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Abstract

The present paper is dedicated to a problem of shape optimization where
the external loads applied to the structure are subject to uncertainties.
The objective functional or the constraints can be written as the expected
value of a polynomial functional of degree m. We provide a determin-
istic expression of the expectation of the polynomial as a function of
the first m moments of the random variables modeling the uncertain-
ties, as well as a method to compute its shape derivative according
to Hadamard. In particular, no further assumptions on the distribu-
tion of the random variables are required, and the method presented in
this article is not based on computationally expensive sampling tech-
niques. The proposed method can be applied in different contexts, like
the study of the variance of a quadratic functional, or the optimization
of a functional approaching the L∞-norm of a quantity in the structure.
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1 Introduction

Shape and topology optimization are topics of ever increasing interest in the
domains of engineering. The design of mechanical structures satisfying several
constraints of different natures is a difficult problem for engineers, and shape
optimization techniques offer an automated approach to devise original designs
which are compliant with the given constraints. In the context of mechanical
engineering, the optimization problem often concerns the optimization of elas-
tic structures satisfying some requirements on their mass, and their robustness
under a given mechanical load. Such robustness is usually estimated using the
mechanical compliance of the structure, or computing some yield criterion like
the evaluation of the von Mises stress (see e.g. [1] and [2]).

The increasing demand of optimized structures and the progress in com-
putational science have resulted in the development of different optimization
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techniques. The approach considered in this paper relies on Hadamard’s
boundary variation method, treated extensively in [3], [4], and in chapter 5
of [5]. The profile of the structure is represented numerically using a level-set
approach on conforming and non-conforming meshes (see [6] for a comprehen-
sive review of the level-set method, and [7–10] for its application in the context
of shape optimization). Other approaches to topology optimization include the
class of density methods (see [11, 12]), among which the Solid Isotropic Mate-
rial with Penalization (SIMP) method is the most widely encountered. We
refer the reader to [13] and [12], and to the review paper [14] for further infor-
mation on the several techniques of shape and topology optimization. As of
today, the main design softwares available on the market offer tools for struc-
ture optimization, integrating new features and developments at each release
of a new version.

In industrial applications it is unrealistic to consider that all information on
the problem is perfectly known. On the contrary, the presence of uncertainties
on the geometry, on the material properties, and on the external loads applied
on the structure must be accounted for in the design in order to assure a correct
manifacturing process and the performances of the device. The handling of
uncertainties on the shape of the domain is studied in [15] and in [16]. In [17]
the authors address the issue of small uncertainties on the material properties,
on the external loads, and on the geometry of the structure by linearizing the
perturbation around their mean value. In [18] the mean and the variance of a
generic objective functional are estimated using a dimension reduction method
followed by a Gauss-type quadrature sampling, while the shape sensitivities
are computed using the analitical derivatives of the random moments. The
authors of [19] study the minimization of the mean and the variance of the
mechanical compliance of an elastic structure, considering an exact expression
of the random moments and their sensitivities with respect to the shape. A
similar approach is adopted in [20], where the authors provide a method to
compute analytically the expected value of a generic quadratic functional in
terms of the first and second moments of the random variables modeling the
uncertainties.

The present work adapts and extends the approach of [20] to the case of
polynomial functionals. We consider the shape optimization problem as an
instance of a PDE-constrained optimization problem, where the solution is an
element of a given Banach space. We suppose the right-hand side of the partial
differential equation to be subject to uncertainties, without any assumption on
their amplitude, and the uncertainties are modeled as random variables, using
suitable Bochner spaces. Let m be the degree of the polynomial functional of
interest. Similarly to the procedure detailed in [20], we introduce a determin-
istic correlation tensor of order m, which depends only on the first m random
moments. By consequence, it is possible to compute exactly the expected value
of the functional of interest, as well as its shape derivative in terms of the
first m moments of the random variables modeling the uncertainties, without
any further assumption on their distributions. Notably, no sampling method
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requiring a large number of simulations is used in the method presented here.
The procedure detailed in this paper allows for the optimization of a struc-
ture with respect to the variance of a quadratic functional (like the mechanical
compliance), which can be expressed as a polynomial functional of degree 4.
Another application is related to the utilization of the Lm-norm of a func-
tion as a smooth approximation of its L∞-norm (i.e. its supremum) in a given
domain. Indeed, by considering the Lm-norm of the stress in the domain as
functional of interest , we are able to derive shapes where, on average, stress
are less concentrated than in the ones obtained by controlling the expectation
of the mechanical compliance.

This article is organized as follows. In section 2 we introduce the math-
ematical structures and techniques that are necessary for the statement of
the shape optimization problem and for its solution. In particular, we recall
the definition and properties of Hadamard’s shape derivative, we present the
notion of tensor product between Banach spaces and of projective product
space, and we outline a model for the treatment of the uncertainties. Section 3
states the main results of this article, it introduces the correlation operator for
multilinear functionals and its applications in the context of shape optimiza-
tion, with a particular focus on the context of linear elasticity. Section 4 and
section 5 provide two examples of numerical applications. In section 4 a tridi-
mensional structure is subject to an uncertain load, and its mass is minimized
under a constraint on the L6-norm of the von Mises stress in the domain. Such
example adresses the common concern in structural mechanics in avoiding the
concentration of stress in a small region of the structure. Section 5 treats a
bidimensional example, and shows how taking into account the variance of
the compliance in a shape optimization problem can be crucial when the ran-
dom variable modeling the mechanical loads are heavily correlated. Finally,
the conclusions are drawn in section 6.

2 Mathematical setting and tools

2.1 Shape optimization

Let us consider a bounded domain Ω ⊂ Rd with Lipschitz continuous boundary,
for dimension d = 2 or 3. If θ ∈ W1,∞ (Rd,Rd

)
is a Lipschitz continuous

vector field such that ∥θ∥1,∞ = ∥θ∥∞ + ∥∇θ∥∞ < 1, we define the deformed
domain Ωθ as Ωθ = (I + θ) Ω. For the sake of simplicity, we consider a class
of admissible shapes Sadm, and a class Θadm of vector fields such that, for all
θ ∈ Θadm, the deformed set Ωθ belongs to Sadm. Let J(·) be a shape functional
J : Sadm → R, that is supposed to be sufficiently regular. At first, we recall the
notion of shape differentiability, as introduced in chapter 5 of [5] or in section
6.3 of [4].

Definition 2.1 (Fréchet differentiable shape functional) A shape functional is
Fréchet differentiable at Ω if there exists a linear continuous function J ′(Ω)(·) :
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W1,∞
(
Rd,Rd

)
→ R such that

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ)

for all θ ∈ W1,∞
(
Rd,Rd

)
, where lim

θ→0

o(θ)
∥θ∥1,∞

= 0. The linear form J ′(Ω)(·) is called
shape derivative of J in Ω.

If the domain Ω is sufficiently regular, we can assume that the value of
the derivative J ′(Ω)(θ) depends only on the normal component of the vector
field θ on the surface ∂Ω of the domain. Such result derives from the following
structure theorem, proven by Hadamard and stated as Proposition 5.9.1 in [5]:

Theorem 2.1 (Hadamard’s structure theorem) Let Ω ∈ Sadm be a C1 domain, and
let us denote n(x) the vector normal to the surface ∂Ω in x ∈ ∂Ω. We suppose that
J : Sadm → R is a differentiable functional. If (θ · n) = 0 on the entire surface ∂Ω,
then J ′(Ω)(θ) = 0.

In the context of shape optimization, the shape derivative is used to iden-
tify a direction of deformation θdef such that J ′(Ω)(θdef) < 0, which acts as
direction of descent in a suitable gradient-based optimization algorithm (see
e.g. [13, 21, 22]).

2.2 Tensor product in Banach spaces

In [20], the tensor product between Hilbert spaces is used to replace the
quadratic objective functional with a linear one. The approach is extended to
the case of functionals of degree m > 2 by considering the projective tensor
product in Banach spaces, as defined in [23]. At first, we define the tensor
product between multiple vector spaces.

Definition 2.2 (Tensor product between vector spaces) For a positive integer
m ≥ 2, let us consider the vector spaces X1, . . . , Xm. We denote P̂m (X1, . . . , Xm)
the space of all m-multilinear forms on

∏m
i=1 Xi. For (x1, . . . , xm) ∈

∏m
i=1 Xi, the

tensor product x1 ⊗ . . . ⊗ xm, also written as
⊗m

i=1 xi, is a real valued linear

application defined on P̂m (X1, . . . , Xm) such that, for all Pm ∈ P̂m (X1, . . . , Xm),(
m⊗
i=1

xi

)
(Pm) = Pm(x1, . . . , xm).

The tensor product of the vector spaces X1, . . . , Xm is defined as:

m⊗
i=1

Xi = span

{
m⊗
i=1

xi such that xi ∈ Xi ∀i = 1 . . .m

}
.

By considering the sets X1, . . . , Xm of definition 2.2 to be Banach spaces,
it is possible to introduce a Banach structure on the product space.
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Definition 2.3 (Projective norm) Let X1, . . . , Xm be Banach spaces, each one pro-
vided with the norm ∥·∥Xi

for i = 1 . . .m. By definition, every element u of
⊗m

i=1 Xi

can be written as a finite sum of tensor products: u =
∑N

j=1 x
j
1 ⊗ . . . ⊗ xjm, but

such representation is not necessarily unique. Let π (·) be the following real mapping,
defined on

⊗m
i=1 Xi:

π (u) = inf


N∑
j=1

(
m∏
i=1

∥∥∥xji∥∥∥Xi

)
: u =

N∑
j=1

xj1 ⊗ . . .⊗ xjm

 . (1)

The function π (·) is called projective norm.

