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Abstract

Personalized medicine is still in its infancy, with costly genetic tests providing little
actionable information in terms of e¢ cient prevention decisions. As a consequence, few
people undertake these tests currently, and health insurance contracts pool all agents
irrespective of their genetic background. Cheaper and especially more informative tests
will induce more people to undertake these tests and will impact not only the pricing
but also the type of health insurance contracts. We develop a setting with endogenous
prevention decisions and we study which contract type (pooling or separating) emerges
at equilibrium as a function of the proportion of agents undertaking the genetic test as
well as of the informativeness of this test.

Starting from the current low take-up rate generating at equilibrium a pooling con-
tract with no prevention e¤ort, we obtain that an increase in the take-up rate has �rst
an ambiguous impact on welfare, and then unambiguously decreases welfare as one
moves from a pooling to a separating equilibrium. It is only once the take-up rate is
large enough that the equilibrium is separating that any further increase in take-up rate
increases aggregate welfare, by a composition e¤ect. However, a better pooling contract
in which policyholders undertake preventive actions (and lower their health risk) can
also be attained if the informativeness of the genetic tests increases su¢ ciently.

JEL Codes: D82, I18.
Keywords: discrimination risk, informational value of test, personalized medecine,

pooling and separating equilibria.



1 Introduction

Personalized medicine is de�ned as the development of ever more accurate diagnoses,
prevention actions and therapies, based on the individual characteristics of the agents.
This type of medicine is made possible by the development of cheaper and more informa-
tive genetic tests. Genetic tests are still currently costly and do not provide much useful
guidance for prevention.1 Few individuals undertake a genetic test to learn about their
future probability of developing a disease, except in very speci�c instances. As a conse-
quence, health insurance markets o¤er pooling contracts where most policyholders are
uninformed about their genetic propensity to develop speci�c diseases. In other words,
there is little adverse selection based on genetic information, and also no discrimination
risk caused by genetic testing.

This may change in the near future, as genetic tests become cheaper and especially
as they provide more actionable information about prevention strategies to decrease
the likelihood of developing certain diseases (see the many examples in Snyder, 2016).
This should induce more individuals to undertake genetic tests, and will then generate
more adverse selection, increasing the cross subsidies imbedded in the pooling insurance
contracts. The type of contracts o¤ered by insurers may then change, from pooling to
separating contracts, where insurers try and induce informed individuals to reveal the
information they have obtained. The objective of this article is precisely to understand
the impact of both a higher test take-up rate, and of more informative tests, on the
type of equilibrium health insurance contracts, and to assess the welfare consequences
of these changes.

The existing literature dealing with genetic testing is silent on this evolution, for
two reasons. First, to the best of our knowledge, most articles dealing with genetic
testing assume that individuals are homogenous ex ante in terms of costs and bene�ts of
testing, so that they all adopt the same decision regarding genetic tests and prevention
behaviors. It is then impossible to understand the impact of continuous increases in
take-up rates of genetic tests when the equilibrium take-up rate is either zero or one.
Second, the literature tends to focus on separating equilibrium contracts à la Rothschild
and Stiglitz (1976), although the currently observed contracts are most often pooling
(see Hoy, 2006). Understanding the impact of cheaper and more informative genetic
tests on insurance contracts requires that the type of contract, separating or pooling,
be endogenously determined.

In this article, we consider a setting where an exogenous fraction of the population
has done a genetic test.2 The test is costless and reveals with certainty whether agents

1See for instance the recent statement of the American College of Medical Genetics and Genomics
(ACMG): �The use of DNA-based health screening to guide preventive care in the screened individual
has long been discussed, but until recently has had limited applications.�(Murray et al., 2021, p. 989).

2We do not endogenize the decision to test or not. We come back to this point at the end of this
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have a low or high probability of developing a disease. The proportion of high proba-
bility agents is common knowledge, and agents who have not done the test only know
their expected probability of developing the disease. The genetic information allows
to tailor a costly prevention e¤ort, which decreases the probability of developing the
disease if the individual has a deleterious genetic background. This prevention e¤ort
is observable and contractible by the competitive fringe of insurers.3 The best known
example of this setting is the recommendation for women testing positive to the BRCA1
or BRCA2 alleles, which increase the probability of developing breast cancer, to under-
take a mastectomy. Snyder (2016) contains several other examples where the prevention
e¤ort consists in taking drugs or in modifying one�s behavior.

We study a context of adverse selection, where policyholders are not forced by law
to disclose whether they have undertaken a genetic test, and its results. This setting
corresponds to the Consent Law regulation (used in the Netherlands and in Switzerland,
for instance) where individuals are allowed but not required to divulge this information
to private health insurers. We follow Wilson (1977)�s approach, where the type of
contract (pooling or separating) is endogenous and depends on the proportion of high
risks. More precisely, we study how the contract type is a¤ected by two characteristics
of personalized medicine: the share of agents who do the test, and the informativeness of
the tests as proxied by the cost of the prevention e¤ort which alleviates the consequences
of having a deleterious genetic background. For instance, going back to the BRCA1/2
gene and the recommendation to perform surgery when tested positive, one can only
hope for the development of a less psychologically costly prevention technology in the
future.

We call informed (resp., uninformed) agents those who have done (resp., have not
done) the test. Informed agents with low probabilities to develop the disease (denoted
type L) always have an incentive to reveal this information, and obtain a cheap contract
with full coverage. Informed agents with high probabilities (type H) have an incentive
to pretend that they did not do the test to bene�t from a cheaper contract. The type
of equilibrium then refers to how informed high type agents and uninformed agents
(type U) are treated: they can either be pooled (and o¤ered the same contract), or be
separated by insurers o¤ering them a menu of contracts, with a self-selection constraint.

We �rst characterize sequentially separating and pooling contracts. Separating con-
tracts o¤er actuarially fair prices to both types U and H and full coverage to type
H. The contracts o¤ered have to give an incentive to type H not to pretend being
uninformed. This is done by tweaking the contracts on two dimensions: the classical
dimension of coverage rate (o¤ering less-than-full insurance to type U) and/or by re-

section.
3Most countries have a mixed health insurance market, where private insurers complement the cov-

erage o¤ered by public insurance. Our model focuses on the private insurance part.
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quiring di¤erent prevention e¤ort levels for types H and U . With a binary prevention
e¤ort, we then obtain three varieties of separating equilibrium, depending on the cost
of the prevention e¤ort. When this cost is low, it is unappealing to induce type H
to reveal their type by preventing them from making the prevention e¤ort, and the
separating contracts require the same e¤ort from both types of agents (together with
under-coverage for type U). A similar reasoning applies when the e¤ort cost is large,
in which case none of the two contracts requires any prevention e¤ort. When the e¤ort
cost is intermediate, preventing type U (but not type H) from doing the prevention
e¤ort, together with some under-coverage for type U , is the least costly way to separate
the two types.

By contrast, a pooling equilibrium o¤ers the same contract to both types U and H,
and thus the same level of prevention e¤ort. Following Wilson, the amount of coverage
is determined by the lowest risk in the pool, here type U . When the prevention e¤ort
cost is low enough, both types are required to perform the prevention e¤ort. When it
is high enough, none is required.

We then show that, for any value of the prevention e¤ort cost, there is a unique
threshold value of the test take-up rate below (resp., above) which the equilibrium is
pooling (resp., separating). This threshold varies in a complex way with the value of
the prevention e¤ort cost. The welfare impact of the genetic test take-up rate then runs
as follows. As long as this rate is low enough, the equilibrium is pooling. Welfare is
then a¤ected in two opposite directions by a larger take-up rate. First, the pooling con-
tract becomes more expensive (with a higher proportion of type H in the pool) which
decreases the utility of both types U and H. Second, there is a composition e¤ect on
aggregate welfare, with fewer types U and more types L and H. We establish that
this composition e¤ect is positive, resulting in an ambiguous overall impact of a larger
take-up rate on welfare. When the take-up rate is large enough that the equilibrium is
separating, the only impact of a higher take-up rate is the composition e¤ect, resulting
in a higher aggregate welfare. Finally, we show that the utility of type H (and aggre-
gate welfare) decreases discontinuously when the equilibrium changes from pooling to
separating. We then obtain that a larger fraction of agents taking a genetic test has an
unambiguous positive impact on welfare only if it is large enough to generate a sepa-
rating equilibrium, and has an unambiguously negative impact on welfare when moving
from a pooling to a separating equilibrium.

The impact of a lower prevention e¤ort cost (used as a proxy for the e¢ ciency
of the genetic test in terms of actionable health information) depends on the value
of the test take-up rate.4 The most interesting case happens when the take-up rate

4Alternatively, we could have studied the impact of a larger decrease in the probability of developing
the disease when the prevention e¤ort is done, as in Bardey and De Donder (2013) for instance. This
would have lead to (even) more complex formulations, without a commensurate gain in intuition.
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is intermediate. In that case, decreasing the e¤ort cost from its currently large level
moves us from the current pooling equilibrium with no prevention e¤ort to a separating
equilibrium where only type H makes the e¤ort, before switching back to a pooling
equilibrium, but with e¤ort for both U and H. The welfare impact of a lower e¤ort
cost then runs as follows: (i) it does not impact welfare when the pooling contract
does not prescribe e¤ort, and increases welfare when it does, (ii) it increases the utility
of both types U and H in the separating contract, and (iii) type H�s utility (and
aggregate welfare) decrease discontinuously when moving from a pooling to a separating
equilibrium (and vice versa). In a nutshell, decreasing the prevention e¤ort cost is not
always welfare improving, especially for type H when moving from the pooling to the
separating equilibrium.

Finally, we study numerically how welfare is impacted when simultaneously increas-
ing the test take-up rate and decreasing the prevention e¤ort cost, which seems to be
the most plausible scenario in practice. We obtain that welfare �rst decreases when the
equilibrium is pooling without prevention e¤ort, and then increases when the equilib-
rium is either separating with only type H making the e¤ort, or pooling with e¤ort.

The message delivered by this welfare analysis is then twofold. First, the move from
pooling to separating equilibrium (as the test take-up rate increases, the prevention
e¤ort cost decreases, or both) is especially detrimental to the utility of the agents who are
unlucky enough to discover that they have a deleterious genetic background. Increasing
the test take-up rate may also decrease welfare in a pooling equilibrium, if the price
e¤ect trumps the composition e¤ect, while it always increases welfare in a separating
equilibrium (if it is large enough that the equilibrium is separating). Encouraging
individuals to undertake a genetic test then may result in short run welfare losses (as
long as the equilibrium is not separating), especially for type H agents. Second, even
though the short run impact of cheaper and more informative tests may be to destroy
cross-subsidies (by moving us from a pooling to a separating equilibrium), the long run
impact may be to conserve these cross-subsidies (and moreover to induce all concerned
agents to exert the prevention e¤ort, thereby realizing the full prospects of personalized
medicine), provided that the prevention e¤ort cost decreases enough (i.e., that the
informativeness of the genetic tests improves enough, at the same time as these tests
become cheaper).

We now turn to the related literature. Doherty and Thistle (1996) is the seminal
article studying the incentive to gather information in insurance markets in the context
of adverse selection. They �rst show that individuals do not have an incentive to acquire
information (as in taking a costless genetic test for instance) when the informational
status of the agent (i.e., whether he has done a test or not, irrespective of its result)
is observable by the insurer. They then obtain that individuals acquire information at
equilibrium only if either insurers cannot observe consumers�informational status (as
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in the Strict Prohibition regulation mentioned in footnote 8 below) or if consumers are
allowed to conceal or not their informational status (as in the Consent Law regula-
tion studied here). They characterize the separating contracts o¤ered to agents under
di¤erent con�gurations of information costs and bene�ts.

The subsequent literature has built on Doherty and Thistle (1996) mainly by adding
a prevention e¤ort which either decreases the probability that the damage occurs (pri-
mary prevention, as in Hoel and Iversen [2002], Peter et al. [2017] and Bardey and
De Donder [2013]) or decreases the extent of the damage when it occurs (secondary
prevention, as in Crainich [2017] and Barigozzi and Henriet [2011]), and by studying
di¤erent regulatory settings. Note that the existence of a prevention e¤ort, which can
be tailored to the test results, tends to increase the value of the information generated
by these tests.

