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D APPROXIMATION OF MEASURES IN WASSERSTEIN SPACES

We propose a variational approach to approximate measures with measures uniformly distributed over a 1 dimentional set. The problem consists in minimizing a Wasserstein distance as a data term with a regularization given by the length of the support. As it is challenging to prove existence of solutions to this problem, we propose a relaxed formulation, which always admits a solution. In the sequel we show that if the ambient space is R 2 , under techinical assumptions, any solution to the relaxed problem is a solution to the orginal one. Finally we manage to prove that any optimal solution to the relaxed problem, and hence also to the original, is Ahlfors regular.

Introduction

In this paper we study the following 1D-shape optimization problem: given a reference probability measure ρ 0 ∈ P p (R d ) (the set of probability measures ρ with R d |x| p dρ < +∞, p ≥ 1), we seek to approximate ρ 0 with measures supported over a connected subset of R d . This approximation is done by means of the following variational problem

(P Λ ) inf Σ∈A W p p (ρ 0 , ν Σ ) + ΛH 1 (Σ),
where the measure ν Σ is defined as

(1.1) ν Σ := 1 H 1 (Σ) H 1 Σ, for Σ ∈ A := Σ ⊂ R d : 0 < H 1 (Σ) < +∞ compact, connected. ,
and H 1 denotes the 1-dimensional Hausdorff measure in R d . The term W p denotes the usual Wasserstein distance on the space of probability measures (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][START_REF] Villani | Optimal transport: old and new[END_REF] and Section 2.1.2). One can trace the idea of approximating a probability measure by a 1D set back to the concept of principal curves from the seminal paper [START_REF] Hastie | Principal curves[END_REF], which extends linear regression to regression using general curves, and introduces a variational problem to define such curves. In this variational sense, a principal curve minimizes the expectation of the distance to the curve, w.r.t. a probability measure describing a data set (with some regularization to ensure existence). As proposed in [START_REF] Kégl | Learning and design of principal curves[END_REF], a length constraint is a simple and intrinsic way too ensure existence. The properties of such minimizers have been studied in detail in e.g. [START_REF] Yang | Average-distance problem for parameterized curves[END_REF][START_REF] Delattre | On principal curves with a length constraint[END_REF].

A further generalization consists in replacing the curve with a more general onedimensional compact and connected set, yielding the average distance minimizer problem introduced in [START_REF] Buttazzo | Optimal transportation networks as free dirichlet regions for the monge-kantorovich problem[END_REF], and its dual counterpart maximum distance minimizer problem [START_REF] Paolini | Qualitative properties of maximum distance minimizers and average distance minimizers in rn[END_REF][START_REF] Lemenant | A presentation of the average distance minimizing problem[END_REF]. Such problems were conceived for applications in urban planning, where one seeks to minimize the average distance to a transportation network, giving rise to the need for a larger class of 1D sets allowing for bifurcations.

While the above-mentioned problems only focus on some geometric approximation of the support of the measure, approximating a measure in the sense of weak convergence is sometimes more desirable. In [START_REF] Lebrat | Optimal transport approximation of 2-dimensional measures[END_REF][START_REF] Chauffert | A projection method on measures sets[END_REF], the authors have proposed optimal transport based methods for the projection of probability measures onto classes of measures supported on simple curves, using the Wasserstein distance as a data term. Potential applications range from 3D printing to image compression and reconstruction. In [START_REF] Ehler | Curve based approximation of measures on manifolds by discrepancy minimization[END_REF], the data fidelity term is chosen to be a discrepancy, see also [START_REF] Neumayer | From optimal transport to discrepancy[END_REF]. The advantage of using discrepancies is that approximation rates can be given independently from the dimension, being therefore a good alternative to overcome the curse of dimensionality. The problem we study is an attempt to generalize this class of problems to the approximation with one-dimensional connected sets.

One difficulty when studying (P Λ ) is that the class of measures ν Σ is not closed in the usual weak topologies considered for the space of probability measures. While a sequence of sets (Σ n ) n∈N in A with uniformly bounded length will have subsequences converging (in the Hausdorff sense) either to a point or a set in A, the corresponding measures ν Σn might converge to a measure which is not necessarily uniform on that set: longer parts of Σ n might concentrate in the limit on shorter parts of Σ. Hence minimzing sequences might in general converge to measures which are not of the form ν Σ , and we need to determine a proper relaxation of our energy. The relaxed energy has the form

(P Λ ) inf ν∈Pp(R d )
W p p (ρ 0 , ν) + ΛL(ν)

where L, the length functional, defined in Section 3.1, generalizes the notion of length of the support of a measure, having the property that L(ν) < ∞ if and only if supp ν ∈ A or ν is a Dirac mass. The following theorem gathers the various results proved throughout this paper.

Theorem 1.1. Let ρ 0 ∈ P p (R d ), Λ > 0. Then (P Λ ) admits a solution ν, and there exists Λ ≥ 0 such that if Λ > Λ , ν is a Dirac mass. For Λ < Λ , ν is supported by a set Σ ∈ A and the following properties hold.

(1) If ρ 0 is absolutely continuous w.r.t. H 1 , or has a L ∞ density w.r.t. H 1 ), then so does ν. (2) For d = 2, if ρ 0 does not give mass to 1D sets, then ν = ν Σ and therefore is a solution to the original problem (P Λ ).

(3) If ρ 0 ∈ L d d-1 (R d
), then Σ is Ahlfors regular, i.e. there is r 0 depending on d, p, ρ 0 and L(ν) and C depending only on d, p such that for any x ∈ Σ and r ≤ r 0 it holds that r ≤ H 1 (Σ ∩ B r (x)) ≤ Cr.

The paper is organized as follows: in Section 2 we recall a few tools from optimal transport and geometric measure theory. Next, in section 3 we go through the definition of the length functional and its properties as well as the relaxed problem and existence of solution for it. In section 4 we discuss the existence of Λ * . In Section 5 (Theorem 5.4) we prove point (1) from Theorem 1.1, while the existence in 2D is proved in Section 6 (Theorem 6.3), and the Ahlfors regularity is studied in Section 7.

Preliminaries

We start by introducing notions of convergence for sets and measures which will be useful to study problem (P Λ ) as well as the relaxed one (P Λ ). Next we describe some intrumental properties of the objects we shall use throughout the paper, namely the rectifiable sets and measures.

2.1. Convergence of sets and measures.

2.1.1. Hausdorff and Kuratowski convergence. We recall some useful definitions of convergence for sets, see for instance [START_REF] Tyrrell | Variational analysis[END_REF]Chap. 4], [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Chap. 6].

A sequence of closed subsets of R d (A n ) n∈N converges in the Hausdorff sense to A if d H (A n , A) ----→ n→∞ 0, where d H is called the Hausdorff distance and is defined as where dist(•, A) denotes the distance function to the set A. One can prove that this notion of convergence is equivalent to uniform convergence of the distance functions. Since the latter are all 1-Lipschitz, as a consequence of Arzela-Ascoli's Theorem it follows that if the sequence is contained in a compact set, one can always extract a convergent subsequence. This compactness result is known as Blaschke's Theorem, see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 6.1].

A sequence of closed sets C n converges in the sense of Kuratowski to C, and we write C n K ----→ n→∞ C, whenever the two properties hold:

(1) Given a sequence x n ∈ C n , all its cluster points are contained in C.

(2) For all points x ∈ C there exists a sequence x n ∈ C n , converging to x. Again, one can show that C n → C in the sense of Kuratowski if and only if dist(x, C n ) → dist(x, C) (possibly infinite if C = ∅) locally uniformly (see [START_REF] Tyrrell | Variational analysis[END_REF]Cor. 4.7]). In addition, Kuratowski convergence also induces a compact topology, i.e. any sequence of closed sets has a subsequence which converges, possibly to the empty set.

The following Lemma describes a relation between Hausdorff and Kuratowski convergences. We prove it in Appendix B.

Lemma 2.1. Let (C n ) n∈N be a sequence of closed sets in R d , converging to C in the sense of Kuratowski. Then, for any x ∈ R d , C n ∩ B R (x) d H ----→ n→∞ C ∩ B R (x), for every radius R > 0 such that C ∩ B R (x) = C ∩B R (x)
. Moreover, that condition holds for all R > 0 except in a countable set.

2.1.2.

Optimal transport and the Wasserstein distance. The Wasserstein distances W p are defined through the value function of an optimal transport problem, see [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][START_REF] Villani | Optimal transport: old and new[END_REF] for details. Given two probability measures µ, ν ∈ P p (R d ), we set

(2.2) W p p (µ, ν) def. = min γ∈Π(µ,ν) R d ×R d |x -y| p dγ,
where Π(µ, ν)

:= γ ∈ P R d × R d : π 0 γ = µ, π 1 γ = ν
is the space of transport couplings, and π i denote the projections, i.e. π 0 (x, y) = x and π 1 (x, y) = y.

Whenever µ does not have atoms, the value of (2.2) coincides with

(2.3) inf T µ=ν R d |x -T (x)| p dµ,
where the inf is taken over all measurable maps T such that T µ(A) = ν(A) = µ(T -1 (A)) for any Borel set A.

The optimal transport problem can be analogously defined for any pair of positive µ, ν on the space M(R d ) of Radon measures. In this case the Wasserstein distance becomes a 1-homogeneous functional and is finite if and only if the measures have finite p-moments and the same total mass µ(R d ) = ν(R d ).

Definition 2.1. Given a sequence (µ n ) n∈N ⊂ P(R d ), we say it converges in a weak sense to µ, if for a suitable space of functions X we have

R d φdµ n ----→ n→∞ R d
φdµ for all φ ∈ X.

When X = C b (R d
), the space of bounded continuous functions, we say that µ n converges narrowly to µ and we write µ ----n→∞ µ.

When X = C 0 (R d ), the space of continuous functions converging to 0 at infinity, we say that µ n converges to µ in the weak-sense and we write µ ----n→∞ µ.

The Wasserstein distance is l.s.c. with respect to the narrow convergence, and continuous in a compact domain, [START_REF] Villani | Optimal transport: old and new[END_REF]Lemma 4.3], on the other hand probability measures are compact for the weak-convergence (but the limit might not be a probability measure) [START_REF] Rudin | Real and Complex Analysis[END_REF][START_REF] Evans | Measure theory and fine properties of functions[END_REF]. Compactness for the narrow convergence needs the assumptions of Prokhorov's Theorem, see [START_REF] Ambrosio | Lectures on optimal transport[END_REF]Theorem 2.8].

For a general (open) domain Ω we have C c (Ω) ⊂ C 0 (Ω) ⊂ C b (Ω) with strict inclusion. If on the other hand Ω is a compact domain all these spaces coincide and so the notions of narrow and weak-convergence are equivalent.

2.2.

Golab's Theorem. We now study the lower semicontinuity of (P Λ ). First, "Go lab's Theorem" [START_REF] Go | Sur quelques points de la théorie de la longueur[END_REF] shows that along sequences of connected sets, H 1 is l.s.c. with respect to the Hausdorff convergence [START_REF] Morel | Variational methods in image segmentation: with seven image processing experiments[END_REF]Chapter 10]. It is of course also true if the sequence has a uniformly bounded number of connected components.

The issue is that the compactness of Hausdorff convergence is not transfered to the weak convergence of measures of the form H 1 Σ which may concentrate in the limit. In general, one can prove the following: Theorem 2.2 (Density version of Golab's Theorem). Let (Σ n ) n∈N be a sequence of closed and connected subsets of R d converging in the sense of Kuratowski to some closed set Σ and having locally uniform finite length, i.e. for all R > 0

sup n∈N H 1 (Σ n ∩ B R (x 0 )) < +∞.
Define the measures µ n := H 1 Σ n , and let µ be a weak-cluster point of this sequence. Then supp µ ⊂ Σ and it holds that

µ ≥ H 1 Σ, in the sense of measures.
This result is hidden in the proof in [START_REF] Ambrosio | Topics on analysis in metric spaces[END_REF] of the usual thesis of Golab's Theorem, see also [START_REF] Paolini | Existence and regularity results for the steiner problem[END_REF]. For the reader's convenience we give a simple proof in Appendix B.

Remark 2.3. As we have not used any properties from the vector space structure of R d , this proof works in the case a locally compact metric space, as in [START_REF] Ambrosio | Topics on analysis in metric spaces[END_REF].

2.3.

Rectifiable sets and measures. We now introduce the notions of rectifiable sets and rectifiable measure, which will be crucial for understanding the fine properties of the elements of A. Definition 2.2. Let M ⊂ R d be a Borel set and k ∈ N, we say that M is countably H k -rectifiable, or shortly k rectifiable, if there are countably many Lipschitz functions

f i : R k → R d such that H k M \ i∈N f i R k = 0.
A Radon measure µ is said to be k-rectifiable if it is supported over a k-rectifiable set and µ H k .