The function π :
⊗m

i=1Xi → R is indeed a norm on
⊗m

i=1Xi as showed by
the following proposition, extending Proposition 2.1 of [23].

Proposition 2.2 Let X1, . . . , Xm be Banach spaces. Then, the function π (·) defined
in eq. (1) is a norm on

⊗m
i=1 Xi. Moreover, π

(⊗m
i=1 xi

)
=
∏m

i=1 ∥xi∥Xi
for any

choice of (x1, . . . , xm) ∈
∏m

i=1 Xi.

The proof is reported in section A.1.

Definition 2.4 (Projective product space) The completion of the normed vector
space

⊗m
i=1 Xi with respect to the projective norm π (·) defined in definition 2.3 is the

projective product space, which is a Banach space and is denoted as
⊗̂m

π,i=1Xi.

Definition 2.5 (Class of continuous multilinear functional) We denote the set of
real bounded multilinear functionals defined on the Banach spaces X1, . . . , Xm

as Pm (X1, . . . , Xm).

As stated in section 1.2 of [23], a primary purpose of the tensor product is
the linearization of bilinear mappings. A significant result for Banach spaces
is Theorem 2.9 of [23]. With the following result, we extend the linearization
properties of Theorem 2.9 of [23] to bounded multilinear functionals, while
ensuring the continuity with respect to the topology defined by the norm π (·).

Proposition 2.3 (Linearization of bounded multilinear functionals) Let us consider
a real-valued, bounded, multilinear functional Pm :

∏m
i=1 Xi → R defined on the

Banach spaces X1, . . . , Xm. For any Banach space B, we denote B∗ its topological

dual. Then, there exists a unique linear functional P̂m :
⊗̂m

π,i=1Xi → R such that:

1. the functional P̂m is continuous, and
∥∥∥P̂m

∥∥∥
OP

=

sup∥xi∥X=1 ∀i |Pm(x1, . . . , xm)| = ∥Pm∥OP;

2. for all (x1, . . . , xm) ∈
∏m

i=1Xi, P̂m

(⊗m
i=1 xi

)
= Pm(x1, . . . , xm).
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Moreover, the correspondence Pm ↔ P̂m is an isometric isomorphism between the

Banach spaces Pm (X1, . . . , Xm) and
(⊗̂m

π,i=1Xi

)∗
.

The proof is an immediate application of the Hahn-Banach extension
theorem (presented as Theorem 1.6.1 in [24]), and is reported in section A.2.

2.3 Modeling of the uncertainties

Let us consider the following measure space (O,F,P), where O is the event
space, F a σ-algebra on O, and P a probability measure, and let (X, ∥·∥X)
be a Banach space. In order to model the uncertainties in the model, we use
the formalism of Bochner spaces, which extends the theory of integration to
Banach-valued functions (see Chapter 1 of [25]).

We recall the definition of measurable and integrable functions in the
context of Bochner spaces for a generic measure µ on the σ-algebra F.

Definition 2.6 (µ-simple and strongly µ-measurable functions) A function g : O →
X is said to be µ-simple if it can be written in the form

N∑
i=1

χAi
xi,

where N is a finite positive integer, xi ∈ X, Ai ∈ F, and µ(Ai) < ∞ for all i ∈
{1, . . . , N}, and χA is the characteristic function for the set A.

A function f : O → X is said to be strongly µ-measurable if there exists a
sequence {gi}∞i=1 of µ -simple functions converging to f µ-almost everywhere.

Definition 2.7 (Bochner integral) The Bochner integral of a simple function g =∑N
i=1 χAi

xi : O → X with respect to the measure µ is defined as∫
O
g dµ =

N∑
i=1

µ(Ai)xi ∈ X.

A strongly µ-measurable function f is Bochner integrable with respect to the
measure µ if there exists a sequence {gi}∞i=1 of µ-simple functions gi : O → X such
that

lim
i→∞

∫
O
∥f − gi∥X dµ = 0,

where the (real) integral has to be intended at the sense of Lebesgue. The Bochner
integral of such Bochner integrable function function is defined as∫

O
f dµ = lim

i→∞

∫
O
gi dµ ∈ X.

Once defined the integration for Banach-valued functions, we can introduce
the Bochner spaces as the equivalent of the usual Lp spaces for real-valued
functions.
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Definition 2.8 (Bochner spaces and equivalence) A Bochner integrable function f :
O → X belongs to the space Lp(O, µ; X) for i ≤ p < ∞ if and only if

∫
O ∥f∥pX dµ <

∞.
A Bochner integrable function f : O → X belongs to the space

L∞(O, µ; X) if and only if there exist a real positive number r < ∞ such that
µ ({Ω ∈ O : ∥f∥X ≥ r}) = 0.

Two strongly µ -measurable function f and g are said to be equivalent if the
subset of O where f ̸= g has measure 0. The equivalence relation is denoted as f ∼ g.

The Bochner space Lp(O, µ; X) for 1 ≤ p ≤ ∞ is defined as the quotient of
Lp(O, µ; X) with respect to the equivalence relation ”∼”.

Bochner spaces are also Banach spaces with respect to the following norms:

∥f∥p =

(∫
O
∥f∥pX dµ

)1/p

for 1 ≤ p < ∞;

∥f∥∞ = inf {r ≥ 0 : µ ({Ω ∈ O : ∥f∥X ≥ r}) = 0} .

Having stated the main definition about generic Bochner spaces, let us
focus on the case where we consider a probability measure P. At first, we can
remark the following embedding of Bochner spaces.

Proposition 2.4 (Embeddings in Bochner spaces) Let (O,F,P) be a probability
space, X a Banach space, and 1 ≤ ℓ < m < ∞. Then, the following inclusion is true:

Lm(O,P; X) ⊂ Lℓ(O,P; X).

In particular, if f ∈ Lm(O,P; X), then f belongs also to L1(O,P; X).

Proof The proof relies simply on Hölder’s inequality (see eq. 1.9 of [26]). Let us
denote p = m

l and q its conjugate such that 1
p + 1

q = 1. Then, we have:

∫
O
∥f∥lX dµ =

∫
O
∥f∥lX 1 dµ =

(∫
O
∥f∥l

m
l

X dµ

)1/p (∫
O
1 dµ

)1/q

= ∥f∥lLm(O,P; X) 1 < ∞.

□

We recall the definition of the expectation operator in Bochner spaces and
the classical Hille’s theorem about the commutation of the expectation and a
closed linear operator.

Definition 2.9 (Expectation) Let (O,F,P) be a probability space, and X a Banach
space. The expectation operator E [ · ] : L1(O,P; X) → X is the bounded linear
operator such that, for all f ∈ L1(O,P; X),

E [f ] =

∫
O
f dP ∈ X.
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Theorem 2.5 (Hille) Let f : O → X be a Bochner-integrable function valued in
the Banach space X, and let T be a closed linear operator whose domain D(T ) is a
subspace of X and has values in another Banach space Y . We suppose that f takes
its values in D(T ) almost everywhere and the almost everywhere defined function
Tf : O → Y is Bochner-integrable. Then, f is Bochner-integrable as a D(T )-valued
function (i.e. the equivalence class of f belongs to L1(O,P; D(T ))), E [f ] ∈ D(T ),
and

E [T f ] = T E [f ].

Hille’s theorem is reported as Theorem 1.2.4 in [25]. We can remark that
Hille’s theorem is valid if T is a continuous operator, since all continuous
operator is closed (see the definition of closed operator at page 15 of [25]).
However, Proposition 1.2.3 and Equation (1.2) of [25] point out that, for con-
tinuous operators, it is not necessary to prove Hille’s theorem to get the same
properties, since they descend directly from the definition of Bochner integral.

3 Main results

3.1 Correlation operator and multilinear functionals

Having introduced the concepts of tensor product between Banach spaces and
of Bochner-integrability, we combine the results of section 2.2 and section 2.3,
and introduce the correlation operator for multilinear functionals under uncer-
tainties. The correlation operator has been studied in the context of shape
optimization under uncertainties in [20], limitedly to bilinear functionals
defined on Hilbert spaces. First of all, we can state a result about the
Bochner-integrability of the tensor product.

Proposition 3.1 Let X1, . . . , Xm be Banach spaces endowed with the norms ∥·∥Xi

for i = 1, . . . ,m. Let us consider x1, . . . , xm, each belonging to the Bochner space
Lm(O,P; Xi). Finally, we define the mapping ω 7→

⊗m
i=1 xi(ω) from the event space

O to the Banach space
⊗̂m

π,i=1Xi. Then, such function belongs to the Bochner space

L1
(
O,P;

⊗̂m

π,i=1Xi

)
.

Proof In order to prove that
⊗m

i=1 xi(·) ∈ L1
(
O,P;

⊗̂m

π,i=1Xi

)
, we estimate its

norm as stated in definition 2.8, and we use Hölder’s inequality extended to multiple
terms:∫

O
π

(
m⊗
i=1

xi(ω)

)
dP(ω) =

∫
O

(
m∏
i=1

∥xi(ω∥Xi

)
dP(ω)

≤
m∏
i=1

(∫
O
∥xi(ω)∥Xi

)
dP(ω) =

m∏
i=1

∥xi∥Lm(O,P; Xi)
< ∞.

□



10

Next, the correlation operator is introduced. As it is remarked in [20], the
literature is not consistent in the definition of the correlation between random
variables. In this paper, we adopt the following definition.