To the best of our knowledge, most of this literature has kept two assumptions
made in Doherty and Thistle (1996). First, all individuals are ex ante identical (in
both the individual costs and bene�ts of the test) and thus, at equilibrium, they either
all choose to test, or no one tests. Second, they focus on separating equilibria à la
Rothschild-Stiglitz. One exception to the �rst point is Hoel et al. (2006) who study
the consequences for the testing decisions of introducing heterogeneity in psychological
preferences (repulsion from chance). They provide an equilibrium analysis in a setting
with separating equilibria. The exceptions to the second point are Hoy (2006), Hoy
et al. (2003) and Crainich (2017), which consider more realistic settings that include
a pooling equilibrium.5 However, they do not tackle the transition from pooling to
separating equilibrium that may arise endogenously as, for instance, the test take-up
rate increases. Finally, Bardey et al. (2019) run an experiment based on a theoretical
set-up where individuals are heterogenous and do not take the same decision with respect
to genetic testing. They assume that agents who claim to be uninformed about their
type are o¤ered a pooling contract under Consent Law.

As explained above, we use here a more reduced form by assuming that an exogenous
fraction of individuals have been tested while the rest of the population have not. Thus,
we have individuals with di¤erent informational statuses at equilibrium and we provide
comparative static analysis results with respect to the fraction of informed individuals
and the prevention cost. Our analysis encompasses pooling and separating equilibria in
a set-up à la Wilson.

Endogenizing the fraction of tested individuals would require adding another di-
mension of heterogeneity that would a¤ect their choice of whether to test or not. We
do that in a companion paper (Bardey and De Donder, in progress) where we assume

5Strohmenger and Wambach (2000) also study the impact of genetic tests in a large set of equilibrium
contracts. In particular, these authors compare the �laissez-faire� regulation (allowing insurers to
request genetic tests and to use their results) to strict prohibition.
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that agents di¤er in their psychological attitude towards testing (modelled as di¤erent
degrees of attraction to/repulsion from chance). We also study the type of equilibrium
that may emerge in health insurance markets, i.e. pooling versus separating. However,
the main complexity created by this approach is a �xed-point problem in the computa-
tion of the pooling contract, since the contract�s fair premium depends on the fraction
of agents tested, while the testing decision depends on the contract�s premium. To solve
this problem, we have to simplify our model by assuming away the prevention e¤ort.
We then obtain that the fraction of agents who choose to be tested at the equilibrium
decreases monotonically with the test cost, and that the equilibrium contract is pool-
ing above a threshold test cost and separating below. A decrease in the testing cost
is Pareto improving when the contract remains separating (i.e., when the test cost re-
mains smaller than the threshold) but is welfare damaging for most agents both when
the contract is pooling and when the threshold test cost is crossed so that the contract
type moves from pooling to separating.

These welfare e¤ects then con�rm those obtained here when one directly varies
the fraction of agents tested, even though the current paper has a more optimistic
view regarding the information conveyed by genetic tests, which allows policyholders
to reduce their health risk. We consider the approach adopted in the companion paper
to be complementary to the one studied here, as opposed to a straight improvement,
because the progress made in endogenizing the testing decision is obtained at the cost of
assuming away the prevention e¤ort. Indeed, technical improvements in what to do with
the genetic information (proxied by the e¤ectiveness of the prevention e¤ort) seem to
us at least, if not more, important to study than reductions in the cost of acquiring this
information. Moreover, the impact of a lower testing cost is unsurprisingly to increase
the fraction of agents tested, so that the intuition gained by endogenizing the testing
decision seems rather limited.

The structure of the paper runs as follows. Section 2 presents the model while
section 3 de�nes a generic insurance contract in this setting. Section 4 studies the sepa-
rating equilibrium contracts, while section 5 analyzes the pooling equilibrium contracts.
Section 6 studies which kind of contract, separating or pooling, emerges at equilibrium
as a function of the proportion of informed agents and of the level of the cost of the
prevention e¤ort. Section 7 performs a comparative static welfare analysis with endoge-
nous contract type. Section 8 concludes. Note that the (many) intermediate analytical
results are denoted as Results, while the main ones are presented as Propositions. Most
formal proofs are relegated to Appendices.
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2 The model

The economy is composed of a unitary mass of individuals. Each individual develops a
disease with some probability, with sickness modeled as the occurrence of a monetary
damage of amount m. A fraction � 2]0; 1[ of individuals are of type H and have a high
probability of incurring the damage, while the remaining fraction 1�� is of type L and
has a lower probability.

Individuals choose to exert or not some primary prevention e¤ort. We assume that
the prevention decision is binary and that prevention has no e¤ect for a low probability
individual, while it decreases the disease probability of type H individuals.6 We then
denote by pL the probability of developing the disease for a type L individual (whether
he exerts the e¤ort or not), and by p0H (respectively, p1H) the probability of developing
the disease of a type H agent who does not (resp., does) exert a prevention e¤ort. We
assume that p0H > p

1
H > pL. We capture the prevention e¢ ciency through � = p

0
H�p1H ,

with 0 < � < ��; where �� = p0H � pL:
An exogenous fraction k of individuals has done a genetic test and is thus informed

about its type (L or H), while the remaining fraction 1� k is not informed. We denote
an uninformed agent as having type U , with a probability of developing the disease
equal to

piU = �p
i
H + (1� �)pL;

with i 2 f0; 1g denoting whether the agent exerts (i = 1) or not (i = 0) the prevention
e¤ort. Note that piU < p

i
H since � < �� and � < 1.

We consider a setting where individuals, whether informed or not about their type,
buy health insurance from a competitive fringe of insurers. An insurance contract is
composed of a premium to be paid to the insurer, and of an indemnity from the insurer to
the insured in the case the disease occurs. We further assume that the prevention e¤ort
is observable, so that there is no moral hazard in our setting and insurance contracts
state whether this e¤ort is required or not.7

6 It is now well established in the medical literature that �it is a combination of the genes that you
have inherited and the environment that you live in that determines the outcome� (Collins 2010), so
that prevention is more e¢ cient with type H agents. For instance, for macular degeneration, �it became
clear that almost 80 percent of the risk could be inferred from a combination of (...) two genetic risk
factors, combined with just two environmental risk factors (smoking and obesity)�(Collins, 2010). This
normalization to zero e¤ort for type L is done for simplicity and without loss of generality, as the model
could allow for a positive e¤ort for type L, and concentrate on the additional e¤ort provided if type H,
without a¤ecting the results.

7This assumption seems reasonable, since there is little empirical evidence of ex ante moral hazard
in health insurance contracts (see Einav and Finkelstein, 2018). Moreover, one can surmise that the
generalization of wearable technologies such as connected watches will make it even easier for insurers
to monitor our prevention e¤orts in the near future.
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We assume that agents are not required by law to reveal their type, but may do
so if they wish to, in which case insurers may use this information. This regulation
is called Consent Law in the context of genetic testing and corresponds to the legal
environment in the Netherlands and in Switzerland. It is straightforward to see that
this environment creates adverse selection: while agents of type L always show their test
results in order to secure a low premium, agents who have been revealed to be of type
H have an incentive to pretend that they are untested/uninformed about their risk.8

The timing of the model is then as follows. A fringe of pro�t-maximizing health
insurers o¤er a set of insurance contracts to agents who are exogenously informed (or
not) about their individual probability of incurring the health damage. Agents then
buy one insurance contract, and exert the prevention e¤ort if the latter is required by
the contract. Finally, the disease occurs or not, and the payo¤s are realized.

We now describe the contracts o¤ered by the insurers.

3 Generic insurance contract

A generic insurance contract is denoted by (�; I; i) where � denotes the premium in
case of health, I the indemnity (net of the premium) in case of sickness, and where
i 2 f0; 1g denotes whether the contract prescribes the prevention e¤ort or not. The
premium is computed as � = �pm, where � denotes the fraction of the damage m
reimbursed in case it occurs, and where p is the probability that the agents buying
this contract incur the damage, given whether the prevention e¤ort is required or not.
Competition forces insurers to o¤er actuarially fair contracts, so that the indemnity is
given by I = �(1� p)m. The expected utility of the agent buying this contract (�; I; i)
is

pv(d) + (1� p)v(b)� �i;
where v(:) is a classical Bernouilli utility function (v0(:) > 0, v00(:) < 0), common to all
agents, and where

d = y �m+ I
8Observe that some countries (such as Austria, Belgium, Denmark, France, Israel, Italy and Norway)

apply a stricter version of this regulation, called Strict Prohibition, where insurers cannot request genetic
tests, cannot require applicant to provide existing tests results, and cannot use any genetic information
in underwriting and rating. Such an environment also generates adverse selection, since nothing prevents
the insurance companies from o¤ering a menu of contracts in order for the di¤erent types to self select.
The di¤erence with the Consent Law legislation studied here is that type L are forbidden from showing
their test results, so that they (like type H) must be separated from type U by the provision of adequate
contracts. The mechanisms at play here then also apply to the Strict Prohibition legislation. Moreover,
Strict Prohibition is not collusion proof, since low risk agents would like to reveal their type, and insurers
may try and use proprietary arti�cial intelligence to screen those low risk types without regulators�
knowledge (see �A.I. is changing Insurance�by S. Jeong, New York Times, April 10, 2019), resulting in
the same equilibrium contracts as under Consent Law.
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is the consumption level if the damage occurs while

b = y � �

is the consumption level when the damage does not occur, with y the individual�s exoge-
nous income. We assume that �1 = � while �0 = 0, where the e¤ort cost (normalized
to zero if no e¤ort is undertaken) � is measured in utility terms. The assumption of a
utility (rather than monetary) cost is innocuous in our binary setting. All agents have
the same utility function v(:), income y and potential damage m, and di¤er only in their
probability of damage p.

In the case of complete coverage (� = 1), we have

c � d = b = y � pm:

It is straightforward that contracts o¤ered to type L agents are not a¤ected by
adverse selection, since they are allowed to prove their type, and have an incentive to
do so in order to bene�t from the low premium re�ecting their low disease probability
pL. By assumption, prevention has costs but no bene�t when the individual is of a low
type, so that the only contracts o¤ered to type L agents entail no prevention e¤ort,
with the consumption level, denoted by cL, given by

cL = y � pLm;

with the corresponding utility level

VL = v(cL): (1)

We follow Wilson (1977)�s approach that encompasses pooling and separating equi-
librium according to the adverse selection intensity at play.9 In our context, the pro-
portion of high risk is then given by k�.

We assume throughout the paper that the following assumption is satis�ed.

Assumption 1 The utility function v(:) exhibits constant absolute risk aversion (CARA).

9See Hoy (2006) and Seog (2010, section 7.3). Under Rothschild and Stiglitz (1976) (RS hereafter),
insurers conjecture that the other insurers will not react to the introduction of a new contract (i.e., they
have a traditional à la Nash reasoning). Wilson (1977) uses a more sophisticated conjecture, which is
that other insurers will withdraw their contracts that become unpro�table as a result of the introduction
a new contract. This conjecture provides an insurer with lower incentives to o¤er new contracts than
under the RS conjecture. As a consequence, a RS equilibrium is also a Wilson equilibrium. But unlike
in RS, a pooling equilibrium can emerge since a contract attracting only low risks is not pro�table under
the Wilson conjecture.
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This assumption is made for simplicity as it allows to simplify some (already long
and convoluted) proofs.

We now study the separating insurance contracts, before moving to the pooling
contracts, and then analyzing which of the two types of contracts emerges at equilibrium.

4 Separating insurance contracts

In a separating equilibrium, the competitive fringe of insurers o¤er a menu of two
contracts (in addition to the contract o¤ered to type L and described above). The �rst
contract is intended for type H agents and o¤ers full coverage at an actuarially fair
price. The second contract is intended for type U agents and is also actuarially fair. In
order to prevent type H agents from buying this second contract, insurers can play on
two dimensions, the coverage rate and the prevention e¤ort, as we will see shortly.

Competition results in the (full insurance, actuarially fair) contract o¤ered to type
H to include prevention e¤ort if and only if this contract results in a higher utility for
type H than the (full insurance, actuarially fair) contract without prevention e¤ort. We
study in section 4.1 the case where the e¤ort cost is low enough that type H agents are
o¤ered contracts with e¤ort, and in section 4.2 the case where they do not exert e¤ort
at equilibrium.

4.1 Type H makes an e¤ort

We �rst treat the case where the utility level of type H with the non-distorted (actu-
arially fair with full coverage) contract is higher with e¤ort than without. This is the
case if the e¤ort cost is low enough�i.e., if

� � �Smax � v
�
y � p1Hm

�
� v

�
y � p0Hm

�
: (2)

We �rst characterize the separating equilibrium, and then we perform a comparative
static analysis in terms of welfare.