In the simple case M = f (E), for E ⊂ R k , one can define the tangent space at a point of differentiability of f as

∇f (z) R k , for x = f (z).
This is a parametric definition that can be extended to k-rectifiable sets. It turns out the parametric notion of tangentiability can be expressed in terms of measure theory. Given a Borel set M , we set the measure µ = H k M , and we consider the family of blow-up measures (2.4)

µ r := r -k Φ x,r µ = H k M -x r , for Φ x,r := id -x r .
The blow-up Theorem, see [START_REF] Maggi | Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory[END_REF]Theorem 10.2], states that for H k -a.e. x ∈ M this family of measures converges in the weak-topology to a measure of the form

H k π x , for a unique k-plane π x ∈ G(k, d), the Grassmannian of k-planes of R d .
More generally define the k-density, whenever the limit exists, of a Radon measure µ as

(2.5) θ k (µ, x) def. = lim r→0 + µ(B r (x)) ω k r k and θ k (M, x) def. = θ k H k M, x ,
where ω k is the volume of the unit k-dimensional ball, see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Maggi | Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory[END_REF]. A direct consequence of the blow-up Theorem is that H k -a.e. point of a k-rectifiable set has k-density 1. Analogously for a k-rectifiable measure µ it holds that µ =

θ k (µ, x)H k M .
The equivalence between all notions was completed with the work of Preiss and the notion of a tangent space to a measure, see for instance the monograph [START_REF] De | Lecture notes on rectifiable sets, densities, and tangent measures[END_REF]. If a measures (resp. a set) has a finite k-density, i.e. the limit in (2.5) exists and is finite H k -a.e., then this measure (resp. set) is k-rectifiable. The previous discussion is summarized in the following theorem.

Theorem 2.4. Let µ be a Radon measure over R d , the following are equivalent.

(i) µ is k-rectifiable (ii) For H k -a.e. x ∈ supp µ, it holds that

r -k Φ x,r µ --- r→0 θ k (µ, x)H k π x ,
for a unique k-plane π x ∈ G(k, d).

(iii) For H k -a.e. x ∈ supp µ, the k-density of µ in (2.5) exists and is finite.

In the previous Theorem, if we take µ = H k M where M is a countably H krectifiable set we define the approximate tangent space of M at x as T x M def.

= π x , where π x is the unique k-plane from point (ii). Definition 2.3. Let M ⊂ R d be a k-rectifiable set. We say that x ∈ M is a rectifiability point when the weak-convergence of point (ii) from Theorem 2.4 holds, with µ = H k M . Now we pass to our case of interest, the 1-dimensional sets Σ ∈ A, recall the definition (1.1). These sets are known to be 1-rectifiable, see [START_REF] Ambrosio | Topics on analysis in metric spaces[END_REF]Thm. 4.4.8], and hence they enjoy the properties of Theorem 2.4. In the next Lemma, we show that the blow-up of some Σ ∈ A around a rectifiability point is precisely its approximate tangent space. Lemma 2.5. Given Σ ∈ A, then for H 1 -a.e. y ∈ Σ, it holds that

Σ -y r K ----→ r→0 + T y Σ and Σ -y r ∩ B R (0) d H ----→ r→0 + T y Σ ∩ B R (0)
, for all R > 0. Proof. First we take a rectifiability point y ∈ Σ with tangent space T y Σ, by Theorem 2.4 such points cover H 1 a.a. of Σ. In particular, point (ii) of the theorem shows that H 1 ((Σ -y)/r) ---r→0 H 1 T y Σ. Let T be the (Kuratowski) limit of a subsequence (Σ -y)/r k . Clearly, the limit measure H 1 T y Σ is supported by T , hence T y Σ ⊂ T . Thanks to Lemma 2.1 and Theorem 2.2, for almost all R > 0, (2.6)

H 1 (T ∩ B R ) ≤ lim inf k→∞ H 1 Σ -y r k ∩ B R = H 1 (T y Σ ∩ B R ),
which shows that up to a H 1 -negligible set, T = T y Σ. Notice that, if there is some x ∈ T \ T y Σ, we may consider some ball B s (x) which does not intersect T y Σ. Since T is the limit of connected sets, x must be path-connected in T to some point in (B s (x)) c , so that H 1 (T ∩ B s (x)) ≥ s. This contradicts (2.6). Hence T = T y Σ, and is independent on the subsequence, and we deduce that (Σ -y)/r K → T y Σ.

The length functional and the relaxed problem

If a minimizing sequence Σ n converges to some set Σ, we cannot expect the weak limit of (some subsequence of) the measures ν Σn to have the form ν Σ . Hence the objective of (P Λ ) is not lower semi-continuous for the narrow convergence, and, in this section, we introduce a relaxation for (P Λ ). First, we define a functional which extends the length of the support and we discuss some of its properties, then we use it to define the relaxed problem.

Definition and elementary properties.

Recalling that A is the collection of the compact connected sets Σ ⊂ R d with 0 < H 1 (Σ) < +∞, we consider

: P(R d ) ν → H 1 (Σ), if ν = 1 H 1 (Σ) H 1 Σ for some Σ ∈ A, +∞ otherwise,
so that (P Λ ) becomes inf W p p (ρ 0 , ν) + Λ (ν). As discussed above, is not l.s.c., hence we introduce the following relaxation, which we call the length functional.

For any ν ∈ P(R d ), we define

(3.1) L(ν) := min α ≥ 0 | αν ≥ H 1 supp ν , if supp ν is connected, +∞ otherwise,
with the convention that min ∅ def.

= +∞. Notice that L(ν) ≥ H 1 (supp ν), and that L(ν) = 0 if and only if ν = δ x for some x ∈ R d . As a result, 0 < L(ν) < ∞ if and only if supp ν ∈ A. Moreover, for any Σ ∈ A and ν

Σ := 1 H 1 (Σ) H 1 Σ, we have L(ν Σ ) = H 1 (Σ) = (ν Σ )
, and in Section 3.3 below, we prove that L is the lower semi-continuous enveloppe of . Before that, let us discuss some alternative formulations for L.

Following [3, Sec. 2.4], we consider the upper derivative,

∀x ∈ supp ν, D + ν (H 1 supp ν)(x)
def.

= lim sup

r→0 + H 1 (B r (x) ∩ supp ν) ν(B r (x)) . (3.2) Proposition 3.1 (Alternative definitions of L). Let ν ∈ P(R d ) such that supp ν is connected. Then L(ν) = sup H 1 (U ∩ supp ν) ν(U ) | U open, U ∩ supp ν = ∅ (3.3) = sup H 1 (B r (x) ∩ supp ν) ν(B r (x)) | r > 0, x ∈ supp ν (3.4) = D + ν (H 1 supp ν) ∞ , (3.5)
where • ∞ denotes the supremum norm over supp ν.

Proof. It is immediate that (R.H.S. of (3.1)) ≥ (R.H.S. of (3.3)) ≥ (R.H.S. of (3.4)) ≥ (R.H.S. of (3.5)) .

Now, assume that D +

ν (H 1 supp ν) ∞ < +∞ and let α > D + ν (H 1 supp ν) ∞ . For every compact set K ⊂ R d and every x ∈ K ∩ (supp ν), there is some r(x) > 0 such that H 1 (B r (x) ∩ (supp ν)) ≤ αν(B r (x)). From the open covering (B r(x) (x)) x∈K∩(supp ν) , we may extract a finite covering (B ri (x i )) N i=1 of K ∩ (supp ν). As a result

H 1 (K ∩ (supp ν)) ≤ N i=1 αν(B ri (x i )) ≤ N α < +∞,
so that H 1 (supp ν) is a Radon measure. We may thus apply [3, Prop. If D + ν (H 1 supp ν) ∞ = +∞, the inequality holds trivially, which completes the proof.

The length functional inherits some of the properties of the H 1 measure.

Proposition 3.2. Let f : R d → R d , be a k-Lipschitz function, with k > 0. Then ∀ν ∈ P(R d ), L(f ν) ≤ kL(ν). (3.6)
Proof. If L(ν) = +∞, there is nothing to prove. Otherwise, supp ν is compact, and supp(f ν) = f (supp ν). Moreover, for any open set

U ⊂ R d , since f -1 (U ) is open, U ∩ (supp f ν) = ∅ ⇐⇒ ν(f -1 (U )) > 0 ⇐⇒ f -1 (U ) ∩ (supp ν) = ∅.
Now, let U be an open set which intersects supp(f ν). Using that

U ∩ f (supp ν) ⊂ f f -1 (U ) ∩ supp ν we get H 1 (U ∩ supp(f ν)) f ν(U ) = H 1 (U ∩ f (supp ν))) ν(f -1 (U )) ≤ H 1 f f -1 (U ) ∩ supp ν ν(f -1 (U )) ≤ k H 1 f -1 (U ) ∩ supp ν ν(f -1 (U )) ≤ kL(ν) since f -1 (U )
is an open set which intersects supp ν. Taking the supremum over all U yields the claimed inequality.

Alternative definitions and examples.

It is also possible to express the length-functional using the Besicovitch differentiation theorem [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Thm. 2.22]. Assume that H 1 (supp ν) < +∞ (otherwise L(ν) = +∞). Then, the measure H 1 supp ν is Radon, and the limit

D ν (H 1 supp ν)(x) def. = lim r→0 + H 1 (B r (x) ∩ supp ν) ν(B r (x)) (3.7) resp. D H 1 supp ν (ν)(x) def. = lim r→0 + ν(B r (x)) H 1 (B r (x) ∩ supp ν) (3.8)
exists for ν-a.e. x (resp. H 1 supp ν-a.e. x). Proposition 3.3 (Alternative definitions, II). Let ν ∈ P(R d ) such that supp ν is connected and H 1 (supp ν) < +∞. Then

L(ν) =      d(H 1 supp ν) dν L ∞ ν if H 1 supp ν ν, +∞ otherwise. (3.9) =        0 if supp ν is a singleton, dν d(H 1 supp ν) -1 L ∞ H 1 supp ν otherwise. (3.10)
Notice that in Proposition 3.3, both "norms" may take the value +∞, and in (3.10), we adopt the convention that 1/0 = +∞.

Proof of Proposition 3.3. First, we prove (3.9). If H 1 supp ν ν then the Lebesgue-Besicovitch differentiation theorem ensures that

H 1 supp ν = d H 1 supp ν dν ν ≤ d H 1 supp ν dν L ∞ ν ν.
Therefore,

L(ν) ≤ d H 1 supp ν dν L ∞ ν ≤ D + ν (H 1 supp ν) ∞ = L(ν).
If H 1 supp ν is not absolutely continuous w.r.t. ν, there is no α > 0 such that αν ≥ H 1 supp ν, and L(ν) = +∞. Now, we prove (3.10). The case where supp ν is a singleton is already known. We assume now that H 1 (supp ν) > 0, and using the Besicovitch differentiation theorem [3, Thm. 2.22], we decompose

ν = θH 1 supp ν + ν s , (3.11) where θ(x) def. = dν d (H 1 supp ν) (x) = lim r→0 + ν(B r (x)) H 1 (B r (x) ∩ supp ν) = D + ν (H 1 supp ν)(x) -1
for H 1 supp ν -a.e. x. From the last equality, we get

θ -1 L ∞ H 1 supp ν ≤ D + ν (H 1 supp ν)(x) ∞ = L(ν).
To prove the converse inequality, we assume θ -1

L ∞ H 1 supp ν < +∞ (otherwise
there is nothing to prove). Using (3.11), we note that

θ -1 L ∞ H 1 supp ν ν ≥ H 1 supp ν, so that L(ν) ≤ θ -1 L ∞ H 1 supp ν .
We may now examine a few examples.

Example 3.1. Let ν = ∞ n=1 2 -n δ qn , where (q n ) n≥1 is a dense sequence in [0, 1]. Using (3.1), we see that L(ν) = +∞. Example 3.2 (Densities on a (H 1 , 1)-rectifiable set). Let Σ ⊆ R d be a closed connected set with 0 < H 1 (Σ) < +∞, and θ : Σ → R + a Borel function such that Σ θdH 1 = 1. Then L(ν) = 1/θ L ∞ H 1 Σ
. More generally, the same conclusion holds if ν = θH 1 Σ + ν s , with ν s and H 1 Σ mutually singular.

Example 3.3 (Parametrized Lipschitz curves). Let γ : [0, 1] → R d be a non- constant Lipschitz curve, and let ν such that for all f ∈ C b (R d ), f, ν def. = 1 len(γ) 1 0 f (γ(t)) | γ(t)| dt , where len(γ) def. = 1 0 | γ(t)| dt
is the length of the curve. By the area formula [START_REF] Federer | Geometric measure theory[END_REF]Thm. 3.2.5],

dν(y) = 1 len(γ) card(γ (-1) (y))d H 1 Σ (y)
where Σ = γ([0, 1]). As a result,

L(ν) = len(γ) ess-min y∈Σ card(γ (-1) (y)) , (3.12)
where the minimum is an essential minimum with respect to H 1 Σ.

3.3.

Lower semi-continuity of the length functional. Now, we prove that L is the lower semi-continuous enveloppe of .

Proposition 3.4. The functional L is the lower semi-continuous enveloppe of for the narrow topology. Moreover, for every ν such that L(ν) < +∞,

H 1 (supp ν) ≤ L(ν) (3.13) with equality if and only if ν = δ x for some x ∈ R d , or H 1 (supp ν) > 0 and ν = 1 H 1 (supp ν) H 1 supp ν .
Proof of Proposition 3.4: The inequality (3.13) is clear from the definition of (3.1), so we study the equality case.

