly k rectifiable, if there are countably many Lipschitz
functions fi : Rk → Rd such that

Hk

(
M \

⋃
i∈N

fi
(
Rk
))

= 0.

A Radon measure µ is said to be k-rectifiable if it is supported over a k-rectifiable
set and µ≪ Hk.

In the simple case M = f(E), for E ⊂ Rk, one can define the tangent space at
a point of differentiability of f as

∇f(z)
(
Rk
)
, for x = f(z).

This is a parametric definition that can be extended to k-rectifiable sets. It turns
out the parametric notion of tangentiability can be expressed in terms of measure
theory. Given a Borel set M , we set the measure µ = Hk M , and we consider the
family of blow-up measures

(2.4) µr
def.
= r−kΦx,r

♯ µ = Hk

(
M − x

r

)
, for Φx,r def.

=
id − x

r
.

The blow-up Theorem, see [21, Theorem 10.2], states that for Hk-a.e. x ∈ M
this family of measures converges in the weak-⋆ topology to a measure of the form
Hk πx, for a unique k-plane πx ∈ G(k, d), the Grassmannian of k-planes of Rd.

More generally define the k-density, whenever the limit exists, of a Radon mea-
sure µ as

(2.5) θk(µ, x)
def.
= lim

r→0+

µ(Br(x))

ωkrk
and θk(M,x)

def.
= θk

(
Hk M,x

)
,
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where ωk is the volume of the unit k-dimensional ball, see [3, 21]. A direct
consequence of the blow-up Theorem is that Hk-a.e. point of a k-rectifiable set
has k-density 1. Analogously for a k-rectifiable measure µ it holds that µ =
θk(µ, x)Hk M .

The equivalence between all notions was completed with the work of Preiss and
the notion of a tangent space to a measure, see for instance the monograph [10]. If
a measures (resp. a set) has a finite k-density, i.e. the limit in (2.5) exists and is
finite Hk-a.e., then this measure (resp. set) is k-rectifiable. The previous discussion
is summarized in the following theorem.

Theorem 2.4. Let µ be a Radon measure over Rd, the following are equivalent.

(i) µ is k-rectifiable
(ii) For Hk-a.e. x ∈ suppµ, it holds that

r−kΦx,r
♯ µ

⋆−−−⇀
r→0

θk(µ, x)Hk πx,

for a unique k-plane πx ∈ G(k, d).
(iii) For Hk-a.e. x ∈ suppµ, the k-density of µ in (2.5) exists and is finite.

In the previous Theorem, if we take µ = Hk M where M is a countably Hk-

rectifiable set we define the approximate tangent space of M at x as TxM
def.
= πx,

where πx is the unique k-plane from point (ii).

Definition 2.3. Let M ⊂ Rd be a k-rectifiable set. We say that x ∈ M is a
rectifiability point when the weak-⋆ convergence of point (ii) from Theorem 2.4
holds, with µ = Hk M .

Now we pass to our case of interest, the 1-dimensional sets Σ ∈ A, recall the
definition (1.1). These sets are known to be 1-rectifiable, see [4, Thm. 4.4.8], and
hence they enjoy the properties of Theorem 2.4. In the next Lemma, we show that
the blow-up of some Σ ∈ A around a rectifiability point is precisely its approximate
tangent space.

Lemma 2.5. Given Σ ∈ A, then for H1-a.e. y ∈ Σ, it holds that

Σ − y

r

K−−−−→
r→0+

TyΣ and
Σ − y

r
∩BR(0)

dH−−−−→
r→0+

TyΣ ∩BR(0), for all R > 0.

Proof. First we take a rectifiability point y ∈ Σ with tangent space TyΣ, by The-
orem 2.4 such points cover H1 a.a. of Σ. In particular, point (ii) of the theorem

shows that H1 ((Σ − y)/r)
⋆−−−⇀

r→0
H1 TyΣ. Let T be the (Kuratowski) limit of

a subsequence (Σ − y)/rk. Clearly, the limit measure H1 TyΣ is supported by T ,
hence TyΣ ⊂ T . Thanks to Lemma 2.1 and Theorem 2.2, for almost all R > 0,

(2.6) H1(T ∩BR) ≤ lim inf
k→∞

H1

(
Σ − y

rk
∩BR

)
= H1(TyΣ ∩BR),

which shows that up to a H1-negligible set, T = TyΣ.
Notice that, if there is some x ∈ T \ TyΣ, we may consider some ball Bs(x)

which does not intersect TyΣ. Since T is the limit of connected sets, x must be
path-connected in T to some point in (Bs(x))c, so that H1(T ∩ Bs(x)) ≥ s. This
contradicts (2.6). Hence T = TyΣ, and is independent on the subsequence, and we

deduce that (Σ − y)/r
K→ TyΣ. □
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3. The length functional and the relaxed problem

If a minimizing sequence Σn converges to some set Σ, we cannot expect the weak
limit of (some subsequence of) the measures νΣn

to have the form νΣ. Hence the
objective of (PΛ) is not lower semi-continuous for the narrow convergence, and, in
this section, we introduce a relaxation for (PΛ). First, we define a functional which
extends the length of the support and we discuss some of its properties, then we
use it to define the relaxed problem.

3.1. Definition and elementary properties. Recalling that A is the collection
of the compact connected sets Σ ⊂ Rd with 0 < H1(Σ) < +∞, we consider

ℓ : P(Rd) ∋ ν 7→
{

H1(Σ), if ν = 1
H1(Σ)H

1 Σ for some Σ ∈ A,
+∞ otherwise,

so that (PΛ) becomes inf W p
p (ρ0, ν) + Λℓ(ν). As discussed above, ℓ is not l.s.c.,

hence we introduce the following relaxation, which we call the length functional.
For any ν ∈ P(Rd), we define

(3.1) L(ν)
def.
=

{
min

{
α ≥ 0 | αν ≥ H1 supp ν

}
, if supp ν is connected,

+∞ otherwise,

with the convention that min ∅ def.
= +∞. Notice that L(ν) ≥ H1(supp ν), and that

L(ν) = 0 if and only if ν = δx for some x ∈ Rd. As a result, 0 < L(ν) < ∞ if

and only if supp ν ∈ A. Moreover, for any Σ ∈ A and νΣ
def.
= 1

H1(Σ)H
1 Σ, we

have L(νΣ) = H1(Σ) = ℓ(νΣ), and in Section 3.3 below, we prove that L is the
lower semi-continuous enveloppe of ℓ. Before that, let us discuss some alternative
formulations for L.

Following [3, Sec. 2.4], we consider the upper derivative,

∀x ∈ supp ν, D+
ν (H1 supp ν)(x)

def.
= lim sup

r→0+

H1(Br(x) ∩ supp ν)

ν(Br(x))
.(3.2)

Proposition 3.1 (Alternative definitions of L). Let ν ∈ P(Rd) such that supp ν is
connected. Then

L(ν) = sup

{
H1(U ∩ supp ν)

ν(U)
| U open, U ∩ supp ν ̸= ∅

}
(3.3)

= sup

{
H1(Br(x) ∩ supp ν)

ν(Br(x))
| r > 0, x ∈ supp ν

}
(3.4)

=
∥∥D+

ν (H1 supp ν)
∥∥
∞ ,(3.5)

where ∥·∥∞ denotes the supremum norm over supp ν.

Proof. It is immediate that

(R.H.S. of (3.1)) ≥ (R.H.S. of (3.3)) ≥ (R.H.S. of (3.4)) ≥ (R.H.S. of (3.5)) .

Now, assume that
∥∥D+

ν (H1 supp ν)
∥∥
∞ < +∞ and let α >

∥∥D+
ν (H1 supp ν)

∥∥
∞.

For every compact set K ⊂ Rd and every x ∈ K ∩ (supp ν), there is some r(x) > 0
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such that H1 (Br(x) ∩ (supp ν)) ≤ αν(Br(x)). From the open covering (Br(x)(x))x∈K∩(supp ν),

we may extract a finite covering (Bri(xi))
N
i=1 of K ∩ (supp ν). As a result

H1(K ∩ (supp ν)) ≤
N∑
i=1

αν(Bri(xi)) ≤ Nα < +∞,

so that H1 (supp ν) is a Radon measure. We may thus apply [3, Prop. 2.21] to
deduce

(R.H.S. of (3.5)) ≥ (R.H.S. of (3.1)) .

If
∥∥D+

ν (H1 supp ν)
∥∥
∞ = +∞, the inequality holds trivially, which completes the

proof. □

The length functional inherits some of the properties of the H1 measure.

Proposition 3.2. Let f : Rd → Rd, be a k-Lipschitz function, with k > 0. Then

∀ν ∈ P(Rd), L(f♯ν) ≤ kL(ν).(3.6)

Proof. If L(ν) = +∞, there is nothing to prove. Otherwise, supp ν is compact, and
supp(f♯ν) = f(supp ν). Moreover, for any open set U ⊂ Rd, since f−1(U) is open,

U ∩ (supp f♯ν) ̸= ∅ ⇐⇒ ν(f−1(U)) > 0 ⇐⇒ f−1(U) ∩ (supp ν) ̸= ∅.

Now, let U be an open set which intersects supp(f♯ν). Using that

U ∩ f(supp ν) ⊂ f
(
f−1(U) ∩ supp ν

)
we get

H1 (U ∩ supp(f♯ν))

f♯ν(U)
=

H1 (U ∩ f(supp ν)))

ν(f−1(U))
≤

H1
(
f
(
f−1(U) ∩ supp ν

))
ν(f−1(U))

≤ k
H1
(
f−1(U) ∩ supp ν

)
ν(f−1(U))

≤ kL(ν)

since f−1(U) is an open set which intersects supp ν. Taking the supremum over all
U yields the claimed inequality. □

3.2. Alternative definitions and examples. It is also possible to express the
length-functional using the Besicovitch differentiation theorem [3, Thm. 2.22].
Assume that H1(supp ν) < +∞ (otherwise L(ν) = +∞). Then, the measure
H1 supp ν is Radon, and the limit

Dν(H1 supp ν)(x)
def.
= lim

r→0+

H1(Br(x) ∩ supp ν)

ν(Br(x))
(3.7) (

resp. DH1 supp ν(ν)(x)
def.
= lim

r→0+

ν(Br(x))

H1(Br(x) ∩ supp ν)

)
(3.8)

exists for ν-a.e. x (resp. H1 supp ν-a.e. x).
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Proposition 3.3 (Alternative definitions, II). Let ν ∈ P(Rd) such that supp ν is
connected and H1(supp ν) < +∞. Then

L(ν) =


∥∥∥∥d(H1 supp ν)

dν

∥∥∥∥
L∞

ν

if
(
H1 supp ν

)
≪ ν,

+∞ otherwise.

(3.9)

=


0 if supp ν is a singleton,∥∥∥∥∥
(

dν

d(H1 supp ν)

)−1
∥∥∥∥∥
L∞

H1 supp ν

otherwise.(3.10)

Notice that in Proposition 3.3, both “norms” may take the value +∞, and in
(3.10), we adopt the convention that 1/0 = +∞.

Proof of Proposition 3.3. First, we prove (3.9). If
(
H1 supp ν

)
≪ ν then the

Lebesgue-Besicovitch differentiation theorem ensures that

H1 supp ν =

(
d
(
H1 supp ν

)
dν

)
ν ≤

∥∥∥∥∥d
(
H1 supp ν

)
dν

∥∥∥∥∥
L∞

ν

ν.

Therefore,

L(ν) ≤

∥∥∥∥∥d
(
H1 supp ν

)
dν

∥∥∥∥∥
L∞

ν

≤
∥∥D+

ν (H1 supp ν)
∥∥
∞ = L(ν).

If
(
H1 supp ν

)
is not absolutely continuous w.r.t. ν, there is no α > 0 such that

αν ≥ H1 supp ν, and L(ν) = +∞.
Now, we prove (3.10). The case where supp ν is a singleton is already known.

