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Abstract—Flexible manufacturing systems (FMS) are used 

to ensure the production of several products using the same set 

of production tools. Transportation tasks using robots are 

introduced in order to increase the routing flexibility of the 

FMS. Several researchers are interested in the optimization of 

the production planning but few of them considered the 

transportation planning. On another hand, each optimization 

algorithm needs an adapted control architecture to be executed. 

In this paper, we propose the use of a hybrid architecture 

control to implement the bi-objective optimization algorithm 

based on Multi-Objective Genetic Algorithm (MOGA). Results 

showing the efficiency of the proposed approach are presented. 
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I. INTRODUCTION  

The concept of Flexible Manufacturing Systems (FMS) 
was introduced to deal with market requirements affected by 
the unpredictable customer demands. FMS are characterized 
by their ability to adapt to new situations in the production 
systems and consist in integrating smart elements to allow the 
production of several kind of products. In addition, the 
organisation of production systems has evolved from 
production lines to production cells in order to provide more 
flexibility to the production systems [1], which has led to the 
emergence of new kind of tasks such as the transportation of 
products between production machines. The robotization of 
such tasks using autonomous mobile robots is necessary due 
to their drudgery and repeatability. However, it increases the 
complexity of FMS. 

 Thus, it is important to find a way to assign task to these 
autonomous entities, while reducing the transportation cost 
and optimising the overall performance of the factory. Many 
researchers focused on the way to allocate tasks to these 
autonomous and smart elements in FMS separately or with 
integration of machines production planning [2] [3]. Several 
criteria  are used of evaluate the system such as the makespan, 
the cost, the delivery time…. Due to the complexity of this 
kind of problem, two main methods are proposed in the 
literature to resolve the allocation problem. The first one is 
based on a central algorithm that can propose optimal solution. 
The drawback of these methods is the lack of flexibility. The 
second one try to increase the flexibility of the system by 
making a distributed decision-making, where every 
component of the system make its own decision. The 
drawback of these methods is the non-optimality of the global 
solution. In order to overcome the inconvenient of these two 
approaches, a third solution based on indirect optimization has 
been developed. These methods seek to define a set of optimal 
rules that draw the framework of decisions and actions made 
by the smart resources.  

In this paper, we seek to use an indirect optimization 
mechanism to develop an algorithm able to provide optimal 

resource assignment. It is based on the use of a bi-objective 
genetic algorithm that optimises both the total cost and 
completion time of each job performed by smart element such 
as mobile robots and/or robotic arms. The proposed rules are 
a set of virtual prices and profits that can generate an 
assignment and scheduling of the smart resources.  

The reminder of this paper is as follow:  The next section 
presents a state of the art on task assignment algorithms in 
FMS context. We then turn our attention, to detailing the 
proposed approach. An experimentation is performed on a 
simulated flexible workshop for the research validation. The 
paper closes with conclusion and plans for future works. 

 

II. LITTERATURE REVIEW 

A. Flexible manufacturing system 

Over the last few decades, there have a number of 
significant changes in customer demands for manufacturing 
products. While in the past, price sensitivity led to more 
uniform products, nowadays, many high-quality and often 
customized products at reasonable prices and prompt delivery 
are required [4]. These market demands force the factories to 
adapt to the pace that is constantly growing. The integration 
of flexible manufacturing system (FMS) is a solution to cope 
with these changes.  

The FMS control systems must be responsive and adapt 
quickly to external changes. Be tolerant of breakdowns and be 
able to minimize their consequences. To get these features 
(fault tolerances, adaptability and reactivity), they should be 
as decentralized as possible and as centralized as necessary 
[5]. 

In FMS, three kind of interaction between elements can be 
notified : hierarchical interaction, heterarchical one and hybrid 
approach [4]. In the hierarchical organization decisions are 
taken in the high levels. The main advantages of this approach 
are their robustness, fast response time, and their reduced 
complexity of implementation [6]. However, hierarchical 
architectures suffer from a lack of flexibility and high rigidity. 
This makes it difficult to add new elements (machines, 
robots,...) in the system [4]. Heterarchical architectures are 
represented as sets of resources, and each set is controlled by 
a single controller. Since there is no hierarchy in heterarchical 
systems, we can only have one level in the composition of the 
system. Their main advantages are a high flexibility and a 
local intelligence to deal with unexpected events. Despites 
these advantages, the heterarchical control system, have some 
drawbacks. In fact, the local decisions lead to have myopia of 
entities since there is no global decision entity [7].  