If

ν = δ x or ν = 1 H 1 (supp ν) H 1 supp ν with H 1 (supp ν) > 0, one readily checks that L(ν) = H 1 (supp ν). Conversely, if (3.13) is an equality, for every Borel set B, 0 = L(ν) -H 1 (supp ν) = L(ν)ν(B) -H 1 (B ∩ supp ν) ≥0 + L(ν)ν(B ) -H 1 (B ∩ supp ν) ≥0 so that both terms must be zero. If L(ν) > 0, we deduce ∀B ⊂ R d Borel, ν(B) = H 1 (B ∩ supp ν) L(ν) = H 1 (B ∩ supp ν) H 1 (supp ν) . If L(ν) = 0, H 1 (supp ν) = 0 and since supp ν is connected, ν is a Dirac mass.
Next we prove that L is sequentially l.s.c. We consider (ν n ) n∈N such that ν n ----n→∞ ν ∈ P(R d ) and we show that α def.

= lim inf n→∞ L(ν n ) ≥ L(ν). If α = +∞, we have nothing to prove. Otherwise, up to the extraction of a subsequence, we may assume that lim n→∞ L(ν n ) = α and that L(ν n ) < +∞ for all n ∈ N.

Defining the sequence of compact and connected sets Σ n def.

= supp ν n , it holds that H 1 (Σ n ) ≤ L(ν n ), so that sup n≥N H 1 (Σ n ) ≤ α + 1 < +∞ for N large enough. Hence, for all n ≥ N , diam(Σ n ) ≤ α + 1. In addition, let x ∈ supp ν. Since 0 < ν(B 1 (x)) ≤ lim inf n→∞ ν n (B 1 (x)), for all n large enough (supp ν n ) ∩ B 1 (x) = ∅, thus supp ν n ⊂ B α+2 (x).
Therefore, we may apply Blaschke's Theorem and we may assume (up to another

extraction of a subsequence) that Σ n d H ----→ n→∞ Σ and supp ν ⊂ Σ from the weak convergence. Let us show that supp ν = Σ. If Σ is a singleton {x 0 }, we have ν = δ x0 .
Otherwise, Golab's Theorem (Thm. 2.2) implies that Σ ∈ A and furthermore, as

L(ν n )ν n ≥ H 1 Σ n , that (3.14) αν ≥ H 1 Σ.
Hence, as Σ is connected, for all z ∈ Σ it holds ν(B r (z)) > 0, confirming that supp ν = Σ. Finally from (3.14) we get that

lim inf n→∞ L(ν n ) = α ≥ L(ν),
proving that L is l.s.c.

As a result, we have proved that L is l.s.c. and that L ≡ on the effective domain of . To show that L is the l.s.c. enveloppe of , we prove that it is above any l.s.c. functional G ≤ . Let ν ∈ P(R d ). If L(ν) = +∞, we have G(ν) ≤ L(ν). If L(ν) < +∞, using Lemma 3.5 below, we can find a sequence ν Σn ----

n→∞ ν such that H 1 (Σ n ) = L(ν). The lower semi-continuity of G yields G(ν) ≤ lim inf n→∞ G(ν Σn ) ≤ lim inf n→∞ (ν Σn ) = lim inf n→∞ H 1 (Σ n ) = L(ν).
The proof of Proposition 3.4 relies on the following approximation Lemma.

Lemma 3.5. Let ν ∈ P(R d ) such that L(ν) < ∞. Then, there exists a sequence (Σ n ) n∈N ⊂ A such that • Σ n d H ----→ n→∞ supp ν, • ν Σn ---- n→∞ ν and W p (ν Σn , ν) ----→ n→∞ 0 for any p ≥ 1.
We also have

H 1 (Σ n ) ----→ n→∞ L(ν) and if, in addition L(ν) > 0, we can take H 1 (Σ n ) = L(ν) for all n ∈ N.
Proof. To simplify the notation, we set α = L(ν) and Σ = supp ν. For α = 0 (that is, ν = δ x0 for some x 0 ), we consider

Σ n = x 0 + [0, 1/n] × {0} d-1
which provides the desired approximation.

For α > 0, we start by covering the entire space with cubes of the form

Q z,n := 1 n z + [0, 1) d , for z ∈ Z d . Let (Q i,n ) i∈I denote the collection of the cubes such that ν (Q z,n ) > 0, since the set Σ is compact I is finite. We define the quantities m i,n := αν(Q i,n ) -H 1 (Σ ∩ Q i,n ) ≤ α,
as the excess mass of ν in the cube Q i,n (note that m i,n ≥ 0 in view of (3.1)). Our strategy is to modify ν Q i,n by adding segments with uniform measure inside the cube and having a total length equal to the excess mass m i,n .

If Σ ∩ int Q i,n = ∅, take x i in this intersection, so that B δi (x i ) ⊂ Q i,n for some δ i > 0. Then, set N i,n := m i,n δ i , and choose δ i,j ≥ 0 for j = 1, . . . , N i,n such that Ni,n j=1 δ i,j = m i,n , and 0 ≤ δ i,j < δ i . Since H 1 (Σ ∩ Q i,n ) < +∞, it is possible to choose N i,n vectors v i,j ∈ S d-1 such that the segments S i,j := [x i , x i + δ i,j v i,j ] are contained in int Q i,n and satisfy H 1 (Σ ∩ S i,j ) = 0 , for j = 1, . . . , N i,n . If Σ ∩ int Q i,n = ∅,
as the cubes have positive mass, it means that ν is concentrated on the boundary of the cube, in which case we take x i ∈ Σ ∩ ∂Q i and any family of segments entering the cube will suffice.

Next, we define the measures

µ n := H 1 Σ n for Σ n := Σ ∪ i∈I Ni,n j=1 S i,j having total mass H 1 (Σ n ) = i∈I H 1 (Σ ∩ Q i,n ) + i∈I Ni,n j=1 H 1 (S i,j ) = i∈I H 1 (Σ ∩ Q i,n ) + m i,n = α i∈I ν(Q i,n ) = α.
Each Σ n ∈ A since it is connected and compact (as a finite union of compact sets).

To finish the proof, it remains to show that ν Σn ----n→∞ ν. By construction, there

exists a compact set K ⊂ R d such that (supp ν) ∪ n≥1 (supp ν Σn ) ⊂ K. Then any function φ ∈ C b (R d
) is uniformly continuous on K, and we denote by ω its modulus of continuity. Observing that

ν Σn (Q i,n ) = ν(Q i,n ), we note that R d φdν Σn - R d φdν ≤ i∈I Qi,n φdν Σn - Qi,n φdν ≤ i∈I ω(diamQ i,n )ν(Q i,n ) ≤ ω √ d/n ----→ n→∞ 0.
Hence ν Σn ----n→∞ ν. But as the support of all such measures is contained in the compact K and the Wasserstein distance metrizes the weak convergence in P p (K), see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Thm. 5.10],it holds that W p (ν Σn , ν) ----→ n→∞ 0.

Remark 3.6. The conclusions of Proposition 3.4 and Lemma 3.5 still hold when replacing the narrow topology with the weak-topology.

3.4.

A relaxed problem with existence of solutions. The relaxed problem (P Λ ) introduced on page 2 is defined by replacing in the orginal problem with its l.s.c. envelope L. We define the energy E(ν)

def.

= W p p (ρ 0 , ν) + ΛL(ν), and with a slight abuse of notation, we sometimes write E(Σ) = E(ν Σ ) for Σ ∈ A. The main point of considering this relaxed problem is that the existence of solutions for (P Λ ) follows from the direct method of the calculus of variations.

Theorem 3.7. The relaxed problem (P Λ ) admits a solution. In addition, E is the l.s.c. enveloppe of W p p (ρ 0 , •) + Λ , and: inf (P Λ ) = min (P Λ ).

Proof. Let (ν n ) n∈N be a minimizing sequence for E. Since sup n W p p (ρ 0 , ν n ) < +∞, the moments of order p of ν n are uniformly bounded (see for instance [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Thm. 5.11]), and we may then extract a (not relabeled) subsequence converging to some ν ∈ P(R d ) in the narrow topology (by Prokhorov's theorem). From Proposition 3.4 and the fact that the Wasserstein distance is lower semi-continuous, the functional E is l.s.c. and we have that

E(ν) ≤ lim inf n→∞ E(ν n ) = inf (P Λ ).
The measure ν is a minimizer of (P Λ ).

To show that E is the l.s.c. enveloppe of the original energy one may argue as in the proof of Proposition 3.4. Consider any l.s.c. functional G such that ∀ν ∈ P(R d ), G(ν) ≤ W p p (ρ 0 , ν) + Λ (ν). For every ν with L(ν) < +∞, we use Lemma 3.5 to build approximations sequences (ν n ) n∈N such that W p p (ρ 0 , ν n ) → W p p (ρ 0 , ν). Indeed, as ν n converges to ν for the Wasserstein metric, the triangle inequality gives

|W p (ρ 0 , ν n ) -W p (ρ 0 , ν)| ≤ W p (ν n , ν) ----→ n→∞ 0.
Hence for any ν ∈ P p (R d ) it holds that

G(ν) ≤ lim inf n→∞ W p p (ρ 0 , ν n ) + Λ (ν n ) = W p p (ρ 0 , ν) + ΛL(ν) = E(ν),
and we conclude that E is the l.s.c. enveloppe and the no gap property follows from the general theory of l.s.c. relaxation, see e.g. [START_REF] Attouch | Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization[END_REF].

On the support of optimal measures

Our goal for this section is to answer the question of "how small" Λ must be in theorem 1.1. For this, in Theorem 4.1 we study when solutions of the relaxed problem (P Λ ) are Dirac masses. Keeping this in mind the rest of this section can be skiped and the reader can move on to the major results of the paper.

The following notation will be useful: a point x 0 is said to be a p-mean of ρ 0 if

x 0 ∈ argmin y∈R d R d |x -y| p dρ 0 (x) = argmin y∈R d W p p (ρ 0 , δ y ).
A 2-mean is just the mean of ρ 0 , that is,

m ρ0 def. = R d
xdρ 0 (x). For p > 1, the pmean is uniquely defined, but for p = 1 the collection of 1-means is a closed convex set which is not reduced to a singleton in general.

Theorem 4.1. For a fixed measure ρ 0 ∈ P p (R d ) there exists a critical parameter Λ ∈ [0, ∞) such that • for Λ < Λ no solution of (P Λ ) is a Dirac measure;

• for Λ > Λ it holds that argmin(P Λ ) is the set of p-means of ρ 0 . Moreover, Λ = 0 if and only if ρ 0 is a Dirac mass.

We start by studying the support of the optimal measure, showing that it is contained in the convex hull of the support of ρ 0 . In the sequel the proof of Theorem 4.1 will be divided in several steps. We end the section with an exemple of ρ 0 composed of 2 Dirac masses. (1)

H 1 (supp ν) ≤ 1 Λ W p p (ρ 0 , δ mρ 0 )
, where m ρ0 is any p-mean of ρ 0 . In particular, Σ is contained in some ball of diameter d 0 def.

= 1 Λ W p p (ρ 0 , δ mρ 0 ). (2) supp ν ⊂ conv (supp ρ 0 )
Proof. For the first point, let Σ denote the support of ν. Since ν has finite energy we have that L(ν) ≥ H 1 (Σ). Thus, since it is also optimal

ΛH 1 (Σ) ≤ W p p (ρ 0 , ν) + ΛL(ν) ≤ W p p (ρ 0 , δ mρ 0 ) + ΛL(δ mρ 0 ) = W p p (ρ 0 , δ mρ 0 ).
For the second point, let C def.

= conv (supp ρ 0 ). It is a nonempty closed convex set, therefore the projection onto C is well-defined and 1-Lipschitz. We denote it by f . By Proposition 3.2, it holds that L(ν) ≥ L(f ν). Moreover, for every

(x, y) ∈ C × R d , |x -y| 2 = |x -f (y)| 2 + |f (y) -y| 2 + 2 x -f (y), f (y) -y ≥0 ≥ |x -f (y)| 2
with equality if and only if y ∈ C. As a result, if γ is an optimal transport plan for (ρ 0 , ν),

W p p (ρ 0 , ν) = |x -y| p dγ(x, y) ≥ |x -f (y)| p dγ(x, y) = |x -y| p d ((id, f ) γ) (x, y) ≥ W p p (ρ 0 , f ν)
with strict inequality unless y ∈ C for γ-a.e. (x, y) (hence ν-a.e. y).

But ν is a solution to (P Λ ), therefore the inequality

W p p (ρ 0 , ν) + ΛL(ν) ≥ W p p (ρ 0 , f ν) + ΛL(f ν
) cannot be strict. We deduce that y ∈ C for ν-a.e. y, and C being closed, that supp ν ⊂ C.

Example 4.1. Let ρ 0 = δ x0 for some x 0 ∈ R d . From Lemma 4.2 above, we deduce that for all Λ > 0, argmin (P Λ ) = {δ x0 }.

4.2.

When solutions are Dirac masses. Now, we discuss whether or not Dirac masses may appear in the case where ρ 0 is not a Dirac measure.

We start with the following Lemma.

Lemma 4.3. Let Λ > 0 such that δ x0 ∈ argmin (P Λ ), for Λ > Λ it holds

• for p > 1 that δ x0 is the unique solution of (P Λ ),

• for p = 1 that argmin (P Λ ) consists of only Dirac masses.