Definition 3.1 (Correlation operator on Bochner spaces) Let (O,F,P) be a prob-

ability space, and
(
Xi, ∥·∥Xi

)
Banach spaces for i = 1, . . . ,m. Let us consider the

operator C̃m(·) defined on
∏m

i=1 L
m (O,P; Xi), mapping (x1(·), . . . , xm(·)) to the

operator O ∋ ω 7→
⊗m

i=1 xi(ω). Let us denote Cm(x1, . . . , xm) the equivalence class

of C̃m(x1, . . . , xm) with respect to the relation ”∼”. Thanks to proposition 3.1, we
know that the function Cm(x1, . . . , xm) is Bochner-integrable.

The correlation between the m functions x1, . . . , xm is defined as

Corm (x1, . . . , xm) = E [Cm(x1, . . . , xm)] ∈
m⊗̂

π
i=1

Xi,

and the correlation operator Corm :
∏m

i=1 L
m (O,P; Xi) →

⊗̂m

π,i=1Xi is a
bounded linear operator associating m random vectors to their correlation.

Finally, we state a proposition that allows the expression of the expected
value of a multilinear expression in terms of a correlation tensor.

Proposition 3.2 Let (O,F,P) be a probability space, X1, . . . , Xm Banach spaces
provided with the norms ∥·∥Xi

for i = 1 . . .m, and Pm :
∏m

i=1 Xi → R a bounded
multilinear operator. Then, there exists a unique bounded, real-valued, linear oper-

ator P̂m defined on
⊗̂m

π,i=1Xi such that these three statements hold true for all

(x1, . . . , xm) ∈
∏m

i=1 L
m (O,P; Xi):

1. Pm(x1, . . . , xm) ∈ L1(O,P),
2. Pm(x1(ω), . . . , xm(ω)) = P̂m

(
C̃m(x1, . . . , xm)(ω)

)
, for almost all ω ∈ O,

3. E [Pm(x1, . . . , xm)] = P̂m (Corm(x1, . . . , xm)).

Proof The first point comes directly from the continuity of the operator Pm and the
application of Hölder’s inequality. The second can be deduced from proposition 2.3.

In order to prove the third point, we show that the three hypotheses of Hille’s
theorem (theorem 2.5) are verified. The function ω 7→ Pm (x1(ω), . . . , xm(ω)) is

Bochner-integrable thanks to proposition 3.1. The operator P̂m is closed since it is
continuous, as proved by the second point of this proposition. Moreover, the function
P̂m (Cm(x1, . . . , xm)(ω)) is Bochner-integrable as well, thanks to points 1 and 2.
Therefore, we can apply theorem 2.5 and conclude:

E [Pm(x1, . . . , xm)] = E
[
P̂m(C(x1, . . . , xm))

]
= P̂m (E [C(x1, . . . , xm)]) = P̂m (Corm(x1, . . . , xm)) .

□
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3.2 Shape optimization with uncertain parameters

Let Sadm be a set of admissible bounded domains in Rd, (O,F,P) a probability
space, and (Y, ∥·∥Y ) a Banach space. We consider g ∈ Lm (O,P; Y ) to be a
Bochner-integrable random variable, and we are interested in the solution of
the following shape optimization problem:∣∣∣∣∣Find Ωopt ∈ Sadm

minimizing Ω 7→ E [J (Ω,g)] = E
[
PΩ
m(g, · · · ,g)

]
.

(2)

We consider PΩ
m :

∏m
i=1 Y → R to be a bounded m-multilinear functional, such

that PΩ
m(g1, . . . ,gm) is Fréchet differentiable at any Ω ∈ Sadm for any choice

of (g1, . . . ,gm) ∈ Y m.
In order to be able to solve problem (2) using Hadamard’s shape vari-

ation method, we need to compute the shape derivative of the functional
Ω 7→ E [J (Ω,g)]. Similarly to the procedure adopted in [20], we look for a
deterministic expression of E [J (Ω,g)] using the correlation operator. Through

proposition 3.2, we find that there exists a continuous linear operator P̂Ω
m ∈(⊗̂m

π,i=1Y
)∗

such that, for all g ∈ Lm (O,P; Y ), the following identity holds:

E
[
PΩ
m(g, · · · ,g)

]
= P̂Ω

m (Cor (g, · · · ,g)) . (3)

In [20], the authors propose the decomposition of the correlation tensor
using the Karhunen-Loève expansion, as described in section 2.3.1 of [27].
However, such decomposition applies only for symmetrical bilinear functionals,
where the space Y has a Hilbertian structure. Indeed, the Karhunen-Loève
expansion is a direct application of the spectral theorem, and it does not
apply when an inner product cannot be defined (see Theorem 6.73 of [26] for
reference).

In order to be able to decompose the tensor Cor (g, · · · ,g), some further
hypotheses on the random variable are necessary. Assuming that g can be
written as follows:

g(·) =
N∑

k=1

gi ξi(·) (4)

with N > 0 integer, g1, . . . ,gN ∈ Y deterministic terms, and ξ1, . . . , ξN ∈
Lm (O,P; R) real valued random variables. By construction, g ∈ Lm (O,P; Y ),

and Cm(g, . . . ,g) ∈ L1
(
O,P;

⊗̂m

π,i=1Y
)
thanks to proposition 3.1. Thus, the

correlation tensor Cor (g, . . . ,g) is a well-defined element of
⊗̂m

π,i=1Y , and can
be expressed as:

Cor (g, . . . ,g) = E

[(
N∑

k1=1

gk1ξk1

)
⊗ . . .⊗

(
N∑

km=1

gkmξkm

)]
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= E

 ∑
k⃗∈{1,...,N}m

[(
m∏
i=1

ξki

)(
m⊗
i=1

gki

)]
=

∑
k⃗∈{1,...,N}m

(
E

[
m∏
i=1

ξki

]
m⊗
i=1

gki

)
. (5)

The expression of eq. (5) can be further simplified if the random variables
ξ1, . . . , ξN are considered independent. Let us introduce the following notation:

Definition 3.2 Given a m-uple of integers k⃗ = (k1, . . . , km) and an integer j, we

denote Cj

k⃗
the number of times the integer j appears in the m-uple k⃗. In other terms,

Cj

k⃗
identifies the following cardinality:

Cj

k⃗
= Card {i ∈ {1, . . . ,m} such that ki = j} .

If the random variables are independent, the expression eq. (5) can be
written as follows, highlighting the moments of any single variable:

Cor (g, . . . ,g) =
∑

k⃗∈{1,...,N}m

{
N∏
j=1

(
E
[
ξ
Cj

k⃗
j

]) m⊗
i=1

gki

}
. (6)

Further simplifications can be done imposing stricter hypotheses on the
distributions of the ξj (symmetry, normality, etc...).

Now that a decomposition for the correlation tensor has been found, we
use proposition 2.3, and the expression eq. (6) of the correlation in order to
express the functional Ω 7→ E [J (Ω,g)] as a deterministic function. For any
θ ∈ W1,∞ (Rd,Rd

)
, we have:

E [J (Ω,g)] = E
[
PΩ
m(g, . . . ,g)

]
= P̂Ω

m (Cor (g, · · · ,g))

= P̂Ω
m

 ∑
k⃗∈{1,...,N}m

{
N∏
j=1

(
E
[
ξ
Cj

k⃗
j

]) m⊗
i=1

gki

}
=

∑
k⃗∈{1,...,N}m

{
N∏
j=1

(
E
[
ξ
Cj

k⃗
j

])
P̂Ω
m

(
m⊗
i=1

gki

)}

=
∑

k⃗∈{1,...,N}m

{
N∏
j=1

(
E
[
ξ
Cj

k⃗
j

])
PΩ
m (gk1

, . . . ,gk1
)

}
.

(7)

Therefore, thanks to the linearity of the shape derivative, we find:
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d

dΩ
E [J (Ω,g)](θ) =

d

dΩ
E
[
PΩ
m(g, . . . ,g)

]
(θ)

=
∑

k⃗∈{1,...,N}m

{
N∏
j=1

(
E
[
ξ
Cj

k⃗
j

])
d

dΩ

[
PΩ
m (gk1

, . . . ,gk1
)
]
(θ)

}
. (8)

Let us denote T
(
PΩ
m, N

)
the minimal number of terms to be computed

in eq. (7) and eq. (8) to express the expected value of the functional and
its derivative. In the most general case, T

(
PΩ
m, N

)
= Nm, since we have to

compute all the terms in the form PΩ
m (gk1 , . . . ,gk1), as well as their shape

derivatives. However, such number can be reduced if the multilinear functional
PΩ
m shows some symmetries among its arguments. Indeed, if PΩ

m is completely
commutative, we have T

(
PΩ
m, N

)
=
(
N+m−1

m

)
.

3.3 Uncertain loads in linear elasticity

Often, before computing the value of the objective functional in an optimiza-
tion problem, it is necessary to pass through an intermediary step that is the
computation of the state of the system. For any Ω ∈ Sadm, let (XΩ, ∥·∥XΩ) be
a Banach space, and AΩ : XΩ → Y a bounded, linear, invertible functional.
Let us consider the following optimization problem:∣∣∣∣∣∣∣

Find Ωopt ∈ Sadm

minimizing Ω 7→ E [J (Ω,g)] = E
[
QΩ

m(uΩ, · · · ,uΩ)
]
,

where AΩ uΩ(ω) = g(ω) for all ω ∈ O,
(9)

where QΩ
m :

∏m
i=1X

Ω → R is a bounded m-multilinear functional. The term
u(·) is said to be the state of the system. The state equation AΩ uΩ = g
can be interpreted as a constraint in the optimization problem, and might
require the solution of a partial differential equation. We remark that, since
g(·) ∈ Lm (O,P; Y ) is a random variable, uΩ(·) is a random variable as well,
and it belongs to the Bochner space Lm

(
O,P; XΩ

)
.

