
HAL Id: hal-04082703
https://hal.science/hal-04082703

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A perceptual evaluation of numerical errors in acoustic
FEM simulation for sound quality applications

Giorgio Pulvirenti, Nicolas Totaro, Etienne Parizet

To cite this version:
Giorgio Pulvirenti, Nicolas Totaro, Etienne Parizet. A perceptual evaluation of numerical er-
rors in acoustic FEM simulation for sound quality applications. Applied Acoustics, 2023, 207,
�10.1016/j.apacoust.2023.109295�. �hal-04082703�

https://hal.science/hal-04082703
https://hal.archives-ouvertes.fr


Applied Acoustics 207 (2023) 109295
Contents lists available at ScienceDirect

Applied Acoustics

journal homepage: www.elsevier .com/locate /apacoust
A perceptual evaluation of numerical errors in acoustic FEM simulation
for sound quality applications
https://doi.org/10.1016/j.apacoust.2023.109295
0003-682X/� 2023 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
Giorgio Pulvirenti, Nicolas Totaro ⇑, Etienne Parizet
Laboratoire Vibrations Acoustique, INSA-Lyon, 25 bis, av. Jean Capelle, 69621 Villeurbanne Cedex, France

a r t i c l e i n f o
Article history:
Received 3 September 2022
Received in revised form 18 January 2023
Accepted 21 February 2023
Available online 23 March 2023

Keywords:
Finite elements
Sound quality
Transfer function
a b s t r a c t

Sound perception is a key aspect in many industrial applications where the acoustic comfort of the final
user is relevant. In the case of automotive industry, an important effort is put into prediction of sound
quality, which in turn necessitates detailed description of the acoustic problem. The complexity of
boundaries and constraints in the typical engineering problems requires the use of numerical methods
for this description, and the Finite Elements Method (FEM) is one of the most spread. Numerical methods
in general and FEM in particular, can be rather accurate if the simulated model is fine enough. However,
this usually means a high computational load, with an associate long computation time and (or) very high
hardware requirements. These costs need to be diminished to make future design process faster and
more efficient. Several ways to address this problem have been proposed and successfully used, usually
based on the idea of making more efficient the mathematical formulation and solution of the simulation.
Another option is to consider limits of human hearing system to reduce the accuracy requirements of FE
meshes. The basic idea is that, since humans are not able to detect very small differences between sounds,
a simulation can have a certain degree of numerical error without affecting the perception. Despite the
concept being so simple, its development is rather complex since it requires two complicated fields (nu-
merical analysis and sound perception) to merge into one unique solution. Outcome cannot be forecast in
a simple manner, and introductory studies are required to form a solid base on which future research can
be built. This paper analyses the sensitivities of human perception with respect to some numerical
parameters typical of a FE model for exterior acoustic problems. The concept of adaptive mesh is taken
into account and the Perfectly Matched Layer (PML) is used to ensure the Sommerfeld radiation condi-
tion, thus introducing a set of parameters to be analyzed. Several sounds are obtained by convolving a
source signal with several simulated Transfer Functions (TF). These TFs represent the same acoustic path
but are obtained through FE models with different parameters. Psychoacoustic metrics are used to check
how the changes in FE models affect the sound properties. Lastly, jury tests are performed to assess how
these differences modify human perception.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

In many industrial applications, acoustic comfort of the final
user is critical. This is mainly due to two different reasons. The first
one is related to acoustic pollution. European Union showed that
noise is one of the most dangerous pollutant actors for public
health, being related to high discomfort and, as a consequence, to
a significant increase of cardiac problems [1]; therefore, it is impor-
tant to reduce the annoyance and the acoustic energy of noises that
pollute the environment. The second reason is important in the
case of products that are purchased by private customers. Intu-
itively, a potential customer may discard a product not considered
satisfying enough. In such cases, engineers more appropriately
speak about product sound quality [2].

Automotive industry forms a perfect example for this kind of
applications. Road vehicles need to be comfortable for customers,
and also need to emit low level noise. Several other factors con-
tribute to make this example even more complicated. First, vehicle
need to be detected by pedestrians, in order to avoid accidents. As a
consequence, emitted noise should not be too low, which is a clear
trade off with acoustic pollution. Such a trade off is taken into
account by most recent European regulation [3]: vehicles must
radiate a level of acoustic energy higher than a minimum and
lower than a maximum to pass the test. Some research has already
been carried out to define sounds that allow easy identification of
the vehicle without excessively increasing the discomfort of
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pedestrians [4]. Furthermore, many sources are present in vehicles,
and acoustic transfer paths are several and complicated due to the
complex geometry involved.

