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Abstract

Constraint programming techniques are widely
used to model and solve interactive decision prob-
lems, and especially configuration problems. In
this type of application, the configurable product is
described by means of a set of constraints bearing
on the configuration variables. The user interac-
tively solves the CSP by assigning the variables ac-
cording to her preferences. The system then has to
keep the domains of the other variables consistent
with these choices. Since maintaining the global
inverse consistency of the domains is not tractable,
the domains are instead filtered according to some
level of local consistency, e.g. arc-consistency.

The present paper aims at offering a more conve-
nient interaction by providing the user with possi-
ble alternative values for the already assigned vari-
ables, i.e. values that could replace the current ones
without leading to a constraint violation. We thus
present the new concept of alternative domains in
a (possibly) partially assigned CSP. We propose a
propagation algorithm that computes all the alter-
native domains in a single step. Its worst case com-
plexity is comparable to the one of the naive al-
gorithm that would run a full propagation for each
variable, but its experimental efficiency is better.

1 Introduction

The Constraint Satisfaction Problem (CSP) formalism of-
fers a powerful framework for representing a great variety
of problems, e.g. routing problems, resource allocation, fre-
quency assignment, configuration problems, etc. The main
task addressed by the algorithms is the determination of the
consistency of the CSP and/or the search for an (optimal)
solution, and this is a difficult task: determining whether a
CSP is consistent is an NP-complete request. In the CSP
community, the main research stream thus addresses this
question, either directly (looking for efficient complete algo-
rithms) or getting around (studying the polynomial subclasses
or proposing incomplete algorithms).

∗This work is partially funded by the ANR project “Business
Recommendation for Configurable Products” (BR4CP), ANR-11-
BS02-008

But these algorithms do not help solving decision support
problems that are interactive in essence. For such problems,
the user herself is in charge of the choice of values for the
variables and the role of the system is not to solve a CSP, but
to help the user in this task. Constraint-based product config-
uration [Mittal and Frayman, 1989; Sabin and Weigel, 1998;
Mailharro, 1998; Stumptner et al., 1998; Junker, 2006] is a
typical example of such problems: a configurable product is
defined by a finite set of components, options, or more gen-
erally by a set of attributes, the values of which have to be
chosen by the user. These values must satisfy a finite set of
constraints that encode the feasibility of the product, the com-
patibility between components, their availability, etc.

Several extensions of the CSP paradigm have been pro-
posed in order to handle the constraints-based definition of a
catalog or a range of products, and more specifically the def-
inition of configurable products. These extensions have been
motivated by difficulties and characteristics that are specific
to the modeling and the handling of catalogs of configurable
products. Dynamic CSPs [Mittal and Falkenhainer, 1990],
for instance suit problems where the existence of some op-
tional variables depends on the values of some other vari-
ables. Other extensions proposed by the CSP community in-
clude composite CSPs [Sabin and Freuder, 1996], interactive
CSPs [Gelle and Weigel, 1996], hypothesis CSPs [Amilhas-
tre et al., 2002], generative constraint satisfaction [Stumptner
et al., 1998; Fleischanderl et al., 1998], etc.

In this paper, we do not deal with such representation prob-
lems: we assume that the product range is specified by a clas-
sical CSP. Instead, our work focuses on the human-computer
interaction. When configuring a product, the user specifies
her requirements by interactively giving values to variables.
Each time a new choice is made, the domains of the further
variables must be pruned so as to ensure that the values avail-
able in their domains can lead to a feasible product (i.e., a
product satisfying all the initial configuration constraints):
the aim of the system is to keep the domains of the other
variables consistent with these choices. Since maintaining
the global inverse consistency is generally not tractable, the
domains are rather filtered according to some level of local
consistency, e.g. arc-consistency. In the present paper, we
propose to make this interaction more user-friendly by show-
ing not only (locally) consistent domains, but also what we
call the alternative domains of the assigned variables, i.e. the



values that could replace the ones of the assigned variable
without leading to the violation of some constraint.

The structure of the present article is as follows: the prob-
lematics of alternative domains is described in the next Sec-
tion. Section 3 then develops the basis of our algorithm. Our
first experimental results are shown in Section 4. Proofs are
omitted for the sake of brevity 1.