4.1.1 Characterization of separating equilibrium

In this case, insurers o¤er the contract with e¤ort to type H. Type H agents need to
be separated from type U agents, since they have an incentive to pretend that they are
untested in order to bene�t from the lower (actuarially fair) premium o¤ered to type
U agents. This means that the contract o¤ered to type U agents has to be distorted,
which can happen along two dimensions: the continuous dimension of the coverage rate,
and/or the binary dimension of the prevention e¤ort requirement. Perfect competition
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among insurers ensures that the contract o¤ered to type U agents is the one o¤ering
the highest utility level to them, conditional on not being mimicked by type H agents.

We denote by S11 the case where the separating contracts o¤ered to types U and
H both prescribe a prevention e¤ort, with the �rst superscript indicating that U makes
the e¤ort, and the second one that H also does the e¤ort. In that case, the incentive
compatibility constraint is denoted by IC11 and is given by

V 11HS � p1Hv
�
d11US

�
+
�
1� p1H

�
v
�
b11US

�
� �; (3)

where

V 11HS = v
�
y � p1Hm

�
� �; (4)

d11US = y + �11S
�
1� p1U

�
m�m;

b11US = y � �11S p1Um:

The LHS of (3) is the utility reaped by type H when he chooses the contract designed
for him (denoted by V 11HS), while the RHS measures type H�s utility when he buys the
contract with e¤ort targeted to type U , which entails a coverage rate of �11S . Note that
d11US (resp., b

11
US) is the consumption level in case of damage (resp., in case the damage

does not occur) for the agent buying the contract designed for type U in a separating
equilibrium where both types U and H exert the prevention e¤ort.

In the case (labelled S01) where the separating contract o¤ered to type U does not
prescribe a prevention e¤ort, the incentive compatibility constraint (denoted by IC01)
becomes

V 01HS � p0Hv
�
d01US

�
+
�
1� p0H

�
v
�
b01US

�
; (5)

where

V 01HS = v
�
y � p1Hm

�
� � = V 11HS ; (6)

d01US = y + �01S
�
1� p0U

�
m�m;

b01US = y � �01S p0Um;

so that d01US (resp., b
01
US) is the consumption level in case of damage (resp., in case the

damage does not occur), and �01S is the fraction of the damage reimbursed, for the agent
buying the contract designed for type U in a separating equilibrium where only H exerts
the prevention e¤ort.

Lemma 1 (a) �11S < 1, (b) �11S is constant with �, (c) �01S < 1 unless � is large enough
that p1H < p

0
U and � is small enough, and (d) �

01
S decreases with � when �01S < 1.

Proof. See Appendix A.1.
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It is straightforward that �11S is not a¤ected by � (as long as � � �Smax of course):
since e¤ort is required in both type U and type H contracts, the cost of the prevention
e¤ort is borne by type H whether he separates or cheats and does not a¤ect the un-
derprovision of insurance to type U . Also, it is necessary in that case to underprovide
insurance (i.e., �11S < 1) to separate the two types, since they are both required to
undertake the prevention e¤ort. This need not be the case when type U is not required
to do the e¤ort, provided that the e¤ort is so e¢ cient (� large enough) that p1H < p

0
U ,

and not too costly (� low): in that case we have �01S = 1. If � is low enough and/or �
large enough, then the coverage rate �01S < 1 decreases with the cost of e¤ort �, since
the latter decreases the utility type H obtains when he buys the contract designed for
him, which makes it more di¢ cult to separate him from type U (and thus requires to
provide less insurance to the latter).

We now compare the utility obtained by type U agents when they buy the contracts
satisfying IC11 (equation (3) holding with equality)

V 11US = p
1
Uv
�
d11US

�
+
�
1� p1U

�
v
�
b11US

�
� �; (7)

and the utility they obtain under IC01 (equation (5) holding with equality)

V 01US = p
0
Uv
�
d01US

�
+
�
1� p0U

�
v
�
b01US

�
: (8)

We denote by �Smin the value of � such that type U agents are indi¤erent between buying
the separating contract with and without e¤ort,

�Smin � p1Uv
�
d11US

�
+
�
1� p1U

�
v
�
b11US

�
� V 01US ;

and we obtain the following result, which characterizes the equilibrium separating con-
tracts when � � �Smax:10

Result 1 (i) When � < �Smin, the competitive fringe o¤ers to type U (a) a S
11 contract

requiring e¤ort with (b) a partial coverage that is constant with the cost of e¤ort.
(ii) When �Smin < � � �Smax, the competitive fringe o¤ers to type U (a) a S01 contract
requiring no e¤ort with (b) a partial coverage (c) that decreases with the e¤ort cost.
(iii) At � = �Smin, the coverage rate o¤ered with the contract requiring prevention is
strictly lower than the one forgoing prevention (i.e., �11S < �01S ).

Proof. See Appendix A.2.
10We slightly abuse terminology by calling a �Sij contract� a contract o¤ered to either U or H in

Case Sij .
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The contract o¤ered to type U prescribes the same prevention e¤ort as for type H
when the prevention cost is low enough, but prescribes no e¤ort �unlike for H�when
the prevention cost is large. If the e¤ort cost is very low, it is too costly in utility
terms for type U agents to induce type H agents not to mimic them by preventing
type U agents from undertaking the e¤ort. The separation between the two types then
entirely depends on the underprovision of insurance to type U . If the e¤ort cost is large
enough, then preventing type U individuals from undertaking the e¤ort is used, together
with restrictions on coverage, to separate both types. Preventing e¤ort in the contract
designed for type U makes this contract less attractive to type H, enabling insurers to
increase the coverage o¤ered to type U , explaining the discontinuity in coverage rates
when moving from contract S11 to S01.

We now move to the welfare analysis.

4.1.2 Comparative static welfare analysis

We take as welfare function the utilitarian one where we use as weight for each type its
proportion in the population of agents.11 Namely,

W i1
S = (1� k)V i1US + k�V i1HS + k(1� �)VL

= k
�
(1� �)VL + �V i1HS � V i1US

�
+ V i1US ; (9)

i = f0; 1g, where utility levels for types L, U and H are given, respectively, by VL (see
equation (1)), V 11US (see equation (7)), V

01
US (see equation (8)), V

11
HS (see equation (4))

and V 01HS (see equation (6)).

Result 2 In both cases S01 and S11, welfare decreases with � and increases with k.

Proof. See Appendix A.3.

In both S11 and S01, type H exerts a prevention e¤ort, so that its utility decreases
linearly with �. A larger prevention cost � does not a¤ect the coverage rate o¤ered to
U in S11, but decreases directly U�s utility as it undertakes the e¤ort: In case S01, type
U makes no e¤ort, but receives a lower coverage rate as � increases, resulting in a lower
utility. In both cases, aggregate welfare then decreases with �.

In a separating equilibrium, policyholders�utilities do not depend on k. The varia-
tion of k a¤ects the welfare function only through a composition e¤ect (increasing the

11See Hoy (2006) for a discussion of the equivalence between this welfare fonction and the expected
utility of an individual behind the veil of ignorance, and for a welfare analysis that relies on the construc-
tion of Lorenz curves of the income distributions generated by the insurance contracts. The addition of
a prevention cost in utility terms prevents us from using this approach relying on income distributions.
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proportion of types L and H at the expense of type U). As shown in (9), the deriv-
ative of welfare with respect to k compares the expected payo¤ of knowing one�s type
with the payo¤ of remaining uninformed. The seminal paper by Hirshleifer (1971) has
established that this composition e¤ect (de�ned there as the �value of the information
brought by a test�) is negative when damage probabilities are exogenous and when in-
dividuals face a discrimination risk. We obtain here a positive composition e¤ect, as we
depart from Hirshleifer (1971)�s setting in two directions. First, remaining uninformed
entails buying a contract with partial coverage, while being informed of one�s type allows
to buy full coverage, generating a positive impact on the composition e¤ect. Second, the
prevention decision may change with the informational status. In Case S11, knowing
one�s type allows to save on the prevention cost of e¤ort in case one is revealed to be
of type L, generating another positive impact on the composition e¤ect. In Case S01,
uninformed agents do not exert the prevention e¤ort, so that knowing one�s type now
means incurring an e¤ort cost � if revealed to be of type H, with a negative impact on
the composition e¤ect. In both cases, the composition e¤ect is positive.

4.2 Type H does not make an e¤ort

We now move to the case S00 where � > �Smax, when type H prefers to exert no e¤ort
when o¤ered an actuarially fair, full insurance contract, and obtains utility

V 00HS = v
�
y � p0Hm

�
: (10)

We �rst characterize this separating equilibrium, before studying its comparative
statics properties.

4.2.1 Characterization of separating contract

In Case S00, no one makes the prevention e¤ort, and the contract o¤ered to type U
speci�es a coverage rate �00S < 1 in order to discourage typeH from buying this contract.
The utility attained by type U is given by

V 00US = p
0
Uv
�
d00US

�
+
�
1� p0U

�
v
�
b00US

�
; (11)

with

d00US = y + �00S
�
1� p0U

�
m�m;

b00US = y � �00S p0Um:

We then obtain:
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Result 3 When � > �Smax; the competitive fringe o¤ers to type U a S00 contract re-
quiring no e¤ort, where the coverage rate �00S < 1 is independent of � and corresponds
to �01S when � = �Smax.

Proof. See Appendix A.4.

When the e¤ort cost is high enough that even type H does not exert e¤ort, then
the separation between types U and H is obtained only by providing partial coverage
in a type U contract that does not require e¤ort. This contract is then una¤ected by
any further increase in �.

4.2.2 Comparative statics welfare analysis

Utility levels for types U and H are given, respectively, by V 00US (see equation (11)) and
V 00HS (see equation (10)). Utilities as well as the coverage level �

00
S do not depend on �

nor on k. The welfare function becomes:

W 00
S = (1� k)V 00US + k�V 00HS + k(1� �)VL;

and we obtain:

Result 4 In Case S00, welfare is not a¤ected by �, and increases with k.

Proof. See Appendix A.5.

So, a larger value of k increases welfare thanks to the composition e¤ect. The sign
of this composition e¤ect remains positive as in S01 and S11, even though the e¤ort
cost plays no role here since no one undertakes the prevention e¤ort. In other words,
the composition e¤ect is driven entirely by the fact that type U agents do not buy full
coverage insurance, unlike types L and H.

4.3 Summary for separating contract

The following proposition summarizes all the results obtained regarding the character-
ization of the separating contracts.

Proposition 1 (i) In all separating equilibria, types L and H receive an actuarially
fair contract with full coverage, and type L never exerts the prevention e¤ort.
(ii) The type of separating contract does not depend on k, but depends on �.
(iii) If � < �Smin, we have a S

11 equilibrium contract, where both types U and H make
the prevention e¤ort, and where the coverage rate of type U is given by �11S , which does
not depend on �.
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(iv) If �Smin � � � �Smax, we have a S01 equilibrium contract, where type H makes the
prevention e¤ort while U does not, and where the coverage rate of type U is given by
�01S , which decreases with �.
(v) If � > �Smax, we have a S

00 equilibrium contract, where neither type U nor H makes
the prevention e¤ort, and where the coverage rate of type U is given by �00S , which does
not depend on �.

We now summarize the comparative statics results. We focus on the impact of
decreasing � (resp., increasing k), since this corresponds to the empirically relevant
case.

Proposition 2 (i) Decreasing � (a) has no impact on utilities nor on aggregate welfare
in S00, (b) increases types U�s and H�s utilities, as well as aggregate welfare, in S11

and in S01.
(ii) Increasing k (a) has no impact on utilities in any separating equilibrium, but (b)
increases aggregate welfare thanks to a composition e¤ect.

The prevention e¤ort has no impact on utilities and welfare when no one does the
e¤ort (S00) since neither the coverage nor the composition are a¤ected by �. A lower
value of � increases the utility of both U and H in all other cases�i.e., when they both
make the e¤ort (S11) but also in S01 because U�s coverage rate increases as � decreases.

We now move to the pooling contracts.

5 Pooling insurance contracts

5.1 Characterization

Recall �rst that the pooling contract does not concern type L, who has both the legal
right and the incentive to reveal his type to the insurer in order to obtain an actuarially
fair contract (with the low price of pL) with full coverage.