The importance of sound quality in such a context is crucial, and
it brings several challenges. First of all, sound quality generally
needs a detailed description of the acoustic problem. In engineer-
ing applications, such a description may pose a significant issue
to designers, because of the degree complexity usually involved.
Even neglecting non-linearity, insurmountable troubles for analyt-
ical descriptions depends on complicated geometries, boundaries,
constraints, inhomogeneity and material properties that are part
of the average engineering problem. Numerical methods are usu-
ally adopted to overcome these difficulties.

In this context, to make sound quality design decisions, engi-
neers create sound files from simulated, measured, or synthesized
data for listening purpose. This process is called auralization [5]. In
the early stage of development and in case of auralization aim, the
use of simulated sounds is critical. The strategy is to define a math-
ematical model, accounting for all the non-negligible phenomena
involved in the acoustic transfer path (TP), from the source to the
listener. Several recent applications of auralization are discussed
in literature; for instance, [6–9]. Even if modern simulations tools
are incredibly powerful, they still face some limitations. The bitter
endpoint of their capabilities is the requirement of high computa-
tional power to produce finely tuned models. Researchers pro-
posed many different techniques to tackle this issue (see, for
example, [10–15]). Many of these methodologies are strictly math-
ematical, meaning that the use of a particular algorithm allows to
reduce the calculation time by reducing the size of data-sets, by
increasing the efficiency of the calculation process, or by rewriting
the original problem in a simplified manner, for instance.

Those above studies proposed promising ways to exploit aural-
ization techniques exclusively relying on simulations for sound
quality prediction. Making such techniques robust, reliable and
efficient requires a deep comprehension of the impact of simula-
tion errors on acoustic perception and constitutes a necessary fur-
ther step. Such knowledge can give indications on how to
adequately set parameters of the mathematical models and, even-
tually, even to optimize them. For example, the following studies
focused on this issue, contributing with essential results.

In 2011, Nykänen et al. [16] investigated the impact of fre-
quency resolution and spectrum smoothing of binaural TFs into
perception. The test case was the contribution of engine sounds
to interior sounds of a truck. They performed tests to compare arti-
ficial head recordings to modified binaural TFs. Their findings
showed that a resolution of 4 Hz or higher and a smoothing with
maximum 1/96 octave moving average filters were comparable
to artificial head recordings. Trollé et al. confirmed this frequency
resolution value for vibroacoustic applications [17].

Nykänen, together with the same researchers of the previous
work, continued their research by publishing further results [18]
in 2013. This time the objective was to evaluate the maximum
changes in frequency resolution and smoothing to preserve prefer-
ence rating. They found that a much higher degree of degradation
for binaural TFs was possible. They found a value of 32Hz for fre-
quency resolution, and 1/24 octave bandwidth filters or 63 Hz
absolute bandwidth filters for smoothing operations. Even though
these values preserved preference ratings, the degradation comes
together with a loss of consistency between participants of jury
tests. Furthermore, results were not general since the modifica-
tions affected only TFs, and not the source. Final recommendations
included the need for variance analysis when repeating a similar
approach.

In 2018, Aujogue and Parizet further extended scientific knowl-
edge about the accuracy of TFs for auralization purposes [19] in the
case of TFs from input forces to acoustic pressure. Furthermore, the
2

modifications were different for diverse area of the audible spec-
trum. At low frequency (i.e. low modal density), the study focused
on shifting the eigenfrequencies towards higher or lower frequen-
cies by modifying the poles of the TFs. At mid and high frequencies,
the main changes were smoothing techniques, consistently with
previous studies. Results were similar to the ones of Nykänen
et al. Besides, they found that at low frequency ranges, shift of
the resonance frequency could easily be detected, in part due to
the strong harmonic structure of the source.

The results in literature about the perception of TF’s errors are
consistent and suggest not only that models might represent an
efficient supporting tool for auralization even in presence of errors
since the introduced modifications of TFs does not affect too much
people’s perception.