From now on, we focus on shape optimization problems in the context
of linear elasticity, in which case we adopt as XΩ the space W1,m

(
Ω,Rd

)
∩

H1
(
Ω,Rd

)
. Further information on the theory of linear elasticity can be found

in [28] and in [29].

Definition 3.3 (Strain and stress tensors) Let us consider the two Lamé coeffi-
cients λ and µ such that the quantities µ, and 2µ + dλ are strictly positive. For

any v ∈ H1
(
Rd,Rd

)
, representing a displacement field, the infinitesimal strain

tensor ε (v) is defined as ε (v) =
∇v+(∇v)T

2 . The Cauchy stress tensor σ (v) is
defined as the following linear application of the strain tensor:

σ (v) = Aε (v) = 2µε (v) + λ(divv).
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We consider the following shape optimization problem, restriction of eq. (9)
to the case of linear elasticity:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ωopt ∈ Sadm

minimizing Ω 7→ E [J (Ω,g)] = E
[
QΩ

m(uΩ, · · · ,uΩ)
]
,

where, for all ω ∈ O, the state uΩ ∈
[
H1(Ω)

]d
solves:

−divσ (uΩ) = 0 in Ω,

σ (uΩ(ω))n = g(ω) on ΓN,

σ (uΩ(ω))n = 0 on Γ0,

uΩ(ω) = 0 on ΓD.

(10)

In problem (10) we denote ΓN, Γ0 and ΓD three open disjointed portions
of the border of Ω with strictly positive measure such that ΓN∪Γ0∪ΓD = ∂Ω.

The problem defining the state equation can be written in variational form:∣∣∣∣∣∣∣∣∣
Find uΩ ∈ V =

{
v ∈ H1(Ω)d : v = 0 on ΓD

}
such that

for all v ∈ V∫
Ω

(σ (uΩ) : ε (v)) dx =

∫
ΓN

g(Ω) · v ds.

(11)

For simplicity, we suppose that all admissible shapes in Sadm share the
portions ΓN and ΓD, constraining the displacements fields θ ∈ Θadm ⊂
W1,∞ (Rd,Rd

)
to be equal to 0 on these surfaces. We suppose also that

the admissibles domains Ω ∈ Sadm are regular enough to assure that uΩ ∈
W1,m

(
Ω,Rd

)
∩H1

(
Ω,Rd

)
. Moreover, we focus our study on functionals QΩ

m

with the following structure:

QΩ
m(v1, . . . ,vm) =

∫
Ω

q1(v1, . . . ,vm) dx+

∫
Ω

q2(∇v1, . . . ,∇vm) dx, (12)

where q1(· · · ) and q2(· · · ) are multilinear and continuous. Finally, we introduce
the following notation:

� A(1,m),N = {1, . . . , N}m is the set of all m-uples whose elements are integers
between 1 and N ;

� Ai,j
(1,m),N =

{
k⃗ ∈ A(1,m),N such that ki = i

}
⊂ A(1,m),N is the subset of all

m-uples in A(1,m),N whose i-th element is equal to j;
� given N real random variables ξ1, . . . , ξm belonging to the Bochner space
Lm (O,P; R) and a m-uple k⃗ = (k1, . . . , km) ∈ A(1,m),N , we denote µi,j the

i-th moment of the random variable ξj : µi,j = E
[
ξij
]
;

� finally, we denote α(k⃗) the following quantity:

α(k⃗) = α(k1, . . . , km) =

N∏
j=1

(
E
[
ξ
Cj

k⃗
j

])
=

N∏
j=1

µCj

k⃗
,j .
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Proposition 3.3 Let us consider the optimization problem (10), where the objective
functional follows the structure eq. (12). Let Ω ∈ Sadm be a C1 domain. Moreover,

let us consider that g ∈ Lm
(
O,P; L2(ΓN)

)
can be decomposed as in eq. (4), where

the N real random variables ξi ∈ Lm (O,P; R) are mutually independent. Then, we
can write the shape derivative of the objective in Ω as follows:

d

dΩ
E [J (Ω,g)](θ) = −

N∑
j=1

∫
Γ0

(θ · n)
(
σ
(
uj

)
: ε
(
wj

))
ds

+
∑

k⃗∈A(1,m),N

(
α(k⃗)

∫
Γ0

(θ · n) (q1(uk1, . . . ,ukm) + q2(∇uk1, . . . ,∇ukm)) ds

)
(13)

where the N states u1, . . . ,uN solve the state equation for g1, . . . ,gN respectively,
while the N adjoint states w1, . . . ,wN solve the following adjoint problems:

−divσ
(
wj

)
=

m∑
i=1

∑
k⃗∈Ai,j

(1,m),N

α(k⃗)
(
∂q1
∂vi

(uk1, . . . ,ukm)

− div ∂q2
∂Vi

(∇uk1, . . . ,∇ukm)
)

in Ω,

σ
(
wj

)
n =

m∑
i=1

∑
k⃗∈Ai,j

(1,m),N

α(k⃗)
(

∂q2
∂Vi

(∇uk1, . . . ,∇ukm)
)T

n on Γ0 ∪ ΓN,

wj = 0 on ΓD.

(14)

The result of proposition 3.3 can be obtained using Céa’s rapid derivation
method, (see [30] and section 6.4.3 of [4]). Such method is a purely formal
procedure and assumes the existence of the Eulerian derivative of the state
and the regularity of the domain Ω. Such proof is reported in section 3.4.

It is worth remarking that the method presented in this section requires the
computation of only N adjoint states. Moreover, the PDEs defining the states
u1, . . . ,uN and the adjoint states w1, . . . ,wN all share the structure of their
left-hand side. Such property can be very useful for the numerical simulations
since, by decomposing once the matrix representing the discretization of the
bilinear form (u,v) 7→

∫
Ω
(σ (u) : ε (v)) dx, we can solve the 2N boundary

value problems faster.

3.4 Proof of Proposition 3.3

As first step, we apply the decomposition eq. (7) to the objective functional
E
[
QΩ

m(uΩ, · · · ,uΩ)
]
, and we obtain the following expression:

E
[
QΩ

m(uΩ, · · · ,uΩ)
]
=

∑
k⃗∈A(1,m),N

α(k⃗)

(∫
Ω

q1(uk1, . . . ,ukm) dx
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+

∫
Ω

q2(∇uk1, . . . ,∇ukm) dx

)
,

where, for every j ∈ {1, . . . , N} uj solves the state equation for the right-hand
side gj on the domain Ω.

We introduce the following Lagrangian function L : Sadm× ([H1(Rd)]d)N ×
([H1(Rd)]d)N → R associated to problem (10) where the state equation is seen
as a PDE constraint:

L (Ω, û1, . . . , ûN , ŵ1, . . . , ŵN ) =
∑

k⃗∈A(1,m),N

{
α(k⃗)

(∫
Ω

q1(ûk1
, . . . , ûkm

) dx

+

∫
Ω

q2(∇ûk1, . . . ,∇ûkm)

)
dx

}
−

N∑
j=1

{∫
Ω

(σ (ûj) : ε (ŵj)) dx

−
∫
ΓN

gj · ŵj ds −
∫
ΓD

(ŵj · (σ (ûj)n) + ûj · (σ (ŵj)n)) ds

}
(15)

The variables ŵ1, . . . , ŵN act as Lagrange multipliers for the PDE constraints
of the terms û1, . . . , ûN . In order to assure that all arguments of the Lagrangian
are independent, the terms û1, . . . , ûN and ŵ1, . . . , ŵN are defined on the
whole space Rd, and not only on Ω. The term of eq. (15) defined as an integral
on the portion ΓD of the boundary enforces the Dirichlet boundary condition,
which is similar to the proof of Theorem 7 in [7].

By construction, the terms u1, . . . ,uN solving the equation ∂L
∂ŵj

= 0, are

also solutions of the state equation for the right-hand side g = gj . Indeed, for
j = 1 . . . N and for any v ∈ H1(Rd):

0 =
∂L
∂ŵj

(Ω,u1, . . . ,uN , ŵ1, . . . , ŵN )(v) = −
∫
Ω

(σ (uj) : ε (v)) dx

+

∫
ΓN

gj · v ds+

∫
ΓD

(v · (σ (uj)n) + uj · (σ (v)n)) ds

=

∫
Ω

(div (σ (uj)))·v dx+

∫
ΓN

(gj − σ (uj)n)·v ds+

∫
ΓD

(uj · (σ (v)n)) ds.