We assume now that H1(supp ν) > 0, and using the Besicovitch differentiation
theorem [3, Thm. 2.22], we decompose

ν = θH1 supp ν + νs,(3.11)

where

θ(x)
def.
=

dν

d (H1 supp ν)
(x) = lim

r→0+

ν(Br(x))

H1(Br(x) ∩ supp ν)
=
(
D+

ν (H1 supp ν)(x)
)−1

for
(
H1 supp ν

)
-a.e. x. From the last equality, we get∥∥θ−1
∥∥
L∞

H1 supp ν

≤
∥∥D+

ν (H1 supp ν)(x)
∥∥
∞ = L(ν).

To prove the converse inequality, we assume
∥∥θ−1

∥∥
L∞

H1 supp ν

< +∞ (otherwise

there is nothing to prove). Using (3.11), we note that(∥∥θ−1
∥∥
L∞

H1 supp ν

)
ν ≥ H1 supp ν,

so that L(ν) ≤
∥∥θ−1

∥∥
L∞

H1 supp ν

. □

We may now examine a few examples.

Example 3.1. Let ν =
∑∞

n=1 2−nδqn , where (qn)n≥1 is a dense sequence in [0, 1].
Using (3.1), we see that L(ν) = +∞.
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Example 3.2 (Densities on a (H1, 1)-rectifiable set). Let Σ ⊆ Rd be a closed
connected set with 0 < H1(Σ) < +∞, and θ : Σ → R+ a Borel function such that∫
Σ
θdH1 = 1. Then L(ν) = ∥1/θ∥L∞

H1 Σ

. More generally, the same conclusion holds

if ν = θH1 Σ + νs, with νs and H1 Σ mutually singular.

Example 3.3 (Parametrized Lipschitz curves). Let γ : [0, 1] → Rd be a non-
constant Lipschitz curve, and let ν such that for all f ∈ Cb(Rd),

⟨f, ν⟩ def.
=

1

len(γ)

(∫ 1

0

f(γ(t)) |γ̇(t)|dt
)
, where len(γ)

def.
=

∫ 1

0

|γ̇(t)|dt

is the length of the curve. By the area formula [14, Thm. 3.2.5],

dν(y) =
1

len(γ)
card(γ(−1)(y))d

(
H1 Σ

)
(y)

where Σ = γ([0, 1]). As a result,

L(ν) =
len(γ)

ess- miny∈Σ

(
card(γ(−1)(y))

) ,(3.12)

where the minimum is an essential minimum with respect to H1 Σ.

3.3. Lower semi-continuity of the length functional. Now, we prove that L
is the lower semi-continuous enveloppe of ℓ.

Proposition 3.4. The functional L is the lower semi-continuous enveloppe of ℓ
for the narrow topology. Moreover, for every ν such that L(ν) < +∞,

H1(supp ν) ≤ L(ν)(3.13)

with equality if and only if ν = δx for some x ∈ Rd, or H1(supp ν) > 0 and
ν = 1

H1(supp ν)

(
H1 supp ν

)
.

Proof of Proposition 3.4: The inequality (3.13) is clear from the definition of
(3.1), so we study the equality case.

If ν = δx or ν = 1
H1(supp ν)

(
H1 supp ν

)
with H1(supp ν) > 0, one readily checks

that L(ν) = H1(supp ν). Conversely, if (3.13) is an equality, for every Borel set B,

0 = L(ν) −H1(supp ν)

=
(
L(ν)ν(B) −H1(B ∩ supp ν)

)︸ ︷︷ ︸
≥0

+
(
L(ν)ν(B∁) −H1(B∁ ∩ supp ν)

)
︸ ︷︷ ︸

≥0

so that both terms must be zero. If L(ν) > 0, we deduce

∀B ⊂ Rd Borel, ν(B) =
H1(B ∩ supp ν)

L(ν)
=

H1(B ∩ supp ν)

H1(supp ν)
.

If L(ν) = 0, H1(supp ν) = 0 and since supp ν is connected, ν is a Dirac mass.
Next we prove that L is sequentially l.s.c. We consider (νn)n∈N such that

νn −−−−⇀
n→∞

ν ∈ P(Rd) and we show that α
def.
= lim infn→∞ L(νn) ≥ L(ν). If α = +∞,

we have nothing to prove. Otherwise, up to the extraction of a subsequence, we
may assume that limn→∞ L(νn) = α and that L(νn) < +∞ for all n ∈ N.
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Defining the sequence of compact and connected sets Σn
def.
= supp νn, it holds

that H1(Σn) ≤ L(νn), so that

sup
n≥N

H1(Σn) ≤ α+ 1 < +∞

for N large enough. Hence, for all n ≥ N , diam(Σn) ≤ α + 1. In addition, let
x ∈ supp ν. Since 0 < ν(B1(x)) ≤ lim infn→∞ νn(B1(x)), for all n large enough

(supp νn) ∩B1(x) ̸= ∅, thus supp νn ⊂ Bα+2(x).
Therefore, we may apply Blaschke’s Theorem and we may assume (up to another

extraction of a subsequence) that Σn
dH−−−−→

n→∞
Σ and supp ν ⊂ Σ from the weak

convergence. Let us show that supp ν = Σ. If Σ is a singleton {x0}, we have ν = δx0
.

Otherwise, Golab’s Theorem (Thm. 2.2) implies that Σ ∈ A and furthermore, as
L(νn)νn ≥ H1 Σn, that

(3.14) αν ≥ H1 Σ.

Hence, as Σ is connected, for all z ∈ Σ it holds ν(Br(z)) > 0, confirming that
supp ν = Σ. Finally from (3.14) we get that

lim inf
n→∞

L(νn) = α ≥ L(ν),

proving that L is l.s.c.
As a result, we have proved that L is l.s.c. and that L ≡ ℓ on the effective

domain of ℓ. To show that L is the l.s.c. enveloppe of ℓ, we prove that it is above
any l.s.c. functional G ≤ ℓ. Let ν ∈ P(Rd). If L(ν) = +∞, we have G(ν) ≤ L(ν).
If L(ν) < +∞, using Lemma 3.5 below, we can find a sequence νΣn −−−−⇀

n→∞
ν such

that H1(Σn) = L(ν). The lower semi-continuity of G yields

G(ν) ≤ lim inf
n→∞

G(νΣn
) ≤ lim inf

n→∞
ℓ(νΣn

) = lim inf
n→∞

H1(Σn) = L(ν).

□

The proof of Proposition 3.4 relies on the following approximation Lemma.

Lemma 3.5. Let ν ∈ P(Rd) such that L(ν) < ∞. Then, there exists a sequence
(Σn)n∈N ⊂ A such that

• Σn
dH−−−−→

n→∞
supp ν,

• νΣn −−−−⇀
n→∞

ν and Wp(νΣn , ν) −−−−→
n→∞

0 for any p ≥ 1.

We also have H1(Σn) −−−−→
n→∞

L(ν) and if, in addition L(ν) > 0, we can take

H1(Σn) = L(ν) for all n ∈ N.

Proof. To simplify the notation, we set α = L(ν) and Σ = supp ν. For α = 0 (that
is, ν = δx0

for some x0), we consider

Σn = x0 + [0, 1/n] × {0}d−1

which provides the desired approximation.
For α > 0, we start by covering the entire space with cubes of the form

Qz,n
def.
=

1

n

(
z + [0, 1)d

)
, for z ∈ Zd.



12 ANTONIN CHAMBOLLE, VINCENT DUVAL, AND JOÃO MIGUEL MACHADO

Let (Qi,n)i∈I denote the collection of the cubes such that ν (Qz,n) > 0, since the
set Σ is compact I is finite. We define the quantities

mi,n
def.
= αν(Qi,n) −H1(Σ ∩Qi,n) ≤ α,

as the excess mass of ν in the cube Qi,n (note that mi,n ≥ 0 in view of (3.1)). Our
strategy is to modify ν Qi,n by adding segments with uniform measure inside the
cube and having a total length equal to the excess mass mi,n.

If Σ ∩ intQi,n ̸= ∅, take xi in this intersection, so that Bδi(xi) ⊂ Qi,n for some

δi > 0. Then, set Ni,n
def.
=

⌈
mi,n

δi

⌉
, and choose δi,j ≥ 0 for j = 1, . . . , Ni,n such

that
Ni,n∑
j=1

δi,j = mi,n, and 0 ≤ δi,j < δi.

Since H1(Σ ∩ Qi,n) < +∞, it is possible to choose Ni,n vectors vi,j ∈ Sd−1 such

that the segments Si,j
def.
= [xi, xi + δi,jvi,j ] are contained in intQi,n and satisfy

H1(Σ ∩ Si,j) = 0 , for j = 1, . . . , Ni,n.
If Σ ∩ intQi,n = ∅, as the cubes have positive mass, it means that ν is concen-

trated on the boundary of the cube, in which case we take xi ∈ Σ ∩ ∂Qi and any
family of segments entering the cube will suffice.

Next, we define the measures

µn
def.
= H1 Σn for Σn

def.
= Σ ∪

⋃
i∈I

Ni,n⋃
j=1

Si,j

having total mass

H1(Σn) =
∑
i∈I

H1(Σ ∩Qi,n) +
∑
i∈I

Ni,n∑
j=1

H1(Si,j)

=
∑
i∈I

H1(Σ ∩Qi,n) +mi,n = α
∑
i∈I

ν(Qi,n) = α.

Each Σn ∈ A since it is connected and compact (as a finite union of compact sets).
To finish the proof, it remains to show that νΣn

−−−−⇀
n→∞

ν. By construction, there

exists a compact set K ⊂ Rd such that (supp ν)∪
⋃

n≥1 (supp νΣn) ⊂ K. Then any

function ϕ ∈ Cb(Rd) is uniformly continuous on K, and we denote by ω its modulus
of continuity. Observing that νΣn(Qi,n) = ν(Qi,n), we note that∣∣∣∣∫

Rd

ϕdνΣn
−
∫
Rd

ϕdν

∣∣∣∣ ≤∑
i∈I

∣∣∣∣∣
∫
Qi,n

ϕdνΣn
−
∫
Qi,n

ϕdν

∣∣∣∣∣
≤
∑
i∈I

ω(diamQi,n)ν(Qi,n) ≤ ω
(√

d/n
)
−−−−→
n→∞

0.

Hence νΣn
−−−−⇀
n→∞

ν. But as the support of all such measures is contained in the

compact K and the Wasserstein distance metrizes the weak convergence in Pp(K),
see [29, Thm. 5.10],it holds that Wp(νΣn

, ν) −−−−→
n→∞

0. □

Remark 3.6. The conclusions of Proposition 3.4 and Lemma 3.5 still hold when
replacing the narrow topology with the weak-⋆ topology.
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3.4. A relaxed problem with existence of solutions. The relaxed problem (PΛ)
introduced on page 2 is defined by replacing ℓ in the orginal problem with its

l.s.c. envelope L. We define the energy E(ν)
def.
= W p

p (ρ0, ν) + ΛL(ν), and with a
slight abuse of notation, we sometimes write E(Σ) = E(νΣ) for Σ ∈ A. The main
point of considering this relaxed problem is that the existence of solutions for (PΛ)
follows from the direct method of the calculus of variations.

Theorem 3.7. The relaxed problem (PΛ) admits a solution. In addition, E is the
l.s.c. enveloppe of W p

p (ρ0, ·) + Λℓ, and:

inf (PΛ) = min (PΛ).

Proof. Let (νn)n∈N be a minimizing sequence for E . Since
(
supnW

p
p (ρ0, νn)

)
<

+∞, the moments of order p of νn are uniformly bounded (see for instance [29, Thm.
5.11]), and we may then extract a (not relabeled) subsequence converging to some
ν ∈ P(Rd) in the narrow topology (by Prokhorov’s theorem). From Proposition 3.4
and the fact that the Wasserstein distance is lower semi-continuous, the functional
E is l.s.c. and we have that

E(ν) ≤ lim inf
n→∞

E(νn) = inf (PΛ).

The measure ν is a minimizer of (PΛ).
To show that E is the l.s.c. enveloppe of the original energy one may argue as in

the proof of Proposition 3.4. Consider any l.s.c. functional G such that

∀ν ∈ P(Rd), G(ν) ≤W p
p (ρ0, ν) + Λℓ(ν).