The most significant limits of the previously mentioned studies
is that they introduced modifications in experimental TFs that doe
not represent errors typical of numerical simulations. On the con-
trary, simulations present specific errors that might peculiarly
affect perception. Understanding how people perceive and react
to these errors is a crucial step towards the definition of thresholds
between acceptable and unacceptable compromises in the use of
these virtual methods.

This research covers this gap in knowledge, focusing on the
influence of simulation parameters in the perception of auralized
sounds. The human hearing system presents some filtering effects
that prevent people from perceiving all the details of acoustic
inputs. Therefore, depending on the task, it should be possible to
simulate acoustic signals with low accuracy while retaining all
the attributes necessary to perform the given assignment. Instead
of developing additional mathematical tools to improve simulation
performances, the focus switches to the production of ‘‘fine
enough” models, which are expected to be much coarser than
those needed following the first strategy. In detail, this paper stud-
ies some FE models based on meshes whose number of nodes per
wavelength is purposefully and significantly lower than the most
commonly accepted rule of thumbs. Indeed, if very coarse mesh
can provide satisfactory results for certain specific applications,
why not use them? The consequences will be faster computations
and the same perception evaluation of sounds. Obviously, the
resulting auralized sounds need, at any rate, to keep essential
aims-dependant psychoacoustic properties. It is impossible to
define what ‘‘fine enough” means without considering the specific
application; this paper provides some hints on what can be
considered sufficient in the case of similarities perception (namely,
when people need to identify two acoustic signals as similar or
different).

The research focuses on simulated transfer functions. The main
reason to study in detail the TP modelling via simulation is the evi-
dent flexibility of this approach. As mentioned, it allows engineers
to analyze different design configurations without the need for
prototypes, taking into account only the TPs of interests. Evalua-
tion of potential TP modifications would become simple even for
complex geometries, thanks to simulation capabilities. Further-
more, assuming a description of the source being available as a
set of monopoles (or other simple sources), either with a testing
or a modelling approach, the coupling with the TPs would be pos-
sible relatively straightforwardly. All of this would already be pos-
sible in the early stages of development, with significant
advantages for the process. The success of simulations in industrial
applications is a proof of such strengths, and a crucial reason to
bring improvements to the field.

The present paper is organized as follows. Section 2 provides a
description of the numerical models used to calculate the TFs and
an introduction to the simulation technique used to solve the mod-
els themselves, with a focus on the error they introduce into the
TFs. Results of the simulation are compared in Section 3, from a



Table 1
Monopole locations’ coordinates.

Mono-pole X [m] Y [m] Z [m]

S+ �0.204 0.29334 0:174
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mathematical perspective, to show the behaviour of the numerical
errors in practical cases. The sound quality aspects are discussed in
Section 4; data are collected via jury tests and analysed using sev-
eral statistical techniques.
G+ �0.204 0.1 0:0065
G- �0.204 �0.1 0:0065
S- �0.204 �0.29334 0:174

Table 2
Receiver locations’ coordinates.

Receiver X [m] Y [m] Z [m]

P10 1 0 1:2
P20 2 0 1:2
P11 1 1 1:2
P21 2 1 1:2
2. Numerical model

Many families of transfer paths have importance in automotive
engineering. Among them, one has some peculiar characteristics
that make it a good fit for this research: the set of TPs between
the tires (sources) and the pedestrians (receivers). Indeed, the tires
are a critical source of noise and will be even more in the early
futures due to the introduction of hybrid and electric engines. Fur-
thermore, these TPs do not present any obstacles whose physical
modelling may introduce extra approximations. The acoustic prob-
lem is further simplified by considering a (virtual) acoustic
quarter-vehicle model, shown in Fig. 1, on a rigid baffled plane.
No other phenomena are modeled, in particular the model is com-
pletely rigid and no relative rotation between the parts is consid-
ered. This model has to be seen as a study case whose
simplifications allow to consider only the errors due to the numer-
ical techniques used to solve the differential equations. Four
monopolar sources and four receivers are used, for a total of six-
teen TPs. The monopolar sources are modeled using the software
Actran [20] as P-sources, namely a spherical monopolar source
with an acoustic pressure amplitude of 1Pa at a distance of 1m.