The state equations for uj are derived by choosing a test function with compact
support in Ω, and the boundary conditions by variating the trace of v on ΓN

and the normal stress σ (v)n on ΓD.
Thanks to this result and to the linearity of the state equation, we can

express the functional E
[
QΩ

m(uΩ, · · · ,uΩ)
]
in terms of the Lagrangian:

E
[
QΩ

m(uΩ, · · · ,uΩ)
]
= L (Ω,u1, . . . ,uN , ŵ1, . . . , ŵN ) , (16)

for all ŵ1, . . . , ŵN ∈ H1(Rd).
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The expression for the shape derivative of the functional of interest is found
differentiating eq. (16) with respect to Ω:

d

dΩ
E
[
QΩ

m(uΩ, · · · ,uΩ)
]
(θ)

=
d

dΩ
L (Ω,u1, . . . ,uN , ŵ1, . . . , ŵN )

=
∂L
∂Ω

(Ω,u1, . . . ,uN , ŵ1, . . . , ŵN ) (θ)

+

N∑
j=1

∂L
∂ûi

L (Ω,u1, . . . ,uN , ŵ1, . . . , ŵN ) (u′
j), (17)

where u′
j is the Eulerian derivative of uj , defined as the derivative of the

mapping t 7→ uj(Ωtθ) in t = 0.
Next, we derive the equations for the adjoint states w1, . . . ,wN solving the

equations ∂L
∂ûj

= 0 for j = 1 . . . N . For any v ∈ H1(Rd) we have:

0 =
∂L
∂ûj

(Ω,u1, . . . ,uN ,w1, . . . ,wN )(v)

=

m∑
i=1

∑
k⃗∈Ai,j

(1,m),N

α(k⃗)

(
∂q1
∂ûi

(u1, . . . ,uN )(v) +
∂q2

∂Ûi

(u1, . . . ,uN ) : (∇v)

)

−
∫
Ω

(σ (wj) : ε (v)) dx+

∫
ΓD

(wj · (σ (v)n) + v · (σ (wj)n)) ds

=

∫
Ω

 m∑
i=1

∑
k⃗∈Ai,j

(1,m),N

α(k⃗)

{
∂q1
∂ûi

−
(
div

∂q2

∂Ûi

)}
+ divwj

 · v dx

+

∫
ΓN

(
−σ (wj)n+

(
∂q2

∂Ûi

)T

n

)
· v ds+

∫
ΓD

wj (σ (v)n) ds.

The adjoint system eq. (14) can be retrieved from this result by choosing a
generic v with compact support in Ω (for the differential equation), and by
variating the trace of v on ΓN and the normal stress σ (v)n on ΓD (for the
boundary conditions).

By taking w1, . . . ,wN as solutions of problem (14) for j = 1 . . . N ,
we can further simplify the expression eq. (17) for the shape derivative of
E
[
QΩ

m(uΩ, · · · ,uΩ)
]
and obtain:

d

dΩ
E
[
QΩ

m(uΩ, · · · ,uΩ)
]
(θ) =

d

dΩ
L (Ω,u1, . . . ,uN ,w1, . . . ,wN )

=
∂L
∂Ω

(Ω,u1, . . . ,uN ,w1, . . . ,wN ) (θ).

(18)



18

For simplicity, we consider the portions ΓN and ΓD of the boundary
to be non-optimizable, which is equivalent to narrow the set of admissible
displacement fields θ to the set Θadm defined as:

Θadm =
{
θ ∈ W1,∞ (Rd,Rd

)
: θ = 0 on ΓD ∪ ΓN

}
.

Thanks to the restriction of the admissible displacement fields to Θadm and
to Theorem 5.2.2 of [5] about the differentiation of integral functionals on vari-
able domains, we conclude that the shape derivative of E

[
QΩ

m(uΩ, · · · ,uΩ)
]

can be expressed as follows:

d

dΩ
E
[
QΩ

m(uΩ, · · · ,uΩ)
]
(θ) =

d

dΩ
L (Ω,u1, . . . ,uN ,w1, . . . ,wN )

=
∂L
∂Ω

(Ω,u1, . . . ,uN ,w1, . . . ,wN ) (θ)

=
∑

k⃗∈A(1,m),N

(
α(k⃗)

∫
Γ0

(θ · n) q1(uk1, . . . ,ukm) ds

+

∫
Γ0

(θ · n) q2(∇uk1, . . . ,∇ukm) ds

)
−

m∑
i=1

∫
Γ0

(θ · n) (σ (ui) : ε (wi)) ds.

4 Application: structural optimization under
constraints on the von Mises stress

4.1 Estimate of the expected value of the von Mises stress

An interesting application of polynomial functionals in shape optimization
is related to the approximation of the L − ∞ norm of a given quantity in
a structure by the Lm-norm, for m sufficiently big. A significant concern in
structural mechanics is the design of structures where the stress is as evenly
distributed as possible, preventing stress concentrations that could compro-
mise the integrity of the component. This requirement suggests the use of
functionals with order m > 2 for industrial applications, in order to better
penalize stress concentrations with respect to quadratic functionals.

In the following section, we study the optimization of a 3D linear elastic
structure with respect to its volume and the Lm-norm of the von Mises stress,
for m ≥ 2 even integer. We suppose that the optimization problem is framed
as eq. (10), and that the random external load g ∈ Lm

(
O,P; L2(Ω)

)
can be

decomposed as in eq. (4).
We introduce the von Mises stress as reported in Section 4.5.6 of [29] and

in [2].
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Definition 4.1 (Deviatoric tensors and von Mises stress) In each point of the domain
Ω ⊂ R3, we define the deviatoric components of the strain and stress tensors as
follows:

εD(u) = ε (u)− 1

d
I tr ε (u) = ε (u)− 1

d
I divu

σD(u) = σ (u)− 1

d
I trσ (u) = 2µ ε (u)− 2µ

d
tr ε (u) = 2µ εD(u).

The von Mises stress is defined in each point of the domain as:

sD(u) =

√
d

2
(σD(u) : σD(u)).

We are interested in estimating the expected value of the functional

Ω 7→ Gm(Ω,g) = Gm(u, . . . ,u), (19)

where Gm : W1,m
(
Ω,R3

)
→ R is such that

Gm(v1, . . . ,vm) =

∫
Ω

((σD(v1) : σD(v2)) . . . ((σD(vm−1) : σD(vm)) dx.

(20)
At first, we can observe that, for a given displacement field u ∈ H1(Ω) ∩

W1,m (Ω), the quantity Gm(u, . . . ,u) is equal to the Lm-norm of the von Mises
stress sD(u) in Ω, elevated to the power m:

Gm(u, . . . ,u) =

(∫
Ω

|sD(u)|m dx

)
= ∥sD(u)∥mLm(Ω) .

Moreover, because of the concavity of the mapping x 7→ m
√
x, the following

bound on the expectation of the Lm-norm of the von Mises stress holds:

E
[
∥sD(u)∥Lm(Ω)

]
≤ (E [Gm(u, . . . ,u)])

1
m . (21)

Finally, we remark that the functional Gm respects the structure defined
in eq. (12). Therefore, we can apply proposition 3.3 to compute the shape
derivative of the functional Ω 7→ Gm(Ω,g). The expression of the functional
can be further simplified by considering the symmetries between the arguments
of Gm. Indeed, let us establish the following notation.

Definition 4.2 � We denote

Bℓ,N =

{
ρ⃗ ∈ NN×N : 1 ≤ ρij ≤ ℓ and

N∑
i,j=1

ρij = ℓ

}
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the set of all N × N integer matrices whose entries are positive and their
sum is equal to ℓ. The cardinality of such set can be computed as |Bℓ,N | =(
N2+ℓ−1

ℓ

)
.

� For ℓ and N positive integers and ρ⃗ ∈ Bℓ,N , we define the following
multinomial coefficient (

ℓ

ρ⃗

)
=

ℓ!∏N
i,j=1(ρi,j !)

.

� For N real random variables ξ1, . . . , ξm ∈ Lm (O,P; R) and ρ⃗ ∈ Bm
2 ,N , we

denote:

K(ρ⃗) =

(m
2

ρ⃗

) N∏
j=1

µ∑N
k=1(ρkj+ρjk),j

.

Having introduced the necessary notation to take into account the sym-
metries among the arguments, we can write the expectation of the functional
Gm(Ω,g) as follows:

E [Gm(Ω,g)] =
∑

ρ⃗∈Bm
2

,N

K(ρ⃗)

∫
Ω

N∏
j,k=1

(σD(uj) : σD(uk))
ρjk dx

 , (22)

where each uj solves the state equation eq. (11) with the external loading gj

for j = 1 . . . N .
Since the functional Gm respects the structure defined in eq. (12), we can

apply proposition 3.3 and find the following expression for the shape derivative
of E [Gm(Ω,g)]:

d

dΩ
E [Gm(Ω,g)](θ) =

∫
Γ0

(θ · n)

(
−

N∑
j=1

(σ (uj) : ε (wj))

+
∑

ρ⃗∈Bm
2

,N

K(ρ⃗)

N∏
j,k=1

(σD(uj) : σD(uk))
ρjk


 ds. (23)

The adjoint states w1, . . . ,wN solve the following adjoint equations:
−divσ (wj) = −2µdiv

(∑N
k=1 LjkσD(uk)

)
in Ω

σ (wj)n = 2µ
(∑N

k=1 LjkσD(uk)
)
n on Γ0 ∪ ΓN

wj = 0 on ΓD,

(24)
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where the terms Ljk ∈ Lm−1(Ω) are defined as:

Ljk = 2
∑

ρ⃗∈Bm
2

,N

K(ρ⃗)ρjk (σD(uj) : σD(uk))
ρjk−1

∏
ℓ ̸=k

(σD(uj) : σD(uℓ))
ρjℓ

 .

We can notice also that, thanks to the symmetries of the von Mises func-
tional Gm defined as in eq. (20), it is not necessary to compute all the

∣∣Bm
2 ,N

∣∣
terms of the sums in the formulae eq. (22) and eq. (23). Instead, the computa-

tion of T (Gm, N) =
(N(N+1)+m

2 −1
m
2

)
terms is sufficient, provided that they are

counted with their respective multiplicity.