Proof. If δ x0 ∈ argmin (P Λ ), for any p ≥ 1, and for any measure (ν) with L(ν) > 0 it holds that

W p p (ρ 0 , δ x0 ) ≤ W p p (ρ 0 , ν) + ΛL(ν) < W p p (ρ 0 , ν) + Λ L(ν)
, and hence ν cannot be a minimizer of (P Λ ). Then for any p ≥ 1 it holds that argmin (P Λ ) consists of Dirac measures. Whenever p > 1, the function y → W p p (ρ 0 , δ y ) is strictly convex and hence argmin (P Λ ) is a singleton.

This simple Lemma allows for the definition of the critical value Λ as follows

(4.1) Λ := inf Λ ≥ 0 : argmin (P Λ ) ⊂ (δ x ) x∈R d .
As stated in Theorem 4.1, Λ > 0 whenever ρ 0 is not a single Dirac mass, which is a direct consequence of the convergence of solutions to ρ 0 when Λ goes to 0.

Lemma 4.4. For every ρ 0 ∈ P p (R d ), and Λ > 0, let ν Λ be any solution to (P Λ ). Then

ν Λ ---- Λ→0 + ρ 0 . (4.2) Proof. If L(ρ 0 ) < +∞, it suffices to notice that W p p (ρ 0 , ν Λ ) ≤ W p p (ρ 0 , ν Λ ) + ΛL(ν Λ ) ≤ W p p (ρ 0 , ρ 0 ) + ΛL(ρ 0 ) = ΛL(ρ 0 ) ----→ Λ→0 + 0.
However, we need to handle the case where L(ρ 0 ) = +∞. Let ε > 0. By the density of discrete measures in the Wasserstein space, there exists a probability measure of the form µ = N i=1 a i δ xi such that W p p (ρ 0 , µ) ≤ ε. We may assume that N ≥ 2. By connecting all the points {x i } 1≤i≤N , we obtain a compact connected set Σ with 0 < H 1 (Σ) < +∞. For every θ ∈ ]0, 1[, we then define

ρ0 := θ H 1 (Σ) H 1 Σ + (1 -θ)µ
and we note that

L(ρ 0 ) ≤ H 1 (Σ) θ < +∞. Moreover, by the optimality of ν Λ , W p p (ρ 0 , ν Λ ) ≤ ΛL(ν Λ ) + W p p (ρ 0 , ν Λ ) ≤ ΛL(ρ 0 ) + W p p (ρ 0 , ρ0 
). Taking the upper limit as Λ → 0 + , and using the convexity of the Wasserstein distance yields lim sup

Λ→0 + W p p (ρ 0 , ν Λ ) ≤ W p p (ρ 0 , ρ0 ) ≤ θW p p ρ 0 , H 1 Σ H 1 (Σ) + (1 -θ)W p p (ρ 0 , µ).
Letting θ → 0 + we obtain lim sup Λ→0 + W p p (ρ 0 , ν Λ ) ≤ ε for every ε > 0, which yields lim Λ→0 + W p p (ρ 0 , ν Λ ) = 0, hence the claimed result.

As a consequence of Lemma 4.4, we note that lim inf Λ→0 + (supp ν Λ ) ⊃ supp ρ 0 , so that if ρ 0 is not a Dirac mass, neither is ν Λ for Λ > 0 small enough.

Next, we show that for Λ large enough, the solution becomes a Dirac measure.

Proposition 4.5. For every ρ 0 ∈ P p (R d ), Λ < +∞.

Proof. Up to a change of the origin, we may assume that R d xdρ 0 (x) = 0. We let ν ∈ argmin (P Λ ), Σ def.

= supp ν, and we define y 0 ∈ argmin y∈Σ |y|.

Setting r

def.

= min { r ≥ 0 | supp ν ⊂ B(y 0 , r) }, we note from the connectedness of Σ that r ≤ H 1 (Σ) < +∞. Moreover, the convexity of the p-norm yields

∀x, y ∈ R d , |x -y| p ≥ |x -y 0 | p -p |x -y 0 | p-1 |y -y 0 | .
As a result, if γ is an optimal transport plan for (ρ 0 , ν),

E(ν) = R d ×R d |x -y| p dγ(x, y) + ΛL(ν) ≥ R d ×R d |x -y 0 | p dγ(x, y) -p R d ×R d |x -y 0 | p-1 |y -y 0 | dγ(x, y) + ΛH 1 (Σ) ≥ E(δ y0 ) + r Λ -p R d |x -y 0 | p-1 dρ 0 (x) .
By optimality of ν, we have E(ν) ≤ E(δ y0 ), so that r = 0 and ν is a Dirac mass

provided that Λ -p R d |x -y 0 | p-1 dρ 0 (x) > 0.
Now, we show that R d |x -y 0 | p-1 dρ 0 (x) can be bounded independently from ν.

For any optimal ν, since E(ν) ≤ E(δ 0 ), we note that W p p (ρ 0 , ν) ≤ W p p (ρ 0 , δ 0 ). Hence

|y 0 | ≤ W p (δ 0 , ν) ≤ W p (δ 0 , ρ 0 ) + W p (ρ 0 , ν) ≤ 2W p (δ 0 , ρ 0 ). Setting R def.
= 2W p (δ 0 , ρ 0 ), we see that it is sufficient to take

Λ > max y0∈B(0,R) p R d |x -y 0 | p-1 dρ 0 (x) ,
to ensure that ν is a Dirac mass.

Remark 4.6. In some cases, it is possible to provide sharper bounds on Λ :

• If p = 1, we see that Λ ≤ 1.

• If p = 2, it can be shown by a simple translation argument that ν and ρ 0 have the same barycenter. Then, one may adapt the above argument to get Λ ≤ 2 |x -x 0 | dρ 0 (x) , where

x 0 = xdρ 0 (x) = 0. • If supp ρ 0 is bounded, it is possible to obtain Λ ≤ p (diam(supp ρ 0 ))
p-1 for any p ≥ 1, by exploiting the Lipschitzianity of the dual potentials: there exists (φ, ψ), solution to the dual Kantorovitch problem (see [29, Sec. 1.2])

W p p (µ, ν) = max φdµ + ψdν : φ ∈ L 1 (µ), ψ ∈ L 1 (ν), φ(x) + ψ(y) ≤ |x -y| p ,
such that Lip(ψ) ≤ p (diam(supp ρ 0 )) p-1 . Then,

W p p (ρ 0 , δ y0 ) -W p p (ρ 0 , ν) ≤ ψ(y 0 ) - Σ ψdν ≤ Σ |ψ(y 0 ) -ψ(x)| dν(x) ≤ Lip(ψ) • H 1 (Σ) ≤ ΛL(ν)
and for Λ > Lip(ψ), the last inequality is strict, yielding the contradiction E(δ y0 ) < E(ν), unless H 1 (Σ) = 0.

4.3.

The example of an input with two Dirac masses. In this subsection we consider the case p = 2. Let x -1 = (-1, 0, . . . , 0), x 1 = (1, 0, . . . , 0) ∈ R d , and let ρ 0 = 1 2 δ x-1 + δ x1 . By Lemma 4.2, we know that the solutions to (P Λ ) are supported on line segments which are contained in [x -1 , x 1 ]. We may thus reduce the problem to the one-dimensional setting, with x -1 = -1, x 1 = 1. The solution to that problem is given by the following proposition. Proposition 4.7. For p = 2 and ρ 0 = 1 2 (δ -1 + δ 1 ), the unique solution to (P Λ ) is given by

ν Λ =        3Λ 2 H 1 [-1, 1] + 1 2 -3Λ 2 (δ -1 + δ 1 ) if 0 < Λ < 1 6 , 1 3(1-2Λ) H 1 -3 2 (1 -2Λ), 3 2 (1 -2Λ) if 1 6 ≤ Λ < 1 2 δ 0 if Λ ≥ 1 2 .
. Since solutions are supported on a line segment in [-1, 1], we use the anzatz and assume them to be of the form

ν = 1 α H 1 [a, b] or ν = 1 α H 1 [-1, 1] + cδ -1 + dδ 1 .
Indeed if the [a, b] does not coincide with [-1, 1] and there is any mass left after we form the uniform measure over the segment [a, b], we enlarge a bit the segment. If a or b coincide with -1, 1, we can just leave any residual mass concentrated at the Dirac delta with no transportation cost, see for instance Lemma 5.1 below.

Recalling that for p = 2, ν must have the same center of mass as ρ 0 , we deduce that ν must be equal to

ν 0,0 def. = δ 0 , or ν b,2b def. = 1 2b H 1 [-b, b] for some b ∈ ]0, 1[ or ν 1,α = 1 α H 1 [-1, 1] + 1 2 - 1 α (δ -1 + δ 1 ) for some α ≥ 2.
Let E(ν) = ΛL(ν) + W 2 2 (ρ 0 , ν) denote the energy to minimize. We have E(ν 0,0 ) = 1 = lim b→0 + E(ν b,2b ), and

E(ν b,2b ) = 2Λb + 2 b 0 (1 -x) 2 dx 2b = b 2 3 + (2Λ -1)b + 1 with d db E(ν b,2b ) = 2b 3 + 2Λ -1, E(ν 1,α ) = Λα + 2 1 0 (1 -x) 2 dx α + 0 = Λα + 2 3α , with d dα E(ν 1,α ) = Λ - 2 3α 2 .
For 0 < Λ < 1 6 , we check that ν 1,α * , for α * def. = 2 3Λ , is the unique solution. For 1 6 ≤ Λ < 1 2 , we get that ν b * ,2b * is the unique solution, with b * def. = 3 2 (1 -2Λ). For Λ ≥ 1 2 , the functions α → E(ν 1,α ) and b → E(ν b,2b ) are strictly decreasing on [2, +∞[ and ]0, 1] respectively. Therefore ν 0,0 is the unique solution to (P Λ ).

Solutions are rectifiable measures

Our goal here is to show that whenever ρ 0 H 1 , any solution ν is a rectifiable measure of the form

ν = ΘH 1 Σ, for Θ ∈ L 1 (Σ; H 1 )
To this end we introduce the excess measure ν exc as the positive measure given by the mass of ν that exceeds the density constraints. We first show that this measure solves a family of localized problems. This is used to prove the absolute continuity w.r.t. H 1 Σ, that is, point (1) of Theorem 1.1.

5.1. The excess measure. Let ν be a minimizer of (P Λ ) with support Σ not reduced to a singleton. From the definition of the length functional we have:

L(ν) < ∞ if and only if there is α ≥ 0 such that αν ≥ H 1 Σ.
Setting α := L(ν) > 0, we define the following decomposition (5.1)

ν = ν H 1 + ν exc , where ν H 1 := α -1 H 1 Σ and ν exc := ν -ν H 1 .
The part ν H 1 is the measure which saturates the density constraint, and the support of the excess measure ν exc is where the constraint is inactive.

We define an analogous (nonunique) decomposition of γ and ρ 0 by disintegrating γ w.r.t. the second marginal. From the disintegration theorem [3, Theorem 2.28], there exists a ν-measurable family {γ y } y∈R d ⊂ P(R d ), such that γ = γ y ⊗ ν, that is (5.2)

R d ×Σ ψ(x, y)dγ(x, y) = Σ R d ψ(x, y)dγ y (x) dν(y), for all φ ∈ L 1 (γ).
We define a decomposition γ = γ H 1 + γ exc as

(5.3) γ H 1 (A × B) := Σ∩B γ y (A)dν H 1 (y), γ exc (A × B) := Σ∩B γ y (A)dν exc (y).
The decomposition ρ 0 = ρ H 1 + ρ exc can be defined as the marginals of γ H 1 and γ exc (5.4)

ρ H 1 := π 0 γ H 1 , ρ exc := π 0 γ exc .
This way γ H 1 ∈ Π(ρ H 1 , ν H 1 ), γ H 1 ∈ Π(ρ exc , ν exc ) and they are optimal transportation plans between their respective marginals. Indeed if we find a better transportation plan for either problem we can construct a better plan for the original problem, contradicting the minimality of γ. We therefore also have a decomposition between the Wasserstein distances (5.5)

W p p (ρ 0 , ν) = W p p (ρ H 1 , ν H 1 ) + W p p (ρ exc , ν exc ) .
It is important to point out that, although the decomposition of ν is natural, there are many ways to decompose γ and ρ 0 . In the sequel we show that for any such decomposition the excess must be concentrated on the graph of the operator given by the (multivalued) projection onto Σ (5.6) Π Σ (x) := argmin

y∈Σ |x -y| 2 .
Note that Π Σ is a multivalued operator which is included in the subgradient of the convex conjugate of the function: y → |y| 2 /2 if y ∈ Σ and +∞ else. Lemma 5.1. Let ν be a minimizer of (P Λ ) and γ an optimal transport plan from ρ 0 to ν. Then, for any decomposition

γ = γ H 1 + γ exc , s.t. π 1 γ 1 = ν H 1 , it holds that supp γ exc ⊂ graph(Π Σ ). (5.7)
In addition, for any π Σ measurable selection of x → Π Σ (x), the measure