2 Background and Problematics

A CSP is classically defined by a triplet (X ,D, C) whereX =
{x1, . . . , xm} is a finite set of m variables, each xi taking its
values in a finite domain D(xi), and a finite set of constraints
C. We note D =

∏n

j=1 D(xj). An assignment t of a set of

variable Y ⊆ X is an element of the cartesian product of the
domains of these variables; for any xj ∈ Y we denote by
t[xj ] the value assigned to xj in t.

A constraint C in C involves a set vars(C) ⊆ X and can be
viewed as a function from the set of assignments of vars(C)
to {⊤,⊥}: C(t) = ⊤ iff t satisfies the constraint; for any xj

in vars(C) and any v in its domain, we say that an assign-
ment t of vars(C) is a support of this value (more precisely,
of (xj , v) on C) iff t[xj ] = v and t satisfies C.

An assignment t of X is a solution of the CSP iff it satisfies
all the constraints. If such a solution exists, the CSP is said to
be consistent, otherwise it is inconsistent.

Formally, a configurable product is represented as a CSP
(X ,D, C) and the current choices of the user by a set of cou-
ples (xi, v) where xi is a variable in X and v the value as-
signed to xi. Following [Amilhastre et al., 2002], the problem
can be represented by an Assumption-based CSP (A-CSP).

Definition 1 (A-CSP) An A-CSP is a 4-tuple (X ,D, C,H)
where (X ,D, C) is a CSP andH a finite set of constraints on
variables of X .

In configuration,H represents the current user choices, i.e.
assignments of the variables: we suppose in the sequel that all
the restrictions inH bear with different variables and restrict
their domains to a unique value2; we will denote by hi =
(xi ← v) the restriction fromH on xi, if it exists.

After each choice, the system filters the variables’ do-
mains, ideally leaving only the values compatible with cur-
rent choices. Since such a computation is intractable in the
general case, a weaker level of consistency is ensured in real
applications, generally arc-consistency. Recall that a CSP is
said to be arc consistent in the general sense (GAC) iff, for
any variable xj ∈ X and any value v in its domain, for any
constraint C bearing on xj , there exists an assignment t of
the variables of C in their domains such that t is a support of
(xj , v). The role of an arc consistency algorithm is to remove
from the domains the values that do not have any support so as

1A full-proof version of the paper is available at ftp://ftp.
irit.fr/IRIT/ADRIA/ijcai13BF.pdf

2Actually, the definitions and results could be set in a more gen-
eral framework and capture any type of restriction, and in particular
restrictions of the form “xi ∈ A” or “xi 6= v”; the meaning of al-
ternative values when the restrictions in H bear on more than one
variable is nevertheless questionable, hence our assumption.

1 2 3 4
x1 ⋆ ⋄ ⋄ ×
x2 × ⋄ ⋄ ⋆
x3 × ⋄ ⋄ ×

Table 1: Assigned (⋆), forbidden (×) and alternative (⋄) val-
ues for the A-CSP X = {x1, x2, x3}, D = {1, 2, 3, 4}3,
C = {Alldiff(x1, x2, x3)},H = {(x1 ← 1), (x2 ← 4)}.

to compute a CSP that is equivalent to the first one (i.e. hav-
ing the same set of solutions) and arc consistent; this problem
is called the closure by arc consistency of the first one.

Other, more powerful, levels of local consistency can be
ensured, e.g. Path Inverse Consistency [Debruyne, 2000],
Singleton Arc Consistency [Debruyne and Bessière, 1997], k-
inverse consistency [Freuder, 1985; Freuder and Elfe, 1996].
In the following definitions, we do not make any assumption
on the level of local consistency that is ensured. We simply
consider that, after each choice, an algorithm is called that
ensures some level a of local consistency - i.e. that computes
the closure by a consistency of the original problem. We call
the current domain of a variable its domain in this closure.

Definition 2 (Current domain of a variable) Let a be a
level of local consistency and P = (X ,D, C,H) an A-
CSP. The current domain according to a-consistency of a
variable xi is its domain in the closure by a-consistency of
(X ,D, C ∪ H).