4.2 An optimization problem

In the following section, we study the following shape optimization problem:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ωopt ∈ Sadm

minimizing Ω 7→ Vol(Ω),

where, for all ω ∈ O, the state uΩ ∈
[
H1(Ω)

]d
solves:

−divσ (uΩ)(ω) = 0 in Ω,

σ (uΩ(ω))n = g(Ω) on ΓN,

σ (uΩ(ω))n = 0 on Γ0,

uΩ(ω) = 0 on ΓD.

and the following constraint holds:

E [G6(Ω,g)] ≤M6
0 ,

(25)

where M0 is a given upper bound for the constraint functional E [G6(Ω,g)].
The structure to be optimized is a cylinder-like shape, centered on the

axis z = 0, reported in fig. 1. Dirichlet boundary conditions are imposed on
a thin stripe on the lateral surface, while the random load g is applied on
a ring-shaped section on the upper surface of the structure. We consider the
mechanical load g ∈ L6

(
O,P; L6(ΓN)

)
to have the following structure:

g(ω) = g1 ξ1(ω) + g2 ξ2(ω) ∀ω ∈ O.

The loads g1 and g2 are set as constant vectors on ΓN, parallel to the axes
x and y respectively, thus tangent to the surface. Moreover, we consider the
random variables ξ1 and ξ2 to follow a centered gaussian distribution with
variance σ1 and σ2 respectively.

From a numerical point of view, we represent the structure using a level-
set function on a fixed mesh Th covering a fixed domain D containing every
admissible shape in Sadm. The linear elasticity equations (11) and the adjoint
problems (14) are defined on the entire domain D = Ω ∪ ΩC , using an ersatz
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Fig. 1 Representation of the structure to be optimized. The surface ΓD is the thin grey
stripe on the lateral surface, while ΓN is the ring-shaped portion of the upper surface marked
in yellow.

material approximation in ΩC to assure the well-posedness of the problems (see
[7, 10]). The elasticity and adjoint equations are solved using the FreeFem++
environment [31].

The optimization algorithm chosen to solve problem (25) is the nullspace
optimization algorithm, introduced in [22]. Such algorithm requires the com-
putation of the shape derivatives of the objective functional as well as of the
constraints, motivating the application of the formula introduced in eq. (23) for
the derivative of E [G6(Ω,g)]. The nullspace optimization algorithm is imple-
mented in python. The packages pyfreefem (see [32, 33]) and pymedit (see
[33, 34]) have been used to interface the python general framework with the
FreeFem++ finite-element solver and the methods for the computation of the
signed-distance function [35] and advection of the level-set [36] provided in the
ISCD toolbox [37].

The numerical results of two different simulations are discussed: in the
first case we consider the random variables ξ1 and ξ2 to have an identical dis-
tribution (isotropic distribution of the external mechanical load), while the
second caseconsiders an asymmetry in the variances of the two random vari-
ables (anisotropic distribution). The parameters used in the simulation are
reported in table 1. The shapes obtained by the execution of 200 iterations
of the nullspace optimization algorithm for both cases are reported in fig. 2,
and the convergences of the objective and the constraint functions. All simu-
lations have been performed on a Virtualbox virtual machine Linux with 1GB
of dedicated memory, installed on a Dell PC equipped with a 2.80 GHz Intel
i7 processor. The numerical results are reported in table 2.

From the observation of fig. 2 and fig. 3 we remark firstly the efficiency of
the nullspace optimization algorithm in the solution of the constrained opti-
mization problem (25). Indeed, the value of the objective functional decreases
exponentially (see fig. 3a). As seen in fig. 3b, the constraint on the expecta-
tion of G6 is saturated in less than 50 iterations for the anisotropic case. In
the isotropic case, we observe some oscillations in the constraint saturation
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Heigth of the domain D 12.0
Radius of the cylinder D 12.0
Region ΓN

inner radius 4.0
outer radius 6.0

Region ΓD

thickness 2.0
distance from the edge of D 1.0

Mesh size parameters
minimal element size hmin 0.4
maximal element size hmax 0.8
gradation value hgrad 1.3

Elastic coefficients
Young’s modulus E 15
Poisson’s ration ν 0.35

Ersatz material coefficient εers 10−3

Treshold M0 3.0
Variances of the random variables isotropic anisotropic

σ2
1 2.5 1.0

σ2
2 2.5 4.0

Number of iterations 200

Table 1 Numerical parameters for problem (25) for the cases of random variables with
equal and with different variances.

(a) Isotropic mechanical load (b) Anisotropic mechanical load

Fig. 2 Optimal shapes found by the nullspace optimization algorithm.
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Fig. 3 Convergence of the objective and constraint of problem (25)
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Isotropic case Anisotropic case
Final volumic fraction

Vol(Ωopt)/Vol(D) 0.1608 0.164
Normalized saturation of the constraint

(E [G6] − M6
0 )/M

6
0 0.03002 0.005351

Execution time 129 minutes 148 minutes

Table 2 Numerical results of the solution of problem (25) for an isotropic and anisotropic
mechanical load.

around iteration 80, which are due to a change in the topology around that
step of the optimization. The shapes of fig. 2 show that a ramified structure
presents the minimal volume ensuring enough resistence with respect to ran-
dom mechanical loads. Moreover, if the direction of the mechanical load g(·)
is not uniformly distributed in the interval [0, 2π], the branches tend to align
parallel to the most probable direction of the load (see fig. 2b).

Finally, we remark that the constraint imposed in problem (25) is a quite
conservative estimate for the expected value of the L6-norm of the von Mises
stress. Thanks to the inequality eq. (21) and the fact that the optimal shapes
respect the constraint E [G6] ≤ M6

0 , we deduce that the average of the L6-
norm of the von Mises stress in the structures is actually less than the chosen
treshold M0.

5 Application: optimization of the variance of a
quadratic functional

5.1 Expression of the variance of the mechanical
compliance

The technique presented in section 3.2 can be applied to compute the shape
derivative of the variance of a quadratic functional. As an example, we consider
the optimization of a 2D bridge-like structure with respect to the expectation
and the variance of the mechanical compliance. We recall that the compliance
of a shape Ω is defined as the work of the external forces g acting on Ω (see
e.g. [13]), and it can be expressed as:

C(Ω,g) = C(uΩ,uΩ) =

∫
Ω

(σ (uΩ) : ε (uΩ)) dx,

where uΩ is the displacement computed as solution of the elasticity equation
under the application of the load g. From its expression, and from the fact
that the elasticity equation is linear, we recognize that the compliance is a
quadratic functional of the applied load g.

We suppose that the structure Ω is enclosed in a square domain D of size
1.0×1.0, its lower side ΓD is clamped, and a random uniform load g is applied
on the upper side ΓN (see fig. 5a). We consider the random load g to have the
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following structure:

g(ω) = g0 + ξ(ω)gx + ζ(ω)gy, for all ω ∈ O

where ξ, ζ ∈ L4(O,P) are real random variables, and g0 = (0,−g0), gx =
(gx, 0), and gy = (0,−gy). Under such hypotheses, the variance of the
compliance can be written as:

Var [C(Ω,g)] = Var [C(uΩ(·),uΩ(·)]
= E

[
ξ4
]
C(ux,ux)

2 + 4E
[
ξ3 ζ

]
C(ux,ux)C(ux,uy)

+ E
[
ξ2 ζ2

] (
2C(ux,ux)C(uy,uy) + 4C(ux,uy)

2
)

+ 4E
[
ξ ζ3

]
C(ux,uy)C(uy,uy) + E

[
ζ4
]
C(uy,uy)

2

−
(
E
[
ξ2
]
C(ux,ux) + 2E [ξ ζ]C(ux,uy) + E

[
ζ2
]
C(uy,uy)

)2
. (26)

Given β, α ∈ [0, π2 ), we define the following random variables:

ξα = T sinα+Nξ cosα,

ζα,β =
sinβ√
Var [ξ2α]

(
ξ2α − E

[
ξ2α
])

+Nζ cosβ,

where T ∼ U({−1, 1}), Nξ ∼ N (0, 1), and Nζ ∼ N (0, 1) are independent
random variables. The densities of the variables ξα and ζα,β for different values
of β and α are represented in fig. 4. It can be remarked that, unless β = 0,
ξα and ζα,β are not independent random variables. However, for any choice of
β, α ∈ [0, π2 ), they are centered, normalized and uncorrelated, that is:

E [ξα] = E [ζα,β ] = 0, E
[
ξ2α
]
= E

[
ζ2α,β

]
= 1, E [ξα ζα,β ] = 0.
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(a) Density of ξα
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(b) Density of ζα,β

Fig. 4 Densities of the variables ξα and ζα,β for different values of β and α.
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A deterministic expression for the variance of a generic cost functional has
been proposed in [17] for the case of small perturbations, using a linearization
procedure. However, eq. (26) provides a deterministic expression for the vari-
ance of the compliance without any assumption on the size of the uncertainties,
and can be differentiated thanks to proposition 3.3.

5.2 An optimization problem for the variance of the
compliance

Given the setting outlined in section 5.1, we consider the following optimization
problem: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find Ωopt ∈ Sadm

minimizing Ω 7→ Vol(Ω),

where, for all ω ∈ O, the state uΩ ∈
[
H1(Ω)

]d
solves:

−divσ (uΩ) = 0 in Ω,

σ (uΩ(ω))n = g(ω) on ΓN,

σ (uΩ(ω))n = 0 on Γ0,

uΩ(ω) = 0 on ΓD.

and the following constraint holds:

E [C(uΩ(ω),uΩ(ω))] ≤M0,

Var [C(uΩ(ω),uΩ(ω))] ≤M1.

(27)

The terms M0 and M1 are tresholds for the expectation and the variance of
the compliance not to be exceeded.