The spatial locations of sources and receivers are identified on a
Cartesian reference system. Its origin is located in a position that
exploits symmetry properties of the mock-up. This latter has only
one symmetry plane, which is vertical and includes the axis of the
wheel. The intersection of this plane with the ground and the plane
comprising the front panel of the box is the origin O of the Carte-
sian coordinate system used hereby, see Fig. 1. The z-axis is vertical
and positively oriented towards the top. The x-axis is parallel to the
tire axis and is positive oriented towards the direction opposite to
the mock-up itself. Fig. 1 shows the sources’ locations with yellow
spheres; Table 1 summarizes their coordinates in meter. The recei-
vers are shown in Fig. 1 by the red points; their coordinates are
presented in Table 2. A shows the multiview ortographic projec-
tions of this mock-up to give a more accurate vision to the readers.
Fig. 1. Monopole (yellow spheres) and receiver (red points) positions; x-(green) y-(red
ground. The rigid baffle plane (shown as a grid) extends to the infinite.
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From now on, the TPs will be indicated by the two letters asso-
ciated to the monopole-microphone position followed by the two
numbers associated to the receiver-source position, e.g. TP S + 21
is the transfer function between the mono-pole located at position
S+ and receiver at position 21. The transfer functions associated to
these TPs are calculated via FE with perfectly matched layers
(PML). The following subsections briefly discuss these two meth-
ods and some associated errors: approximation, pollution, and
reflection.

2.1. The finite element method

The FEM for Helmholtz problem consists in solving the follow-
ing equation [21]:

�k2M� ikCþ K
h i

p ¼ f; ð1Þ

where M;C;K, and f are, respectively, the acoustic mass, damping,
stiffness matrices and the boundary vector; k is the wavenumber,
i is the imaginary unit, and the vector p represents the pressure
at the nodes. The matrices and vector M;C;K, and f are functions
of the physics of the problem and of polynomial shape functions.
Different types of polynomial functions can be used: the Lagrangian
) and z-(blue) axis centered in the origin, at the contact between the tire and the
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Fig. 2. The exact solution of Helmholtz equation SE (black continuous line) and its
interpolant with linear picewise polynomials SI (red, dots on dashed line)
propagate with the same wavenumber k, here in the one dimensional case. The
Galerkin FE approximation SFE (blue, dots on continuous line) propagates with a
different wavenumber kC.
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polynomials are common, and even the Legendre polynomials can
be found [22]. The shape functions serve to interpolate the approx-
imated value of the acoustic pressure inside each element, given the
values at each node of the element itself; for these reasons, the
order of the polynomial pFE is here called order of interpolation of
the shape functions. The latter parameter is chosen by the user,
and it is usually the same across all the elements, but not always:
see, for instance, [23].

2.1.1. Numerical errors in the FEM
Given an acoustic wave propagating in a homogeneous and iso-

tropic medium, when the speed of sound c is independent from fre-
quency, the linear dispersion relation x

k ¼ c holds [24], where x is
the angular frequency. When discretizing the propagative phe-
nomenon via FEM, the linear dispersion relation does not hold any-
more, leading to spurious dispersion. An introduction of this
phenomenon is provided in [25]. An extension exists in the litera-
ture that leads to the same numerical dispersion relation for the
cylindrical and the spherical cases [26]. However, since these
errors are the basis of the next part of this paper, it makes sense
to introduce them, which is the purpose of this section. Results
in this section are not obtained via FE software, but via analytical
simulations whose parameters have been set up according to the
literature [25–28].

Regarding the case of planar waves in the one-dimensional case,
given a regular mesh of elements with size h, the matrix of the FEM
leads to a set of algebraic equations at each node that provides the
following dispersion relation for the computed wavenumber kC
[25,27,29]:

kCh ¼ arccos
1� khð Þ2=3
1� khð Þ2=6

" #
; ð2Þ

which is valid for kh 6
ffiffiffiffiffiffi
12

p
, equivalent to about two nodes per

wavelength; above this threshold the approximated waves become
evanescent (see [29], Section 3.2s). The finite element wavenumber
kC produces a different phase velocity x

k for the Galerkin FE solution
SFE with respect to the exact solution SE. To better understand the
mathematical behaviour of the FE solution, another function SI is
introduced: it is the linear interpolant of the exact solution SE at
the finite element nodes. The three functions SE;SI , and SFE can
be written as:

SE ¼ R eikx
� � 8x 2 X; ð3Þ

SI ¼ R eiknh
� � 8nh 2 XC; ð4Þ

SFE ¼ R eikCnh
� � 8nh 2 XC; ð5Þ

where X is the continuous domain and XC represents the set of all
the nodal coordinates of the FE mesh. Fig. 2 shows the real part of
SE (back, continuous line), SI (red, dashed line on dots) and SFE