For every ν with L(ν) < +∞, we use Lemma 3.5 to build approximations sequences
(νn)n∈N such that W p

p (ρ0, νn) → W p
p (ρ0, ν). Indeed, as νn converges to ν for the

Wasserstein metric, the triangle inequality gives

|Wp(ρ0, νn) −Wp(ρ0, ν)| ≤Wp(νn, ν) −−−−→
n→∞

0.

Hence for any ν ∈ Pp(Rd) it holds that

G(ν) ≤ lim inf
n→∞

(
W p

p (ρ0, νn) + Λℓ(νn)
)

= W p
p (ρ0, ν) + ΛL(ν) = E(ν),

and we conclude that E is the l.s.c. enveloppe and the no gap property follows from
the general theory of l.s.c. relaxation, see e.g. [5]. □

4. On the support of optimal measures

Our goal for this section is to answer the question of “how small” Λ must be
in theorem 1.1. For this, in Theorem 4.1 we study when solutions of the relaxed
problem (PΛ) are Dirac masses. Keeping this in mind the rest of this section can
be skiped and the reader can move on to the major results of the paper.

The following notation will be useful: a point x0 is said to be a p-mean of ρ0 if

x0 ∈ argmin
y∈Rd

∫
Rd

|x− y|pdρ0(x) = argmin
y∈Rd

W p
p (ρ0, δy).

A 2-mean is just the mean of ρ0, that is, mρ0

def.
=

∫
Rd

xdρ0(x). For p > 1, the p-

mean is uniquely defined, but for p = 1 the collection of 1-means is a closed convex
set which is not reduced to a singleton in general.



14 ANTONIN CHAMBOLLE, VINCENT DUVAL, AND JOÃO MIGUEL MACHADO

Theorem 4.1. For a fixed measure ρ0 ∈ Pp(Rd) there exists a critical parameter
Λ⋆ ∈ [0,∞) such that

• for Λ < Λ⋆ no solution of (PΛ) is a Dirac measure;
• for Λ > Λ⋆ it holds that argmin(PΛ) is the set of p-means of ρ0.

Moreover, Λ⋆ = 0 if and only if ρ0 is a Dirac mass.

We start by studying the support of the optimal measure, showing that it is
contained in the convex hull of the support of ρ0. In the sequel the proof of Theorem
4.1 will be divided in several steps. We end the section with an exemple of ρ0
composed of 2 Dirac masses.

4.1. Elementary properties of the support. Given a set A ⊂ Rd we denote by
convA its closed convex hull.

Lemma 4.2. Let ν ∈ P(Rd) be a solution to (PΛ). Then the following properties
hold

(1) H1(supp ν) ≤ 1
ΛW

p
p (ρ0, δmρ0

), where mρ0
is any p-mean of ρ0. In particu-

lar, Σ is contained in some ball of diameter d0
def.
= 1

ΛW
p
p (ρ0, δmρ0

).

(2) supp ν ⊂ conv (supp ρ0)

Proof. For the first point, let Σ denote the support of ν. Since ν has finite energy
we have that L(ν) ≥ H1(Σ). Thus, since it is also optimal

ΛH1(Σ) ≤W p
p (ρ0, ν) + ΛL(ν) ≤W p

p (ρ0, δmρ0
) + ΛL(δmρ0

) = W p
p (ρ0, δmρ0

).

For the second point, let C
def.
= conv (supp ρ0). It is a nonempty closed convex

set, therefore the projection onto C is well-defined and 1-Lipschitz. We denote
it by f . By Proposition 3.2, it holds that L(ν) ≥ L(f♯ν). Moreover, for every
(x, y) ∈ C × Rd,

|x− y|2 = |x− f(y)|2 + |f(y) − y|2 + 2 ⟨x− f(y), f(y) − y⟩︸ ︷︷ ︸
≥0

≥ |x− f(y)|2

with equality if and only if y ∈ C. As a result, if γ is an optimal transport plan for
(ρ0, ν),

W p
p (ρ0, ν) =

∫
|x− y|p dγ(x, y) ≥

∫
|x− f(y)|p dγ(x, y)

=

∫
|x− y|p d ((id, f)♯γ) (x, y) ≥W p

p (ρ0, f♯ν)

with strict inequality unless y ∈ C for γ-a.e. (x, y) (hence ν-a.e. y).
But ν is a solution to (PΛ), therefore the inequality

W p
p (ρ0, ν) + ΛL(ν) ≥W p

p (ρ0, f♯ν) + ΛL(f♯ν)

cannot be strict. We deduce that y ∈ C for ν-a.e. y, and C being closed, that
supp ν ⊂ C. □

Example 4.1. Let ρ0 = δx0 for some x0 ∈ Rd. From Lemma 4.2 above, we deduce
that for all Λ > 0, argmin (PΛ) = {δx0

}.
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4.2. When solutions are Dirac masses. Now, we discuss whether or not Dirac
masses may appear in the case where ρ0 is not a Dirac measure.

We start with the following Lemma.

Lemma 4.3. Let Λ > 0 such that δx0
∈ argmin (PΛ), for Λ′ > Λ it holds

• for p > 1 that δx0
is the unique solution of (PΛ′),

• for p = 1 that argmin (PΛ′) consists of only Dirac masses.

Proof. If δx0
∈ argmin (PΛ), for any p ≥ 1, and for any measure (ν) with L(ν) > 0

it holds that

W p
p (ρ0, δx0

) ≤W p
p (ρ0, ν) + ΛL(ν) < W p

p (ρ0, ν) + Λ′L(ν),

and hence ν cannot be a minimizer of (PΛ′). Then for any p ≥ 1 it holds
that argmin (PΛ′) consists of Dirac measures. Whenever p > 1, the function
y 7→W p

p (ρ0, δy) is strictly convex and hence argmin (PΛ′) is a singleton. □

This simple Lemma allows for the definition of the critical value Λ⋆ as follows

(4.1) Λ⋆
def.
= inf

{
Λ ≥ 0 : argmin (PΛ) ⊂ (δx)x∈Rd

}
.

As stated in Theorem 4.1, Λ⋆ > 0 whenever ρ0 is not a single Dirac mass, which is
a direct consequence of the convergence of solutions to ρ0 when Λ goes to 0.

Lemma 4.4. For every ρ0 ∈ Pp(Rd), and Λ > 0, let νΛ be any solution to (PΛ).
Then

νΛ −−−−⇀
Λ→0+

ρ0.(4.2)

Proof. If L(ρ0) < +∞, it suffices to notice that

W p
p (ρ0, νΛ) ≤W p

p (ρ0, νΛ) + ΛL(νΛ) ≤W p
p (ρ0, ρ0) + ΛL(ρ0) = ΛL(ρ0) −−−−→

Λ→0+
0.

However, we need to handle the case where L(ρ0) = +∞.
Let ε > 0. By the density of discrete measures in the Wasserstein space, there

exists a probability measure of the form µ =
∑N

i=1 aiδxi
such that W p

p (ρ0, µ) ≤ ε.
We may assume that N ≥ 2. By connecting all the points {xi}1≤i≤N , we obtain
a compact connected set Σ with 0 < H1(Σ) < +∞. For every θ ∈ ]0, 1[, we then
define

ρ̃0
def.
=

θ

H1(Σ)
H1 Σ + (1 − θ)µ

and we note that L(ρ̃0) ≤ H1(Σ)
θ < +∞.

Moreover, by the optimality of νΛ,

W p
p (ρ0, νΛ) ≤ ΛL(νΛ) +W p

p (ρ0, νΛ) ≤ ΛL(ρ̃0) +W p
p (ρ0, ρ̃0).

Taking the upper limit as Λ → 0+, and using the convexity of the Wasserstein
distance yields

lim sup
Λ→0+

(
W p

p (ρ0, νΛ)
)
≤W p

p (ρ0, ρ̃0) ≤ θW p
p

(
ρ0,

H1 Σ

H1(Σ)

)
+ (1 − θ)W p

p (ρ0, µ).

Letting θ → 0+ we obtain lim supΛ→0+
(
W p

p (ρ0, νΛ)
)
≤ ε for every ε > 0, which

yields limΛ→0+ W
p
p (ρ0, νΛ) = 0, hence the claimed result. □
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As a consequence of Lemma 4.4, we note that lim infΛ→0+ (supp νΛ) ⊃ supp ρ0,
so that if ρ0 is not a Dirac mass, neither is νΛ for Λ > 0 small enough.

Next, we show that for Λ large enough, the solution becomes a Dirac measure.

Proposition 4.5. For every ρ0 ∈ Pp(Rd), Λ⋆ < +∞.

Proof. Up to a change of the origin, we may assume that
∫
Rd xdρ0(x) = 0.

We let ν ∈ argmin (PΛ), Σ
def.
= supp ν, and we define y0 ∈ argminy∈Σ |y|.

Setting r
def.
= min { r′ ≥ 0 | supp ν ⊂ B(y0, r) }, we note from the connectedness

of Σ that r ≤ H1(Σ) < +∞. Moreover, the convexity of the p-norm yields

∀x, y ∈ Rd, |x− y|p ≥ |x− y0|p − p |x− y0|p−1 |y − y0| .

As a result, if γ is an optimal transport plan for (ρ0, ν),

E(ν) =

∫
Rd×Rd

|x− y|p dγ(x, y) + ΛL(ν)

≥
∫
Rd×Rd

|x− y0|p dγ(x, y) − p

∫
Rd×Rd

|x− y0|p−1 |y − y0|dγ(x, y) + ΛH1(Σ)

≥ E(δy0
) + r

(
Λ − p

∫
Rd

|x− y0|p−1
dρ0(x)

)
.

By optimality of ν, we have E(ν) ≤ E(δy0
), so that r = 0 and ν is a Dirac mass

provided that
(

Λ − p
∫
Rd |x− y0|p−1

dρ0(x)
)
> 0.

Now, we show that
∫
Rd |x− y0|p−1

dρ0(x) can be bounded independently from ν.
For any optimal ν, since E(ν) ≤ E(δ0), we note that W p

p (ρ0, ν) ≤W p
p (ρ0, δ0). Hence

|y0| ≤Wp(δ0, ν) ≤Wp(δ0, ρ0) +Wp(ρ0, ν) ≤ 2Wp(δ0, ρ0).

Setting R
def.
= 2Wp(δ0, ρ0), we see that it is sufficient to take

Λ > max
y0∈B(0,R)

(
p

∫
Rd

|x− y0|p−1
dρ0(x)

)
,

to ensure that ν is a Dirac mass. □

Remark 4.6. In some cases, it is possible to provide sharper bounds on Λ⋆:

• If p = 1, we see that Λ⋆ ≤ 1.
• If p = 2, it can be shown by a simple translation argument that ν and ρ0

have the same barycenter. Then, one may adapt the above argument to
get Λ⋆ ≤ 2

∫
|x− x0|dρ0(x) , where x0 =

∫
xdρ0(x) = 0.

• If supp ρ0 is bounded, it is possible to obtain Λ⋆ ≤ p (diam(supp ρ0))
p−1

for
any p ≥ 1, by exploiting the Lipschitzianity of the dual potentials: there
exists (ϕ, ψ), solution to the dual Kantorovitch problem (see [29, Sec. 1.2])

W p
p (µ, ν) = max

{∫
ϕdµ+

∫
ψdν :

ϕ ∈ L1(µ), ψ ∈ L1(ν),
ϕ(x) + ψ(y) ≤ |x− y|p

}
,

such that Lip(ψ) ≤ p (diam(supp ρ0))
p−1

. Then,

W p
p (ρ0, δy0

) −W p
p (ρ0, ν) ≤ ψ(y0) −

∫
Σ

ψdν ≤
∫
Σ

|ψ(y0) − ψ(x)|dν(x)

≤ Lip(ψ) · H1(Σ) ≤ ΛL(ν)
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and for Λ > Lip(ψ), the last inequality is strict, yielding the contradiction
E(δy0) < E(ν), unless H1(Σ) = 0.