In order to benefit from the overall optimization of the 
hierarchical approach and the responsiveness of the 
heterarchical approach without suffering the myopia of 
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agents, the hydrid approaches have been proposed. The hybrid 
architectures use a centralized approach when the objective is 
optimization, and a more heterarchical approach in the 
presence of unexpected events and modifications [5]. 

Various architectures and task allocation algorithms have 
been structured using these three classes (hierarchical, 
heterarchical and hybrid) to benefit from their advantages.  

B. Task assignment in FMS 

Reference [3] developed an algorithm for assigning tasks 
to a multi-robot system, based on a heterarchical auction 
mechanism by taking into account several constraints 
(Deadline, robot capacity,…). Each robot has a payoff when 
performing a task. This gain constitutes its bid and allows the 
submission to its neighbors when a task is proposed. 
Reference [2] experimented a fully distributed architecture to 
deal with the assignment of tasks to Automatic Guided 
vehicles (AGV). Biddings are used to assign tasks, where the 
auctioneers are the machines. This makes the approach 
decentralized because each machine manages the assignment 
of tasks according to the products it needs or its neighbor 
machine needs. The AGV able to propose the minimal 
transportation time wins the bids. These type of approaches 
suffer from the same shortcomings as totally heterarchical 
control systems: absence of a global decision. An architecture 
composed of three levels for FMS scheduling and control has 
been developed in [8]. The highest level is in charge of an 
advanced scheduling, which it carries out according to the 
returns of the second level, periodically or in the event of 
disruptions. Data from the highest levels are taken as advices 
and not orders by the bottom levels, which considers the state 
of the workshop in real time and reschedule if necessary. This 
method allows a multi-level scheduling, in which the final 
decision is made by the entities at the lowest level.  

These multi-level scheduling methods allow a fair 
workloads among available resources resilient to disruptions. 
However, they require good synchronization between the 
different decision levels to detect when a rescheduling should 
be performed by whose and at which level. Also, since the 
final decision always comes down to one level, it may happen 
that  scheduling  of other levels could be removed. Reference 
[9] proposed a generic algorithm for assigning tasks through 
an auction process. In this approach, virtual prices are 
associated to operations and virtual minimum profits are set 
for resources. These virtual values (prices and profits) will be 
the guidelines of the solution. The Figure 1, shows the 
difference between the classical approaches and the indirect 
one. The classical approaches are fully distributed, where the 
auction is won by the highest bidder among the candidates 
without a real intervention of the central auctioneer, which has 
a global vision of all the resources. This type of configuration 
can then lead to a poor distribution of tasks.  In indirect 
approaches, the central auctioneer acts on the bidding by 
attributing the virtual profits to resources and virtual prices to 
operations. These virtual values guide and influence the 
selected choice.  

Function 1 :

Auction

Function 2 :

Winner selectionChromosome Candidates

Operation

- Set of resources

- Possibilities ≤ Number_Of_Resource 

- Set of virtual prices and profits

- Possibilities = N(Number_Of_Resource + 1)  

Winner

Indirect approach

Classical approach

 

Fig. 1. Auctions procedures.   

The approach proposed in [9] does not take into account 
the assignment of multiple product to resources, which 
represent its main drawback. The approach we have proposed 
in the rest of this paper aims to improve this method, by the 
introduction of many improvements and differences that will 
be detailed. 

III. PROPOSED MECHANISM 

The task allocation is based on offline scheduling. The 
approach is composed of ten steps, expanded on four main 
algorithms as shown in Figure 2. The step 0, has the sole 
objective of generating a random chromosome. The 
chromosome value are chosen randomly, within a wide range 
(between 0 and highest operations cost N). 

Step 0 :

Chromosome 

generation

Winners with best 

cost and time

Algorithm 1 :

Job and operation 

selection

Algorithm 2 :

Auction process

All operations 

are assigned?

Algorithm 3 :

Solution Validation

Algorithm 4 :

Optimization
  totalTime≤dueDatePopulation filled?

Yes

YesYes

No

No

No

 

Fig. 2. Approach overview.  