(blue, continuous line on dots) in the case of a purely tonal planar
wave; the spatial resolution is kh ’ 1:0472, that is, six elements
per wavelength. The spatial coordinate, normalized per the wave-
length, is the abscissa. In this example, kh is independent of fre-
quency f, and as a consequence kCh too. Therefore, results in Fig. 2
would hold at any wavenumber, but the spatial coordinate would
have a different value in absolute terms (six wavelengths at fre-
quency f 1 � f 2 are shorter than six wavelengths at f 2). Decreasing
the product kh would make SFE closer to SI , and SI itself closer
to SE.

At this point, it is useful to introduce the H1-seminorm k � k�H1 ,
defined as the norm of the first distributional derivative of its argu-
ment; also, the space VC is the space of all the piecewise polyno-
mial functions of order pFE defined over the FE volume (that
4

comprises SFE;SI , and SE). The minimum error (in k � k�H1 )
between SE and any element SVC

2 VC is the one between SE

and SI , which in literature is often called best approximation error
[28]. On the other hand, the error betweenSFE andSI is due to the
phase delay, and it builds up in space; this part of the error is usu-
ally called pollution error [25]. Ihlenburg and Babuska showed that
there exists a supremum for the error of the Galerkin FE solution
that comprises two parts: the best approximation error and
another part related to the pollution error. They first find the
supremum for the linear Galerkin FEM [29], and then extended
the result to the Galerkin FEM with polynomial shape functions
of generic order pFE [28]:

kerrk�H1 6 C1
kh
2pFE

� �pFE

þ C2Lk
kh
2pFE

� �2pFE

ð6Þ

where C1 and C2 are problem dependent constants, L is the charac-
teristic length of the problem. It appears clear from this formula
that pFE plays a significant role in controlling the pollution error
at high wavenumbers. It comes with no surprise that several arti-
cles are present in literature that deal with high order schemes
for FE acoustics [30,31]

In higher dimensions, the situation is similar. Historically, anal-
ysis of the two dimensional Helmholtz equation [32,33] showed
that the results of the above simple cases well explain the error
in more complicated cases. Thereafter, rigorous investigations of
the 2D and 3D problems appeared [34,35] and, finally, Ainsworth
proposed a generalization in the multi-dimensional case [27].
The general behaviour in higher dimension does not change, but
the FE solution exhibits an anisotropic behaviour. Furthermore,
the pollution error becomes not avoidable, not even with the so-
called stabilized method [36]. A clarifying introduction to the ani-
sotropy issue is available in [25].

It is interesting to understand the effect of dispersion in case of
reflected wave with an example. A train of stationary plane waves
with the spectrum of a white noise propagates towards a rigid
infinite plane with a direction inclined of 45�, Fig. 3 (a). A regular
mesh of square elements discretizes the domain (h ¼ 1m), and
an ideal boundary condition on the truncated boundary absorbs
all the reflected waves (such boundary condition does not exist

in reality: this scenario is ideal), Fig. 3 (b). Point P 1ð Þ
FE is reached

by the train of planar waves and by its reflection on the rigid wall;

the distance covered by the train that directly reaches P 1ð Þ
FE is half of

the one covered by the reflected waves. Since the angle between
the waves and the faces of the square FEs is 45�, the formula for
kCh is [25]:
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Fig. 3. A train of planar waves inciding on a rigid plane (a) is discretized with a regular FE mesh of square elements (b); h is 1m.
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kCh ¼
ffiffiffi
2

p
arccos

1� khð Þ2=6
1þ khð Þ2=12

" #
: ð7Þ

Fig. 4 shows amplitude (a) and phase (b) of the spectra of the

exact solution and of the Galerkin FE solution at point P 1ð Þ
FE . The

effect of the pollution error is clear: in the spectrum, points of
destructive interference shift towards higher frequencies. The
higher the frequency, the more pollution error plays a role, as
expected. The reason for this shift is simple: the two FE waves

hit P 1ð Þ
FE with similar amplitudes, but with different phases in com-

parison with the exact solutions, causing this phenomenon. The
(a)
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Fig. 4. Pressure amplitude (a) and phase (b) at point P 1ð Þ
FE (Fig. 3) calculated

assuming a white noise source: exact (black continuous line) and Galerkin FE
(dashed red line) solutions.
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phase presents the same frequency shift than the amplitude. These
results are obtained with h ¼ 1m, but similar results would derive
with any comparable setup.