4.3. The example of an input with two Dirac masses. In this subsection we
consider the case p = 2. Let x−1 = (−1, 0, . . . , 0), x1 = (1, 0, . . . , 0) ∈ Rd, and
let ρ0 = 1

2

(
δx−1

+ δx1

)
. By Lemma 4.2, we know that the solutions to (PΛ) are

supported on line segments which are contained in [x−1, x1]. We may thus reduce
the problem to the one-dimensional setting, with x−1 = −1, x1 = 1. The solution
to that problem is given by the following proposition.

Proposition 4.7. For p = 2 and ρ0 = 1
2 (δ−1 + δ1), the unique solution to (PΛ)

is given by

νΛ =


√

3Λ
2 H1 [−1, 1] +

(
1
2 −

√
3Λ
2

)
(δ−1 + δ1) if 0 < Λ < 1

6 ,

1
3(1−2Λ)H

1
[
− 3

2 (1 − 2Λ), 32 (1 − 2Λ)
]

if 1
6 ≤ Λ < 1

2

δ0 if Λ ≥ 1
2 .

.(4.3)

Proof. Since the solutions are supported on a line segment in [−1, 1], they are of the
form ν = δa or ν = 1

αH
1 [a, b]+νexc, with α = L(ν) and supp νexc ⊂ [a, b] ⊂ [−1, 1].

Since solutions are supported on a line segment in [−1, 1], we use the anzatz and
assume them to be of the form

ν =
1

α
H1 [a, b] or ν =

1

α
H1 [−1, 1] + cδ−1 + dδ1.

Indeed if the [a, b] does not coincide with [−1, 1] and there is any mass left after we
form the uniform measure over the segment [a, b], we enlarge a bit the segment. If
a or b coincide with −1, 1, we can just leave any residual mass concentrated at the
Dirac delta with no transportation cost, see for instance Lemma 5.1 below.

Recalling that for p = 2, ν must have the same center of mass as ρ0, we deduce
that ν must be equal to

ν0,0
def.
= δ0,

or νb,2b
def.
=

1

2b
H1 [−b, b] for some b ∈ ]0, 1[

or ν1,α =
1

α
H1 [−1, 1] +

(
1

2
− 1

α

)
(δ−1 + δ1) for some α ≥ 2.

Let E(ν) = ΛL(ν) + W 2
2 (ρ0, ν) denote the energy to minimize. We have E(ν0,0) =

1 = limb→0+ E(νb,2b), and

E(νb,2b) = 2Λb+ 2

∫ b

0

(1 − x)2
dx

2b
=
b2

3
+ (2Λ − 1)b+ 1

with
d

db
E(νb,2b) =

2b

3
+ 2Λ − 1,

E(ν1,α) = Λα+ 2

∫ 1

0

(1 − x)2
dx

α
+ 0 = Λα+

2

3α
,

with
d

dα
E(ν1,α) = Λ − 2

3α2
.

For 0 < Λ < 1
6 , we check that ν1,α∗ , for α∗ def.

=
√

2
3Λ , is the unique solution.
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For 1
6 ≤ Λ < 1

2 , we get that νb∗,2b∗ is the unique solution, with b∗
def.
= 3

2 (1 − 2Λ).

For Λ ≥ 1
2 , the functions α 7→ E(ν1,α) and b 7→ E(νb,2b) are strictly decreasing on

[2,+∞[ and ]0, 1] respectively. Therefore ν0,0 is the unique solution to (PΛ). □

5. Solutions are rectifiable measures

Our goal here is to show that whenever ρ0 ≪ H1, any solution ν is a rectifiable
measure of the form

ν = ΘH1 Σ, for Θ ∈ L1(Σ;H1)

To this end we introduce the excess measure νexc as the positive measure given by
the mass of ν that exceeds the density constraints. We first show that this measure
solves a family of localized problems. This is used to prove the absolute continuity
w.r.t. H1 Σ, that is, point (1) of Theorem 1.1.

5.1. The excess measure. Let ν be a minimizer of (PΛ) with support Σ not
reduced to a singleton. From the definition of the length functional we have:

L(ν) <∞ if and only if there is α ≥ 0 such that αν ≥ H1 Σ.

Setting α
def.
= L(ν) > 0, we define the following decomposition

(5.1) ν = νH1 + νexc, where νH1
def.
= α−1H1 Σ and νexc

def.
= ν − νH1 .

The part νH1 is the measure which saturates the density constraint, and the support
of the excess measure νexc is where the constraint is inactive.

We define an analogous (nonunique) decomposition of γ and ρ0 by disintegrating
γ w.r.t. the second marginal. From the disintegration theorem [3, Theorem 2.28],
there exists a ν-measurable family {γy}y∈Rd ⊂ P(Rd), such that γ = γy ⊗ν, that is

(5.2)

∫
Rd×Σ

ψ(x, y)dγ(x, y) =

∫
Σ

(∫
Rd

ψ(x, y)dγy(x)

)
dν(y), for all ϕ ∈ L1(γ).

We define a decomposition γ = γH1 + γexc as

(5.3) γH1(A×B)
def.
=

∫
Σ∩B

γy(A)dνH1(y), γexc(A×B)
def.
=

∫
Σ∩B

γy(A)dνexc(y).

The decomposition ρ0 = ρH1 +ρexc can be defined as the marginals of γH1 and γexc

(5.4) ρH1
def.
= π0♯γH1 , ρexc

def.
= π0♯γexc.

This way γH1 ∈ Π(ρH1 , νH1), γH1 ∈ Π(ρexc, νexc) and they are optimal trans-
portation plans between their respective marginals. Indeed if we find a better trans-
portation plan for either problem we can construct a better plan for the original
problem, contradicting the minimality of γ. We therefore also have a decomposition
between the Wasserstein distances

(5.5) W p
p (ρ0, ν) = W p

p (ρH1 , νH1) +W p
p (ρexc, νexc) .

It is important to point out that, although the decomposition of ν is natural,
there are many ways to decompose γ and ρ0. In the sequel we show that for any
such decomposition the excess must be concentrated on the graph of the operator
given by the (multivalued) projection onto Σ

(5.6) ΠΣ(x)
def.
= argmin

y∈Σ
|x− y|2.
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Note that ΠΣ is a multivalued operator which is included in the subgradient of
the convex conjugate of the function: y 7→ |y|2/2 if y ∈ Σ and +∞ else.

Lemma 5.1. Let ν be a minimizer of (PΛ) and γ an optimal transport plan from
ρ0 to ν. Then, for any decomposition γ = γH1 + γexc, s.t. π1♯γ1 = νH1 , it holds
that

supp γexc ⊂ graph(ΠΣ).(5.7)

In addition, for any πΣ measurable selection of x 7→ ΠΣ(x), the measure

νH1 + πΣ♯ρexc

is optimal for (PΛ).

Proof. Consider the problem

inf
γ∈Pp(Rd×Rd)

π0♯γ=ρ0,

∫
Rd×Rd

|x− y|p dγ(x, y) + ΛL(π0♯γ),(QΛ)

which is a reformulation of (PΛ) in terms of the transport plan γ from ρ0 to ν.
Now, let (γH1 , γexc) be any suitable decomposition of γ and let πΣ be a measur-

able selection of ΠΣ. We set ρexc
def.
= π0♯γexc and define γ̃ = γH1 + (id, πΣ)♯ρexc.

Then it holds that L(π1♯γ̃) ≤ L(ν) and∫
Rd×Rd

|x− y|p dγ̃ =

∫
Rd×Rd

|x− y|p dγH1 +

∫
Rd

|x− πΣ(x)|p dρexc

≤
∫
Rd×Rd

|x− y|p dγH1 +

∫
Rd×Σ

|x− y|p dγexc =

∫
Rd×Rd

|x− y|p dγ

Since γ is a minimizer of (QΛ), both inequalities must be equalities, in particular
we must have ∫

Rd×Rd

(|x− y|p − |x− πΣ(x)|p) dγexc = 0.

Since γ-a.e. (x, y) is in Rd×Σ, the integrand is nonnegative and must vanish γexc-a.e.
Hence (x, y) ∈ Graph(ΠΣ) for γexc-a.e. (x, y) and (5.7) follows since Graph(ΠΣ) is
closed. As a consequence, the measure νH1 + πΣ♯ρexc reaches the minimimum for

(PΛ) and is optimal. □

5.2. Solutions are absolutely continuous. Now we prove that the solutions to
the relaxed problem (PΛ) are absolutely continuous w.r.t. H1 Σ. The proof is
based on the construction of a localized variational problem.

Lemma 5.2. Let ν be an optimal solution for the relaxed problem (PΛ) and set
α = L(ν). Let S = S0 × S1 ⊂ Rd ×Rd be a Borel set and define the transportation
plan

γS
def.
= γexc S0 × S1

along with its marginals

ρS
def.
= π0♯γS = ρexc S0, νS

def.
= π1♯γS .
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Then the measure νS solves the following variational problem

(5.8) inf

W p
p (ρS , ν

′) :
ν′ ∈ M+(Σ ∪ Γ),
ν′ ≥ α−1H1 Γ,

Σ ∪ Γ ∈ A, ν′(Rd) = νS(Rd)


More generally, let (σS,t)t∈[0,1] be the constant speed geodesic between ρS and νS

defined through σS,t
def.
= π(1−t)♯

γS , where πt(x, y)
def.
= (1 − t)x + ty. Then for any

t ∈ [0, 1], the measure νS minimizes the variational problem

(5.9) inf

W p
p (σS,t, ν

′) :
ν′ ∈ M+(Σ ∪ Γ),
ν′ ≥ α−1H1 Γ,

Σ ∪ Γ ∈ A, ν′(Rd) = νS(Rd)

 .

Proof. See Appendix A. □

We now craft a specific set S to apply the lemma. Given δ > 0, we define the
set

Dδ
def.
=
{
x ∈ supp ρexc : δ ≤ dist(x,Σ) ≤ δ−1

}
,(5.10)

And for a fixed point y0 ∈ Σ, and δ, r > 0 consider the new transportation plan

(5.11) γδ,r
def.
= γexc Dδ ×Br(y0)

along with its marginals

(5.12) ρδ,r
def.
= π0♯γδ,r ≤ ρexc Dδ, νδ,r

def.
= π1♯γδ,r.

From Lemma 5.2 it holds that

(5.13) νδ,r ∈ argmin

W p
p (ρδ,r, ν

′) :
ν′ ∈ M+(Σ ∪ Γ),
ν′ ≥ α−1H1 Γ,

Σ ∪ Γ ∈ A, ν′(Rd) = νδ,r(Rd)

 .

We also introduce

(5.14) γδ
def.
= γexc Dδ × Σ and νδ

def.
= π1♯γδ,

so that by definition, νδ,r = νδ Br(y0) and νexc can be further decomposed as
νexc = νδ + π1♯

(
γexc Dc

δ × Rd
)
. As Dδ is a nested sequence of sets, (νδ)δ>0 is a

monotone sequence and taking the limit as δ → 0 we have

(5.15) νexc = sup
δ>0

νδ + ρexc Σ,

the second limit being ρexc Σ because of Lemma 5.1 and since the only projection
of a point in Σ is itself.

In the next Theorem 5.4 we show that the measures νδ have a uniform L∞

bounded density w.r.t. H1. So when ρ0 ≪ H1, (5.15) shows that any optimal
ν ≪ H1. The argument consists in crafting a competitor for the localized problem
(5.13), built as a measure supported on a curve on small spheres around an excess
point, in some sense “closer” to ρ0, and with controlled length. This construction
is illustrated in Figure 2.

Lemma 5.3. Let B2 be the ball on Rd centered at the origin. There exists a
connected set Γd ⊂ ∂B2 with H1(Γd) < +∞ and such that

dist(x,Γd) ≤ |x− y| − 1

2
for any x ̸∈ B2 and for all y ∈ B1.
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Σ

2r < δ

y0

νexc(Br(y0))

r
≫ 1

Σ′ = Σ ∪ Γr

2r < δ

Γ ⊂ ∂B2(0)

H1(Γ) = Ld < ∞

Γr
def.
= y0 + rΓ

H1(Γr) = Ldr

Rescaling

Figure 2. Scheme of the proof of Thm. 5.4. For the new com-
petitor, created with the curve Γ from Lemma 5.3, we pay a little
more in the transportation cost to generate α−1H1 Γr, but pay
much less by projecting the remaining mass onto it.