A unique contract is o¤ered to the pool of agents who claim to be uninformed about
their type. By de�nition, in a pooling contract all agents must look alike, so that they
all either undertake the (observable) prevention e¤ort (i = 1, which we call the P 1 case
or contract) or do not make this e¤ort (i = 0, corresponding to the P 0 case/contract).
This pool is composed of a mass of 1 � k agents who are truly uninformed (since they
have not taken the test), and a mass k� of agents whose test has revealed them as type
H. The competition among insurers results in a unit price of insurance piP re�ecting
the average risk among this pool:

piP =
1� k

1� k(1� �)p
i
U +

k�

1� k(1� �)p
i
H ;
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i 2 f0; 1g.
The pooling price piP is lower than the actuarially fair price p

i
H for type H agents,

who would then wish to buy full insurance. The coverage rate o¤ered at equilibrium is
then the one most-preferred by type U agents, and is lower than one since the pooling
price is larger than piU . We denote by �

i
P the equilibrium coverage rate of the pooling

contract, which is obtained as

�iP = argmax�
piUv(y + �(1� piP )m�m) + (1� piU )v(y � �piPm)� �i:

The �rst-order condition for the equilibrium pooling coverage rate is given by:

piU (1� piP )v0(diP )� (1� piU )piP v0(biP ) = 0; (12)

with

diP = y + �iP (1� piP )m�m;
biP = y � �iP piPm;

respectively, the consumption levels of (type U and H) agents who buy the pooling
contract when the damage does (resp., does not) occur. It is obvious from (12) that �iP
does not depend on the value of �.

We denote the utility level attained by type U in the pooling contract as

V iUP = p
i
Uv(d

i
P ) + (1� piU )v(biP )� �i; i 2 f0; 1g

and the one attained by type H as

V iHP = p
i
Hv(d

i
P ) + (1� piH)v(biP )� �i; i 2 f0; 1g:

What determines whether e¤ort is prescribed or not at equilibrium for the pooling
contract is the comparison of V 0UP and V

1
UP . Insurers want to attract the least risky type

(i.e., U and not H) and competition among insurers ensures that the contract o¤ering
the highest utility to type U is o¤ered at equilibrium. We then obtain the following
proposition, which summarizes all the results obtained regarding the characterization
of the pooling contracts.

Proposition 3 (i) In all pooling equilibria, type L receives an actuarially fair contract
with full coverage and never exerts the prevention e¤ort.
(ii) The type of pooling contract depends on both k and �. There exists a unique value
of �, denoted by ~�P (k), so that:
(iii) If � < ~�P (k), we have a P

1 equilibrium contract, where both types U and H make
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the prevention e¤ort, and where the coverage rate of the pooling contract bought by both
types is given by �1P .
(iv) If � � ~�P (k), we have a P 0 equilibrium contract, where neither type U nor H makes
the prevention e¤ort, and where the coverage rate of the pooling contract bought by both
types is given by �0P .
(v) Insurance coverage rate �iP decreases with k, with �

1
P � �0P .

Proof. See Appendix A.6.

It is intuitive that the prevention e¤ort is made only if its cost is su¢ ciently low.
Assumption 1 implies that the demand for insurance decreases with its unit price. Pre-
vention, by decreasing the health risk, decreases the actuarially fair insurance premium,
so that agents buy more insurance. Note for future reference that the threshold ~�P (k)
depends on k in a non trivial way.

5.2 Comparative statics welfare analysis

The welfare function is given by:

W i
P = (1� k)V iUP + k�V iHP + k(1� �)VL:

We obtain the following proposition.

Proposition 4 (i) Decreasing � (a) has no impact on utilities nor on aggregate welfare
in P 0, (b) increases types U�s and H�s utilities, as well as aggregate welfare, in P 1.
(ii) Increasing k (a) decreases the utilities of both types U and H, but (b) has an am-
biguous impact on aggregate welfare due to the composition e¤ect.

Proof. See Appendix A.7.

The e¤ort cost does not a¤ect any contract in P 0, is paid by no one, and has no
impact on the composition of the universe of insured agents, so that aggregate welfare
is not a¤ected by �. Aggregate welfare decreases with � in P 1, as a more costly e¤ort
does not a¤ect the coverage rate but decreases the utility of types U and H who both
pay this cost.

Increasing k has two countervailing e¤ects on aggregate welfare in both P 0 and P 1.
First, a larger k increases the price of the pooling contract and thus reduces the utilities
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of types U and especially of types H.12 Second, increasing k creates a composition
impact, which is positive as in the case of separating contracts. Observe that, unlike in
the separating contracts, type H su¤ers from underprovision of insurance in the pooling
contract, but receives a better-than-fair unit price. The overall sign of the impact of k
on aggregate welfare is thus analytically ambiguous.

Using a numerical example (see Appendix B), we obtain that @W 0
P =@k is negative,

so that the direct negative impact of a higher k on utilities is larger than the positive
composition impact. Note that testing allows to save on the prevention e¤ort cost (if
revealed to be type L), as in S11, so that a larger value of � increases the composition
e¤ect. Using the numerical example, we obtain that @W 1

P =@k is negative for small
values of �, and positive for larger values. We come back to these impacts (including
by showing �gures illustrating them) in section 7.2.

6 Equilibrium contracts: separating or pooling?

The objective of this section is to understand what type of Wilson equilibrium (sepa-
rating or pooling) emerges as a function of k and of �. What determines whether the
equilibrium is pooling or separating is the utility attained by U under both contracts.
Start with the separating contract. It can only be defeated if insurers can attract the
lower risk (type U) while o¤ering them a pooling contract. Hence, we have a pooling
equilibrium if type U has a larger utility level with the pooling contract than with the
separating contract, and vice-versa.

We introduce the following assumption.

Assumption 2 � is not too large:

p1U
�
1� p1H

��
1� p1U

�
p1H

<
v0(y)

v0(y �m) : (13)

Note that the LHS of (13) is increasing in � (so that this inequality indeed implies
that � is not too large) and that this expression does not involve any endogenous
variables, but only exogenous ones.

This assumption allows us to prove the following lemma, which shows that, when
the price of insurance is large enough (close to p1H , with � not too large), type U agents
prefer not to buy insurance.

Lemma 2 Under Assumption 2, �1P = 0 for k close enough to one.
12Type U�s utility is only a¤ected by the direct impact of a more expensive pooling contract (we apply

the envelope theorem since type U chooses �iP ). Type H agents su¤er more from the higher premium
(given the coverage rate), because they have a larger probability of incurring the damage than type U .
They also su¤er more because the already too low coverage rate is further decreased by U as k increases.
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Proof. The coverage rate of the pooling contract P 1 is determined by

p1U
�
1� p1P

�
v0(d1P )�

�
1� p1U

�
p1P v

0(b1P ) � 0:

When k = 1, this condition becomes:

p1U
�
1� p1H

�
v0(d1P )�

�
1� p1U

�
p1Hv

0(b1P ) � 0;

which is satis�ed with a strict inequality for �1P = 0 under Assumption 2, so that, given
Proposition 3 (v), �1P ! 0 for k ! 1.

We assume that Assumption 2 holds throughout the remainder of the analysis.13

Proposition 5 For any given value of �, there is a unique (strictly positive) threshold
value of k, denoted by ~k(�), such that a pooling equilibrium emerges if k < ~k(�), and a
separating equilibrium emerges if k > ~k(�).

Proof. We prove this proposition in 5 steps.
(1) Whatever the value of �, the equilibrium contract is either the pooling one preferred
by U (either P 0 or P 1) or the separating one preferred by U (S00, S01 or S11).

(2) The utility of U with a pooling equilibrium is strictly decreasing in k, while its
utility with any separating equilibrium is independent of k.

(3) When k tends towards 0, the pooling equilibrium tends to full coverage with
actuarially fair price. This is the highest utility type U can get. At the same time, the
separating contract proposes either partial coverage and/or a distortion of the prevention
decision. Hence, the utility of U is higher with pooling.

(4) As k tends towards 1, the price of the pooling contract increases and re�ects
type H�s risk, which is higher than the price of the separating contract. Lemma 2 and
Proposition 3 (v) establish that, when k is large enough, we have that �1P = �0P = 0.
We then have that U prefers the separating contract with some coverage to (the pooling
contract with) no insurance.

(5) Given (2), we have the unique, strictly positive, threshold ~k(�).

Observe that there are at most 6 possible comparisons of utility levels for type U ,
for any value of (k, �), since there are 2 types of pooling (P 0 and P 1) and 3 types of
separating (S00, S01 and S11) contracts. The following proposition assesses how ~k(�) is
a¤ected by � for the 6 possible comparisons.

13Assumption 2 is a su¢ cient (but not necessary) condition to prove that U prefers the separating to
the pooling contract when k tends toward 1.
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Proposition 6 (a) For values of (k; �) such that the potential equilibria are either P 0

and S00, or P 1 and S11, the threshold ~k(�) is not a¤ected by the value of �.
(b) For values of (k; �) such that the potential equilibria are either P 0 and S01, or P 0

and S11, the threshold ~k(�) is increasing in the value of �.
(c) For values of (k; �) such that the potential equilibria are P 1 and S00, or P 1 and S01,
the threshold ~k(�) is decreasing in the value of �.

Proof. (a) The utility of U under P 0 and under S00 is not a¤ected by �, which
then plays no role in the comparison of utilities. The utility of U under P 1 and under
S11 is a¤ected linearly by the value of � (because the coverage rate is not a¤ected by �
in P 1 nor in S11), so that the � term cancels out when comparing the two utilities, and
� plays no role in determining the value of ~k(�).
(b) The utility of U under P 0 is not a¤ected by �, while its utility under S01 decreases
with � (because the coverage rate decreases with �). Similarly, the utility of U under S11

also decreases in �. Using the implicit function theorem, we obtain that ~k(�) increases
with �.
(c) The utility of U under S00 is not a¤ected by �, while its utility under P 1 decreases
with �. Using the implicit function theorem, we obtain that ~k(�) decreases with �.
The utility of U under both P 1 and S01 is decreasing in �, so that the proof, using the
implicit function theorem, is less straightforward and relegated to Appendix A.8.

It would be too cumbersome to try and solve all possible con�gurations of cases. We
then restrict ourself to the con�guration we obtain in the numerical example described
in Appendix B. Figure 1 depicts the function ~�P (k) we obtain, as well as the threshold
~k(�), in the (k, �) space. We obtain that �Smin < ~�P (k) < �Smax for all values of k.
Note that this con�guration only excludes the two extreme comparisons of contracts
among the six mentioned in Proposition 6: there is no value of (k, �) where the pooling
contract is P 1 and the separating contract S00 (because this would require to consider
�Smax < k <

~�P (k)) and where the pooling contract is P
0 and the separating contract

S11 (because this would require to consider ~�P (k) < k < �Smin). These two excluded
con�gurations anyway seem to be very unlikely to emerge in an equilibrium. Take for
instance the comparison of P 1 and S00. This supposes that, for the same parameters
(k, �), insurers who o¤er separating contracts would require of both types U and H
not to do the prevention e¤ort, while if insurers were to o¤er a pooling contract, they
would ask both types to do this same prevention e¤ort. The other four comparisons of
contracts (P 0 and S00, P 0 and S01, P 1 and S01, and P 1 and S11) all exist for some
parameter values (k, �) in our example.

Insert Figure 1 here
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Figure 1: In (k, �) space, separation between P 1, P 0, S11, S01 and S00 contracts.

Observe that there is a single intersection between the thresholds ~�P (k) and ~k(�).
We denote by (k�, ��) this intersection. We denote by ~k00 (resp., ~k11) the value of
~k(�) when � > �Smax, (resp., when � < �Smin). Both ~k00 and ~k11 are independent of �
(provided of course that � is in the relevant range) as shown in Proposition 6(a). From
Figure 1, we obtain that k� < ~k00 < ~k11.

7 Comparative static welfare analysis with endogenous
contract type

7.1 With respect to prevention e¤ort cost �

Compared to sections 4.1.2, 4.2.2 and 5.2, we incorporate here how the equilibrium
type (S11, S01, S00, P 0 or P 1) changes endogenously as � decreases. Focusing on the
typology of cases that emerges from the numerical example (see Figure 1), we obtain
four di¤erent situations, depending on the value of k. The transitions we observe as we
decrease � are: from P 0 to P 1 (when k < k�), from P 0 to S01 to P 1 (when k� < k < ~k00),
from S00 to S01 to P 1 (when ~k00 < k < ~k11) and from S00 to S01 to S11 (when k > ~k11).