2.2. The PML

The solution of the Helmholtz problem is given by outgoing
(scattered by the geometry and radiated by sources) and incoming
(originating at infinity) waves. However, in the case of unbounded
problems, the incoming waves do not have any physical meaning:
they need to be removed. The Sommerfeld radiation condition pro-
vides a simple mathematical statement that ensures only outgoing
waves are present in the solution. It can be written as [37]:

lim
kxk!þ1

kxkd�1
2

@

@kxk � ik
� �

u xð Þ ! 0 ð8Þ

in which the operator k � k is the Euclidean norm. Eq. 1 is derived
without taking into account the Sommerfeld radiation condition,
that is, for bounded acoustic problems; the introduction of this con-
dition introduces non trivial complications.

First of all, in the FEM, the discretization is on the volume;
hence, an unbounded geometrical domain requires an infinite
number of elements, which is not a feasible solution. Therefore,
the computational domain needs to be truncated at an appropriate
artificial boundary CA properly introduced, which divides the orig-
inal unbounded domain into two regions: a bounded computa-
tional domain XFE discretized with FE and an infinite residual
region R ¼ Rd nXFE, with d dimension of the space. Subsequently,
some techniques acting on CA that satisfy the Sommerfield radia-
tion condition are in charge of ensuring a solution to the problem.
Intuitively, the most straightforward solution would be to use
some boundary condition in the form of Eq. 8, but this one pro-
duces spurious reflections that seriously affect the quality of
results (see [38], Section 3.3 and 10.3). Because of this reason,
some alternative techniques that emulate the Sommerfeld radia-
tion conditions without introducing spurious reflections are neces-
sary. Accurate reviews of the most common methodologies for
modelling the infinite region exterior to the artificial boundary
are available in literature [39,40]. Here the perfectly matched lay-
ers (PML, [41]) are used.

Berenger originally introduced the concept of PML [42,43] for
electromagnetic waves (that satisfy as well the Helmholtz equa-
tion). The idea is to add an exterior layer of finite thickness at an
artificial interface such that outgoing plane waves are absorbed
before reaching the outer layer truncation boundary. The mathe-
matical formulation of the PML is such that the following proper-
ties hold [40]:



G. Pulvirenti, N. Totaro and E. Parizet Applied Acoustics 207 (2023) 109295
(1) no reflection occurs at CA;
(2) the decay of the solution inside the layer is exponential.

There exist several formulation of the PML; for instance, the so-
called split formulation of the PML method, originally developed in
two dimensions and Cartesian coordinates [41]. An unsplit formu-
lation exists too [44]. The interface in rectilinear Cartesian coordi-
nates allows a tight fit around elongated objects, but can also be
reformulated in spherical and other general curvilinear coordinates
(see, for instance, [20]).

The PML converges to perfect wave absorption as the thickness
of the layer is increased [45]. However, a compromise between a
thin layer which requires a rapid variation of the absorption
parameters and a thick layer which requires more elements is
required [46]. Due to the dissipative nature of the PML, the role
of the engineer is to choose an appropriate thickness that allows
to dissipate enough energy so that the reflection error does not
affect excessively the solution inside the FE volume. Therefore,
the only two requirements for an effective PML are:

(1) truncated FE boundary CFE located far enough from the
sources, to reproduce a realistic field on CFE itself;

(2) thickness of the PML enough to ensure a sufficient dissipa-
tion of energy, so to avoid excessive reflection error.

Under these conditions, PML offers some advantages in compar-
ison with other techniques. First of all, it allows to treat properly
non-homogeneous exterior domain. Secondly, No requirements
on the shape of CFE are present, allowing the use of any convex
shape wrapped tightly around a limited conventional FEM domain
[39]; the latter characteristic is extremely useful at high frequen-
cies, because the engineers can make use of small computational
volumes. However, since the PML does not appropriately propa-
gate the acoustic field towards infinity (as this is the case, for
instance, of PML), an integral formulation must be enforced to fulfil
this aim. Several formulations, usually based on free field Green’s
functions, are available [47]: Lighthill’s acoustic analogy [48], the
Curle’s formulation [49], the Ffwocs Williams and Hawkings for-
mulation (FW-H, [50]) and Kirchhoff methods [51]. The FW-H for-
mulation is the most widely used among these since it can take
into account for noise generation effects due to moving surfaces
immersed in a turbulent flow. An important feature of the FW-H
technique is that it allows to place the truncated boundary rela-
tively close to the sources [52]. As a consequence, the FE volume
can be rather small, especially at high frequencies.