Proof. We start by covering the sphere ∂B2 with finitely many balls
(
B1/2(xi)

)Nd

i=1
,

each having radius 1/2. The number of balls Nd being dependent on the dimension.

In the sequel we define Γd with geodesics on ∂B2 connecting the centers (xi)
Nd

i=1.
As we have finitely many points, we will also have finitely many curves and

hence H1(Γd) must also be finite. We can even choose the connected set Γd with
minimal length, which is a solution to Steiner’s problem on the spheres and has
a tree structure, so that we can bound H1(Γd) ≤ (Nd − 1)Dd, where Dd is the
diameter of ∂B2 in its Riemannian metric.

To prove the desired property, take x ̸∈ B2 and y ∈ B1. Let {ŷ} = [x, y] ∩ ∂B2.
Then ŷ ∈ B1/2(xi) for some xi while |x− ŷ| ≤ |x− y| − 1, and it follows that

dist(x,Γd) ≤ |x− xi| ≤ |x− ŷ| + |ŷ − xi| ≤ |x− y| − 1

2
.

□

Theorem 5.4. Given ρ0 ∈ Pp(Rd), let ν be a solution to (PΛ). Then it holds that
the measures (νδ)δ>0 are of the form

νδ = θδH1 Σ, with ∥θδ∥L∞(Σ,H1) ≤
9

2

Cd

L(ν)
,

for Cd = 2 + H1(Γd), Γd being the set from Lemma 5.3.
Therefore, if ρ0 ≪ H1 or has a L∞ density w.r.t. H1, so does ν, in particular it

is a rectifiable measure.

Proof. For y0 ∈ Σ, let us define the one-dimensional upper density [3, Def. 2.55]

θδ(y0)
def.
= lim sup

r→0

ν(Br)

2r
.

We will show that θδ(y0) ≤ 9
2

Cd

L(ν) , so that thanks to [3, Thm. 2.56], νδ ≪ H1 Σ.

Since Σ is 1-rectifiable, it follows that for H1-a.e. y0 ∈ Γ, θδ(y0) is the Radon-
Nikodým derivative of νδ w.r.t. H1 Σ, and the claim of the theorem follows.
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From the optimality of ν, the measure νδ,r solves problem (5.13). In order to
build a competitor we consider the set Γd from Lemma 5.3, choose some point
ȳ ∈ Γd and define

Γr
def.
= [y0, y0 + rȳ] ∪ (y0 + rΓd) ,

which is contained in B2r(y0). Notice that Σ ∪ Γr is always a compact, connected
and 1-rectifiable set and one has

H1(Γr) = Cdr,

where Cd = 2 + H1(Γd) is a constant depending only on the dimension.
In the sequel, setting α = L(ν) we define the following parameter

mr
def.
=

H1(Γr)

ανδ(Br)
.

Suppose that Cd/α < 2θδ(y0). Then,

1 > m0
def.
=

Cd

2αθδ(y0)
= lim inf

r→0
mr.

Now, we consider a subsequence (rk)k∈N ↘ 0 such that limk→∞mrk = lim infr→0mr.
In particular, mrk ∈ (0, 1) for rk sufficiently small. For simplicity, in the sequel, we
drop the subscript k, yet we consider only r ∈ {rk}k∈N.

Let γΓr
be an optimal transportation plan between mrρδ,r and α−1H1 Γr for

the Wasserstein-p distance and define the new plan

γ̃δ,r
def.
= γΓr

+ (1 −mr) (id, πΓr
)♯ ρδ,r, and ν̃δ,r

def.
= π1♯γ̃δ,r,

where πΓr
is a measurable selection of the projection operator onto Γr, this con-

struction is illustrated in Figure 2. Therefore ν̃δ,r is admissible for (5.13) and we
have the following estimate

W p
p (ρδ,r, ν̃δ,r) ≤

∫
Rd×Rd

|x− y|pdγΓr
+

∫
Rd

dist(x,Γr)pdρδ,r.

We will estimate each term of the previous inequality separately. For the first
one, notice that as supp γΓr

⊂ Π−1
Σ (Br(y0)) ×B2r(y0), it holds that

|x− y| ≤ dist(x,Σ) + 3r, for γΓr -a.e. (x, y).

For the second term, as the projection of x onto Σ is inside Br(y0), if follows from
Lemma 5.3 that

dist(x,Γr) ≤ dist(x,Σ) − r

2
, for dist(x,Σ) > 2r.

Therefore, for a fixed δ and taking 2r < δ, the Wasserstein distance is bounded by

W p
p (ρδ,r, ν̃δ,r) ≤ mδ,r

∫
Rd

(dist(x,Σ) + 4r)
p

dρδ,r

+ (1 −mδ,r)

∫
Rd

(dist(x,Σ) − r/2)
p

dρδ,r
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Notice that W p
p (ρδ,r, νδ,r) =

∫
Rd

dist(x,Σ)pdρδ,r, so in order to compare the

Wassertein distances we use the following inequalities

(dist(x,Σ) + 4r)
p ≤ dist(x,Σ)p + 4rp (dist(x,Σ) + 4r)

p−1(
dist(x,Σ) − r

2

)p
≤ dist(x,Σ)p − r

2
p
(

dist(x,Σ) − r

2

)p−1

which follow from the convexity of t 7→ |t|p. Then, given ε > 0, if r ≤ δε one
deduces, for dist(x,Σ) ≥ δ, that:

(dist(x,Σ) + 4r)
p ≤ dist(x,Σ)p + 4rp(1 + 4ε)p−1 dist(x,Σ)p−1(

dist(x,Σ) − r

2

)p
≤ dist(x,Σ)p − r

2
p
(

1 − ε

2

)p−1

dist(x,Σ)p−1.

Therefore it holds that

W p
p (ρδ,r, ν̃δ,r) ≤W p

p (ρδ,r, νδ,r) + pr∆r,ε

∫
Rd

dist(x,Σ)p−1dρδ,r

for ∆r,ε = 4mr (1 + 4ε)
p−1 − 1 −mr

2

(
1 − ε

2

)p−1

Hence from the optimality of νδ,r we have ∆r,ε ≥ 0, so that letting r → 0 and then
ε→ 0, it must hold that 4m0 ≥ (1 −m0)/2, that is:

θδ(y0) ≤ 9

2

Cd

α
.

As a result, the family (νδ)δ>0 has a uniform L∞ density bounds, and so does the

limit measure supδ>0 νδ = (supδ>0 θδ)H1 Σ. But as the exceeding measure can
be decomposed as (5.15) we deduce that whenever the initial measure ρ0 ≪ H1 or
has a L∞ density w.r.t. H1, so does the solution ν.

□

6. Existence of solutions to (PΛ)

This section is dedicated to the proof of Theorem 1.1, item (2). Knowing that the
excess measure is absolutely continuous (Theorem 5.4), we use a blow up argument
near a rectifiability point y0 of Σ. From Lemma 5.2, the blow-ups of νexc minimize a
family of functionals (Fr)r>0, which in turn Γ-converge to some functional F . Since
these blow-ups also converge (for H1-a.e. y0) to a uniform density on Ty0

Σ, this
limit measure must also minimize the Γ-limit F . Yet if it is not zero, we can build
a better competitor (Lemma 6.3 below), giving a contradiction to the minimality
of the uniform measure. We deduce that νexc vanishes.

6.1. Blow-up and Γ-convergence. From Theorem 5.4, given a minimizer ν, the
excess measure has the form

νexc = θH1 Σ, where θ ∈ L1(H1 Σ;R+).

Now, given y0 ∈ Σ, we use Lemma 5.2 with the choice S0 × S1 = Dδ × Br(y0),
and we focus on the variational problem (5.9): we obtain the families of measures
(νδ,r)δ,r>0 and (σδ,r)δ,r>0 such that

(6.1) νδ,r ∈ argmin

W p
p (σδ,r, ν

′) :
ν′ ∈ M+(Σ ∪ Γ),
ν′ ≥ α−1H1 Γ,

Σ ∪ Γ ∈ A, ν′(Rd) = νδ,r(Rd)

 ,
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where (σδ,t)t∈[0,1] is a family of geodesic interpolations (σδ,r = π(1−r)♯
γδ,r), and from

Lemma 5.1 the optimal transportation plan between νδ,r and σδ,r is supported on
graph(ΠΣ).

From Theorem 5.4, νδ,r = θδH1 Σ ∩ Br, so in the rest of this section we fix
δ > 0 and, assuming νδ,r ̸= 0, we choose y0 ∈ Σ such that:

(6.2) there exists Ty0
Σ and y0 is Lebesgue point of θδ s.t. θδ(y0) > 0.

Localizing νδ,r around y0, by the blow-up Theorem 2.4 (see also [3, Theo. 2.83]),
it holds that

(6.3) r−1Φy0,r
♯ νδ,r

⋆−−−⇀
r→0

θδ(y0)H1 [−τ, τ ], where Rτ = Ty0
Σ.

Up to a subsequence (not labelled) we also have:

(6.4) r−1Φy0,r
♯ σδ,r

⋆−−−⇀
r→0

σy0 .

By construction σδ,r is supported on {rδ−1 ≥ dist(·,Σ) ≥ rδ}, so that suppσy0 ⊂
{x : δ−1 ≥ dist(x,Σ) ≥ δ}

In the sequel, notice that for any given measures µ, ν we have

(6.5) W p
p

(
1

r
Φy0,r

♯ µ,
1

r
Φy0,r

♯ ν

)
=

1

rp+1
W p

p (µ, ν) .

Renormalizing the blow-up sequences in (6.3),(6.4), we define

(6.6) ν̄r
def.
=

2θδ(y0)

νδ(Br)
Φy0,r

♯ νδ,r, σ̄r
def.
=

2θδ(y0)

νδ(Br)
Φy0,r

♯ σδ,r

(since δ remains fixed we drop the index to simplify the notation). In addition,
recalling Σr = r−1(Σ − y0) ∩B1, we define a family of functionals (Fr)r>0 as

(6.7) Fr(ν)
def.
=


W p

p (σ̄r, ν) ,
ν ∈ M+ (Σr ∪ Γ) ,
ν ≥ α−1H1 Γ,

Σ ∪ Γ ∈ A, Γ ⊂ B1(0), ν(B1(0)) = 2θδ(y0),

+∞, otherwise,

from the definition of νδ,r, σδ,r in (6.1) and (6.5) we know that for any r > 0 it
holds that ν̄δ,r ∈ argminFr.

The natural candidate for the limit of this family is the following:

(6.8) F (ν)
def.
=


W p

p (σy0 , ν) ,

ν ∈ M+ ([−τ, τ ] ∪ Γ) ,

ν ≥ α−1H1 Γ,

[−τ, τ ] ∪ Γ ∈ A, Γ ⊂ B1, ν(B1(0)) = 2θδ(y0),

+∞, otherwise.

We prove in Theorem 6.1 below that Fr Γ-converges to F as r → 0. We refer to
[9, 6] and in particular to [6, Def. 1.24]) for the definition of the (lower and upper)
Γ-limit. It follows that θδ(y0)H1 [−τ, τ ] must be a minimizer of F (as the limit
of minimizers of Fr). The estimate from below of the Γ-liminf is obtained with the
tools developed so far, while estimating the Γ-limsup will require an appropriate
construction illustrated in Figure 3.

Theorem 6.1. The family of functionals (Fr)r>0 Γ-converges to F .
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Figure 3. Transportation argument for the construction of a re-
covery sequence in the Γ convergence of (Fr)r>0.

Proof. Γ-liminf: we consider an infinitesimal sequence (rn)n∈N such that (νn)n∈N
converges to ν in the weak sense, and that lim infn→∞ Frn(νn) < ∞ for all n ∈ N
(or at least for a subsequence), otherwise there is nothing to prove.

First we look at the first marginals in the definition of Frn . From the blow-up of
σr and the choice of y0 as Lebesgue point of the density, (6.4) and (6.2), it follows

that the renormalized measures σ̄rn
⋆−−−−⇀

n→∞
σy0 .