A. Assumptions and Constraints 

1) Assumptions : 

a) Each job is associated to  a product (e.g  j = 2, means 

the second product). 

b) Each transportation resource (robot) has its own 

performances to achieve an operation (time, cost), and all the 

robots are able to execute the transport operations. 

c) Each production machine and transportation 

resource only processes one product at time, and the 

production planing is guided by the transportation 

scheduling. We consider a job shop scheduling problem.  

2) Constraints 

a) The jobs must be executed in parallel in order to 

reduce the makespan. A precedence constraints existes 

between operation of a job. 

b) The selection of operation for biddings is 

constrained by the availability of picking machine and 

destination one, since the production planing is guided by the 

transportation scheduling. 

TABLE I.  LISTE OF SYMBOLS 

Symbol Notation 

J Set of jobs 

R Set of robots 

W Set of robots winners 

j A job, j ∈ J 

r A robot, r ∈ R 

unitCostr Unit cost per time associated to robot r 

Cropj  ;Tropj 
Cost / Time associated to robot r for operation op 
of job j 

dtropj 
Delivery time of product associated to job j 
during operation op by robot r 

Tmax 
Time at which both the robot and the product are 
available 

destjop 
Destination of product associated to job j during 
operation op 



2020 Electron Devices Technology and Manufacturing Conference (EDTM) 
 

 

Symbol Notation 

depjop 
Picking machine of product associated to job j 
during operation op 

Popj Virtual price associated to operation op of job j 

Fminr Minimum virtual profit associated to resource r 

ch A chromosome  

pt Machine processing time 

nbrMachine Number of machines in the workshop 

busyMachine Number of occupied machine 

bufferProduct 
Time buffer contening the processing time of all 
products 

bufferRobotr Time buffer containing the activity of robot r 

B. Algorithms 

Step 0: Chromosome generation 

            Ch = [ P11, P12, ...Pnk, Fmin1,…,Fminr ] 

Algorithm 1: Job and operation select 

Step 1: Choice of job and operation 

j = index(Min(bufferProduct)) 

op = op-1 + 1 

Step 2 : Machine availability 

If destjop and depjop  not busy:  

    “The machines are free” 

    destjop = busy 

Else : 

       “The machine is busy” 

       Goto(step 1) 

End if 

       Return j, op 

End if 

In algorithm 1, we select a job and an operation to be sent 
to robots for bidding based on two criteria. First, the product 
associated to the job must have the lowest buffer time (Step 
1). This condition guarantees a low makespan, because all the 
parallel jobs will almost end at the same time. Second, the 
machines of destination and picking of the product must be 
available (Step 2). While the machines are not available, the 
operation can not be performed for the moment and another 
operation have to be chosen. The output of the algorithm 1, is 
a feasible operation of a job.  

Algorithm 2: Auction process 

Step 3: Resource performance estimation 

 “Operation cost” 

Cropj = Tropj* unitCostr 

 “Availability time of robot and product” 

Tmax = Max(bufferProductj , bufferRobotr) 

“Product delivery time” 

dtropj = Tmax + Tropj  

Step 4 : Potential candidates for the operation 

For r in R : 

     If Popj - Cropj  ≥ Fminr :  

          candidatesopj  r 

     End if 

End for 

If  candidatesopj == None :  

     “The operation op of job j has no candidate” 

       Goto(Step 0) 

End if 

Step 5 : Winner of operation between the candidates 

For r in candidatesopj : 

     winneropj  Min(dtropj) 

End for 

Algorithm 2, receives as input the operation selected in 
algorithm 1. In this part, each transportation resource 

estimates its performances (cost and delivery time of product) 
related to the operation (step 4). The delivery time (dtropj) of 
product is obtained by adding to the time needed by the robot 
to perform the operation and the time at which both the robot 
and the product are available (Tmax). After bids reception the 
auctioneer selects the potential candidates and winner to the 
operation using the same criteria as in [9]. All the robots 
generating a payoff, are candidates (step 5) and the robot 
minimizing the delivery time between candidates wins the 
bidding (step 6).  

Algorithm 3: Solution validation 

Step 6: Total time and cost associated 

 “Total Cost” 

 totalCost = ∑ ∑ ∑ C������∈��∈��∈	  

 “Total Time” 

 totalTime = ∑ ∑ ∑ dt������∈��∈��∈	  

Step 7:  Chromosome validation 

 If totalTime ≤ dueDate : 

     population   ch 

     fitnessTime  totalTime 

    fitnessCost    totalCost  

 Else : 

     “Generate a new chromosome” 

     Goto(step0) 

 End if 

Once, all operations are assigned, the chromosome 
(generated at step 0) is validated through the algorithm 3. This 
algorithm provides a population of chromosomes to 
Algorithm 4 in charge of optimization.  