We introduce the following assumption, whose role we discuss after Proposition 7.

Assumption 3 � is low enough that p1P > p
0
U for the value of k such that V

1
UP = V

01
US :

This assumption ensures that type U faces a lower unit price with the separating
contract without e¤ort than with the pooling contract with e¤ort. Note that it implies
that p1H > p

0
U . We then obtain the following proposition.

Proposition 7 With the typology of cases obtained in Figure 1, and under Assumption
3, a decrease in � weakly increases both types U�s and H�s utility, and aggregate welfare,
except when k� < k < ~k00 and � is such that the equilibrium changes from P 0 to S01,
in which case we have a downward discontinuity in H�s utility and in aggregate welfare.

Proof. Note �rst that type L�s utility is a constant, as it always receives full
insurance at an actuarially fair price, without exerting a prevention e¤ort, whether
contracts for U and H are pooling or separating. We know from Propositions 2 and 4
that a lower value of � either has no impact on types U�s and H�s utilities, and thus on
aggregate welfare, (in cases P 0 and S00) or that it increases types U�s and H�s utilities,
and thus aggregate welfare (in cases P 1, S01 and S11).
Note that, by de�nition of an equilibrium (which maximizes the utility of type U , given
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the relevant constraints), the utility of type U is continuous with � as one moves from
one equilibrium type to another. We then concentrate on how type H�s utility (and
aggregate welfare) is impacted by � as one moves from one equilibrium contract type
to another.
We �rst establish that H�s utility remains continuous as one moves from one separating
equilibrium to another: there is no discontinuity in type H�s utility as (a) one moves
from a S01 to a S00 equilibrium contract, by de�nition of �Smax (see equation (2)), and
(b) as moves from S11 to S01, since V 11HS = V 01HS (see equations (4) and (6)). Hence,
aggregate welfare is also continuous for these moves.
We have discontinuous increases in H�s utility as one moves from P 0 to P 1 (see Result
5 in Appendix A.9.), from S01 to P 0 (Result 6 in Appendix A.10.) and from S01 to P 1

(Result 7 in Appendix A.11.). In these cases, we also have a discontinuous increase in
aggregate welfare.

The intuition for Proposition 7 is straightforward, except for the discontinuities in
H�s utility as one moves from one type of equilibrium to another. Take the move from
P 0 to S01 for instance. When U is indi¤erent between P 0 and S01, it trades o¤ the
higher price in P 0 (since p0P > p0U ) with the larger coverage (�

0
P > �01S when U is

indi¤erent between these two contracts). Note that, by the incentive constraint IC01,
the utility that H obtains in S01 is equal to the utility it would obtain if it were to buy
the contract designed for U in S01. Type H agents value more the higher insurance
coverage in P 0 because they have a larger damage probability (p0H > p

0
U ). Hence, when

U is indi¤erent between P 0 and S01, type H strictly prefers P 0 to S01.
A similar intuition applies to the other two discontinuities we observe (from P 0 to

P 1, and from P 1 to S01), with the caveat that, we have to assume that contract P 1 is
costlier than contract S01 when U is indi¤erent between the two (see Assumption 3).
Note that that this assumption is a su¢ cient, but not a necessary, condition to have an
upward discontinuity in H�s utility (and aggregate welfare) as one moves from S01 to
P 1.14

Figures 2 to 4 exemplify what happens, respectively, to the utility of types U and
H, and to aggregate welfare, when we vary � while k� < k < ~k00: Starting from large
values of �, we obtain a P 0 equilibrium, where utilities are not a¤ected by �. We then
switch to the S01 case, with a downward discontinuity in both H�s utility and aggregate
welfare. As long as we remain in S01, utilities and welfare increase as � decreases. We

14There is generically a discontinuity in H�s utility (and aggregate welfare) when moving from S01 to
P 1, whether Assumption 3 holds or not, but we are unable to sign it if Assumption 3 does no hold. Note
that, if the discontinuity were negative rather than positive at that point, this would further reinforce
our result that a lower value of � does not always increase aggregate welfare.
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then switch to the P 1 contract, with an upward discontinuity in both H�s utility and
aggregate welfare. Utilities and aggregate welfare further increase as we decrease �
while remaining in the P 1 case.

Figure 2: Type U�s utility as a function of �, for k� < k < ~k00

Figure 3: Type H�s utility as a function of �, for k� < k < ~k00

Figure 4: Welfare as a function of �, for k� < k < ~k00

7.2 With respect to test prevalence k

Focusing on the typology of cases that emerges from the numerical example (see Figure
1), we obtain �ve di¤erent situations, depending on the value of �, with �Smin < ~�P (0) <
�� < �Smax. The transitions we observe as we increase k are: from P 0 to S00 (when
� > �Smax), from P 0 to S01 (when �� < � < �Smax), from P 0 to P 1 to S01 (when
~�P (0) < � < �

�), from P 1 to S01 (when �Smin < � < ~�P (0)), and from P 1 to S11 (when
� < �Smin).

We then obtain the following proposition.

Proposition 8 With the typology of cases obtained in Figure 1, and under Assumption
3, an increase in k has the following impact on utilities and welfare:
(a) when k is low, we are in a pooling equilibrium where a higher k decreases both types
U�s and H�s utilities, but has an ambiguous impact on aggregate welfare.
(b) increasing k then changes the equilibrium from pooling to separating, except when
~�P (0) < � < �

�, resulting in a downward discontinuity in both H�s utility and aggregate
welfare. When ~�P (0) < � < �

�, increasing k changes the equilibrium �rst from P 0 to
P 1, which is associated with an upward discontinuity in type H�s utility and in aggregate
welfare, and then from P 1 to S01.
(c) Further increases in k do not change the equilibrium type (separating) and do not
a¤ect agent�s utilities, but increase aggregate welfare.

Proof. We know from Proposition 5 that a low value of k is associated with a
pooling equilibrium, and from Proposition 4 that types U�s and H�s utilities decrease
with k, while the impact on aggregate welfare is ambiguous. As k reaches ~k(�), we move
from pooling to separating equilibrium, each time resulting in a downward discontinuity
in H�s utility (and thus in aggregate welfare): (i) from P 0 to S00 when � > �Smax (see
Result 8 in the Appendix A.12.), from P 0 to S01 (when �� < � < �Smax) (see Result 6),
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from P 1 to S01 (when �Smin < � < ~�P (0) and when Assumption 3 holds) (see Result 7)
and from P 1 to S11 (when � < �Smin) (see Result 9 in Appendix A.13.).

15 In the case
where ~�P (0) < � < ��, the equilibrium �rst changes from P 0 to P 1 (with an upward
jump in H�s utility and in aggregate welfare, see Result 5) and then from P 1 to S01.
Finally, as k further increases, we remain in a separating equilibrium (see Proposition
5), where utilities are not a¤ected by k, but where a larger value of k increases aggregate
welfare thanks to a composition e¤ect (see Proposition 2).

We then obtain that aggregate welfare is always non monotone in k, because of
the downward discontinuity in H�s utility as one moves from separating to pooling
equilibrium (note that the intuition for this discontinuity is the same as the one explained
after Proposition 7, namely that type H values more the larger coverage associated
with the pooling equilibrium than type U). We obtain with our numerical example that
welfare is decreasing with k in the P 0 equilibrium. As already discussed after Proposition
4, welfare is increasing in k in the P 1 equilibrium when � is large enough (in the case
where �Smin < � < �

�) but is increasing in k when � is low enough (� < �Smin).

As an illustration, we show in Figures 5 to 7, respectively, the utility of types U and
H, and aggregate welfare, as a function of k when ~�P (0) < � < �

�:

Figure 5: Type U�s utility as a function of k, for ~�P (0) < � < �
�

Figure 6: Type H�s utility as a function of k, for ~�P (0) < � < �
�

Figure 7: Aggregate welfare as a function of k, for ~�P (0) < � < �
�

Welfare in that case is highly non monotone in k: it �rst decreases with k in the
P 0 contract (because of the price e¤ect), then increases discontinuously with k when
one moves from P 0 to P 1 (thanks to the increase in H�s utility), then increases with
k in the P 1 contract (thanks to the composition e¤ect), decreases discontinuously with
k when one moves from P 1 to S01 (because of the decrease in H�s utility), and �nally
increases with k in the S01 contract (thanks to the composition e¤ect).

7.3 When both � and k vary simultaneously

In this section, we show numerically what could happen if k were to increase at the same
time as � decreases. This movement is an illustration of what could happen in the near

15As for Proposition 7, Assumption 3 is a su¢ cient condition to sign the discontinuity in H�s utility
(and thus in aggregate welfare) when moving from P 1 to S01.
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future, as more people choose to do the genetic test (higher k) and as the informational
content of those tests increases (which we proxy by a decrease in the prevention e¤ort
cost �).We build on the numerical example presented in Appendix B, and assume a
linear relationship between � and k (�(k) = 0:29 � 0:8k). We then start in the upper
left corner of Figure 1, in the (k, �) space, with a high value of � and a low value of k,
corresponding to the situation currently observed in reality, and to a P 0 contract. As k
increases and � decreases, we move in the south-east direction on a straight line whose
slope is such that we �rst cross to the S01 equilibrium contract, and then to the P 1 one.

Figures 8 and 9 depict respectively types U�s and H�s utility, and aggregate welfare,
as we increase k/decrease � simultaneously.

Figure 8: Types U�s and H�s utility as a function of k when �(k) = 0:29� 0:8k

Figure 9: Aggregate welfare as a function of k when �(k) = 0:29� 0:8k

As long as we remain in the P 0 equilibrium, types U�s and H�s utilities are not
a¤ected by � but decrease with k, which makes the pooling contract more expensive
(and further reduces the coverage enjoyed by type H). Proposition 4 has shown that the
impact of k on aggregate welfare is ambiguous (because of a positive composition e¤ect),
but we obtain on Figure 9 that welfare decreases with k (so that the negative price e¤ect
is larger than the positive composition e¤ect). Result 6 has shown a downward jump in
type H�s utility (and thus in aggregate welfare) when we move from the P 0 to the S01

equilibrium.
As long as we remain in the S01 equilibrium, types U�s and H�s utilities are not

a¤ected by k, but decrease with �. We thus obtain an unambiguous increase in both
types�utilities as we increase k and decrease � simultaneously, as exempli�ed in Figure
8. Result 2 shows that aggregate welfare decreases with � and increases with k (thanks
to the composition e¤ect) in S01. We then obtain that aggregate welfare unambiguously
increases as we increase k and decrease � simultaneously, as exempli�ed in Figure 9.
Result 7 has shown an upward jump in type H�s utility (and thus in aggregate welfare)
when we move from the P 1 to the S01 equilibrium.

As long as we remain in the P 1 equilibrium, Proposition 4 shows that types U�s and
H�s utilities decrease with both k and �. We obtain in our numerical example that the
impact of a smaller � supersedes the impact of a larger k, since both V 1UP and V

1
HP

(Figure 8) increase as we increase k and decrease � simultaneously. Aggregate welfare
decreases with �, but the impact of a larger value of k is ambiguous (see Proposition 4).
We obtain on Figure 9 that aggregate welfare increases when we increase k and decrease
� simultaneously.
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To summarize, we obtain that a larger value of k combined with a smaller value
of � is detrimental for types U and H and for society as long as we remain in a P 0

equilibrium, and when we move from the P 0 to the S01 equilibrium. The impact then
becomes positive (both for U , for H and for aggregate welfare) in both the S01 and P 1

equilibria, and also when one moves from the former to the latter. The lowest level of
utility (for H and for U) and of aggregate welfare corresponds to the combination of
values of k and of � that generates a change from the P 0 to the S01 equilibrium.

8 Conclusion

This article has studied the welfare implications on the health insurance market of the
development of personalized medicine, as measured by the increase in the take-up rate
of genetic tests providing more e¢ cient and actionable prevention actions. Starting
from the current low take-up rate generating at equilibrium a pooling contract with no
prevention e¤ort, we obtain that an increase in the take-up rate has �rst an ambiguous
impact on welfare, and then unambiguously decreases welfare as one moves from a
pooling to a separating equilibrium. It is only once the take-up rate is large enough
that the equilibrium is separating that any further increase in take-up rate increases
aggregate welfare, by a composition e¤ect.