By lower semi-continuity of the Wasserstein distance w.r.t. the narrow conver-
gence, if we prove that F (ν) <∞, that is if the limit satisfies the constraints in the
definition of F , we will have that

F (ν) ≤ lim inf
n→∞

Frn(νn).

As ανn ≥ H1 Γn for some Γn ⊂ B1(0) such that r−1
n (Σ − y0) ∪ Γn ∈ A,

Blaschke’s Theorem [3, Thm. 6.1] and the blow up of Σ in Lemma 2.5 imply that,

up to a subsequence, Γn
dH−−−−→

n→∞
Γ and r−1

n (Σ − y0)
K−−−−→

n→∞
Rτ . Hence:

Ξn
def.
=

(
Σ − y0
rn

)
∪ Γn

K−−−−→
n→∞

Ξ
def.
= Rτ ∪ Γ.

In addition, as Σ∪Γn is connected, Ξ is connected, and since Γ ⊂ B1, it follows that
also [−τ, τ ] ∪ Γ is connected and belongs to A. The fact that supp ν ⊂ [−τ, τ ] ∪ Γ
comes from the weak convergence of νrn to ν. As this convergence takes place in a
compact set it also holds that ν(B1(0)) = lim

n→∞
νrn(B1(0)) = 2θ(y0).

It only remains to verify the density constraints, αν ≥ H1 Γ (to simplify,
we assume that H1(Rτ ∩ Γ) = 0, otherwise we can simply rename Γ \ Rτ as Γ).
Although νn ≥ αH1 Γn, we cannot apply Golab’s Theorem to νn since we do not
have an upper bound on the number of connected components of Γn.

What we do know is that the sequence Ξn = r−1
n (Σ − y0) ∪ Γn satisfies the

assumptions of Theorem 2.2. So we consider the measures α−1H1 Σ + ν′n ≥
α−1H1 (Σ ∪ Γn) and analyse their blow up sequences. We know that

H1

(
Σ − y0
rn

)
+ ανn ≥ H1

(
Σ − y0
rn

∪ Γn

)
,

where the left hand side converges weakly to α−1H1 Rτ+ν and for the right hand
side we can extract a convergent subsequence. This is true since y0 is a rectifiability
point hence the part H1 r−1

n (Σ − y0) converges to the approximate tanget space;
the remaining mass H1 Γn is bounded. Hence,assuming that the RHS converges



26 ANTONIN CHAMBOLLE, VINCENT DUVAL, AND JOÃO MIGUEL MACHADO

in the weak-⋆ sense to λ, Golab’s Theorem 2.2 implies that λ ≥ α−1H1 (Rτ ∪ Γ).
We conclude that H1 Rτ + αν ≥ H1 (Rτ ∪ Γ), and therefore

αν ≥ H1 Γ.

Γ-limsup: The strategy to prove the limsup is illustrated in Figure 3, and roughly
explained as follows. Given some ν such that F (ν) < ∞ and the corresponding
Γ, first we transport the mass over [−τ, τ ] to a measure supported over the set

Σr
def.
= r−1(Σ − y0). Then, if Γ already touches (Σ − y0)/r, we don’t need to do

anything and let Γr = Γ. Otherwise, we translate Γ (and the measure ν Γ) until
it touches Σr, in order to preserve connectedness. Luckily, these transportation
operations are of order dH([−τ, τ ],Σr), which goes to zero, from 2.5. Hence, the
family of measures obtained will converge to ν and have finite Fr energy.

To be more precise, given ν such that F (ν) < +∞, then it has a support of the
form:

supp ν ⊂ S = [−τ, τ ] ∪
⋃
i∈N

Γi,

where (Γi)i∈N is the set of pairwise disjoint connected components of S \ [−τ, τ ]

and αν Γi ≥ H1 Γi.

Let us start by handling the mass over ντ
def.
= ν [−τ, τ ]. It suffices to trans-

port it to a nonnegative measure supported on Σrn . To this aim, we consider Pn

any measurable selection of the projection ΠΣrn
. By definition of the Hausdorff

distance, for any x ∈ [−τ, τ ],

|x− Pn(x)|p = dist (x,Σrn)
p ≤ dH ([−τ, τ ],Σrn)

p
.

So the Wasserstein distance between the measures Pn♯ντ and ντ can be bounded
from above by

W p
p (ντ , Pn♯ντ ) ≤

∫
[−τ,τ ]

dist (x,Σrn)
p

dντ ≤ dH ([−τ, τ ],Σrn)
p
ν([−τ, τ ]) −−−−→

n→∞
0,

as Σr converges to [−τ, τ ] in the Hausdorff sense.
Next we translate the mass over the connected components Γi until they touch

Σrn . Let h ∈ Rd and define the translation map Th : Rd ∋ x 7→ x − h. Then for a
given measure ν supported on Γ, it holds that supp

(
Th♯ν Γ

)
= Th(Γ).

So, if Γi ∩ Σrn = ∅, as the set [−τ, τ ] ∪ Γ is connected, we consider some point
yi ∈ [−τ, τ ] ∩ Γi and we take hi, with minimal norm such that yi − hi ∈ Σrn .
But then by definition, |hi| = d (yi,Σrn). And finally, estimating the Wasserstein
distance we have that

W p
p (ν Γi, Thi,♯ν Γi) ≤

∫
Γi

|y − Thi
(y)|pdν = |hi|pν(Γi)

≤ dH([−τ, τ ],Σrn)pν(Γi)

Therefore, defining a map Tn as follows

Tn(y)
def.
=

{
Pn(y), if y ∈ [−τ, τ ],
Thi

(y), if y ∈ Γi

we see that if νn
def.
= Tn♯ν,

W p
p (ν, νn) ≤ dpH([−τ, τ ],Σrn)

(
ν([−τ, τ ]) +

∑
i∈N

ν(Γi)

)
−−−−→
rn→0

0
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and in particular νn ⇀ ν. Finally, we get νn(B1(0)) = ν(B1(0)) = 2θδ(y0) and we
conclude that Frn(νn) < ∞, for all n ∈ N. By the continuity of the Wasserstein
distance with respect to the weak convergence, we have that:

Frn(νn) −−−−→
n→∞

F (ν).

The Γ-convergence follows. □

Now that we have characterized the limit problem, we show that the optimal
transportation is given by projections as the blow-up family.

Lemma 6.2. The optimal transportation plan between the measure σy0 , defined
in (6.4), and λy0 = θδ(y0)H1 [−τ, τ ], defined in (6.3), is unique and given by the
projection map Π[−τ,τ ].

Proof. Consider a family γ̄r of optimal transportation plans from σ̄r to ν̄r. Up to
a subsequence it converges to some γ̄y0 , which, by the stability of optimal trans-
portation plans, also transports σy0 to λy0 optimally. Since σ̄r, ν̄r are generated by
the pushforward of νexc Br(y0) by Φy0,r, from Lemma 5.1 we know that

supp γ̄r ⊂ graph (ΠΣr
) .

Let us show that supp γ̄y0 ⊂ graph
(
Π[−τ,τ ]

)
. Indeed if (x, p) ∈ supp γ̄y0 , there

is an open ball B centered at (x, p) such that

0 < γ̄y0(B) ≤ lim inf
r→0

γ̄r(B).

In particular, we can find supp γ̄r ∋ (xr, pr) −−−→
r→0

(x, p). So it holds that

|x− p| = lim
r→0

|xr − pr| = lim
r→0

dist (xr,Σr) = dist(x, [−τ, τ ]),

where the last equality comes from the uniform convergence of the distance func-

tions, recalling from Lemma 2.5 that Σr
dH−−−→
r→0

[−τ, τ ].

Now we show that this property is true for any other optimal plan. Consider
γy0 transporting σy0 to λy0 optimaly, then by the optimality of γ̄y0 it holds that∫

Rd

(dist(x, [−τ, τ ]))pdσy0 =

∫
|x− y|pdγ̄y0 =

∫
|x− y|pdγy0

≥
∫

(dist(x, [−τ, τ ]))pdγy0 =

∫
Rd

dist(x, [−τ, τ ])pdσy0 .

Since |x− y| − dist(x, [−τ, τ ]) ≥ 0 for γy0 -a.e. (x, y) and the inequality above must
be an equality, we must have supp γy0 ⊂ graph

(
Π[−τ,τ ]

)
for any optimal γy0 . In

particular, as Π[−τ,τ ] is univalued, it means that the optimal transportation plan is
unique and given by the projection map. □

6.2. Competitor for the limit problem and existence for (PΛ). We now show
that if θδ > 0 on a set of positive measure, we reach a contradiction, by building a
better competitor for the Γ-limit problem. It follows from Theorem 6.1 that:

λy0
def.
= θδ(y0)H1 [−τ, τ ] ∈ argminF,

where F is defined in (6.8). In addition, Lemma 6.2 shows that that the optimal
transportation of σy0 to λy0 is given by the orthogonal projection. We show that
we can lower the energy by projecting part of the mass to a (closer) horizontal line
as in Figure 4. This contradicts the existence of rectifiability points of Σ such that
θδ(y0) > 0 so that νδ ≡ 0, and shows the following Lemma:
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[−ed, ed]

δ/2

ℓ(ε′)

s + ε′

s− ε′

supp θi

s

Figure 4. Construction of a competitor for the minimization of F .

Lemma 6.3. For any δ > 0, the measures νδ defined in (5.14) vanish.

Proof. Up to a rotation, we may assume that τ = ed, where (ei)
d
i=1 is a basis of Rd.

Since σy0 is supported on
{
x = (x′, xd) ∈ Rd : |x′| > δ, |xd| ≤ 1

}
, we can cover its

support with finitely many sets (Ei)
N
i=1 defined as:

Ei
def.
=
{
x = (x′, xd) ∈ Rd : ⟨ξi, x⟩ > δ/2, |xd| ≤ 1

}
where ξi ∈ Sd−1∩ [ed]⊥ are unit vectors and N depends only on the dimension. We
then define a disjoint family

F1 = E1, Fi+1 = Ei+1 \
i⋃

j=1

Fi for i ≥ 1

and decompose our measures σy0 and λy0 as

σy0 =

N∑
i=1

σi, λ
y0 =

N∑
i=1

λi where σi
def.
= σy0 Fi and λi

def.
= projd♯σi,

with projd : x 7→ xded the projection onto the vertical axis. By Radon-Besicovitch’s
differentiation theorem, λi = θiH1 [−ed, ed], where θi(s) = θi(sed) ≥ 0 are such
that

N∑
i=1

θi = θδ(y0).

Consider s̄ ∈ (−1, 1) a common Lebesgue point of all θi, i = 1, . . . , N . Let i
be the index for which θi(s̄) is maximal: then θi(s̄) ≥ θδ(y0)/N . Up to a change
of coordinates, we assume that ξi = e1, and we introduce the notation: Rd ∋ x =
(x1, x

′′, xd) for x′′ ∈ Rd−2. Let now:

Cε
def.
= Fi ∩ {x ∈ Rd : |xd − s̄| < ε} ⊂ {x = (x1, x

′′, xd) : x1 > δ/2, |xd − s̄| < ε} .
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We obtain, from the fact that (projd)♯σi = θiH1 [−ed, ed], that

σi(Cε)

2ε
=

1

2ε

∫ s̄+ε

s̄−ε

θi(t)dt −−−→
ε→0

θ
def.
= θi(s̄) ≥

θδ(y0)

N
.

Now, assume by contradiction that θ > 0. If ε is small enough, we have:

(6.9) θ ≤ σi(Cε′)

ε′
≤ 3θ.

for all ε′ ≤ ε. Now let us exploit the fact that, from Lemma 6.2, the optimal
transport is given by projections to propose a new transportation map, sending the
mass in Cε to a segment pointing towards e1:

T (x)
def.
=

{
ℓ(|xd − s̄|)e1 + s̄ed, if x ∈ Cε

projd(x), otherwise,

where ℓ : [0, ε] → R+ is defined via the conservation of mass relation

(6.10) ℓ(ε′) = ασi(Cε′).