We can now formally define the notion of alternative do-
main of an assigned variable as the current domain that it
would have if the user would take this assignment back:

Definition 3 (Alternative domain) Let a be a level of local
consistency and P = (X ,D, C,H) an A-CSP. The alternative
domain of a variable xi according to a is its domain in the
closure by a-consistency of the CSP(X ,D, C ∪ H \ {hi}).
We write it Da

alt(xi).

A value v is thus an alternative value for xi either if it be-
longs to the current domain of xi (it is in particular the case
when xi is assigned to v), or if (i) xi is assigned to another
value than v and (ii) the single relaxation of this assignment
would make v a-consistent. For instance, if xi is the last as-
signed variable, all the values that were in the domain of xi

just before this assignment are alternative values. An example
of alternative domain can be seen on Table 1. Notice that al-
ternative values are generally not interchangeable in the full
sense [Freuder, 1991] with assigned values (nor with each
other): it is possible that only one of theses values belongs to
a solution. Alternative values are alternatives w.r.t the level
of local consistency considered. Notice also that the previous
definition theoretically applies to any level of local consis-
tency, but its application is actually restricted to local consis-
tencies that remove values from the domains.

The notion of alternative domain is orthogonal to the notion
of removal’s explanation, such as proposed in PaLM [Jussien
and Ouis, 2001; Jussien and Barichard, 2000]: explanations
are a way to explain the pruning of the domains and aim
at proposing a strategy of restoration of some values for an



unassigned variable by the relaxation of a (minimal) subset
of user’s choices. On the contrary, the alternative domain of
a variable provides a way to change the value of an assigned
variable without any modification of her other choices.

The notion of alternative domain can be compared to the
concept of (1, 0)-super-solution proposed by Hebrard et al.
[Hebrard et al., 2004]. An (a, b)-super-solution is a solution
of the CSP such that, if a variables lose their values, it can
be repaired by assigning these variables with new values and
modifying the values of at most b other variables. It is a gen-
eralization of the notion of fault tolerant solution [Weigel and
Bliek, 1998], a fault tolerant solution being a (1, 0)-super-
solution. A fault tolerant solution is actually a solution such
as all the variables have a non-empty alternative domain: if
one of the current values in the assignment is made unavail-
able for any reason, a solution can still be found by choosing
a value from its alternative domain - this value is by definition
compatible with the other choices. Formally,

Proposition 1 Let d be a solution of a CSP (X ,D, C) and let
H = {hi = (xi ← d[xi]), i = 1, . . . , card(X )}.
d is a (1, 0)-super-solution of (X ,D, C) if and only if, ∀xi ∈
X , the alternative domain of xi according to arc-consistency
is a strict superset of {d[xi]}.

The main difference between (1, 0) super-solutions and
alternative domains is that super-solutions deal with com-
plete assignments while alternative domains suggest restora-
tion values even for partial assignments. Technically, this im-
plies that algorithms computing super-solutions that are based
on variable duplication do not work for the computation of
alternative domains, as shown in Figure 1. In this example,
x′

i denotes the duplicates of the original variables xi; con-
sider that the user has chosen x1 ← 1 and x2 ← 2, the arc-
consistency filtering reduces the domain of x3 to {3}; the
domain of x′

1, which were supposed to hold the alternative
values of x1, thus becomes empty, while 3 still belongs to the
alternative domain of x1.

We can finally notice that the two notions target different
practical goals: when refereing to a super-solution, we are
looking for some, but not all, robust (and complete) solu-
tions - there is indeed a potentially exponential number of
super-solutions. When computing alternative domains, we
are looking for all the alternative values, and this even dur-
ing the search, when the assignments are partial.

3 Computing alternative domains

When n variables are assigned, a naive way of computing
the alternative domains of these variables is to make n + 1
copies of the CSP: a reference CSP P0 (where all the n vari-
ables are assigned), and n CSP Pi where each Pi has exactly
the same assignments than P0, with the exception of variable
xi which remains unassigned in Pi. Each Pi is filtered by
a-consistency. The alternative domain of variable xi in ob-
viously the domain of xi in the arc consistent closure of Pi.
This method does not require much space but does a lot of re-
dundant computations. It will be the reference point from our
method, which follows the opposite philosophy: memorizing
information in order to avoid a duplicate work.

x′
1

∅

x′
2

∅
x1

1

Da = {3}

x2

2

Da = {3}

x3

{3}

x′
3 ∅

Figure 1: An attempt of computation by variable duplication
of the arc consistent alternative domains of the A-CSP X =
{x1, x2, x3},D = {1, 2, 3}3, C = {x1 6= x2, x2 6= x3, x1 6=
x3, },H = {(x1 ← 1), (x2 ← 2)}).