We also study the impact of a decrease in the prevention e¤ort cost, taken as a
proxy for the e¤ectiveness of the genetic tests in terms of actionable health information.
We obtain that decreasing this cost, starting from its current high level, moves us from
the current pooling equilibrium without prevention to another pooling equilibrium with
e¤ort, with the possibility of having a separating equilibrium for intermediate values
of the e¤ort cost. Once more, the move from pooling to separating equilibrium is
especially detrimental to those unlucky enough to get informed of their detrimental
genetic background.

A main result of our analysis is then to stress that the long run impact of cheap
genetic tests may not be to destroy cross-subsidies, provided that the increase in their
e¢ ciency in providing prevention actions is large enough.

Observe that we have used a simple utilitarian welfare function, weighting individual
types by their share in the insured population at equilibrium. Moving to a welfare
criterion that puts more weight on the least well-o¤ (type H in our setting) would
reinforce our conclusion that encouraging individuals to undertake a genetic test may
result in short run welfare losses, as long as the equilibrium is not separating.
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Appendix A

Appendix A.1.: Proof of Lemma 1

(a) �11S < 1 is a necessary condition for (3) to hold since p1H > p
1
U . (b) � cancels out in

both the LHS and RHS of (3).
(c) IC01 (equation (5)) is satis�ed when �01S = 1 if and only if

v(y � p1Hm)� � � v(y � p0Um)
, � � v(y � p1Hm)� v(y � p0Um);

with v(y � p1Hm) > v(y � p0Um) if and only if p1H < p0U :
(d) If �01S < 1, applying the implicit function theory to (5), we obtain that

@�01S
@�

=
�1

m
�
p0H
�
1� p0U

�
v0(d01US)�

�
1� p0H

�
p0Uv

0(b01US)
� ; (14)

whose sign is negative since v0(d01US) > v
0(b01US) and p

0
H

�
1� p0U

�
> p0U

�
1� p0H

�
.

Appendix A.2.: Proof of Result 1

We �rst have to prove the following lemma.

Lemma 3 �01S < �11S for � = �Smax.

Proof. Equation IC11 yields

v(c1H) = p
1
Hv(d

11
US) + (1� p1H)v(b11US); (15)

while equation IC01, when measured at � = �Smax, yields

v(c0H) = p
0
Hv(d

01
US) + (1� p0H)v(b01US); (16)

where
ciH = y � piHm:

Let us consider the following function G(�; �) such that

G (�; �) = v(y � (p0H � �)m)
�
�
p0H � �

�
v
�
y + �

�
1�

��
�
�
p0H � �

�
+ (1� �)pL

���
m�m

�
�
�
1�

�
p0H � �

��
v
�
y � �

��
�
�
p0H � �

�
+ (1� �)pL

��
m
�
:
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Observe that (15) corresponds to G(�11S ;�) = 0 while (16) corresponds to G(�
01
S ; 0) = 0.

Using the implicit function theorem, we have that

d�

d�
= � @G=@�

@G=@�
:

We obtain:

� dG=@�
dG=@�

=
mv0(c1H)�

�
v(b11US)� v(d11US) + ��11S m

�
p1Hv

0(d11US) + (1� p1H)v0(b11US)
��

m
�
p1H(1� p1U )v0(d11US)� (1� p1H)p1Uv0(b11US)

� :

As p1H � p1U , d11US � b11US and v(:) is an increasing and concave function, the denominator
is positive. Then, we have �01S < �11S , if and only if:

mv0(c1H) �
�
v(b11US)� v(d11US) + ��11S m

�
p1Hv

0(d11US) + (1� p1H)v0(b11US)
��
:

Moreover, from IC11, we know that:

v(b11US)� v(c1H) = p1H
�
v(b11US)� v(d11US)

�
:

Introducing this last expression in the previous inequality yields:

m
�
v0(c1H)� ��11USv0(b11US)

�
� v(b11US)� v(d11US) + ��11USdp1H

�
v0(d11US)� v0(b11US)

�
,

mv0(c1H)
�
1� ��11US

�
+ ��11S m

�
v0(c1H)� v0(b11US)

�
�
�
v(b11US)� v(c1H)

� � 1
p1H

� ��11USm
�
v0(d11US)� v0(b11US)
v(d11US)� v(b11US)

��
,

mv0(c1H)
�
1� ��11US

�
v0(c1H)� v0(b11US)

+ ��11USm

� v(b11US)� v(c1H)
v0(c1H)� v0(b11US)

�
1

p1H
� ��11USm

�
v0(d11US)� v0(b11US)
v(d11US)� v(b11US)

��
:

The generalized mean value theorem implies that:

v(b11US)� v(c1H)
v0(c1H)� v0(b11US)

= � v
0(
)

v00(
)

and
v0(d11US)� v0(b11US)
v(d11US)� v(b11US)

= �v
00(�)

v(�)
;
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with 
 2
�
c1H ; b

11
US

�
and � 2

�
d11US ; b

11
US

�
. Assuming that v(:) is a CARA function, we

obtain that

� v
0(
)

v00(
)
= � 1

v00(�)
v(�)

= K:

Then, the previous inequality can be rewritten:

mv0(c1H)
�
1� ��11US

�
v0(c1H)� v0(b11US)

+ ��11USm � K

�
1

p1H
+ ��11USm

1

K

�
,

mv0(c1H)
�
1� ��11US

�
v0(c1H)� v0(b11US)

� K

p1H
:

Again, the mean value theorem implies that

v0(c1H)� v0(b11US) = v00(�)
�
p1H � �11S p1U

�
m;

with � 2
�
c1H ; b

11
US

�
. Due to the concavity of v(:), we have v0(c1H) � v0(�). Then, a

su¢ cient to ensure the previous inequality is:

�
mv0(�)

�
1� ��11US

�
v00(�)

�
p1H � �11S p1U

�
m

� K

p1H
,

p1H
�
1� ��11S v0(b11US)

�
�

�
p1H � �11S p1U

�
:

,
�p1H � p1U

which is always satis�ed. Q.E.D.

We �rst prove that the equilibrium is S11 for � < �Smin and S
01 for �Smin<� < �

S
max

(Parts (i)(a) and (ii)(a) of the statement of the Result). We proceed in three steps: (1)
Type U has larger utility with contract with e¤ort (as determined by IC11) than with-
out (as determined by IC01) when � = 0; (2) Both utilities continuously decrease with
�, but the utility with e¤ort decreases faster; (3) Type U has a larger utility without
e¤ort (IC01) than with (IC11) when � = �Smax.

1) Type U has larger utility with contract with e¤ort (as determined by
IC11) than without (as determined by IC01) when � = 0:

Taken at � = 0, IC11 and IC00 imply that

p1Hv
�
y + �11S

�
1� p1U

�
m�m

�
+
�
1� p1H

�
v
�
y � �11S p1Um

�
= p0Hv

�
y + �01S

�
1� p0U

�
m�m

�
+
�
1� p0H

�
v
�
y � �01S p0Um

�
;
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which is equivalent to

p1H
�
v(d11US)� v(d01US)

�
+
�
p1H � p0H

�
v(d01US)

= v(b01US)� v(b11US) + p1H
�
v(b11US)� v(b01US)

�
+ v(b01US)

�
p1H � p0H

�
,

p1H
�
v(d11US)� v(d01US)

�
+
�
1� p1H

� �
v(b11US)� v(b01US)

�
=

�
p1H � p0H

� �
v(b01US)� v(d01US)

�
: (17)

We need to show that

p1Uv(d
11
US) + (1� p1U )v(b11US) � p0Uv(d01US) + (1� p0U )v(b01US):

This inequality is equivalent to

p1U
�
v(d11US)� v(d01US)

�
+ �

�
p1H � p0H

�
v(d01US)

� v(b01US)� v(b11US) + p1U
�
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�
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�
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,
�p1H

�
v(d11US)� v(d01US)

�
+
�
1� p1U

� �
v(b11US)� v(b01US)

�
� �

�
p1H � p0H

� �
v(b01US)� v(d01US)

�
:

Multiplying both sides of (17) by �, we obtain

�p1H
�
v(d11US)� v(d01US)

�
� �

�
p1H � p0H

� �
v(b01US)� v(d01US)

�
= �(1� p1H)

�
v(b11US)� v(b01US)

�
:

Then, the previous inequality can be rewritten:

�(1� p1H)
�
v(b11US)� v(b01US)

�
+
�
1� p1U

� �
v(b11US)� v(b01US)

�
� 0

,
(1� �) (1� pL)

�
v(b11US)� v(b01US)

�
� 0;

which is true. Q.E.D.

2) Both utilities continuously decrease with �, but the utility with e¤ort
decreases faster.

By de�nition, V 11US = V
01
US when � = �

S
min. We now show that

@V 11US
@�

<
@V 01US
@�

; (18)

so that V 11US > V
01
US for � < �

S
min and V

11
US < V

01
US for � > �

S
min.
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As �11S is constant with respect to �, the inequality (18) is equivalent to:

�m@�
01
S

@�
p0U
�
1� p0U

� �
v0(d01US)� v0(b01US)

�
� 1

()
mp0U

�
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�
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0(b01US) � v0(d01US)
�
1� p0U

� �
p0H � p0U

�
;

which is always true.
To prove that �Smin exists and is such that 0 < �Smin < �Smax, we must show that

V 11US > V
01
US for � = 0 while V

11
US < V

01
US for � = �

S
max.

3) Type U has a larger utility without e¤ort (IC01) than with (IC11) when
� = �Smax.

Formally, we need to show that for � = �Smax:

p1Uv(d
11
US) + (1� p1U )v(b11US)� � � p0Uv(d01US) + (1� p0U )v(b01US):

Since � = �Smax, IC
01 can be rewritten

v(c0H) = p
0
Hv(d

01
US) + (1� p0H)v(b01US):

Then, taken at � = �Smax, the previous inequality yields:

p1Uv(d
11
US) + (1� p1U )v(b11US)� v(c1H) � p0Uv(d01US) + (1� p0U )v(b01US)� v(c0H)

()
p1Uv(d

11
US) + (1� p1U )v(b11US)�

�
p1Hv(d

11
US) + (1� p1H)v(b11US)

�
� p0Uv(d01US) + (1� p0U )v(b01US)�

�
p0Hv(d

01
US) + (1� p0H)v(b01US)

�
()�

p1H � pL
� �
v(b11US)� v(d11US)

�
�
�
p0H � pL

� �
v(b01US)� v(d01US)

�
:

As p0H > p
1
H , �

01
S � �11S (see Lemma 3) so that the previous inequality holds. Q.E.D.

Part (i) (b) is proved in Lemma 1.

Part (ii) (b) We need to prove that �01S < 1 for � = �Smin. The incentive condition
that determines �01S is:

v(y � p1Hm)� � = p0Hv(d01S ) + (1� p0H)v(b01S ):
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Substituting � by �Smin yields:

v(y � p1Hm)�
�
p1Uv(d

11
S ) + (1� p1U )v(b11S )�

�
p0Hv(d

01
S ) + (1� p0H)v(b01S )

��
= p0Hv(d

01
S ) + (1� p0H)v(b01S ):

Introducing IC11 gives:�
p1H � pL

� �
v(d11S )� v(b11S )

�
=
�
p0H � pL

� �
v(d01S )� v(b01S )

�
:

Since �11S � 1, we also have that �01S � 1:

Part (ii) (c) is proved in Lemma 1.