In other words, the mass that was sent to the vertical segment [s̄ − ε′, s̄ + ε′]ed
is now sent to the horizontal segment s̄ed + [0, ℓ(ε′)]e1, for each ε′ ∈ [0, ε]. This
construction is illustrated in Figure 4.

Thanks to (6.10), the map T sends σi Cε to the measure α−1H1 L where

L
def.
= s̄ed+[0, ℓ(ε)]e1, hence, the transported measure T♯σ

y0 satisfies the constraints
in the definition (6.8) of the limiting functional F and one has F (T♯σ

y0) < +∞.
We shall now see that for each point x ∈ Cε with xd ̸= s̄, it holds that

(6.11) |x− projd(x)|p > |x− T (x)|p.

To show (6.11), recalling the notation x = (x1, x
′′, xd), it suffices that

|x− projd(x)|2 > |x−T (x)|2

⇐⇒ x21 + |x′′|2 > (x1 − ℓ(|xd − s̄|))2 + |x′′|2 + (xd − s̄)2

⇐⇒ 2x1ℓ(|xd − s̄|) > ℓ(|xd − s̄|)2 + (xd − s̄)2.

In addition to (6.9), we choose ε in such a way that for any x ∈ Cε we have

αθ|xd − s̄| ≤ ℓ(|xd − s̄|) = ασi(C|xd−s̄|) ≤ 3αθε <

(
1 +

1

(αθ)2

)−1

δ

and hence

ℓ(|xd − s̄|)2 + (xd − s̄)2 ≤
(

1 +
1

(αθ)2

)
ℓ(|xd − s̄|)2 < δℓ(|xd − s̄|)

≤ 2x1ℓ(|xd − s̄|),

for all x ∈ Cε, with xd ̸= s̄, so that (6.11) holds. Since θ = θi(s̄) > 0, it follows that

F (T♯σ
y0) = W p

p (σy0 , T♯σ
y0) < W p

p (σy0 , λy0) = F (λy0).

This contradicts the fact that θδ(y0)H1 [−ed, ed] is a minimizer of F , showing that
we must have θi(s̄) = 0 and, in turn, θδ(y0) = 0. As this holds for H1-a.e. point
y0 ∈ Σ, we deduce that νδ ≡ 0. □
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The previous lemma, combined with the caracterization of solutions, as in (5.15),

ν = α−1H1 Σ + sup
δ>0

νδ + ρexc Σ

proves point (2) of Theorem 1.1, giving existence of solutions of our original prob-
lem (PΛ) whenever the initial measure ρ0 does not give mass to 1-dimensional sets.
In fact, we have proven the following, slightly stronger, result.

Theorem 6.4. Let ρ0 ∈ Pp(Rd) and suppose that the parameter Λ < Λ⋆. Then the

solution to the relaxed problem (PΛ) is of the form

ν = L(ν)−1H1 Σ + ρexc Σ,

where ρexc was defined in (5.4).
In addition, if ρ0 does not give mass to 1-rectifiable sets, any solution of the

relaxed problem (PΛ) corresponds to a solution of the original shape optimization
problem (PΛ).

Remark 6.5. In the characterization of solutions given by

ν = α−1H1 Σ + ρexc Σ,

the last term is reminiscent of Lemma 5.1, that says that the excess measure νexc
is formed through projections. Indeed, rewriting it as

νexc = sup
δ>0

νδ + ρexc Σ,

as in equation (5.15), we have shown that in Lemma 6.3 that the components νδ
coming from a distance δ to Σ are in fact null.

7. Ahlfors regularity

In this section we prove that whenever the initial measure ρ0 ∈ L
d

d−1 (Rd), the
optimal solutions to the relaxed problem (PΛ) have an Ahlfors regular support.

Definition 7.1. We say that a set Σ ⊂ Rd is Ahlfors regular whenever there exist
r0 > 0 and c, C > 0 such that for r ≤ r0 it holds that

cr ≤ H1(Σ ∩Br(x)) ≤ Cr, for all x ∈ Σ.

We prove in this section the following result.

Theorem 7.1. If ρ0 ∈ L
d

d−1 (Rd), let ν be a solution of the relaxed problem (PΛ)
and Σ its support. Then Σ is Ahlfors-regular, there exist r0 > 0 depending on
d, p, ρ0 and α and C̄ > 0 depending only on d and p such that, for all x̄ ∈ Σ and
r ≤ r0,

r ≤ H1(Σ ∩Br(x̄)) ≤ C̄r.

The lower bound (with c = 1 and r0 = diam Σ) follows directly from the connect-
edness of Σ, hence we skip the proof. The upper bound will follow as a corollary
of Lemma 7.2 below. Let us describe the strategy for proving this estimate.

The idea is similar to proving the L∞ bound on the excess measure: if in a
small ball Br(x̄) the measure ν has too much mass, we build another “closer” 1D
structure onto which the mass is transfered at a smaller cost. Yet there is an
additional difficulty: when replacing Σ∩Br(x̄) with another set we should preserve
connectedness. In 5.4, we were rearranging only the excess mass and it was not an
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issue. It means we now need to control the number of connected components of
Σ \Br(x̄) and find a way to connect them back without adding too much length.

This number of connected components is controlled by the quantity H0(Σ ∩
∂Br(x̄)), which we can control on average by means of the generalized area for-
mula [3, Theorem 2.91]: If f : RM → RN is a Lipschitz function and E ⊂ RM is a
k-rectifiable set then it holds that

(7.1)

∫
RN

H0(E ∩ f−1(y))dHk(y) =

∫
E

JkdEfxdHk(x),

where dEfx is the restriction of ∇f(x) (when f is smooth) to the approximate
tangent space of E. Hence, choosing E = Σ∩ (Br1(x̄)\Br2(x̄)) and f : x 7→ |x− x̄|,
we deduce from (7.1) that

(7.2)

∫ r1

r2

H0(Σ ∩ ∂Bs(x̄))ds ≤ H1(Σ ∩Br1(x̄)) −H1(Σ ∩Br2(x̄))

Using this we first prove the following lemma:

Lemma 7.2. Assume ρ0 ∈ L
d

d−1 (Rd). There exist C̄(d, p) > 0 and r0 depending
on ρ0, α, d, p, such that for any C ≥ C̄, if r ≤ r0 and x ∈ Σ, then either
H1(Σ ∩Br(x)) ≤ Cr or H1(Σ ∩B2r(x)) ≥ 10Cr.

Proof. Let r > 0 and C ≥ 1, and let x̄ ∈ Σ such that both H1(Σ ∩ Br(x̄)) > Cr
and H1(Σ ∩ B2r(x̄)) < 10Cr. We show that if r ≤ r0 and C ≥ C̄, which will both
be chosen later, then we can contruct a better competitor to the minimizer ν.

The function f : s 7→ H1(Σ ∩ Bs(x̄)) is nondecreasing, hence in BV (R+) and
satisfies, thanks to (7.2), that H0(Σ ∩ ∂Bs(x̄))ds ≤ Df in the sense of measures
(equivalently, H0(Σ ∩ ∂Bs(x̄)) is less than, or equal to f ′(s)ds, the absolutely con-
tinuous part of Df).

We note that

inf
s∈(3r/2,2r)

(
sH0 (Σ ∩ ∂Bs(x̄))

H1(Σ ∩Bs(x̄))

)
≤ 2

r

∫ 2r

3r/2

sH0 (Σ ∩ ∂Bs(x̄))

H1(Σ ∩Bs(x̄))
ds

≤ 4

∫ 2r

3r/2

1

f(s)
f ′(s)ds

≤ 4 ln

(
f(2r)

f(3r/2)

)
,

where we have used the classical chain rule at almost every point and [3, Cor.
3.29]. Since f(2r)/f(3r/2) < (10Cr)/(Cr) = 10, we deduce that there exists
s̄ ∈ (3r/2, 2r) such that

(7.3) δ̄s̄H0(Σ ∩ ∂Bs̄(x̄)) ≤ H1(Σ ∩Bs̄(x̄)) where δ̄
def.
= 1

4 ln 10 .

Now, we let

(7.4) M = 2

(
1 + 10 ·

(
40

17

)p−1
)

(this choice will be made clear at the end of this proof) and we consider

(7.5) δ
def.
=

δ̄

10M
< δ̄ <

1

2
.
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We define a set Γ as follows: we choose a finite covering of ∂B1(0) with balls
B(xi, δ/2) centered at points (xi)

N
i=1 (the minimal number N depends only on d and

p, through δ). Then, we find a minimal tree connecting the points (xi)
N
i=1 through

geodesics on the sphere. We add to this minimal tree the segments [xi, (1 + δ)xi],

i = 1, . . . , N . We call Γ the resulting (connected) set, whose total length L
def.
=

H1(Γ) is of order at most 2Nδ and depends only on d and p. Notice that each
point of ∂B1 is at distance at most δ, along the geodesic curve on the sphere, to
a point of Γ, and that thanks to the “spikes” [xi, (1 + δ)xi], any point with, say,
|x| ≥ 10 is closer to a point of Γ than from any point in B1(0).

Now, we define

Γs̄
def.
= (x̄+ s̄Γ) ∪

⋃
x∈Σ∩∂Bs̄

Sx,

where Sx denotes a geodesic connecting x to x̄+ s̄Γ, of length at most H1(Sx) ≤ s̄δ.
Since s̄ < 2r and δ < 1/2, it follows that Γs̄ ⊂ B3r(x̄). We define the competitor
set as

Σ′ def.
= Σ \Bs̄(x̄) ∪ Γs̄.

The addition of the geodesics Sx ensures that Σ′ remains connected, and using (7.3),
we estimate the length of Γs̄ as

(7.6)
H1(Γs̄) ≤ Ls̄+ δs̄H0(Σ ∩ ∂Bs̄(x̄)) ≤ 2Lr + 1

10MH1(Σ ∩Bs̄(x̄))

< (2L+ C
M )r,

Now we define a new competitor ν′ whose support is Σ′. If γ denotes the optimal
transportation plan from ρ0 to ν, given s > 0 let

ρs
def.
= π0♯

(
γ

(
Rd ×Bs

))
denote the portion of the measure ρ0 which is transported to the ball Bs. In
particular, the above length estimates imply that

(7.7) Lr ≤ H1(Γs̄) < (2L+ C
M )r ≤ (2 L

C + 1
M )αν(Br) ≤ αρr(Rd) ≤ αρs̄(Rd),

where α
def.
= L(ν), and using that M ≥ 2 (see (7.4)) and assuming C̄ ≥ 4L (which

we recall depends only on d and p). But, if r is small enough (not depending on x̄,

by uniform equi-integrability of ρ
d/(d−1)
0 ) Holder’s inequality implies that

(7.8) αρs̄(B10r(x̄)) ≤ α∥ρ0∥
L

d
d−1 (B10r(x̄))

|B10r(x̄)| 1d ≤ Lr.

We fix r0 > 0, which depends only on the dimension (through L), the integrability
of ρ0, and α, such that the above inequality holds for r ≤ r0.

Equations (7.7)-(7.8) show that for r small enough, part of the mass transported
to ν Bs̄ must come from outside of the ball B10r. In particular, since t 7→ ρs̄(Bt(x̄))
is continuous, there is R > 10r such that

(7.9) ρs̄(BR(x̄)) = α−1H1(Γs̄).

To form the new competitor we use the following strategy: the mass sent to
Σ \ Bs̄ remains untouched, the mass ρs̄ BR previously used to form ν Bs̄ is
transported to α−1H1 Γs̄ and the remaining mass is projected onto Γs̄.

So, letting γ̃ denote the optimal transportation plan between ρs̄ BR and α−1H1

Γs̄, define the new plan

γ′ = γ Rd ×Bs̄(x̄)c + γ̃ BR × Rd + (id, πΓs̄
)♯ (ρs̄ Bc

R) ,
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and the new competitor ν′ as its second marginal. By construction, αν′ ≥ H1 Σ′

so that L(ν′) ≤ L(ν). We now estimate the gain in terms of transportation cost.