ν H 1 + π Σ ρ exc is optimal for (P Λ ). Proof. Consider the problem inf γ∈Pp(R d ×R d ) π0 γ=ρ0, R d ×R d |x -y| p dγ(x, y) + ΛL(π 0 γ), (Q Λ )
which is a reformulation of (P Λ ) in terms of the transport plan γ from ρ 0 to ν. Now, let (γ H 1 , γ exc ) be any suitable decomposition of γ and let π Σ be a measurable selection of Π Σ . We set ρ exc := π 0 γ exc and define γ = γ H 1 + (id, π Σ ) ρ exc . Then it holds that L(π 1 γ) ≤ L(ν) and

R d ×R d |x -y| p dγ = R d ×R d |x -y| p dγ H 1 + R d |x -π Σ (x)| p dρ exc ≤ R d ×R d |x -y| p dγ H 1 + R d ×Σ |x -y| p dγ exc = R d ×R d |x -y| p dγ
Since γ is a minimizer of (Q Λ ), both inequalities must be equalities, in particular we must have

R d ×R d (|x -y| p -|x -π Σ (x)| p ) dγ exc = 0.
Since γ-a.e. (x, y) is in R d ×Σ, the integrand is nonnegative and must vanish γ exc -a.e. Hence (x, y) ∈ Graph(Π Σ ) for γ exc -a.e. (x, y) and (5.7) follows since Graph(Π Σ ) is closed. As a consequence, the measure ν H 1 + π Σ ρ exc reaches the minimimum for (P Λ ) and is optimal. Then the measure ν S solves the following variational problem

(5.8) inf    W p p (ρ S , ν ) : ν ∈ M + (Σ ∪ Γ), ν ≥ α -1 H 1 Γ, Σ ∪ Γ ∈ A, ν (R d ) = ν S (R d )   
More generally, let (σ S,t ) t∈[0,1] be the constant speed geodesic between ρ S and ν S defined through σ S,t := π (1-t) γ S , where π t (x, y) := (1 -t)x + ty. Then for any t ∈ [0, 1], the measure ν S minimizes the variational problem

(5.9) inf    W p p (σ S,t , ν ) : ν ∈ M + (Σ ∪ Γ), ν ≥ α -1 H 1 Γ, Σ ∪ Γ ∈ A, ν (R d ) = ν S (R d )    . Proof. See Appendix A.
We now craft a specific set S to apply the lemma. Given δ > 0, we define the set

D δ := x ∈ supp ρ exc : δ ≤ dist(x, Σ) ≤ δ -1 , (5.10)
And for a fixed point y 0 ∈ Σ, and δ, r > 0 consider the new transportation plan (5.11) γ δ,r := γ exc D δ × B r (y 0 ) along with its marginals (5.12) ρ δ,r := π 0 γ δ,r ≤ ρ exc D δ , ν δ,r := π 1 γ δ,r .

From Lemma 5.2 it holds that (5.13)

ν δ,r ∈ argmin    W p p (ρ δ,r , ν ) : ν ∈ M + (Σ ∪ Γ), ν ≥ α -1 H 1 Γ, Σ ∪ Γ ∈ A, ν (R d ) = ν δ,r (R d )    .
We also introduce γ δ := γ exc D δ × Σ and ν δ := π 1 γ δ . By definition, ν δ,r = ν δ B r (y 0 ).

It also holds the further decomposition of ν exc

ν exc = ν δ + π 1 γ exc D c δ × R d .
As D δ is a nested sequence of sets, (ν δ ) δ>0 is a monotone sequence and taking the limit as δ → 0 we have (5.14) ν exc = sup δ>0 ν δ + ρ exc Σ, the second limit being ρ exc Σ because of Lemma 5.1 and since the only projection of a point in Σ is itself.

In the next Theorem 5.4 we show that the measures ν δ have a uniform L ∞ bounded density w.r.t. H 1 . So when ρ 0 H 1 , (5.14) shows that any optimal ν H 1 . The argument consists in crafting a competitor for the localized problem (5.13), built as a measure supported on a curve on small spheres around an excess point, in some sense "closer" to ρ 0 , and with controlled length. Proof. We start by covering the sphere ∂B 2 with finitely many balls B 1/2 (x i ) N d i=1 , each having radius 1/2. The number of balls N d being dependent on the dimension. In the sequel we define Γ d with geodesics on ∂B 2 connecting the centers (x i )

N d i=1 .
As we have finitely many points, we will also have finitely many curves and hence H 1 (Γ d ) must also be finite. We can even choose the connected set Γ d with minimal length, which is a solution to Steiner's problem on the spheres and has a tree structure, so that we can bound H 1 (Γ d ) ≤ (N d -1)D d , where D d is the diameter of ∂B 2 in its Riemannian metric.

To prove the desired property, take x ∈ B 2 and y

∈ B 1 . Let {ŷ} = [x, y] ∩ ∂B 2 . Then ŷ ∈ B 1/2 (x i ) for some x i while |x -ŷ| ≤ |x -y| -1, and it follows that dist(x, Γ d ) ≤ |x -x i | ≤ |x -ŷ| + |ŷ -x i | ≤ |x -y| - 1 2 .
Theorem 5.4. Given ρ 0 ∈ P p (R d ), let ν be a solution to (P Λ ). Then it holds that the measures (ν δ ) δ>0 are of the form 

ν δ = θ δ H 1 Σ, with θ δ L ∞ (Σ,H 1 ) ≤ 9 2 C d L(ν) , for C d = 2 + H 1 (Γ d ),
θ δ (y 0 ) := lim sup r→0 ν(B r )
2r .

We will show that θ δ (y 0 ) ≤ 9 2

C d L(ν)
, so that thanks to [3, Thm. 2.56], ν δ H 1 Σ. Since Σ is 1-rectifiable, it follows that for H 1 -a.e. y 0 ∈ Γ, θ δ (y 0 ) is the Radon-Nikodým derivative of ν δ w.r.t. H 1 Σ, and the claim of the theorem follows.

From the optimality of ν, the measure ν δ,r solves problem (5.13). In order to build a competitor we consider the set Γ d from Lemma 5.3, choose some point ȳ ∈ Γ d and define Γ r := [y 0 , y 0 + rȳ] ∪ (y 0 + rΓ d ) ,

which is contained in B 2r (y 0 ). Notice that Σ ∪ Γ r is always a compact, connected and 1-rectifiable set and one has

H 1 (Γ r ) = C d r,
where

C d = 2 + H 1 (Γ d
) is a constant depending only on the dimension.

In the sequel, setting α = L(ν) we define the following parameter

m r := H 1 (Γ r ) αν δ (B r ) .
Suppose that C d /α < 2θ δ (y 0 ). Then,

1 > m 0 := C d 2αθ δ (y 0 ) = lim inf r→0 m r .
Now, we consider a subsequence (r k ) k∈N 0 such that lim k→∞ m r k = lim inf r→0 m r . In particular, m r k ∈ (0, 1) for r k sufficiently small. For simplicity, in the sequel, we drop the subscript k, yet we consider only r ∈ {r k } k∈N .

Let γ Γr be an optimal transportation plan between m r ρ δ,r and α -1 H 1 Γ r for the Wasserstein-p distance and define the new plan γδ,r := γ Γr + (1 -m r ) (id, π Γr ) ρ δ,r , and νδ,r := π 1 γδ,r , where π Γr is a measurable selection of the projection operator onto Γ r . Therefore νδ,r is admissible for (5.13) and we have the following estimate

W p p (ρ δ,r , νδ,r ) ≤ R d ×R d |x -y| p dγ Γr + R d dist(x, Γ r ) p dρ δ,r .
We will estimate each term of the previous inequality separately. For the first one, notice that as supp γ Γr ⊂ Π -1 Σ (B r (y 0 )) × B 2r (y 0 ), it holds that |x -y| ≤ dist(x, Σ) + 3r, for γ Γr -a.e. (x, y).

For the second term, as the projection of x onto Σ is inside B r (y 0 ), if follows from Lemma 5.3 that

dist(x, Γ r ) ≤ dist(x, Σ) - r 2 , for dist(x, Σ) > 2r.
Therefore, for a fixed δ and taking 2r < δ, the Wasserstein distance is bounded by

W p p (ρ δ,r , νδ,r ) ≤ m δ,r R d (dist(x, Σ) + 4r) p dρ δ,r + (1 -m δ,r ) R d (dist(x, Σ) -r/2) p dρ δ,r Notice that W p p (ρ δ,r , ν δ,r ) = R d dist(x, Σ) p dρ δ,r
, so in order to compare the Wassertein distances we use the following inequalities

(dist(x, Σ) + 4r) p ≤ dist(x, Σ) p + 4rp (dist(x, Σ) + 4r) p-1 dist(x, Σ) - r 2 p ≤ dist(x, Σ) p - r 2 p dist(x, Σ) - r 2 p-1
which follow from the convexity of t → |t| p . Then, given ε > 0, if r ≤ δε one deduces, for dist(x, Σ) ≥ δ, that:

(dist(x, Σ) + 4r) p ≤ dist(x, Σ) p + 4rp(1 + 4ε) p-1 dist(x, Σ) p-1 dist(x, Σ) - r 2 p ≤ dist(x, Σ) p - r 2 p 1 - ε 2 p-1 dist(x, Σ) p-1 .
Therefore it holds that

W p p (ρ δ,r , νδ,r ) ≤ W p p (ρ δ,r , ν δ,r ) + pr∆ r,ε R d dist(x, Σ) p-1 dρ δ,r for ∆ r,ε = 4m r (1 + 4ε) p-1 - 1 -m r 2 1 - ε 2 p-1
Hence from the optimality of ν δ,r we have ∆ r,ε ≥ 0, so that letting r → 0 and then ε → 0, it must hold that 4m 0 ≥ (1 -m 0 )/2, that is:

θ δ (y 0 ) ≤ 9 2 C d α .
As a result, the family (ν δ ) δ>0 has a uniform L ∞ density bounds, and so does the limit measure sup δ>0 ν δ = (sup δ>0 θ δ ) H 1 Σ. But as the exceeding measure can be decomposed as (5.14) we deduce that whenever the initial measure ρ 0 H 1 or has a L ∞ density w.r.t. H 1 , so does the solution ν.

Existence of solutions to (P Λ ) in 2D

This section is dedicated to the proof of Theorem 1.1, point [START_REF] Ambrosio | Lectures on optimal transport[END_REF]. Knowing that the excess measure is absolutely continuous (Theorem 5.4), we use a blow up argument near a rectifiability point y 0 of Σ. From Lemma 5.2, the blow-ups of ν exc minimize a family of functionals (F r ) r>0 , which in turn Γ-converge to some functional F . Since these blow-ups also converge (for H 1 -a.e. y 0 ) to a uniform density on T y0 Σ, this limit measure must also minimize the Γ-limit F . Yet if it is not zero, we can built a better competitor, giving a contradiction to the minimality of the uniform measure. We deduce that ν exc vanishes.

6.1. Blow-up and Γ-convergence. From Theorem 5.4, given a minimizer ν, the excess measure has the form

ν exc = θH 1 Σ, where θ ∈ L 1 (H 1 Σ; R + ).
Now, given y 0 ∈ Σ, we use Lemma 5.2 with the choice S 0 × S 1 = D δ × B r (y 0 ), and we focus on the variational problem (5.9): we obtain the families of measures (ν δ,r ) δ,r>0 and (σ δ,r ) δ,r>0 such that (6.1)

ν δ,r ∈ argmin    W p p (σ δ,r , ν ) : ν ∈ M + (Σ ∪ Γ), ν ≥ α -1 H 1 Γ, Σ ∪ Γ ∈ A, ν (R d ) = ν δ,r (R d )    ,
where (σ δ,t ) t∈[0,1] is a family of geodesic interpolations (σ δ,r = π (1-r) γ δ,r ), and from Lemma 5.1 the optimal transportation plan between ν δ,r and σ δ,r is supported on graph(Π Σ ).

From Theorem 5.4, ν δ,r = θ δ H 1 Σ ∩ B r , so in the rest of this section we fix δ > 0 and, assuming ν δ,r = 0, we choose y 0 ∈ Σ such that: (6.2) there exists T y0 Σ and y 0 is Lebesgue point of θ δ s.t. θ δ (y 0 ) > 0.

Localizing ν δ,r around y 0 , by the blow-up Theorem 2.4 (see also [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theo. 2.83]), it holds that

(6.3) r -1 Φ y0,r ν δ,r --- r→0 θ δ (y 0 )H 1 [-τ, τ ],
where Rτ = T y0 Σ.