3.1 Removals and sufficient justifications

The main idea of our approach is to maintain, for each value
removed by the filtering algorithm, a vector of boolean flags,
one flag for each hi ∈ H. The flag on hi must be true if and
only if the single relaxation of the user’s choice hi will lead
to have the value back in the domain of its variable. Let us
formalize:

Definition 4 (Removal, invalid tuple) Let P =
(X ,D, C,H) be an A-CSP and P a the closure of
(X ,D, C ∪ H) by some level of local consistency a.

A removal w.r.t. a is a pair (xj , v), xj ∈ X , v ∈ D(xj) such
that v does not belong to the domain of xj in P a

We writeRa the set of removals of P w.r.t. a.

Let C be a constraint in C and t an assignment of vars(C)
satisfying C. t is said to be invalid w.r.t. a iff there exists
xj ∈ vars(C) such that t[xj ] does not belong to domain of
xj in P a; otherwise, it is said to be valid w.r.t. a.

To improve readability, a removal (xj , v) will often be written
(xj 6= v), and we will omit to mention level a of local con-
sistency to which the removal refers when not ambiguous.

Definition 5 (Sufficient Justification of a removal) Let
P = (X ,D, C,H) be an A-CSP, a a level of local consis-
tency, andRa the P ′s removals according to a.

For any xj in X and any v in D(xj), hi ∈ H is said to
be an a-sufficient justification of v for xj if and only if v
belongs to the domain of xj in the a-consistent closure of
(X ,D, C ∪ H \ {hi}).

For instance, if the propagation of the last assignment leads
to the removal of the value v in the domain of x, this assign-
ment is a sufficient justification of x 6= v. By extension, any
hi is a sufficient justification of a value that does belong to
the current domain of its variable. Of course:



supports of (x = v)
removals justifications t1 t2 t3 t4
x1 6= v1 {h1, h2} ⋆ ⋆
x2 6= v2 {h1, h3} ⋆ ⋆
x3 6= v3 {h2, h4} ⋆ ⋆ ⋆

{h1} {h2} {h2, h4} ∅

x 6= v {h1, h2, h4}

Table 2: Computing the justifications of the removal (x 6= v)
on a constraint; the ti are the supports of x = v. A ⋆ in some
cell (ti, xj 6= vj) means that ti is invalid when xj 6= vj .

Proposition 2 Let P = (X ,D, C,H) be an A-CSP, a a level
of local consistency.

For any xi ∈ X , any v ∈ D(xi), v belongs to the alter-
native domain of xi iff either v belongs to the domain of xi

in the closure by a consistency of P = (X ,D, C ∪ H) or
(xi 6= v) ∈ Ra and hi is a sufficient justification of (xi 6= v).

The notion of sufficient justification extends to tuples:

Definition 6 (Sufficient justification of a tuple) Let P =
(X ,D, C,H) be an A-CSP, a a level of local consistency, C a
constraint in C and t an assignment of vars(C) satisfying C.

A user choice hi ∈ H is said to be an a- sufficient justifica-
tion for t if and only if, for each xj ∈ vars(t), t[xj ] belongs
to the domain of xj in the closure by a consistency of the CSP
(X ,D, C ∪ H \ {hi}).

Our algorithm is based on the fact that an assignment hi is
an a-sufficient justification for the tuple t if and only if, for
each xj involved by the tuple, either t[xj ] is in the current
domain of xj or hi is a sufficient justification of the removal
(xj 6= t[xj ]). Formally, let us call the conflict set of t the set
of removals that make it invalid:

Definition 7 (Conflict set)
The conflict set of a tuple t w.r.t. some level of a consis-
tency is the subset of Ra defined by: CS(t) = {(xi 6= v) ∈
Ra s. t. t[xi] = v}.

Of course, a tuple is invalid iff it has a non-empty conflict set.