 

Algorithm 4: Optimization 

Step 8: Initial pool 

 For i in number_population : 

       do (step0, algorithm1, algorithm2, algorithm3) 

 End for  

Step 9: Fitness evaluation 

  sort(fitnessTime) 

 sort(fitnessCost) 

 For ch in population  

       fitness  rankch(fitnessCost)  + rankch(fitnessTime) 

 End for     

 sort(fitness) 

The optimization process in Algorithm 4, is based on 
genetic algorithm with typical tools (Initial population, 
mutation and crossover).  The fitness function is a set of rank 
associated to chromosome in the population. The rank of a 
chromosome is obtained by adding its rank regarding the total 
costs fitness (fitnessCost) and its rank regarding the total times 
fitness (fitnessTime). More details about the fitness evaluation 
are provided in [10]. Our bi-objective function minimizes both 
the total cost and time of all the operations : 

Min(totalCost, totalTime) 

In the approach proposed in [9], only the total cost is 
optimized. The different constraints such as the precedence 
between operations, machines availability and multiple jobs 
assignment are also not taken into account.  

IV. EXPERIMENT 

A. Description 

The experience we made is a workshop composed of four 
production machines, four products, three mobile robots for 
products transportation. A job is associated to each product 
composed of four operations. The whole operations have to 
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meet a due Date of 300 seconds. The Figure 4 shows an 
example of product sequence. 

P1 :

Job1

Stock in M1 M3 M1 StockoutOp11 Op12 Op13 Op14

 

Fig. 3.  Sequence of job 1 associated to product 1.  

B. Results 

The Figure 4, shows the result of task assignment to robots 
that considers all the constraints  (Precedence of operation in 
a job, parallel job execution…). The result provides as well a 
sequence between jobs. The robots buffer containing the 
operations won and the date where these operations are 
processed, testify the interest of the indirect approach of 
optimization. Thanks to the intervention of the central 
auctioneer through virtual prices and profits, the operation 
was distributed among the robots. Since robots have different 
performances (costs and times of operations), a direct 
optimization approach would have led to having the robots 
with better performance as winners of operations. This leads 
to a poor distribution of tasks among resources. The poor 
distribution of tasks is responsible of resources 
overexploitation, which leads to a rapid decrease in their 
performance. 

Time (second)

 M1        M3

Robot 1

Robot 2

Robot 3

Product 1 Product 2

Product 3Product 4

 M1        M4

S.in        M1

 M1              M3

 M3              M1  M1           S.out

 S.in        M1  M1        M4

 M4        M2

 M2        Sout

 S.in        M2  M2              M1

 M1              M4

 M4           S.out

 S.in                M2

 M2              M1           M1              M3          

 M3           S.out          

S.in : Stock input   S.out  : Stock output        M : Machine

  

 
Fig. 4.  Transport and production planning found  

 
Fig. 5.  Total cost and time evolution per generation  

The results of the optimization (Figure 5) demonstrate the 
effectiveness of the bi-objective function. For the first 
generations, the total cost and time are inversely proportional 
(One of the values is high and the other low). After 8 

generations, both of the value total cost and time are 
minimized. 

V. CONCLUSION 

To summarize, in this paper we presented a new approach 
for assigning tasks to resources in an industrial context for the 
transportation of products. In general, tasks assignment 
provide optimal or optimized solution consisting in a timed 
list tasks for each resource. In addition, the task assignment 
based on auction are highly distributed in the sense that the 
choice of winner only depends on robot performances. This 
distribution leads to the loss of the overall objectives of the 
system. The presented approach provides hybrid mechanism 
for the control of FMS based on auction, in which the main 
auctioneer influences the selection of winner. In fact, an 
optimization process provides optimal virtual values 
associated to operations and resources, which lead to an 
optimal allocation tasks solution.  

The presented approach provides an advanced scheduling 
of both production and transportation process through the 
establishment of a set of rules (virtual price and profits). The 
next step is to test the proposed solution with disturbances and 
introduce a dynamic allocation process, in order to implement 
approach on the industrial platform of the LINEACT 
laboratory.  
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