Up to a subsequence (not labelled) we also have:

(6.4) r -1 Φ y0,r σ δ,r --- r→0 σ y0 .
By construction σ δ,r is supported on {rδ -1 ≥ dist(•, Σ) ≥ rδ}, so that supp σ y0 ⊂ {x : δ -1 ≥ dist(x, Σ) ≥ δ} In the sequel, notice that for any given measures µ, ν we have (6.5)

W p p 1 r Φ y0,r µ, 1 r Φ y0,r ν = 1 r p+1 W p p (µ, ν) .
Renormalizing the blow-up sequences in (6.3),(6.4), we define (6.6) νr

def. = 2θ δ (y 0 ) ν δ (B r ) Φ y0,r ν δ,r , σr def. = 2θ δ (y 0 ) ν δ (B r ) Φ y0,r σ δ,r
(since δ remains fixed we drop the index to simplify the notation). In addition, recalling Σ r = r -1 (Σ -y 0 ) ∩ B 1 , we define a family of functionals (F r ) r>0 as

(6.7) F r (ν) :=            W p p (σ r , ν) , ν ∈ M + (Σ r ∪ Γ) , ν ≥ α -1 H 1 Γ, Σ ∪ Γ ∈ A, Γ ⊂ B 1 (0), ν(B 1 (0)) = 2θ δ (y 0 ), +∞, otherwise,
from the definition of ν δ,r , σ δ,r in (6.1) and (6.5) we know that for any r > 0 it holds that νδ,r ∈ argmin F r . The natural candidate for the limit of this family is the following:

(6.8) F (ν) :=          W p p (σ y0 , ν) , ν ∈ M + ([-τ, τ ] ∪ Γ) , ν ≥ α -1 H 1 Γ, [-τ, τ ] ∪ Γ ∈ A, Γ ⊂ B 1 , ν(B 1 (0)) = 2θ δ (y 0 ), +∞, otherwise.
We prove in Theorem 6.1 below that F r Γ-converges to F as r → 0. We refer to [START_REF] Dal | An Introduction to Γ-convergence[END_REF][START_REF] Braides | Gamma-convergence for beginners[END_REF] and in particular to [START_REF] Braides | Gamma-convergence for beginners[END_REF]Def. 1.24]) for the definition of the (lower and upper) Γ-limit. It follows that θ δ (y 0 )H 1 [-τ, τ ] must be a minimizer of F (as the limit of minimizers of F r ). The estimate from below of the Γ-liminf is obtained with the tools developed so far, while estimating the Γ-limsup will require an appropriate construction illustrated in Figure 1.

Theorem 6.1. The family of functionals (F r ) r>0 Γ-converges to F .

Proof. Γ-liminf: we consider an infinitesimal sequence (r n ) n∈N such that (ν n ) n∈N converges to ν in the weak sense, and that lim inf n→∞ F rn (ν n ) < ∞ for all n ∈ N (or at least for a subsequence), otherwise there is nothing to prove.

First we look at the first marginals in the definition of F rn . From the blow-up of σ r and the choice of y 0 as Lebesgue point of the density, (6.4) and (6.2), it follows that the renormalized measures σrn ----n→∞ σ y0 . By lower semi-continuity of the Wasserstein distance w.r.t. the narrow convergence, if we prove that F (ν) < ∞, that is if the limit satisfies the constraints in the definition of F , we will have that [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Thm. 6.1] and the blow up of Σ in Lemma 2.5 imply that,

F (ν) ≤ lim inf n→∞ F rn (ν n ). As αν n ≥ H 1 Γ n for some Γ n ⊂ B 1 (0) such that r -1 n (Σ -y 0 ) ∪ Γ n ∈ A, Blaschke's Theorem
up to a subsequence, Γ n d H ----→ n→∞ Γ and r -1 n (Σ -y 0 ) K ----→ n→∞ Rτ . Hence: Ξ n def. = Σ -y 0 r n ∪ Γ n K ----→ n→∞ Ξ def.
= Rτ ∪ Γ.

In addition, as Σ∪Γ n is connected, Ξ is connected, and since Γ ⊂ B 1 , it follows that also [-τ, τ ] ∪ Γ is connected and belongs to A. The fact that supp ν ⊂ [-τ, τ ] ∪ Γ comes from the weak convergence of ν rn to ν. As this convergence takes place in a compact set it also holds that ν(B 1 (0)) = lim n→∞ ν rn (B 1 (0)) = 2θ(y 0 ).

It only remains to verify the density constraints, αν ≥ H 1 Γ (to simplify, we assume that H 1 (Rτ ∩ Γ) = 0, otherwise we can simply rename Γ \ Rτ as Γ). Although ν n ≥ αH 1 Γ n , we cannot apply Golab's Theorem to ν n since we do not have an upper bound on the number of connected components of Γ n .

What we do know is that the sequence Ξ n = r -1 n (Σ -y 0 ) ∪ Γ n satisfies the assumptions of Theorem 2.2. So we consider the measures α -1 H 1 Σ + ν n ≥ α -1 H 1 (Σ ∪ Γ n ) and analyse their blow up sequences. We know that

H 1 Σ -y 0 r n + αν n ≥ H 1 Σ -y 0 r n ∪ Γ n ,
where the left hand side converges weakly to α -1 H 1 Rτ + ν and for the right hand side we can extract a convergent subsequence. This is true since y 0 is a rectifiability point hence the part H 1 r -1 n (Σ -y 0 ) converges to the approximate tanget space; the remaining mass H 1 Γ n is bounded. Hence,assuming that the RHS converges in the weak-sense to λ, Golab's Theorem 2.2 implies that λ ≥ α -1 H 1 (Rτ ∪ Γ). We conclude that H 1 Rτ + αν ≥ H 1 (Rτ ∪ Γ), and therefore αν ≥ H 1 Γ. Γ-limsup: The strategy to prove the limsup is illustrated in Figure 1, and roughly explained as follows. Given some ν such that F (ν) < ∞ and the corresponding Γ, first we transport the mass over [-τ, τ ] to a measure supported over the set Σ r def.

= r -1 (Σ -y 0 ). Then, if Γ already touches (Σ -y 0 )/r, we don't need to do anything and let Γ r = Γ. Otherwise, we translate Γ (and the measure ν Γ) until it touches Σ r , in order to preserve connectedness. Luckily, these transportation operations are of order d H ([-τ, τ ], Σ r ), which goes to zero, from 2.5. Hence, the family of measures obtained will converge to ν and have finite F r energy.

To be more precise, given ν such that F (ν) < +∞, then it has a support of the form:

supp ν ⊂ S = [-τ, τ ] ∪ i∈N Γ i ,
where (Γ i ) i∈N is the set of pairwise disjoint connected components of S \ [-τ, τ ] and αν

Γ i ≥ H 1 Γ i .
Let us start by handling the mass over ν τ := ν [-τ, τ ]. It suffices to transport it to a nonnegative measure supported on Σ rn . To this aim, we consider P n any measurable selection of the projection Π Σr n . By definition of the Hausdorff distance, for any x ∈ [-τ, τ ],

|x -P n (x)| p = dist (x, Σ rn ) p ≤ d H ([-τ, τ ], Σ rn ) p .
So the Wasserstein distance between the measures P n ν τ and ν τ can be bounded from above by

W p p (ν τ , P n ν τ ) ≤ [-τ,τ ] dist (x, Σ rn ) p dν τ ≤ d H ([-τ, τ ], Σ rn ) p ν([-τ, τ ]) ----→ n→∞ 0,
as Σ r converges to [-τ, τ ] in the Hausdorff sense.

Next we translate the mass over the connected components Γ i until they touch Σ rn . Let h ∈ R d and define the translation map T h : R d x → x -h. Then for a given measure ν supported on Γ, it holds that supp T h ν Γ = T h (Γ).

So, if Γ i ∩ Σ rn = ∅, as the set [-τ, τ ] ∪ Γ is connected, we consider some point y i ∈ [-τ, τ ] ∩ Γ i and we take h i , with minimal norm such that y i -h i ∈ Σ rn . But then by definition, |h i | = d (y i , Σ rn ). And finally, estimating the Wasserstein distance we have that

W p p (ν Γ i , T hi, ν Γ i ) ≤ Γi |y -T hi (y)| p dν = |h i | p ν(Γ i ) ≤ d H ([-τ, τ ], Σ rn ) p ν(Γ i )
Therefore, defining a map T n as follows

T n (y) := P n (y), if y ∈ [-τ, τ ], T hi (y), if y ∈ Γ i we see that if ν n := T n ν, W p p (ν, ν n ) ≤ d p H ([-τ, τ ], Σ rn ) ν([-τ, τ ]) + i∈N ν(Γ i ) ----→ rn→0 0
and in particular ν n ν. Finally, we get ν n (B 1 (0)) = ν(B 1 (0)) = 2θ δ (y 0 ) and we conclude that F rn (ν n ) < ∞, for all n ∈ N. By the continuity of the Wasserstein distance with respect to the weak convergence, we have that:

F rn (ν n ) ----→ n→∞ F (ν).
The Γ-convergence follows. Now that we have characterized the limit problem, we show that the optimal transportation is given by projections as the blow-up family. Lemma 6.2. The optimal transportation plan between σ y0 and λ y0 = θ δ (y 0 )H 1 [-τ, τ ] is unique and given by the projection map Π [-τ,τ ] .

Proof. Consider a family γr of optimal transportation plans from σr to νr . Up to a subsequence it converges to some γy0 , which, by the stability of optimal transportation plans, also transports σ y0 to λ y0 optimally. Since σr , νr are generated by the pushforward of ν exc B r (y 0 ) by Φ y0,r , from Lemma 5.1 we know that supp γr ⊂ graph (Π Σr ) .

Let us show that supp γy0 ⊂ graph Π [-τ,τ ] . Indeed if (x, p) ∈ supp γy0 , there is an open ball B centered at (x, p) such that 0 < γy0 (B) ≤ lim inf r→0 γr (B). In particular, we can find supp γr (x r , p r ) ---→ r→0 (x, p). So it holds that

|x -p| = lim r→0 |x r -p r | = lim r→0 dist (x r , Σ r ) = dist(x, [-τ, τ ]),
where the last equality comes from the uniform convergence of the distance functions, recalling from Lemma 2.

5 that Σ r d H ---→ r→0 [-τ, τ ].
Now we show that this property is true for any other optimal plan. Consider γ y0 transporting σ y0 to λ y0 optimaly, then by the optimality of γy0 it holds that Since |x -y| -dist(x, [-τ, τ ]) ≥ 0 for γ y0 -a.e. (x, y) and the inequality above must be an equality, we must have supp γ y0 ⊂ graph Π [-τ,τ ] for any optimal γ y0 . In particular, as Π [-τ,τ ] is univalued, it means that the optimal transportation plan is unique and given by the projection map. 6.2. Competitor for the limit problem in 2D. In this section we restrict the discussion to R 2 and obtain a contradiction to the fact that the exceeding density θ δ is not zero by building a better competitor to the minimization of the Γ limit.

R d (dist(x, [-τ, τ ])) p dσ y0 = |x -y| p dγ y0 = |x -y| p dγ y0 ≥ (dist(x, [-τ, τ ])) p dγ y0 = R d dist(x, [-τ, τ ]) p dσ y0 .
From the Γ-convergence Theorem 6.1 we know that

λ y0 def. = θ δ (y 0 )H 1 [-τ, τ ] ∈ argmin F,
where F is defined in (6.8). If we are able to construct another competitor with a stricly smaller energy F , we obtain a contradiction to the existence of points such that θ δ (y 0 ) > 0. Without loss of generality, we assume that τ = e 2 where (e 1 , e 2 ) is the canonical basis of R 2 . We propose a new transportation strategy consisting in sending the mass, that was first projected onto a vertical segment, to a horizontal line as in Figure 2. To obtain a smaller transportation cost with this strategy we need to distinguish the mass that comes from each side of [-e 2 , e 2 ]. Hence we decompose σ y0 = σ + + σ - with supp σ ± ⊂ {±x 1 ≥ δ}, and Π [-e2,e2] σ ± = θ ± H 1 [-e 2 , e 2 ] for θ ± ≥ 0, θ + + θ -= θ δ (y 0 ). Theorem 6.3. Let ρ 0 ∈ P p (R 2 ) such that ρ 0 H 1 and suppose that the parameter Λ < Λ . Then the solution to the relaxed problem (P Λ ) is of the form

ν = L(ν) -1 H 1 Σ + ρ exc Σ,
where ρ exc was defined in (5.4).

In addition, if ρ 0 does not give mass to 1-rectifiable sets the shape optimization problem (P Λ ) admits a solution.

In particular, point (2) of Theorem 1.1 follows.

Proof. First we recall the decomposition of ν exc in (5.14) to write the solution as

ν = ν H 1 + sup δ>0 ν δ + ρ exc Σ.
To prove the first point, our goal is to show that ν δ ≡ 0. Fix some δ > 0, from the hypothesis that ρ 0 H 1 we know that ν δ = θ δ H 1 Σ is rectifiable. So we can perform the blow-up procedure described in Section 6.1 around a point such that θ δ (y 0 ) > 0. We also recall the decomposition of the blow-up limits

σ y0 = σ + + σ -, λ y0 = (θ + + θ -)H 1 [-τ, τ ], s.t. θ + (•) + θ -(•) = θ δ (y 0 ) > 0
where σ ± form θ ± H 1 [-τ, τ ] and λ y0 ∈ argmin F , defined in (6.8).

Take some z ∈ (-τ, τ ) that is a Lebesgue point of θ + such that θ + (z) > 0. We assume for simplicity of notation that z = 0, but the following argument can be easily adapted to any z. From Lemma 6.2, the optimal transportation of σ + to θ + H 1 [-τ, τ ] is given by the projection map. So given ε > 0 we consider the alternative transportation map

R(x) = (R 1 (x), 0) if x 1 ≥ δ, 0 ≤ |x 2 | ≤ ε (0, x 2 ) otherwise,
where R 1 (x) is determined by conservation of mass

|x2| -|x2| θ + (t)dt = 1 α R1(x) 0 dt, so that R 1 (x) = α |x2| -|x2| θ + (t)dt.
In other words, the mass that was sent to the vertical segment {0} × [-|x 2 |, |x 2 |] is now sent to the horizontal segment [0, R 1 (x)]×{0}, this construction is illustrated in Figure 2. Setting ε = ε -ε θ + (t)dt, this operation forms the measure α -1 H 1 [0, ε ], hence satisfying the density constraints.