Proposition 3 hi is an a-sufficient justification of a tuple t
if and only it is an a-sufficient justification of each of the re-
movals in its conflict set w.r.t. a.

Finally, it can easily be shown that, when the level of local
consistency to be maintained is generalized arc consistency:

Proposition 4 hi is a sufficient justification w.r.t. Arc consis-
tency (GAC) for a removal (x 6= v) iff, for each constraint C
bearing on x, there exists a tuple t support of (x = v) on C
such that hi is a GAC-sufficient justification of t.

Similar properties can be established for other levels of lo-
cal consistency based on the notion of support, e.g. for k
inverse consistency [Freuder, 1985]3.

3A CSP is (1, k) consistent iff, for each variable x and each value
v in D(x), for each set V of k additional variables, x = v has a
support on V , i.e. there exists an assignment t of {x} ∪ V such that
for any C ∈ C with vars(C) ⊆ {x} ∪ V , t satisfies C.

Proposition 5 hi ∈ H is a (1, k)-sufficient justification of

(x 6= v) ∈ R(1,k) iff, for each set V of k variables there exists
a support t of x = v on V such as hi is a (1, k)-sufficient
justification of t.

3.2 An algorithm for maintaining the alternative
domains w.r.t. Arc Consistency

In our application, interactive configuration, the constraints
to be taken into account are mostly table constraints and the
level of consistency referred to is Generalized Arc Consis-
tency. We propose to maintain the alternative domain upon
the assignment of a variable using an extension of GAC4
[Mohr and Masini, 1988]. Our algorithm propagates not
only value removals, but also justifications: for each removal
(xi 6= v), we maintain a vector f(xi 6=v) of n boolean flags,

one for each choice inH, such that f(x6=v)(hi) = True if and

only if hi is a sufficient justification of (xi 6= v). Accord-
ing to Proposition 4, f(x6=v) depends on the justifications of

the tuples that support (x, v). Hence, we keep, for each tuple
t, a bit vector ft such as, for each hi, ft[hi] is true iff hi is
a sufficient justification of t. Intuitively (see Table 2 for an
example), for the user choice hi to be a sufficient justifica-
tion for a removal (x 6= v) provoked by constraint C, it is
needed that the relaxation of hi makes at least one support t
of (x = v) on C valid again, i.e. that all the elements in the
conflict set of t have hi as a sufficient justification (this is the
meaning of Proposition 3). In other words, ft is the intersec-
tion of the f(xj 6=w) flags of all the removals (xj 6= w) in the
conflict set of t. Formally:

Proposition 6 Let Support(x, v, C) is the set of assignments
of vars(C) that support (x, v); it holds that

f(x6=v) =
∧

C|x∈vars(C)

(
∨

t∈Support(x,v,C)

(
∧

r∈CS(t)

fr))

We propose here a GAC4 like algorithm, the initialization
and main propagation of which are depicted by Algorithms 1
and 2. We use the following notations:

• (X ,D, C) is the original CSP, that is supposed to be arc
consistent;

• Table(C) is the assignments of vars(c) that satisfy C.
Moreover the tuples involved in the tables are valid (i.e.
Table(c) is a subset of the cartesian product of the do-
mains of the variables its bears on).

• Dc(xi) is the current domain of xi

• Sxi,v,C is the set of supports of (xi, v) on C and
Cpt(xi, v, C) is the number of supports of (xi, v) on C.

• ft is the vector of justifications of tuple t; f(xi 6=v) is the

vector of justifications of removal (xi 6= v); for any re-
moval (xi 6= v) and any constraint C bearing on xi,
f(xi 6=v,C) is the vector of justification of (xi 6= v) on C.