Part (iii): �11S and �01S are respectively determined by IC11 (3) and by IC01 (5).
Combining these two conditions yields:

p0Hv
�
d01US

�
+
�
1� p0H

�
v
�
b01US

�
= p1Hv(d

11
US) +

�
1� p1H

�
v
�
b11US

�
� �:

Using � = �Smin, we obtain:

p0Hv
�
d01US

�
+
�
1� p0H

�
v
�
b01US

�
�
�
p0Uv

�
d01US

�
+
�
1� p0U

�
v
�
b01US

��
= p1Hv

�
d11US

�
+
�
1� p1H

�
v
�
b11US

�
(19)

�
�
p1Uv

�
d11US

�
+
�
1� p1U

�
v
�
b11US

��
:

Let us consider the following function:

� (�; �) =
�
p0H � �

�
v
�
y + �

�
1�

��
�
�
p0H � �

�
+ (1� �)pL

���
d� d

�
+
�
1�

�
p0H � �

��
v
�
y � �

��
�
�
p0H � �

�
+ (1� �)pL

��
d
�

�
�
�
�
p0H � �

�
+ (1� �)pL

�
v
�
y + �

�
1�

��
�
�
p0H � �

�
+ (1� �)pL

���
d� d

�
�
��
1�

��
�
�
p0H � �

�
+ (1� �)pL

���
v
�
y � �

��
�
�
p0H � �

�
+ (1� �)pL

��
d
��
:

The equation (19) can then be rewritten as

�
�
�01S ; 0

�
= �

�
�11S ;�

�
:
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Now, let us apply the implicit function theorem. We obtain:

d�

d�
= � @�=@�

@�=@�

= �
v(b11US)� v(d11US) + ��d

�
p1Hv

0(d11US) +
�
1� p1H

�
v0(b11US)

�
d
�
p1H
�
1� p1U

�
v0
�
d11US

�
�
�
1� p1H

�
p1Uv

0
�
b11US

�
�
�
p1U
�
1� p1U

� �
v0
�
d11US

�
� v0

�
b11US

����
+

�
�
�
v(b11US)� v(d11US)

��
+ ��d

�
p1Uv

0(d11US)�
�
1� p1U

�
v0(b11US)

�
d
�
p1H
�
1� p1U

�
v0
�
d11US

�
�
�
1� p1H

�
p1Uv

0
�
b11US

�
�
�
p1U
�
1� p1U

� �
v0
�
d11US

�
� v0

�
b11US

����
= �

�
v(b11US)� v(d11US)

�
(1� �) + ��d

�
p1H � p1U

� ��
v0(d11US)� v0(b11US)

��
d
�
p1H � p1U

� ��
1� p1U

�
v0
�
d11US

�
+ p1Uv

0
�
b11US

�� < 0:

Consequently, we have �11S < �01S for � = �Smin.

Appendix A.3.: Proof of Result 2

In Case S11, the derivatives with respect to � and k are respectively:

@W 11
S

@�
= �[1� k(1� �)] < 0;

@W 11
S

@k
= �V 11HS + (1� �)VL � V 11US :

Using the de�nition of �11S , we have:

@W 11
S

@k
= �

�
p1Hv(d

11
US) + (1� p1H)v(b11US)

�
+ (1� �)v(y � pLm)�

�
p1Uv(d

11
US) + (1� p1U )v(b11US)

�
+ (1� �)�

= v(d11US)(�p
1
H � p1U ) + v(b11US)(�(1� p1H)� (1� p1U )) + (1� �)v(y � pLm) + (1� �)�

= (1� �) (v(y � pLm) + �)� (1� �)pLv(d11US)� (1� �)(1� pL)v(b11US)
= (1� �)

�
v(y � pLm) + ��

�
pLv(d

11
US) + (1� pL)v(b11US)

��
> 0:

In Case S01, the derivatives with respect to � and k are respectively:

@W 01
S

@�
= �k�+ (1� k)p0U (1� p0U )m

d�01S
d�

�
v0(d01US)� v0(b01US)

�
< 0;

@W 01
S

@k
= �V 01HS + (1� �)VL � V 01US � �� > 0:
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Using the de�nition of �01S , we have:

@W 01
S

@k
= �

�
p0Hv(d

01
US) + (1� p0H)v(b01US)

�
+ (1� �)v(y � pLm)�

�
p0Uv(d

01
US) + (1� p0U )v(b01US)

�
= v(d0U )(�p

0
H � p0U ) + v(b01US)(�(1� p0H)� (1� p0U )) + (1� �)v(y � pLm)

= (1� �)v(y � pLm)� (1� �)pLv(d01US)� (1� �)(1� pL)v(b01US)
= (1� �)

�
v(y � pLm)�

�
pLv(d

01
US) + (1� pL)v(b01US)

��
> 0:

Appendix A.4.: Proof of Result 3

We have two incentive compatibility constraints that mirror (3) and (5), respectively,
namely the one where the contract o¤ered to U calls for a prevention e¤ort (with
coverage rate �10S ), denoted by IC

10,

V 00HS � p1Hv
�
y + �10S

�
1� p1U

�
m�m

�
+
�
1� p1H

�
v
�
y � �10S p1Um

�
� �; (20)

and the one where the contract devised for type U does not call for e¤ort (with coverage
rate �00S ), denoted by IC

00,

V 00HS � p0Hv
�
d00US

�
+
�
1� p0H

�
v
�
b00US

�
: (21)

Constraint (21) is identical to constraint (5) when � = �Smax, and from Lemma 1 con-
straint (21) binds with equality with �00S < 1, where �00S takes the same value as �01S
when � = �Smax. The coverage rate �

00
S is constant with � � �Smax since � does not

appear in constraint (21). Hence, the utility that type U obtains with this contract,
which we denote by V 00US (see equation (11)), is constant with � as long as � � �Smax.

Constraint (20) is identical to constraint (3) when � = �Smax, and from Lemma 1 con-
straint (20) binds with equality with �10S < 1, where �10S takes the same value as �11S
when � = �Smax. We denote by V

10
US the utility attained by type U with this contract,

V 10US = p
1
Uv
�
y + �10S

�
1� p1U

�
m�m

�
+
�
1� p10U

�
v
�
y � �10S p1Um

�
� �: (22)

We know from Result 1 (2) that V 00US > V
10
US when � = �

S
max. We now prove that this

inequality remains true for any � > �Smax, because V
10
US decreases with �.

Using the implicit function theorem on (20) holding with equality, we obtain that �10S
increases with �. As � increases, the �rst term in the RHS of (20) then increases with
�, while the second term decreases. Comparing the RHS of (20) with (22), we see that
they only di¤er in the weight put on the two �rst terms. As p1U < p

1
H , it is easy to see

that V 10US decreases with �.
Note that, when � becomes large enough, we may obtain that constraint (20) holds with
a strict inequality even with �10S = 1. In that case, increasing further � has no impact
on �10S and thus also decreases V 10US .

37



Appendix A.5.: Proof of Result 4

We have that
@W 00

S

@k
= �V 00HS + (1� �)VL � V 00US :

Using the de�nition of �00S , we have

@W 00
S

@k
= �

�
p0Hv(d

00
US) + (1� p0H)v(b00US)

�
+(1��)v(y�pLm)�

�
p0Uv(d

00
US) + (1� p0U )v(b00US)

�
;

so that the rest of the proof is identical to the proof of Result 2 for S01, with an
appropriate change of indices.

Appendix A.6.: Proof of Proposition 3

(ii) to (iv): Observe �rst from (12) that �0P and �
1
P do not depend on the e¤ort cost �.

We then have that V 0UP is independent of �, while V
1
UP decreases linearly with �. When

� = 0, it is obvious that V 1UP > V
0
UP . Finally, we have

lim
�!1

V 1UP = �1 < lim
�!1

V 0UP :

(v) It is well known that CARA preferences generate a downward sloping insurance
demand function: see for instance Schlesinger (2000, p.137). We now compare the
coverage rates with and without prevention.
Let us rewrite the �rst order condition for an e¤ort j. We have:

�(�;�) � pjU
�
1� pjP

�
v0(djP )�

�
1� pjU

�
pjP v

0(bjP ) = 0:

The implicit function theorem gives:

d�

d�
= �@�(�;�)=@�

@�(�;�)=@�
:

Note that �1P � �0P if and only if d�=d� � 0. The sign of the denominator is
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negative due to the second-order condition. Thus,

d�

d�
� 0, @�(�;�)

@�
� 0

,�
��

�
1� p1P

�
+

�
(1� k)�+ k
1� k (1� �)

�
p1U

�
v0(d1P )

�
�
p1P��

�
1� p1U

��(1� k)�+ k
1� k (1� �)

��
v0(b1P )

+
�
1� p1P

�
p1Uv

00(d1P )�m

�
(1� k)�+ k
1� k (1� �)

�
�
�
1� p1U

�
p1P v

00(b1P )�m

�
(1� k)�+ k
1� k (1� �)

�
� 0

,�
p1U

1� k (1� �) � �
�
1� p1P

��
v0(d1P )�

�
p1P��

�
1� p1U

1� k (1� �)

��
v0(b1P )

� �m

1� k (1� �)
�
p1U
�
1� p1P

�
v00(d1P )�

�
1� p1U

�
p1P v

00(b1P )
�
:

First, let us work on the RHS. We have:

RHS �
�m

�
1� p1U

�
p1P

1� k (1� �)

"
p1U
�
1� p1P

��
1� p1U

�
p1P
v00(d1P )� v00(b1P )

#
:

Using the �rst order condition, we have:

RHS =
�m

�
1� p1U

�
p1P

1� k (1� �) v0(d1P )

�
v00(d1P )

v0(d1P )
� v

00(b1P )

v0(b1P )

�
:

Assumption 1 ensures that RHS = 0. Now, let us focus on the LHS. Since v(:) is
concave, we have v0(d1P ) � v0(b1P ). Thus, a su¢ cient condition to ensure that LHS > 0
is:

p1U
1� k (1� �) � �

�
1� p1P

�
> p1P��

�
1� p1U

1� k (1� �)

�
,

p1U � �
�
1� p1P

�
(1� k (1� �)) > p1P�

�
1� k (1� �)�

�
1� p1U

��
,

1 > � (1� k (1� �)) ;

which is true. Q.E.D.
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Appendix A.7.: Proof of Proposition 4

(a) � plays no role in P 0, and a¤ects neither individual utilities nor aggregate welfare.
We have

@V 1UP
@�

=
@V 1HP
@�

= �1

so that
@W 1

P

@�
= � [1� k (1� �)] < 0:

(b)

@W i
P

@k
= �V iHP + (1� �)UL � V iUP

+(1� k)@V
i
UP

@k
+ k�

@V iHP
@k

;

where the �rst line is the �composition e¤ect�whose sign is positive,

�V iHP + (1� �)UL � V iUP
= �

�
piHv(d

i
P ) + (1� piH)v(biP )

�
+ (1� �)v(y � pLm)�

�
piUv(d

i
P ) + (1� piU )v(biP )

�
+ (1� �)�i

= v(diP )(�p
i
H � piU ) + v(biP )(�(1� piH)� (1� piU )) + (1� �)v(y � pLm) + (1� �)�i

= (1� �)
�
v(y � pLm+ �i)�

�
pLv(d

i
P ) + (1� pL)v(biP )

��
> 0;

while the second line is negative, since

@V iUP
@k

= ��iP
@piP
@k

m
�
piUv

0(diP ) +
�
1� piU

�
v0(biP )

�
= ��iP

�
�
piH � pL

�
(1� k (1� �))2

m
�
piUv

0(diP ) +
�
1� piU

�
v0(biP )

�
< 0;

and

@V iHP
@k

= ��iP
�
�
piH � pL

�
(1� k (1� �))2

m
�
piHv

0(diP ) +
�
1� piH

�
v0(biP )

�
+ m

@�iP
@k

�
piU (1� piP )v0(diP )�

�
1� piU

�
piP v

0(biP )
�
< 0;

resulting in an ambiguity as to the overall sign of @W i
P =@k.
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Appendix A.8.: Proof of Proposition 6(c)

The threshold ~k is determined by the equality V 1UP (~k; �) = V
01
US(�), which corresponds

to

p1Uv(d
1
P ) + (1� p1U )v(b1P )� �

= p0Uv
�
y + �01S

�
1� p0U

�
m�m

�
+
�
1� p0U

�
v
�
y � �01S p0Um

�
;

with �1P and �
01
S respectively given by:

p1U (1� p1P )v0(d1P )� (1� p1U )p1P v0(b1P ) = 0

and

v(y � p1Hm)� � = p0Uv
�
y + �01S

�
1� p0U

�
m�m

�
+
�
1� p0U

�
v
�
y � �01S p0Um

�
:

Static comparatives yield:

d�01S
d�

=
�1

m
�
p0H
�
1� p0U

�
v0(d01US)�

�
1� p0H

�
p0Uv

0(b01US)
� < 0;

d�1P
dk

=
(1� �)�

�
p1H � pL

�
1� k (1� �)

p1Uv
0(d1P ) + (1� p1U )v0(b1P )

m
h
p1U (1� p1P )2v00(d1P ) + (1� p1U )

�
p1P
�2
v00(b1P )

i :
Consider the following implicit function:

�
�
~k; �

�
= p1Uv(d

1
P ) + (1� p1U )v(b1P )� �

�
�
p0Uv

�
y + �01S

�
1� p0U

�
m�m

�
+
�
1� p0U

�
v
�
y � �01S p0Um

��
:

The implicit function theorem yields:

d~k

d�
= �@�=@�

@�=@~k
:

The numerator gives:

@�

@�
= �1 +

p0U
�
1� p0U

� �
v0(d01US)� v0(b01US)

�
p0H
�
1� p0U

�
v0(d01US)�

�
1� p0H

�
p0Uv

0(b01US)
< 0:

Regarding the denominator, we have:

@�

@~k
=
��1P�

�
p1H � pL

�
1� k (1� �)

�
p1Uv

0(d1P ) + (1� p1U )v0(b1P )
�
< 0:

We then obtain that d~k=d� < 0.
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Appendix A.9.: Result 5

Result 5 There is an upward discontinuity in H�s utility from P 0 to P 1 when U is
indi¤erent between the two.