At first, we remark that, without the constraint on the variance, the solu-
tion of eq. (27) would be the same for any choice of β, α ∈ [0, π2 ). Indeed,
as stated in proposition 3.2 the value of E [C(uΩ(ω),uΩ(ω))] is a function of
Cor2(g,g) which depends only on the first two moments of the variables ξα and
ζα,β . Yet, ξα and ζα,β share the same expected value, variance and correlation,
for any β, α ∈ [0, π2 ).

The optimization is performed numerically using the nullspace optimization
algorithm on an adaptive 2D mesh, as in [22] using the mmg platform for the
mesh adaptation [38, 39]. The results of two simulations are presented, using
different parameters α and β. In both cases, we used as initial condition the
structure shown in fig. 5b. The numerical parameters are listed in table 3, and
the results in table 4. Once again, the simulations have been done on a Dell
PC with a 2.80 GHz Intel i7 processor, using a Virtualbox virtual machine
Linux with 1GB of dedicated memory.

The evolution of the expectation and variance of the compliance, the evo-
lution of the volume and the final results of the optimization in the two cases
are represented in fig. 6, fig. 7, and fig. 8 respectively.

At first, we remark the similarity in the optimal structures for the two
problems, represented in fig. 8. However, the structure in fig. 8a is thicker
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Γ

D Γ0

Γ

Ω

g

(a) Test case (b) Initial condition

Fig. 5 Representation of the test case described in section 5.1 and initial condition.

Heigth of the domain 1.0
Length of the domain 1.0
Mesh size parameters

minimal element size hmin 0.01
maximal element size hmax 0.02
gradation value hgrad 0.5

Elastic coefficients
Young’s modulus E 15
Poisson’s ration ν 0.35

Mechanical loads
Fixed load g0 1.2
Horizontal term gx 1.0
Vertical term gy 0.3

Tresholds for the inequality constraints
Treshold for the expected value M0 2.0
Treshold for the variance M0 3.0625

Number of iterations 500

Table 3 Numerical parameters for problem (26).

Case 1 Case 2
Parameter α 0.0 0.95 π

2
Parameter β 0.95 π

2 0.0
Duration of the optimization 25.82 minutes 30.80 minutes
Final volume Vol(Ωopt) 0.435348 0.330348
Saturation of the constraints

on the expected value E
[
CΩopt

]
− M0 −0.56886 0.004041

on the variance Var
[
CΩopt

]
− M1 0.03952 −2.94801

Table 4 Numerical results for the numerical solution of problem (26) for two sets of
parameters α and β.

than fig. 8b, and the final volume of the solution of case 1 is 31% higher than
the volume occupied by the solution of case 2. Such difference is explained
by the fact that the variance of the compliance is significantly different in
the two cases, as shown by fig. 6b. Indeed, in the first case, the constraint
on the variance is saturated first, while in the second case the variance stays
small throughout the optimization and the constraint on the expected value
is saturated instead.
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This example underlines the importance of the high order moments of the
uncertainties in the domain of robust optimization, in particular when the
random variables describing the boundary condition show a strong dependence
from each other.
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(a) Expectation of the compliance E [C(Ω, g)]
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(b) Variance of the compliance Var [C(Ω, g)]

Fig. 6 Values of the expectation and the variance of the mechanical compliance throughout
the optimization.
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Fig. 7 Volume of the structure during the optimization problem for two choices of the
parameters α and β.

6 Conclusions and perspectives

This article studied a procedure of shape optimization of polynomial function-
als, where the external load applied to the structure is subject to uncertainties.
Particular attention has been payed to the optimization of linear elastic struc-
tures, and we adopted the level-set approach to topology optimization. The
present work proposed an extension of the technique proposed in [20] to
the case of continuous multilinear functionals, and relies on the linearization
properties of the tensor product between elements of a Banach space.
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(a) Optimal structure for the choice of param-
eters α = 0.0 and β = 0.95π

2 (case 1)
(b) Optimal structure for the choice of param-
eters α = 0.95π

2 and β = 0.0 (case 2)

Fig. 8 Solution of the shape optimization problem (27) for two choices of α and β. The
color scale represents the expectation of the concentration of the elastic energy σ (u) : ε (u).

After having introduced in section 2 the shape derivative according to
Hadamard, the tensor product between multiple Banach spaces, and the
Bochner spaces necessary to model the uncertainties, we presented the details
of the method in section 3. In particular, we introduced the correlation tensor
in order to express the expectation of the polynomial objective in terms of the
first m moments of the random variables modeling the external loads (where
m is the degree of the functional). Such tensor has been used it to compute
a deterministic expression of the functional and its shape derivative. We pre-
sented two examples of numerical applications, highlighting the importance
of shape optimization with respect to polynomial functionals in different con-
texts. Section 4 focused on the optimization of the mass of a tridimensional
elastic structure, under a constraint on the expected value of the L6-norm of
the von Mises stress, aiming to avoid stress concentrations for a wide spec-
trum of external loads. As a second application, in section 5 we computed the
derivative of the variance of the mechanical compliance in the case of a bidi-
mensional structure, and we showed the importance of taking the variance into
account when dealing with strongly correlated random variables.

A significant obstacle in the application of this method is the number of
terms appearing in the sums of eq. (7) (for the computation of the functional
of interest), and eq. (8) (for its derivative). Let us recall the definition of
T (Pm, N) introduced at the end of section 3.2 as the minimal number of terms
that are necessary to compute E [Pm(u, . . . ,u)] and its derivative, where Pm is
a m-multilinear functional, and u is described by N random variables. Let us
consider three different boundedm-multilinear functionals: a generic functional
Pm, a functional Sm which is completely commutative in its arguments, and
the von Mises functional Gm defined in eq. (20). We recall that in section 3.2
and in section 4.1 we found the following expressions for the number of terms
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necessary to compute the expectations of such functionals:

T (Pm, N) = Nm;

T (Sm, N) =

(
N +m− 1

m

)
;

T (Gm, N) =

(N(N+1)
2 + m

2 − 1
m
2

)
.

As represented in fig. 9, the number of terms to be computed increases rapidly
with the degree m of the multilinear functional, even if the number of random
variables N is limited to 2 or 3. Naturally, the presence of symmetries in the
multilinear mapping greatly reduces the number of terms to be computed, but
the problem can still become too complex if the degreem required is sufficiently
high.
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Gm: Von Mises symmetry

(a) Case of N = 2 random variables
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(b) Case of N = 3 random variables

Fig. 9 Evaluation of T (Pm, N), T (Sm, N), and T (Gm, N) for different degrees m of the
functionals examined.

As remedy to this issue, we suggest to exploit the symmetric nature of
the correlation tensor, and study the application of some techniques of tensor
decomposition. One promising solution consists in the approximation of the
discretized correlation tensor as a sum of tensor of rank 1, using the CP-
decomposition. Such technique and other kinds of tensor decompositions are
detailed in [40], [41], and [42], and have been implemented in Python libraries
as TensorLy [43]. However, its interpretation and applicability in the field of
shape optimization are still to be investigated.

Appendix A Proofs

A.1 Proof of Proposition 2.2

In order to demonstrate that π (·) is a norm for the vector space
⊗m

i=1Xi, we
have to prove that the properties of absolute homogeneity, subadditivity, and
positive definiteness hold.
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1. Absolute homogeneity. Let us consider λ ∈ R, and u ∈
⊗m

i=1Xi. By
definition of product space, we can represent u as

u =

N∑
j=1

m⊗
i=1

xji

for N positive integer and some xji ∈ Xi. Thanks to the definition 2.3, we
know that

π (u) ≤
N∑
j=1

m∏
i=1

∥∥∥xji∥∥∥
Xi

. (A1)

The element (λu) of the product space can be represented as

λu =

N∑
j=1

m⊗
i=1

xji .

Thanks to the inequality eq. (A1), we have that:

π (λu) ≤
N∑
j=1

|λ|

(
m∏
i=1

∥∥∥xji∥∥∥
Xi

)
=|λ|

N∑
j=1

(
m∏
i=1

∥∥∥xji∥∥∥
Xi

)
.

Since such estimate holds for any representation of u, it follows that
π (λu) ≤|λ|π (u). However, the reverse inequality is also true. Indeed:

|λ|π (u) =|λ|π
(
λ−1λu

)
≤|λ||λ−1|π (λu) = π (λu) .

Therefore π (λu) =|λ|π (u) for all real λ.
2. Subadditivity. Let us consider u, v ∈

⊗m
i=1Xi and a real ϵ > 0.

Thanks to definition 2.3, there exist two positive integers Nu, Nv and two
representations u =

∑Nu

j=1

⊗m
i=1 x

j
i and v =

∑Nv

k=1

⊗m
i=1 y

k
i such that

Nu∑
j=1

m∏
i=1

∥∥∥xji∥∥∥
Xi

≤ π (u) +
ϵ

2
,

Nv∑
k=1

m∏
i=1

∥∥yki ∥∥Xi
≤ π (v) +

ϵ

2
.

Moreover, we have that u + v =
∑Nu

j=1

⊗m
i=1 x

j
i +

∑Nv

k=1

⊗m
i=1 y

k
i . By

consequence, using the inequality eq. (A1), we have

π (u+ v) ≤
Nu∑
j=1

m∏
i=1

∥∥∥xji∥∥∥
Xi

+

Nv∑
k=1

m∏
i=1

∥∥yki ∥∥Xi
≤ π (u) + π (v) + ϵ.