The difference with GAC4 is that a removal (x 6= v) must
be propagated not only when it is created, but every time its
vector of justifications changes. Since updating the vectors of
justification is monotonic (an hi might go from being suffi-
cient to not, but not the other way around), the algorithm ter-
minates. More precisely, instead of entering just once in Q,



Algorithm 1: Initialization

Procedure Initialize((X ,D, C):CSP; n: integer)
/* (X ,D, C) is the original CSP assumed to be arc consistent */

/* All the tuples are supposed to be valid */

/* n is the maximal number of assumptions to be considered */

begin
foreach C ∈ C do

foreach xi ∈ vars(C), v ∈ D(xi) do
Cpt(xi, v, C)← 0;
Si,v,C ← ∅

foreach t ∈ Table(C) do
ft ← Truen;
valid(t)← True;
CS(t)← Falsen;
foreach xi ∈ vars(C) do

Cpt(xi, t[xi], C) + +;
Add t to Si,t[xi],C

each removal can enter in the queue n times at most (n being
the number of hi in H), i.e.as many times as the number of
possible changes in a vector of justifications. The worst case
complexity is thus bounded by O(nedk) with e the number of
constraints, m the number of variables, n the maximal num-
ber of assumptions (typically, n = m), d the maximum size
of the domains and k the maximum arity of constraints. It is
thus the same complexity as the GAC-4 based naive method:
n.O(e.dk) - with the important difference that in the naive
method, GAC-4 is called exactly n times while n is a worst
case bound for justification-based algorithm.

Concerning space complexity, GAC4 memorizes the sup-
port Si,v,C for each xi , each value v in its domain and each
constraint C bearing on xi; Let say that this structure is in
O(T ) ( T is actually proportional to the space taken by valid
tuples in constraint tables). Our algorithm also maintains, for
each tuple t, a vector of n flags, meaning a O(T.n) space. For
each removal and each constraint bearing on the variable of
the removal, we also keep a vector of n boolean flags. Since
the number of removals is bounded by the number of vari-
able/value pairs (xi, v) in the problem, the algorithm involves
in the worst case as many boolean vectors as the number of
Si,v,C sets used by GAC4; Hence a global a spatial consump-
tion bounded by O(n.T ).

4 Experimental results

We have tested this algorithm on three industrial problems
of car configuration 4. The names and values have been ba-
nalized for confidentiality reasons - we call these problems
Small, Medium and Big.

• Small : 139 variables, domain sizes from 2 to 16, 147
constraints of arity 2 to 6 (68Ko, a total of 3.041 tuples).

4These instances have been built in collaboration with the car
manufacturer Renault; see [Astesana et al., 2013] for a more de-
tailled description.

Algorithm 2: Propagation of decision hk = (xk ← w)

Procedure Propagate( (xk, w): assumption; (X ,D, C):
the initial CSP;H: the past assumptions; Dc: the current
domains);
Add (xk, w) toH;
Q← ∅;
/* The removal of the other values in the current domain of xk is due to hk */

foreach u 6= w ∈ Dc(xk) do
f(xk 6=u) ← Falsem;

f(xk 6=u)[hk]← True;

Add (xk 6= u) to Q;
while Q 6= ∅ do

Choose and remove an (xi 6= v) from Q;
if v ∈ Dc(xi) then

Remove v from Dc(xi);

foreach C s.t. xi ∈ vars(C) and each tuple t in
Si,v,C do

Mem← ft;
ft ← ft ∧ f(xi 6=v);

if valid(t) then
foreach xj ∈ vars(t) s.t. j 6= i do

Cpt(xj , t[xj ], C)−−;
if Cpt(xj , t[xj ], C) == 0 then

f(xj 6=t[xj ]),C ← Falsem
/* init; will be

computed later */ ;
Add (xj 6= t[xj ]) to Q;
if t[xj ] ∈ Dc(xj) then

f(xj 6=t[xj ]) ← Truem
/* init */ ;

valid(t)← false;

if Mem! = ft /* A justif. of t is not sufficient anymore */

then
foreach xj ∈ vars(t) s.t. j 6= i do

mem′ ← f(xj 6=t[xj ]);

f(xj 6=t[xj ]),C ← f(xj 6=t[xj ]),C ∨ ft;

fxj 6=t[xj ] ← fxj 6=t[xj ] ∧ fxj 6=t[xj ],C ;

if mem′ 6= f(xj 6=t[xj ]) then
Add (xj 6= t[xj ]) to Q;

foreach hi ∈ H do

Dalt(xi)← ∅; foreach v ∈ Dxi
do

if f(xi 6= v)[hi] then

Add v to Dalt(xi)

• Medium : 148 variables, domain sizes from 2 to 20, 174
constraints of arity 2 to 10 (185Ko, 9.531 tuples).