Next we choose ε small enough to ensure a smaller transportation cost. For this it suffices that for all x = (x 1 , x 2 ) such that x 1 ≥ δ and |x 2 | ≤ ε we have that

|x -(0, x 2 )| 2 > |x -R(x)| 2 ⇐⇒ x 2 1 > (x 1 -R 1 (x)) 2 + x 2 2 (6.9) ⇐⇒ R 1 (x) (2x 1 -R 1 (x)) > x 2 2 . (6.10)
Fix ε small enough so that for all such x

• α ε -ε θ + (t)dt < δ, • |x2| -|x2| θ + (t)dt ≥ |x 2 |θ + (0) if 0 < |x 2 | < ε, since 0 is a Lebesgue point of θ + ,
• ε < δαθ + (0). For this choice of ε for any 0 < |x 2 | ≤ ε and x 1 ≥ δ we verify that

x 2 2 ≤ ε|x 2 | < δαθ + (0)|x 2 | ≤ δα |x2| -|x2| θ + (t)dt = δR 1 (x) = 2δR 1 (x) -δR 1 (x) ≤ R 1 (x) (2x 1 -R 1 (x)) ,
where in the last inequality we use the fact that x 1 ≥ δ and R 1 (x) ≤ δ for all x. Therefore (6.10) is verifed and we conclude that W p p (σ + , R σ + ) < W p p (σ + , λ + ). This contradicts the fact that θ δ H 1 [-τ, τ ] is a minimizer of F , so for H 1 -a.e. z we have θ + (z) = θ -(z) = 0. We conclude that ν δ ≡ 0 and hence

ν = ν H 1 + ρ exc Σ,
proving the first characterization of the solutions.

In particular, if ρ 0 does not give mass to 1D sets, neither does ρ exc since ρ exc ρ 0 . So ν exc ≡ 0 and the solution must be uniformly distributed over Σ, being therefore a solution to the original problem (P Λ ).

Ahlfors regularity

In this section we prove that whenever the initial measure ρ 0 ∈ L d d-1 (R d ), the optimal solutions to the relaxed problem (P Λ ) have an Ahlfors regular support. Definition 7.1. We say that a set Σ ⊂ R d is Ahlfors regular whenever there exist r 0 > 0 and c, C > 0 such that for r ≤ r 0 it holds that cr ≤ H 1 (Σ ∩ B r (x)) ≤ Cr, for all x ∈ Σ.

We prove in this section the following result. The lower bound (with c = 1 and r 0 = diam Σ) follows directly from the connectedness of Σ, hence we skip the proof. The upper bound will follow as a corollary of Lemma 7.2 below. Let us describe the strategy for proving this estimate.

The idea is similar to proving the L ∞ bound on the excess measure: if in a small ball B r (x) the measure ν has too much mass, we build another "closer" 1D structure onto which the mass is transfered at a smaller cost. Yet there is an additional difficulty: when replacing Σ ∩ B r (x) with another set we should preserve connectedness. In 5.4, we were rearranging only the excess mass and it was not an issue. It means we now need to control the number of connected components of Σ \ B r (x) and find a way to connect them back without adding too much length.

This number of connected components is controlled by the quantity H 0 (Σ ∩ ∂B r (x)), which we can control on average by means of the generalized area formula [3, Theorem 2.91]: If f : R M → R N is a Lipschitz function and E ⊂ R M is a k-rectifiable set then it holds that (7.1)

R N H 0 (E ∩ f -1 (y))dH k (y) = E J k d E f x dH k (x),
where d E f x is the restriction of ∇f (x) (when f is smooth) to the approximate tangent space of E. Hence, choosing E = Σ ∩ (B r1 (x) \ B r2 (x)) and f : x → |x -x|, we deduce from (7.1) that (7.2)

r1 r2 H 0 (Σ ∩ ∂B s (x))ds ≤ H 1 (Σ ∩ B r1 (x)) -H 1 (Σ ∩ B r2 (x))
Using this we first prove the following lemma:

Lemma 7.2. Assume ρ 0 ∈ L d d-1 (R d ).
There exist C(d, p) > 0 and r 0 depending on ρ 0 , α, d, p, such that for any C ≥ C, if r ≤ r 0 and x ∈ Σ, then either

H 1 (Σ ∩ B r (x)) ≤ Cr or H 1 (Σ ∩ B 2r (x)) ≥ 10Cr.
Proof. Let r > 0 and C ≥ 1, and let x ∈ Σ such that both H 1 (Σ ∩ B r (x)) > Cr and H 1 (Σ ∩ B 2r (x)) < 10Cr. We show that if r ≤ r 0 and C ≥ C, which will both be chosen later, then we can contruct a better competitor to the minimizer ν.

The function f : s → H 1 (Σ ∩ B s (x)) is nondecreasing, hence in BV (R + ) and satisfies, thanks to (7.2), that H 0 (Σ ∩ ∂B s (x))ds ≤ Df in the sense of measures (equivalently, H 0 (Σ ∩∂B s (x) is less than, or equal to Df , the absolutely continuous part of Df ).

We note that inf s∈(3r/2,2r)

sH 0 (Σ ∩ ∂B s (x)) H 1 (Σ ∩ B s (x)) ≤ 2 r 2r 3r/2 sH 0 (Σ ∩ ∂B s (x)) H 1 (Σ ∩ B s (x)) ds ≤ 4 2r 3r/2 1 f (s) Df (s)ds ≤ 4 ln f (2r) f (3r/2)
,

where we have used the classical chain rule at almost every point and [3, Cor. (this choice will be made clear at the end of this proof) and we consider

(7.5) δ := δ 10M < δ < 1 2 .
We define a set Γ as follows: we choose a finite covering of ∂B 1 (0) with balls B(x i , δ/2) centered at points (x i ) N i=1 (the minimal number N depends only on d and p, through δ). Then, we find a minimal tree connecting the points (x i ) N i=1 through geodesics on the sphere. We add to this minimal tree the segments [x i , (1 + δ)x i ], i = 1, . . . , N . We call Γ the resulting (connected) set, whose total length L def.

= H 1 (Γ) is of order at most 2N δ and depends only on d and p. Notice that each point of ∂B 1 is at distance at most δ, along the geodesic curve on the sphere, to a point of Γ, and that thanks to the "spikes" [x i , (1 + δ)x i ], any point with, say, |x| ≥ 10 is closer to a point of Γ than from any point in B 1 (0). Now, we define

Γ s def. = (x + sΓ) ∪ x∈Σ∩∂Bs S x ,
where S x denotes a geodesic connecting x to x + sΓ, of length at most H 1 (S x ) ≤ sδ. Since s < 2r and δ < 1/2, it follows that Γ s ⊂ B 3r (x). We define the competitor set as Σ def.

= Σ \ B s(x) ∪ Γ s.

The addition of the geodesics S x ensures that Σ remains connected, and using (7.3), we estimate the length of Γ s as

(7.6) H 1 (Γ s) ≤ Ls + δsH 0 (Σ ∩ ∂B s(x)) ≤ 2Lr + 1 10M H 1 (Σ ∩ B s(x)) < (2L + C M )
r, Now we define a new competitor ν whose support is Σ . If γ denotes the optimal transportation plan from ρ 0 to ν, given s > 0 let

ρ s def. = π 0 γ R d × B s
denote the portion of the measure ρ 0 which is transported to the ball B s . In particular, the above length estimates imply that

(7.7) Lr ≤ H 1 (Γ s) < (2L + C M )r ≤ (2 L C + 1 M )αν(B r ) ≤ αρ r (R d ) ≤ αρ s(R d
), where α := L(ν), and using that M ≥ 2 (see (7.4)) and assuming C ≥ 4L (which we recall depends only on d and p). But, if r is small enough (not depending on x, by uniform equi-integrability of ρ d/(d-1) 0 ) Holder's inequality implies that

(7.8) αρ s(B 10r (x)) ≤ α ρ 0 L d d-1 (B10r(x)) |B 10r (x)| 1 d ≤ Lr.
We fix r 0 > 0, which depends only on the dimension (through L), the integrability of ρ 0 , and α, such that the above inequality holds for r ≤ r 0 . Equations (7.7)- (7.8) show that for r small enough, part of the mass transported to ν B s must come from outside of the ball B 10r . In particular, since t → ρ s(B t (x)) is continuous, there is R > 10r such that (7.9)

ρ s(B R (x)) = α -1 H 1 (Γ s).
To form the new competitor we use the following strategy: the mass sent to Σ \ B s remains untouched, the mass ρ s B R previously used to form ν B s is transported to α -1 H 1 Γ s and the remaining mass is projected onto Γ s.

So, letting γ denote the optimal transportation plan between ρ s B R and α -1 H 1 Γ s, define the new plan

γ = γ R d × B s(x) c + γ B R × R d + (id, π Γs ) (ρ s B c R )
, and the new competitor ν as its second marginal. By construction, αν ≥ H 1 Σ so that L(ν ) ≤ L(ν). We now estimate the gain in terms of transportation cost.

• For (x, y) ∈ B R × B s and for any y ∈ Γ s ⊂ B 3r , as s ≤ 2r and 10r < R, the convexity of t → t p yields

|x -y | p ≤ (|x -y| + 5r) p ≤ |x -y| p + 5rp (|x -y| + 5r) p-1 ≤ |x -y| p + 5rp(2R) p-1 .
Hence integrating w.r.t. the transportation plans we get

B R ×Γs |x -y | p dγ ≤ B R ×Bs |x -y| p dγ + 5rp (2R) p-1 ρ s (B R ) ,
(this can be checked by disintegration w.r.t. their common first marginal, which is the measure ρ s B R ). .

So, decomposing the integration for the points going to B r and to B s \ B r , this time the transportation cost can be bound by:

B c R |x -π Γs (x)| p dρ s = B c R |x -π Γs (x)| p d(ρ s -ρ r ) + B c R |x -π Γs (x)| p dρ r ≤ B c R ×Br |x -y| p dγ -p r 2 17 20 R p-1 ρ r (B c R ) .
We get:

W p p (ρ 0 , ν ) ≤ W p p (ρ 0 , ν) + 5rp (2R) p-1 ρ s (B R ) -p r 2 17 20 R p-1 ρ r (B c R ) .
As L(ν ) ≤ L(ν), the optimality of ν gives that W p p (ρ 0 , ν) ≤ W p p (ρ 0 , ν ), which, along with the previous estimates, implies

0 ≤ 5 • 2 p-1 ρ s (B R ) - 1 2 17 20 p-1 ρ r (B c R ) ⇔ ρ r (B c R ) ≤ 10 • 40 17 p-1 ρ s (B R ) .
On the other hand, since

ρ r (B R (x) c ) = ν(B r ) -ρ r (B R (x)) ≥ α -1 Cr -ρ r (B R (x)) ≥ α -1 Cr -ρ s(B R (x)),
and recalling (7.6) and (7.9), we deduce:

C ≤ 1 + 10 • 40 17 p-1 (2L + C M )
We conclude that with the choice (7.4) of M , one has C ≤ 2M L, which depends only on p and d and a contradiction follows if we choose C = 1 + 2M L.

Proof of Theorem 7.1. Consider C, r 0 from Lemma 7.2. Fix x ∈ Σ and assume there is r ∈ (0, r 0 ) such that H 1 (Σ ∩ B r (x)) ≥ Cr. Then the thesis of the lemma applies and it must hold that H 1 (Σ ∩ B 2r (x)) ≥ 10 Cr. By induction, we find that for k ≥ 1, one of the following holds:

• either 2 k r > r 0 ;

• or we apply the lemma again, using that H 1 (Σ ∩ B 2 k r (x)) ≥ 5 k-1 C(2 k r), and we get H 1 (Σ ∩ B 2 k+1 r (x)) ≥ 5 k C(2 k+1 r).

Let k ≥ 1 be the first integer such that 2 k r > r 0 , so that 2 k-1 r ≤ r 0 and 5 k-1 C(2 k r) ≤ H 1 (Σ ∩ B 2 k r (x)).

Hence, r 0 ≤ 2 k r ≤ 5 -k+1 C-1 H 1 (Σ) and it holds that k ≤ k 0 def.

= log 5 (5H 1 (Σ)/ Cr 0 ), and r ≥ r 0 2 -k ≥ r0

def.

= r 0 • 2 -k0 . We find that if r ≤ r0 then for x ∈ Σ, H 1 (Σ ∩ B r (x)) ≤ Cr.

Remark 7.3. It is interesting to observe here that the regularity constant C depends only on d and p, while the scale r0 at which the Ahlfors-regularity holds gets smaller as ρ 0 gets more singular or when α (or H 1 (Σ)) increases.

Conclusion

In this paper we have proposed a new variational problem, which serves as a method for approximating a probability measure with a measure uniformly distributed over a segment. In order to prove existence we have passed through a relaxed problem and the definition of a new functional on the space of probability measures, the length functional, that generalizes the notion of length of the support of a measure. As a tool for our analysis we have also generalized Golab's Theorem to the case of a sequence of sets converging in the Kuratowski sense. Even though existence for the original problem was proved in a particular case, for measures in R 2 not giving mass to small sets. We have also managed to prove interesting properties of the solutions of the relaxed problem in any dimension, e.g. L ∞ bounds and Ahlfors regularity.