Proof. We have to prove that

V 0UP = V
1
UP ) V 0HP < V

1
HP :

We have:

V 0UP = V 1UP

, p1Uv(d
1
P ) + (1� p1U )v(b1P )� � = p0Uv(d0P ) + (1� p0U )v(b0P )

, � = p1Uv(d
1
P )� p0Uv(d0P ) + (1� p1U )v(b1P )� (1� p0U )v(b0P ):

Proving that
V 0HP < V

1
HP

is then equivalent to proving that

p0Hv(d
0
P ) + (1� p0H)v(b0P ) < p1Hv(d

1
P ) + (1� p1H)v(b1P )

�p1Uv(d1P )� (1� p1U )v(b1P )
+p0Uv(d

0
P ) + (1� p0U )v(b0P ):

Regrouping terms, this is equivalent to�
p0H � p0U

� �
v(b0P )� v(d0P )

�
>
�
p1H � p1U

� �
v(b1P )� v(d1P )

�
;

which holds if
v(b0P )� v(d0P ) > v(b1P )� v(d1P ); (23)

since
p0H � p0U = (1� �)(p0H � pL) > p1H � p1U = (1� �)(p1H � pL):

Note that, thanks to the concavity of v(:), inequality (23) holds if d0P > d1P together
with b0P � d0P > b1P � d1P . We have that

b0P � d0P = d
�
1� �0Pm

�
> b1P � d1P = m

�
1� �1Pm

�
;

since �0P < �
1
P (see Lemma 2 (b)), and that d

0
P > d

1
P since p

1
P < p

0
P .
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Appendix A.10.: Result 6

We �rst have to prove the following lemma.

Lemma 4 We have that �0P > �
01
S when V 0UP = V

01
US when Assumption 3 holds.

Proof. Note that �01S is not a¤ected by k, while �0P decreases with k, starting from
�0P = 1 when k = 0 (since in that case p

0
P = p

0
U ). Assumption 3 implies that p

1
H > p

0
U ,

which in turn implies that �01S < 1 (since IC01 is violated when �01S = 1). We know
that V 0UP is decreasing in k while V

01
US is not a¤ected, so that there is a unique value of

k such that V 0UP = V
01
US. It is easy to see that �

0
P = �

01
S implies that V 0UP < V

01
US (since

p0P > p0U implies that d0P < d01S and that b0P < b01S ). We then have that V
0
UP = V 01US

implies that �0P > �
01
S .

Result 6 Under Assumption 3, there is a downward discontinuity in H�s utility from
P 0 to S01 when U is indi¤erent between the two.

Proof. To prove Result 6, we have to prove that

V 0UP = V
01
US ) V 0HP > V

01
HS :

We have

V 0UP = V 01US

, p0Uv(d
0
P ) + (1� p0U )v(b0P ) = p0Uv(d01US) + (1� p0U )v(b01US)

, p0U
�
v(d0P )� v(d01US)

�
+ (1� p0U )

�
v(b0P )� v(b01US)

�
= 0: (24)

Proving that
V 0HP > V

01
HS

is then equivalent to proving that

p0Hv(d
0
P ) + (1� p0H)v(b0P ) > p0Hv(d01US) + (1� p0H)v(b01US)

, p0H
�
v(d0P )� v(d01US)

�
+ (1� p0H)

�
v(b0P )� v(b01US)

�
> 0: (25)

We know that p0P > p0U > p1U and we know from Lemma 4 that �0P > �01S when
V 0UP = V

01
US , which together imply that b

0
P < b

01
US . From (24), we obtain that d0P > d

01
US ,

so that (25) holds since p0H > p
0
U .
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Appendix A.11.: Result 7

We �rst prove the following lemma.

Lemma 5 We have that �1P > �
01
S when V 1UP = V

01
US when Assumption 3 holds.

Proof. By Assumption 3, the P 1 contract is more expensive than S01for type U ,
and moreover entails that type U pays the e¤ort cost in P 1 but not in S01. For U to
be indi¤erent, it must then be the case that P 1 o¤ers more coverage than S01 (recall
that the coverage level in P 1 is the most-preferred one of U , while U is rationed in S01

because of IC01).

Result 7 Under Assumption 3, there is an upward discontinuity in H�s utility from
S01 to P 1 when U is indi¤erent between the two.

Proof. We now have to prove that

V 1UP = V
01
US ) V 1HP > V

01
HS :

We have

V 1UP = V 01US

, p1Uv(d
1
P ) + (1� p1U )v(b1P )� � = p0Uv(d01US) + (1� p0U )v(b01US) (26)

, � = p1Uv(d
1
P )� p0Uv(d01US) + (1� p1U )v(b1P )� (1� p0U )v(b01US):

Proving that
V 1HP > V

01
HS

is then equivalent to proving that

p0Hv(d
01
US) + (1� p0H)v(b01US) < p1Hv(d

1
P ) + (1� p1H)v(b1P )

�p1Uv(d1P )� (1� p1U )v(b1P )
+p0Uv(d

01
US) + (1� p0U )v(b01US):

Regrouping terms, this is equivalent to�
p0H � p0U

� �
v(b01US)� v(d01US)

�
>
�
p1H � p1U

� �
v(b1P )� v(d1P )

�
,

�
p0H � pL

� �
v(b01US)� v(d01US)

�
>
�
p1H � pL

� �
v(b1P )� v(d1P )

�
(27)

since
p0H � p0U = (1� �)(p0H � pL) > p1H � p1U = (1� �)(p1H � pL):
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Note that �1P > �01S together with p1P > p0U imply that b
1
P < b01US . If d

1
P > d01US , then

(27) is satis�ed.
We now show that (27) is also satis�ed in the case where d1P < d

01
US . Note that, if (26)

is satis�ed for some � > 0, then we have that

p1Uv(d
1
P ) + (1� p1U )v(b1P ) > p0Uv(d01US) + (1� p0U )v(b01US)

,
�
�p1H + (1� �)pL

�
v(d1P ) +

�
1�

�
�p1H + (1� �)pL

��
v(b1P ) >�

�p0H + (1� �)pL
�
v(d01US) +

�
1�

�
�p0H + (1� �)pL

��
v(b01US)

, pLv(d
1
P ) + �

�
p1H � pL

�
v(d1P ) + (1� pL)v(b1P )� �

�
p1H � pL

�
v(b1P ) >

pLv(d
01
US) + �

�
p0H � pL

�
v(d01US) + (1� pL)v(b01US)� �

�
p0H � pL

�
v(b01US)

, �
��
p1H � pL

� �
v(b1P )� v(d1P )

�
�
�
p0H � pL

� �
v(b01US)� v(d01US)

��
< (28)

pLv(d
1
P ) + (1� pL)v(b1P )�

�
pLv(d

01
US) + (1� pL)v(b01US)

�
:

If d1P < d01US , then the RHS of (28) is negative, and so is its LHS, so that (27) is also
satis�ed. Q.E.D.

Appendix A.12.: Result 8

We �rst prove the following lemma:

Lemma 6 We have that �0P > �
00
S when V 0UP = V

00
US.

Proof. Observe �rst that �00S < 1 (this is already in Result 3, and is easy to establish
since the e¤ort level is the same �nil� for H and U in that case, so that the only way
to prevent H from mimicking U is by under-providing insurance to U) while �0P = 1
when k = 0 (since in that case p0P = p0U ). We know that �

0
P is decreasing in k while

�00S is not a¤ected by k, and that V 0UP is decreasing in k while V
00
US is not a¤ected, so

that there is a unique value of k such that V 0UP = V
00
US. It is easy to see that �

0
P = �

00
S

implies that V 0UP < V
00
US (since p

0
P < p

0
U implies that d

0
P < d

00
S and that b0P < b

00
S ). We

then have that V PU = V 00US implies that �
0
P > �

00
S .

We now prove the following:

Result 8 There is a downward discontinuity in H�s utility from P 0 to S00 when U is
indi¤erent between the two.

Proof. We have to prove that

V 0UP = V
00
US ) V 0HP > V

00
HS :
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We have

V 0UP = V 00US

, p0Uv(d
0
P ) + (1� p0U )v(b0P ) = p0Uv(d00S ) + (1� p0U )v(b00S )

, p0U
�
v(d0P )� v(d00S )

�
+ (1� p0U )

�
v(b0P )� v(b00S )

�
= 0: (29)

We have that

V 0HP > V
00
HS

, p0Hv(d
0
P ) + (1� p0H)v(b0P ) > v(y � p0H)m = p0Hv(d

00
S ) + (1� p0H)v(b00S ) (30)

where the equality comes from IC00 (equation 21). The inequality (30) can be refor-
mulated as

p0H
�
v(d0P )� v(d00S )

�
+ (1� p0H)

�
v(b0P )� v(b00S )

�
> 0:

We know from Lemma 6 that �0P > a
00
S when V 0UP = V

00
US which, together with p

0
P > p

0
U ,

implies that b0P � b00S < 0. We then obtain from (29) that d0P � d00S > 0, and thus the
inequality (30) is satis�ed since p0H > p

0
U .

Appendix A.13.: Result 9

We �rst prove the following lemma:

Lemma 7 We have that �1P > �
11
S when V 1UP = V

11
US :

Proof. Same as Proof of Lemma 6, changing all superscripts 0 by 1.

We are now in a position to prove:

Result 9 There is a downward discontinuity in H�s utility from P 1 to S11 when U is
indi¤erent between the two.

Proof. We have to prove that

V 1UP = V
11
US ) V 1HP > V

11
HS :

We have

V 1UP = V
11
US

, p1Uv(d
1
P ) + (1� p1U )v(b1P )� � = p1Uv(d11US) + (1� p1U )v(b11US)� �

, p1U
�
v(d1P )� v(d11US)

�
+ (1� p1U )

�
v(b1P )� v(b11US)

�
= 0: (31)
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We have that

V 1HP > V
11
HS

, p1Hv(d
1
P ) + (1� p1H)v(b1P )� � (32)

> v(y � p1H)m� � = p1Hv(d11US) + (1� p1H)v(b11US)� �;

where the equality comes from IC11 (equation 3). The inequality (32) can be reformu-
lated as

p1H
�
v(d1P )� v(d11US)

�
+ (1� p1H)

�
v(b1P )� v(b11US)

�
> 0:

We know from Lemma 7 that �1P > a
11
S when V 1UP = V

11
US which, together with p

1
P > p

1
U ,

implies that b1P � b11US < 0. We then obtain from (31) that d1P � d11US > 0, and thus the
inequality (32) is satis�ed since p1H > p

1
U .

Appendix B: Numerical example

This example is based on the following parameter values: pL = 0:1, p0H = 0:6, � = 0:3
(so that p0U = 0:25), � = 0:25 (so that p1H = 0:35 and p

1
U = 0:175), y = 5, m = 3, and

v(x) =
p
x. With these parameters, we obtain that

k� = 0:077 < k00 = 0:331 < k11 = 0:376;

�Smin = 0:044 < ~�P (0) = 0:054 < �
� = 0:057 < �Smax = 0:199:
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Figure 1 : Separation between P0, P1, S00, S01 and S11 contracts in (k, ϕ) space
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Figure 2 : Type U' s utility as a function of , for k  k  k00
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Figure 3 : Type H' s utility as a function of , for k  k  k00
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Figure 4 : Aggregate welfare as a function of , for k  k  k00
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Figure 5 : Type U' s utility as a function of k, for 


P 0    
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Figure 6 : Type H' s utility as a function of k, for 


P 0    
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Figure 7 : Aggregate Welfare as a function of k, for 


P 0    
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Figure 8 : Utility of U blue and H red as a function of k when k  0.29  0.8 k
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Figure 9 : Aggregate Welfare as a function of k when k  0.29  0.8 k
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