• Big : 268 variables, domain sizes from 2 to 324, 332
constraints of arity 2 to 12 (3.57M, 225.982 tuples).

The protocol simulates 500 sessions of configurations as fol-
lows. First, a sample of 500 complete and consistent as-
signments is randomly built. For each of them, the corre-
sponding session is simulated by assigning the variables fol-
lowing a random (uniform) order. After each assignment,



Figure 2: Computation time required by both the naive method and the justification-based one.

we measure the cpu time needed to make the current prob-
lem arc-consistent and to compute the alternative domains of
all the assigned variables. The whole protocol is applied by
both algorithms, which play on the same assignments with
the same assignment orders. Figure 2 presents the result of
these experiments on a HP Z600 workstation (Intel Xeon
X5650 2.66Ghz processor, 16Gb Mb of RAM). On the x-
axis is the number of the assignment in the sequence; the
y-axis the mean cpu time needed for the naive method (dot-
ted blue line) and for the justification-based algorithm dotted
line (plain black line). We also measured the cpu used for a
simple run of GAC4 (without maintaining any alternative do-
main) on the same protocol. For the first assignment, GAC4
-without the initialization step - takes a max of 0.003s (aver-
age 0.001s); for the next assignments, a max of 0.001s (aver-
age about 0.0005; the higher the number of past assignments,
the lower the number of propagations).

The results are quite good: our algorithm is faster after
the first 3 (resp. 5, resp. 15) variables have been assigned,
i.e.when more than 3 (resp. 5, resp. 15) alternative domains
are to be computed. Unsurprisingly, the first assignments are
more costly, because of the initialisation of the structure -
anyway, except for the first variable in the Big instance, the
cpu is always lower than one second ; recall that Big is re-
ally big: its table constraints involve a total of 225.982 tuples.
As expected, the time required by the naive algorithm grows
linearly with the number of assigned variables, while our al-
gorithm has a decreasing computation time.

5 Conclusion

In this work, we have coined the new concept of alternative
domain of a variable and proposed an extension of GAC4
as a way to compute the alternative domains when maintain-
ing General Arc Consistency on CSP with table constraints.
Contrarily to the naive method that calls the propagation al-
gorithm as many times as the number of alternative domains
to be computed, our approach keeps limited justifications of
the removals. Tested on industrial benchmarks, this method
quickly outperforms the naive method.

The main limitation of our method is obviously its space

consumption; the extra space consumption depends directly
of the number of variables for which we want to compute
the alternative domain. This being said, it should be kept
in mind that for practical purposes the system is not asked
to display all the alternative domains; the human user has a
limited cognitive load and it is not obvious that she can or
even wants to see a lot of alternative domains at a glance. In a
configuration application for instance, the user looks at only
a small number of variable simultaneously, typically the ones
involved in the subcomponent currently being configured.

The concepts we have coined are close to the notion of
value restoration. In the current work, we focused on the
computation of alternative domains; an alternative value is a
forbidden value that can be restored by the sole relaxation of
the assignment of its variable. But more generally any value
having at least one sufficient justification can be restored by
the relaxation of only one assignment (if the variable is not
assigned, by the relaxation of another one variable assign-
ment). Hence the potential use of the algorithm proposed
by this paper to provide the user with alternative values in
a wider sense, and more generally to support the task of in-
teractive relaxation by providing easily restorable values.

This work has a great potential for developments and per-
spectives. Firstly, our algorithm obviously needs to be im-
proved, for instance with a lazy implementation, and our ex-
periments must be completed. Secondly, we should think
about the extension of the maintenance of alternative domains
in CSP with general constraints, and not just in table con-
straints (actually, the GAC4-based approach does apply for
intentional constraints, but would be too heavy: in the worst
case, it would lead to generate the tables corresponding to the
constraints). Finally, we should be able to consider the whole
interaction; in this paper, we have considered only the assign-
ment of a value to a variable: we need to study also the re-
laxation of these choices. This adaptation might mean an hy-
bridizing with some algorithms of propagation/depropagation
in dynamic CSP, e.g. the ones proposed by [Bessière, 1992;
Debruyne, 1996; Debruyne et al., 2003].
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