Since such result holds for any ϵ > 0, we can conclude that π (u+ v) ≤
π (u) + π (v).
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3. Positive definiteness. It is evident that π (u) is a non-negative function.
What needs to be proven is that π (u) = 0 implies u = 0. Let u ∈

⊗m
i=1Xi

be such that π (u) = 0, and we chose a representation u =
∑N

j=1

⊗m
i=1 x

j
i

such that
∑N

j=1

∏m
i=1

∥∥∥xji∥∥∥
Xi

< ϵ. We denote by X∗
i the topological dual

of the normed vector space Xi. We consider m bounded linear operators
ϕi ∈ Xi for all i = 1 . . .m, and let Qm ∈ P̂m (X1, . . . , Xm) be a multilinear
operator such that Qm(

⊗m
i=1 yi) =

∏m
i=1 ϕi(yi). Using the continuity of the

operators ϕi and the choice of the representation of u, we get:

|Qm(u)| =

∣∣∣∣∣
N∑
j=1

m∏
i=1

ϕi(x
j
i )

∣∣∣∣∣ ≤
N∑
j=1

m∏
i=1

∥ϕi∥X∗
i

∥∥∥xji∥∥∥
Xi

=

(
m∏
i=1

∥ϕi∥X∗
i

)
N∑
j=1

m∏
i=1

∥∥∥xji∥∥∥
Xi

≤ ϵ

(
m∏
i=1

∥ϕi∥X∗
i

)
.

Since such estimate is independent from the representation and holds for
all ϵ > 0, we deduce that |Qm(u)| = 0, meaning that, for any choice of the
operators ϕi ∈ X∗

i , ∣∣∣∣∣
N∑
j=1

m∏
i=1

ϕi(x
j
i )

∣∣∣∣∣ = 0. (A2)

Let A ∈ P̂m (X1, . . . , Xm) be a multilinear functional. Thanks to the rep-

resentation of u and to definition 2.2, u(A) =
∑N

j=1A(x
j
1, . . . , x

j
m). Let

us define, for all i = 1 . . .m, Yi = span
{
x1i , . . . , x

N
i

}
. Each Yi is a sub-

space of Xi with finite dimension less than N . We define the multilinear
functional B ∈ P̂m (Y1, . . . , Ym) that coincides with A on its domain of def-
inition. Since all Yi are finite dimensional vector spaces, we can decompose
the multilinear functional as follows:

B(y1, . . . , ym) =

M∑
k=1

m∏
i=1

ψ̂k
i (yi),

where M is a positive integer and, for all k = 1 . . .M , i = 1 . . .m,

ψ̂k
i ∈ Y ∗

i (all functional ψ̂k
i is continuous because its domain is finite-

dimensional). Thus, for each ψ̂k
i , we can find an extension ψk

i ∈ X∗
i thanks

to Hahn-Banach’s extension theorem (see Theorem 1.6.1 of [24]). Therefore,
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considering the result eq. (A2), we can state that:

|u(A)| =

∣∣∣∣∣
N∑
j=1

A(xj1, . . . , x
j
m)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
j=1

B(xj1, . . . , x
j
m)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
j=1

M∑
k=1

m∏
i=1

ψk
i (x

j
i )

∣∣∣∣∣ ≤
M∑
k=1

∣∣∣∣∣
N∑
j=1

m∏
i=1

ψk
i (x

j
i )

∣∣∣∣∣ = 0.

Having proved that π (·) is a norm for the vector space
⊗m

i=1Xi, we have
to show that π

(⊗m
i=1 xi

)
=
∏m

i=1 ∥xi∥Xi
. At first, it follows directly from

definition 2.3 that

π

(
m⊗
i=1

xi

)
≤

m∏
i=1

∥xi∥Xi
.

In order to prove the reverse inequality, we consider the linear operators ϕxi
∈

X∗
i such that, for all i = 1 . . .m, ϕxi

(xi) = ∥xi∥Xi
. We consider the multilinear

operator B ∈ P̂m (X1, . . . , Xm) mapping (y1, . . . , ym) 7→
∏m

i=1 ϕxi(yi). Let

B̃ ∈
(⊗m

i=1Xi

)′
be the linearization of B, associating to any u ∈

⊗m
i=1Xi

the value u(B). Let u ∈
⊗m

i=1Xi, represented as u =
∑N

j=1

⊗m
i=1 x

j
i for some

N > 0. Then, we observe that

∣∣∣B̃(u)
∣∣∣ = ∣∣∣∣∣

N∑
j=1

B̃

(
m⊗
i=1

xji

)∣∣∣∣∣ ≤
N∑
j=1

∣∣∣∣∣B̃
(

m⊗
i=1

xji

)∣∣∣∣∣
=

N∑
j=1

∣∣∣∣∣
m∏
i=1

ϕxi(xi)

∣∣∣∣∣ ≤
N∑
j=1

m∏
i=1

∥∥∥xji∥∥∥
Xi

.

Since such estimate is valid for any representation of u, we deduce that∣∣∣B̃(u)
∣∣∣ ≤ π (u) for all u ∈

⊗m
i=1Xi. We have proved that, in the topology

induced by the norm π (·), B̃ is a continuous operator, and
∥∥∥B̃∥∥∥

OP
≤ 1.

Therefore, we deduce the following inequality:

m∏
i=1

∥xi∥Xi
= B̃

(
m⊗
i=1

xi

)
≤ π

(
m⊗
i=1

xi

)
.

However, the reverse inequality can be deduced directly from the definition 2.3
of the projective norm. Thus, we can conclude that

m∏
i=1

∥xi∥Xi
= π

(
m⊗
i=1

xi

)
.
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A.2 Proof of Proposition 2.3

Let us consider the real valued functional P̃m :
⊗m

i=1Xi → R such that, for
any choice of {x1i . . . xNi } ⊂ Xi,

P̃m

(
n∑

j=1

m⊗
i=1

xji

)
=

n∑
j=1

Pm(xj1, . . . , x
j
m).

Thanks to definition 2.2, the functional P̃m is well-defined on
⊗m

i=1Xi.

The operator , P̃m is bounded thanks to definition 2.3 of the projective
norm and the continuity of the operator Pm ∈ Pm (X1, . . . , Xm). Indeed, let

u ∈
⊗m

i=1Xi be such that π (u) = 1, and let
∑N

j=1

⊗m
i=1 x

j
i a decomposition

of u. Then, we have

∣∣∣P̃m(u)
∣∣∣ = ∣∣∣∣∣

N∑
j=1

P̃m

(
m⊗
i=1

xji

)∣∣∣∣∣
≤

N∑
j=1

∣∣∣Pm

(
xj1, . . . , x

j
m

)∣∣∣ ≤ ∥Pm∥OP

N∑
j=1

m∏
i=1

∥∥∥xji∥∥∥
Xi

.

By taking the infimum on the decompositions of u and the supremum on
operators in

⊗m
i=1Xi with norm equal to 1, we get:

∣∣∣P̃m(u)
∣∣∣ ≤ ∥Pm∥OP inf

u=
∑N

j=1

⊗m
i=1 xj

i

N∑
j=1

m∏
i=1

∥∥∥xji∥∥∥
Xi

= ∥Pm∥OP ;

which implies: ∥∥∥P̃m

∥∥∥
OP

= sup
π(u)=1

∣∣∣P̃m(u)
∣∣∣ ≤ ∥Pm∥OP . (A3)

In order to show that the norms of the operators P̃m and Pm are equal, we
prove the reverse inequality. Let y1, . . . , ym be such that, for all i = 1 . . .m,
yi ∈ Xi and ∥yi∥Xi

= 1. Therefore:

|Pm(y1, . . . , ym)| =

∣∣∣∣∣P̃m

(
m⊗
i=1

yi

)∣∣∣∣∣ ≤ ∥∥∥P̃m

∥∥∥
OP

π

(
m⊗
i=1

yi

)

=
∥∥∥P̃m

∥∥∥
OP

m∏
i=1

∥yi∥Xi
=
∥∥∥P̃m

∥∥∥
OP

,

which entails:
∥Pm∥OP = sup

∥yi∥Xi
=1

∣∣∣P̃m(u)
∣∣∣ ≤ ∥∥∥P̃m

∥∥∥
OP

. (A4)
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Thanks to the inequalities eq. (A3) and eq. (A4), we conclude that
∥∥∥P̃m

∥∥∥
OP

=

∥Pm∥OP .

We have showed that P̃m is a well-defined, bounded, linear operator defined
on
⊗m

i=1Xi, whose norm is equal to ∥Pm∥OP . Since
⊗m

i=1Xi is a subspace of⊗̂m

π,i=1Xi, we can apply the Hahn-Banach extension theorem (see Theorem

1.6.1 of [24]) and conclude that there exists a bounded linear operator P̂m

extending P̃m on
⊗̂m

π,i=1Xi and such that
∥∥∥P̂m

∥∥∥
OP

=
∥∥∥P̃m

∥∥∥
OP

= ∥Pm∥OP .

Moreover, since
⊗m

i=1Xi is dense in
⊗̂m

π,i=1Xi, the extension is unique.
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(2002).

[29] Jones, R.M.: Deformation Theory of Plasticity. Bull Ridge Corporation,

https://doi.org/10.1007/s00158-009-0449-2
https://doi.org/10.1007/s00158-009-0449-2
https://doi.org/10.2514/1.J052183
https://doi.org/10.1137/15M1017041
https://doi.org/10.1137/15M1017041
https://doi.org/10.1007/s00158-006-0017-y
https://doi.org/10.1007/s00158-006-0017-y
https://doi.org/10.1051/cocv/2020015
https://doi.org/10.1051/cocv/2020015
https://doi.org/10.1007/978-1-4471-3903-4
https://doi.org/10.1007/978-1-4471-3903-4
https://doi.org/10.1007/978-3-319-48520-1


38

Blacksburg, Virginia (2008).
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