• For (x, y) ∈ BR × Bs̄ and for any y′ ∈ Γs̄ ⊂ B3r, as s̄ ≤ 2r and 10r < R,
the convexity of t 7→ tp yields

|x− y′|p ≤ (|x− y| + 5r)
p ≤ |x− y|p + 5rp (|x− y| + 5r)

p−1

≤ |x− y|p + 5rp(2R)
p−1

.

Hence integrating w.r.t. the transportation plans we get∫
BR×Γs̄

|x− y′|pdγ̃ ≤
∫
BR×Bs̄

|x− y|pdγ + 5rp (2R)
p−1

ρs̄ (BR) ,

(this can be checked by disintegration w.r.t. their common first marginal,
which is the measure ρs̄ BR).

• Similarly, for x ∈ Bc
R and y ∈ Bs̄ \ Br the addition of the spikes ensures

that

|x− πΓs̄
(x)| ≤ |x− y|.

However if x ∈ Bc
R and y ∈ Br it holds that

|x− πΓs̄
(x)| ≤ |x− y| − r

2
and |x− y| ≥ R− r,

so that once again using the convexity of t 7→ tp we have

|x− πΓs̄(x)|p ≤
(
|x− y| − r

2

)p
≤ |x− y|p − p

r

2

(
|x− y| − r

2

)p−1

≤ |x− y|p − p
r

2

(
17

20
R

)p−1

.

So, decomposing the integration for the points going to Br and to Bs̄ \Br,
this time the transportation cost can be bound by:∫

Bc
R

|x− πΓs̄(x)|pdρs̄ =

∫
Bc

R

|x− πΓs̄(x)|pd(ρs̄ − ρr) +

∫
Bc

R

|x− πΓs̄(x)|pdρr

≤
∫
Bc

R×Br̄

|x− y|pdγ − p
r

2

(
17

20
R

)p−1

ρr (Bc
R) .

We get:

W p
p (ρ0, ν

′) ≤W p
p (ρ0, ν) + 5rp (2R)

p−1
ρs̄ (BR) − p

r

2

(
17

20
R

)p−1

ρr (Bc
R) .

As L(ν′) ≤ L(ν), the optimality of ν gives that W p
p (ρ0, ν) ≤ W p

p (ρ0, ν
′), which,

along with the previous estimates, implies

0 ≤ 5 · 2p−1ρs̄ (BR) − 1

2

(
17

20

)p−1

ρr (Bc
R) ⇔ ρr (Bc

R) ≤ 10 ·
(

40

17

)p−1

ρs̄ (BR) .

On the other hand, since

ρr (BR(x̄)c) = ν(Br) − ρr(BR(x̄)) ≥ α−1Cr − ρr(BR(x̄)) ≥ α−1Cr − ρs̄(BR(x̄)),

and recalling (7.6) and (7.9), we deduce:

C ≤

(
1 + 10 ·

(
40

17

)p−1
)

(2L+ C
M )
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We conclude that with the choice (7.4) of M , one has C ≤ 2ML, which depends
only on p and d and a contradiction follows if we choose C̄ = 1 + 2ML. □

Proof of Theorem 7.1. Consider C̄, r0 from Lemma 7.2. Fix x ∈ Σ and assume
there is r ∈ (0, r0) such that H1(Σ ∩ Br(x)) ≥ C̄r. Then the thesis of the lemma
applies and it must hold that H1(Σ ∩B2r(x)) ≥ 10C̄r. By induction, we find that
for k ≥ 1, one of the following holds:

• either 2kr > r0;
• or we apply the lemma again, using that H1(Σ ∩ B2kr(x)) ≥ 5k−1C̄(2kr),

and we get

H1(Σ ∩B2k+1r(x)) ≥ 5kC̄(2k+1r).

Let k ≥ 1 be the first integer such that 2kr > r0, so that 2k−1r ≤ r0 and

5k−1C̄(2kr) ≤ H1(Σ ∩B2kr(x)).

Hence, r0 ≤ 2kr ≤ 5−k+1C̄−1H1(Σ) and it holds that k ≤ k0
def.
= log5(5H1(Σ)/C̄r0),

and

r ≥ r02−k ≥ r̄0
def.
= r0 · 2−k0 .

We find that if r ≤ r̄0 then for x ∈ Σ, H1(Σ ∩Br(x)) ≤ C̄r. □

Remark 7.3. It is interesting to observe here that the regularity constant C̄ depends
only on d and p, while the scale r̄0 at which the Ahlfors-regularity holds gets smaller
as ρ0 gets more singular or when α (or H1(Σ)) increases.

8. Conclusion

In this paper we have proposed a new variational problem, which serves as a
method for approximating a probability measure with a measure uniformly dis-
tributed over a segment. In order to prove existence we have passed through a
relaxed problem and the definition of a new functional on the space of probability
measures, the length functional, that generalizes the notion of length of the support
of a measure. As a tool for our analysis we have also generalized Golab’s Theorem
to the case of a sequence of sets converging in the Kuratowski sense. Even though
existence for the original problem was proved in a particular case, for measures in
R2 not giving mass to small sets. We have also managed to prove interesting prop-
erties of the solutions of the relaxed problem in any dimension, e.g. L∞ bounds
and Ahlfors regularity.

There are still many open questions left, for instance

• Does the support of minimizers have loops or are they trees?
• What is the regularity of the optimal Σ? Can we adapt the theory in [23]

and conclude they are locally C1,α curves?

• If νΛ is a solution to (PΛ), what is the rate of convergence of νΛ
⋆−−−→

Λ→0
ρ0?

• The blow-up analysis done in section 6 is very similar to the arguments
done in [30] for the blow-up of average distance minimizers. However, the
argment is applied to the excess measure and not to the entire solution.
Can we use similar tools to study the blow-ups of the optimal networks in
our problem as well?

• What are the Euler-Lagrange equations of (PΛ)? Can we use it to propose
efficient numerical algorithms to solve it?
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Appendix A. Localized variational problem

In this section, we prove Lemma 5.2, which states that the optimality of ν implies
that the exceeding measure νexc, or a slight modification of it, must satisfy a local-
ized optimization problem. Before proceeding we review the notation introduced
in the statement of the Lemma. Given an optimal transportation plan γ between
ρ0 and the minimizer ν, we recall the definition of γexc in (5.3) and we fix a general
Borel set S = S0 × S1 to define

γS
def.
= γexc S0 × S1

along with its marginals

ρS
def.
= π0♯γS = ρexc S0, νS

def.
= π1♯γS ,

Proof of Lemma 5.2: First, we fix some arbitrary Γ such that Σ ∪ Γ ∈ A. We
consider measures ν′ ∈ M+(Σ∪Γ) such that ν′(Rd) = νS(Rd) and ν′ ≥ α−1H1 Γ,
and we build competitors to ν of the form ν−νS +ν′. Such measures are supported
over Σ ∪ Γ ∈ A and

ν − νS + ν′ = νH1 + (νexc − νS) + ν′

≥ α−1H1 Σ + α−1H1 Γ ≥ α−1H1 (Σ ∪ Γ),

so that L(ν − νS + ν′) ≤ α = L(ν). By optimality of ν, we deduce that

W p
p (ρ0, ν) ≤W p

p (ρ0, ν − νS + ν′).

Now, as the support of γ is c-cyclically monotone (see [2, Def. 3.10 and Thm.
3.17]), so is the support of γS , making it an optimal transportation plan between
its marginals (see [2, Thm. 4.2]). Since the same argument applies to γ − γS , we
get

(A.1) W p
p (ρ0, ν) = W p

p (ρ0 − ρS , ν − νS) +W p
p (ρS , νS) .

Besides, let γ′ be an optimal transportation plan from ρS to ν′. Then (γ−γexc)+
γ′ is a transportation plan from ρ0 to (ν − νS + ν′), hence

W p
p (ρ0, ν) ≤

∫
|x− y|p dγS +

∫
|x− y|p dγ′ = W p

p (ρ0 − ρS , ν − νS) +W p
p (ρS , ν

′) .

Substracting (B.1), we deduce that W p
p (ρS , νS) ≤W p

p (ρS , ν
′) for all the admissible

variations ν′ of the excess measure.
As γS is an optimal transportation plan between ρS and νS , from [29, Theorem

5.27] one can define a constant speed geodesic between such measures as

σS,t
def.
= π(1−t)♯

γS , where πt(x, y)
def.
= (1 − t)x+ ty.

Hence for any variation ν′, admissible in the sense of the previous problem, and
for any t ∈ [0, 1], it holds that

Wp (ρS , σS,t) +Wp (σS,t, νS) = Wp (ρS , νS) ≤Wp (ρS , ν
′)

≤Wp (ρS , σS,t) +Wp (σS,t, ν
′) .

Where the equality comes from general properties of constant speed geodesics in
metric spaces, while the inequalities come from the minimality of νS and the triangle
inequality, respectively. We conclude that in fact, the measures νS minimize the
Wasserstein distance to the family of geodesic interpolations σS,t. □
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Appendix B. Kuratowski convergence and Golab’s Theorem

In this section, we prove Lemma 5.2, which states that the optimality of ν implies
that the exceeding measure νexc, or a slight modification of it, must satisfy a local-
ized optimization problem. Before proceeding we review the notation introduced
in the statement of the Lemma. Given an optimal transportation plan γ between
ρ0 and the minimizer ν, we recall the definition of γexc in (5.3) and we fix a general
Borel set S = S0 × S1 to define

γS
def.
= γexc S0 × S1

along with its marginals

ρS
def.
= π0♯γS = ρexc S0, νS

def.
= π1♯γS ,

Proof of Lemma 5.2: First, we fix some arbitrary Γ such that Σ ∪ Γ ∈ A. We
consider measures ν′ ∈ M+(Σ∪Γ) such that ν′(Rd) = νS(Rd) and ν′ ≥ α−1H1 Γ,
and we build competitors to ν of the form ν−νS +ν′. Such measures are supported
over Σ ∪ Γ ∈ A and

ν − νS + ν′ = νH1 + (νexc − νS) + ν′

≥ α−1H1 Σ + α−1H1 Γ ≥ α−1H1 (Σ ∪ Γ),

so that L(ν − νS + ν′) ≤ α = L(ν). By optimality of ν, we deduce that

W p
p (ρ0, ν) ≤W p

p (ρ0, ν − νS + ν′).

Now, as the support of γ is c-cyclically monotone (see [2, Def. 3.10 and Thm.
3.17]), so is the support of γS , making it an optimal transportation plan between
its marginals (see [2, Thm. 4.2]). Since the same argument applies to γ − γS , we
get

(B.1) W p
p (ρ0, ν) = W p

p (ρ0 − ρS , ν − νS) +W p
p (ρS , νS) .

Besides, let γ′ be an optimal transportation plan from ρS to ν′. Then (γ−γexc)+
γ′ is a transportation plan from ρ0 to (ν − νS + ν′), hence

W p
p (ρ0, ν) ≤

∫
|x− y|p dγS +

∫
|x− y|p dγ′ = W p

p (ρ0 − ρS , ν − νS) +W p
p (ρS , ν

′) .

Substracting (B.1), we deduce that W p
p (ρS , νS) ≤W p

p (ρS , ν
′) for all the admissible

variations ν′ of the excess measure.
As γS is an optimal transportation plan between ρS and νS , from [29, Theorem

5.27] one can define a constant speed geodesic between such measures as

σS,t
def.
= π(1−t)♯

γS , where πt(x, y)
def.
= (1 − t)x+ ty.

Hence for any variation ν′, admissible in the sense of the previous problem, and
for any t ∈ [0, 1], it holds that

Wp (ρS , σS,t) +Wp (σS,t, νS) = Wp (ρS , νS) ≤Wp (ρS , ν
′)

≤Wp (ρS , σS,t) +Wp (σS,t, ν
′) .

Where the equality comes from general properties of constant speed geodesics in
metric spaces, while the inequalities come from the minimality of νS and the triangle
inequality, respectively. We conclude that in fact, the measures νS minimize the
Wasserstein distance to the family of geodesic interpolations σS,t. □



37

References

[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the space of
probability measures. Springer Science & Business Media, 2008.
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