There are still many open questions left, for instance • Does the support of minimizers have loops or are they trees?

• What is the regularity of the optimal Σ? Can we adapt the theory in [START_REF] Morgan | ε, δ)-minimal curve regularity[END_REF] and conclude they are locally C 1,α curves? • If ν Λ is a solution to (P Λ ), what is the rate of convergence of ν Λ ---→ Λ→0 ρ 0 ?

• The blow-up analysis done in section 6 is very similar to the arguments done in [START_REF] Santambrogio | Blow-up of optimal sets in the irrigation problem[END_REF] for the blow-up of average distance minimizers. However, the argment is applied to the excess measure and not to the entire solution.

Can we use similar tools to study the blow-ups of the optimal networks in our problem as well? • What are the Euler-Lagrange equations of (P Λ )? Can we use it to propose efficient numerical algorithms to solve it?

Now we take R ≥ R 0 and consider a subsequence (C n k ) k∈N and a closed set C R such that Therefore if R is a point of discontinuity for ϕ ξ , then for all ξ in a neighborhood of ξ, R is a point of discontinuity for ϕ ξ .

C n k ∩ B R d H ----→ n→∞ C R . Since C n k ∩B R ⊂ C n k , it
Let (ξ n ) n∈N be a dense sequence in ∂B 1 . For each n we can find a countable subset I n ⊂ [R 0 , +∞), such that ϕ ξn is continuous at any R ∈ (R 0 , +∞) \ I n . Finally, we define the countable set I as I = n∈N I n .

If R ∈ I, then either R < R 0 and C ∩ B R = C ∩ B R = ∅, or R > R 0 . In that case, for any ξ ∈ ∂B 1 , ϕ ξ is continuous. Otherwise, there would be some ξ n , close enough to ξ, such that ϕ ξn is discontinuous, a contradiction. In particular, whenever x = Rξ ∈ C the continuity of ϕ ξ implies that Proof of Theorem 2.2. We will show that µ(Σ ∩ B r (y 0 )) ≥ H 1 (Σ ∩ B r (y 0 )) for H 1a.e. y 0 ∈ Σ and for r > 0 small enough. This implies that Θ 1 (µ, y 0 ) ≥ 1, and the result follows by integrating. Assume that Σ is not a singleton, otherwise there is nothing to prove, so that taking any y 0 ∈ Σ, for r > 0 small enough Σ ∩ B c r (y 0 ) = ∅. From the Kuratowski convergence, for n large enough, each set Σ n has a point inside and another outside the ball B r (y 0 ). We start by fixing some 0 < δ < r and looking at the smaller ball B r-δ (y 0 ).

Consider the following class

A n := γ connected component of Σ n ∩ B r (y 0 ) which intersects B r-δ (y 0 ) . Each γ ∈ A n must be such that H 1 (γ) ≥ δ. Indeed, as for each n ∈ N there is a point in Σ n ∩ B r (y 0 ) c and another in γ ∩ ∂B r-δ (y 0 ), the connectivity implies γ is contained in an arc joining these two points, but then it must have length at least δ, as it is the smallest distance between the two balls. So define Σn := γ∈An γ, which is a bounded sequence of closed sets, but not necessarily connected. However this sequence has a uniformly bounded number of connected components since

δ A n ≤ γ∈An H 1 (γ) ≤ H 1 (Σ n ∩B R (x 0 )), hence A n ≤ sup n∈N H 1 (Σ n ∩ B R (y 0 )) δ < +∞,
for R > 0 large enough. As Σn is a bounded sequence, by Blaschke's Theorem we can assume up to an extraction that Σn 

( 2 . 1 )

 21 d H (A, B) := max sup a∈A dist(a, B), sup b∈B dist(b, A) , we write A n d H ----→ n→∞ A,

  2.21] to deduce (R.H.S. of (3.5)) ≥ (R.H.S. of (3.1)) .

4. 1 .

 1 Elementary properties of the support. Given a set A ⊂ R d we denote by convA its closed convex hull.

Lemma 4 . 2 .

 42 Let ν ∈ P(R d ) be a solution to (P Λ ). Then the following properties hold

(4. 3 )

 3 Proof. Since the solutions are supported on a line segment in [-1, 1], they are of the form ν = δ a or ν = 1 α H 1 [a, b]+ν exc , with α = L(ν) and supp ν exc ⊂ [a, b] ⊂ [-1, 1].

5. 2 .Lemma 5 . 2 .

 252 Solutions are absolutely continuous. Now we prove that the solutions to the relaxed problem (P Λ ) are absolutely continuous w.r.t. H 1 Σ. The proof is based on the construction of a localized variational problem. Let ν be an optimal solution for the relaxed problem (P Λ ) and setα = L(ν). Let S = S 0 × S 1 ⊂ R d × R dbe a Borel set and define the transportation plan γ S := γ exc S 0 × S 1 along with its marginals ρ S := π 0 γ S = ρ exc S 0 , ν S := π 1 γ S .

Lemma 5 . 3 .

 53 Let B 2 be the ball on R d centered at the origin. There exists a connected set Γ d ⊂ ∂B 2 with H 1 (Γ d ) < +∞ and such that dist(x, Γ d ) ≤ |x -y| -1 2 for any x ∈ B 2 and for all y ∈ B 1 .

Figure 1 .

 1 Figure 1. Transportation argument for the construction of a recovery sequence in the Γ convergence of (F r ) r>0 .

Figure 2 .

 2 Figure 2. Construction of the better competitor to the minimization of the functional F .

Theorem 7 . 1 .

 71 If ρ 0 ∈ L d d-1 (R d), let ν be a solution of the relaxed problem (P Λ ) and Σ its support. Then Σ is Ahlfors-regular, there exist r 0 > 0 depending on d, p, ρ 0 and α and C > 0 depending only on d and p such that, for all x ∈ Σ and r ≤ r 0 , r ≤ H 1 (Σ ∩ B r (x)) ≤ Cr.

  holds that C R ⊂ C. On the other hand, given x ∈ C ∩B R , if there existsx n ∈ C n ∩ B R with x n → x, then x ∈ C R . Therefore C ∩ B R ⊂ C R ⊂ C ∩ B Rand to finish the proof it suffices to show that there is a countable setI ⊂ [R 0 , +∞) such that if R ∈ I, R > R 0 , then C ∩ B R = C ∩ B R . Let ξ ∈ ∂B 1 and consider the function R → dist(Rξ, C ∩ B R ). If R > R ≥ R 0 it holds that dist(Rξ, C ∩ B R ) ≤ dist(R ξ, C ∩ B R ) + R -R . Indeed, let x R be the point minimizing the distance from R ξ to C ∩ B R , then dist(Rξ, C ∩ B R ) ≤ d(Rξ, x R ) ≤ d(Rξ, R ξ) + d(R ξ, x R ) = dist(R ξ, C ∩ B R ) + R -R .Hence the function ϕξ : R → dist(Rξ, C ∩ B R ) -R, is nonincreasing in [R 0 , +∞)and in particular it has at most a countable number of discontinuity points. In addition, given ξ, ξ ∈ ∂B 1 , it holds that|ϕ ξ (R) -ϕ ξ (R)| = inf x∈B R d(x, Rξ) -infx∈B R d(x, Rξ ) ≤ sup x∈B R |d(x, Rξ) -d(x, Rξ )| ≤ R|ξ -ξ |.

  lim R ↑R dist(R ξ, C ∩ B R ) = 0. Hence take R n ↑ R, set ε n := dist(R n ξ, C ∩ B Rn ) and let x n ∈ C ∩ B Rn be a vector attaining this distance. As x n ∈ C ∩ B R and |x -x n | ≤ ε n + R -R n , x n converges to x, and x ∈ C ∩ B R . It follows that (C ∩ B R ) \ C ∩ B R = ∅, completing the proof.

1 Σn ≥ lim inf n→∞ H 1 H 1 Σ

 111 fact, for a.e. 0 < δ < r, using Lemma 2.1, it holds that(B.1) Σ ∩ B r-δ (y 0 ) = Σ ∩ B r-δ (y 0 ), since by the construction, Σn ∩ B r-δ (y 0 ) = Σ n ∩ B r-δ (y 0 ) and choosing δ such that Σ n ∩ B r-δ (y 0 ) K ----→ n→∞ Σ ∩ B r-δ (y 0 ). This way, we can apply the global version of Golab's Theorem with a uniformly bounded number of connected components to the sequence Σn ∩ B r-δ (y 0 ) so that we writeµ B r (y 0 ) ≥ lim sup n→∞ H 1 (Σ n ∩ B r (y 0 )) ≥ lim sup n→∞ H Σn ∩ B r-δ ≥ H 1 Σ ∩ B r-δ (y 0 ) = H 1 Σ ∩ B r-δ (y 0 ) ≥ H 1 (Σ ∩ B r-δ (y 0 )) ,where the first inequality is due to the weak-convergence of the measures and the forth is given by Golab's Theorem. But as this estimate is true for any δ > 0, it must hold that µ B r (y 0 ) ≥ H 1 (Σ ∩ B r (y 0 )) for any y 0 ∈ Σ and r > 0. To extend this to open balls as well we use the following estimates µ(B r ) = lim n→∞ µ B r-1/n ≥ lim n→∞ ∩ B r-1/n = H 1 (Σ ∩ B r ) .

  Γ d being the set from Lemma 5.3. Therefore, if ρ 0 H 1 or has a L ∞ density w.r.t. H 1 , so does ν, in particular it is a rectifiable measure.Proof. For y 0 ∈ Σ, let us define the one-dimensional upper density[START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] Def. 2.55] 

•

  Similarly, for x ∈ B c R and y ∈ B s \ B r the addition of the spikes ensures that |x -π Γs (x)| ≤ |x -y|.

	However if x ∈ B c R and y ∈ B r it holds that
	|x -π Γs (x)| ≤ |x -y| -	r 2	and |x -y| ≥ R -r,
	so that once again using the convexity of t → t p we have
	|x -π Γs (x)| p ≤ |x -y| -	r 2	p	≤ |x -y| p -p	r 2	|x -y| -	2 r	p-1
	≤ |x -y| p -p	r 2		20 17	R	p-1
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Appendix A. Localized variational problem

In this section, we prove Lemma 5.2, which states that the optimality of ν implies that the exceeding measure ν exc , or a slight modification of it, must satisfy a localized optimization problem. Before proceeding we review the notation introduced in the statement of the Lemma. Given an optimal transportation plan γ between ρ 0 and the minimizer ν, we recall the definition of γ exc in (5.3) and we fix a general Borel set S = S 0 × S 1 to define γ S := γ exc S 0 × S 1 along with its marginals ρ S := π 0 γ S = ρ exc S 0 , ν S := π 1 γ S , Proof of Lemma 5.2: First, we fix some arbitrary Γ such that Σ ∪ Γ ∈ A. We consider measures ν ∈ M + (Σ ∪ Γ) such that ν (R d ) = ν S (R d ) and ν ≥ α -1 H 1 Γ, and we build competitors to ν of the form ν -ν S + ν . Such measures are supported over Σ ∪ Γ ∈ A and

. By optimality of ν, we deduce that

). Now, as the support of γ is c-cyclically monotone (see [2, Def. 3.10 and Thm. 3.17]), so is the support of γ S , making it an optimal transportation plan between its marginals (see [START_REF] Ambrosio | Lectures on optimal transport[END_REF]Thm. 4.2]). the same argument applies to γ -γ S , we get

. Besides, let γ be an optimal transportation plan from ρ S to ν . Then (γ -γ exc )+ γ is a transportation plan from ρ 0 to (ν -ν S + ν ), hence

Substracting (A.1), we deduce that W p p (ρ S , ν S ) ≤ W p p (ρ S , ν ) for all the admissible variations ν of the excess measure.

As γ S is an optimal transportation plan between ρ S and ν S , from [29, Theorem 5.27] one can define a constant speed geodesic between such measures as σ S,t := π (1-t) γ S , where π t (x, y) := (1 -t)x + ty.

Hence for any variation ν , admissible in the sense of the previous problem, and for any t ∈ [0, 1], it holds that

Where the equality comes from general properties of constant speed geodesics in metric spaces, while the inequalities come from the minimality of ν S and the triangle inequality, respectively. We conclude that in fact, the measures ν S minimize the Wasserstein distance to the family of geodesic interpolations σ S,t .

Appendix B. Kuratowski convergence and Golab's Theorem

In this appendix we give a proof of Lemma 2.1. We then give a simple proof of the local version of Go lab's, Theorem 2.2. We use the notation B R = {x : |x| < R} and B R = {x : |x| ≤ R}.

Proof of Lemma 2.1. Notice that, up to a translation, it suffices to prove the result for x 0 = 0. We can also assume that C = ∅, otherwise for any R > 0, C n ∩ B R = ∅ for n large enough and the result holds. Defining R 0 = inf{R > 0 : C ∩ B R = ∅}, we have that if R < R 0 , one has C n ∩ B R = ∅ for n large enough and the Hausdorff limit is empty, as expected.
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