2.3. The reference model

The PML and the FEM are used to build the numerical models
for this research thanks to the software Hypermesh [53] and
Actran [20]. As a first step, an accurate model that will serve as a
reference for the rest of this paper is build. This is called the refer-
ence numerical model.

First, the surface geometry is meshed with Hypermesh and
refined in Actran, resulting in a surface mesh Xstart . Quadratic
serendipity elements (that is, without central node) are used.

The FE volume is modeled through the Exterior Acoustic com-
ponent of Actran, which permits to automatize the creation of an
Table 3
Boundaries of the adaptive frequency bands.

Frequency ba

20–52 56–100 104–252 256–500
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adaptive mesh. A FE volume is created around the surface mesh
Xstart; the thickness of this volume tFE is defined by the user. Then
a PMLmesh is automatically obtained on top of the extrusion itself.
This tool allows using adaptive techniques. Table 3 shows the
adaptive frequency bands chosen for the simulations. At low fre-
quencies the bands are very narrow when compared with bands
at higher frequencies. This is because the volume thickness is
determined by kmax, while the elements size by kmin. The ratio
between kmin and kmax must be kept high enough to avoid big vol-
umes with small elements, which in turn would lead to high com-
putational costs. This ratio changes faster at low frequencies than
at high ones, explaining the higher density of adaptive frequency
bands at low frequencies. For instance, k ’ 17m at 20Hz and
k ’ 7m at 52Hz, resulting in a ratio between kmin=kmax of about
0.41 over 32Hz. A band between 20Hz and 100Hz would already
lead to a ratio of about 0.2, and the resulting volume would require
too many elements to be computed in an acceptable time. On the
other hand, k ’ 0:25m at 1500Hz, and k ’ 0:17m at 2000Hz, with
a ratio of about 0.68 spread over a band of 500Hz, which is even
higher than the one of the lowest frequency band.

Given the maximum and minimum wavelengths per adaptive
frequency band kmax and kmin, the user must define (among others):

(1) gradient factor;
(2) FE volume thickness tFE (absolute or with respect to kmax);
(3) minimum number of elements per kmin;
(4) PML thickness tPML with respect to kmax.

The gradient factor (GF) represents the maximum change in size
between two adjacent finite elements; this parameter is left equal
to the standard value (=2) throughout this whole research. The FE
thickness has a clear impact on the computational size of the
model, and different values also redistribute the nodes in a differ-
ent way. The other two parameters affect the quality of the result
as discussed in the previous section. For the reference numerical
model, the chosen parameters per adaptive bandwidth are:

(1) FE volume thickness tFE equal to 1 (maximum) wavelength;
(2) 6 quadratic elements per minimum wavelength;
(3) gradient factor equal to 2;
(4) PML thickness tPML equal to 1 (maximum) wavelength.

Fig. 5 shows a cross-section of the mesh along the plane xz for
the frequency band between 1504 and 2000 Hz, and also highlights
tFE and tPML. In the figure, the FE volume is in red, while the PML is
in grey; the geometry of the acoustic quarter-vehicle model is
shown as well.

Environmental characteristics are set as following. Speed of
sound is calculated by linearly interpolating results of [54] with a
relative humidity of 50%, a temperature of 25�C and an environ-
mental pressure of 101325 Pa. Air density is calculated according
to the CIPM-2007 equation of state for moist air [55] with same
setting used for speed of sound, and neglecting change of CO2 con-
centration with respect to dry air. A damping ratio of 10�3 has been
set for the air. Simulations have been run in the frequency band
between 20Hz and 2000Hz with a frequency step of 4Hz. The lat-
ter one has been chosen in accordance with results found in liter-
ature. In particular, Nykänen et al. showed that binaural TFs with a
nds [Hz]

504–1000 1004–1500 1504–2000



Fig. 5. A cross-section of the mesh of the reference model along the plane xz for the
frequency band between 1504 and 2000 Hz. The FE volume is in red, while the PML
is in grey; the geometry of the acoustic quarter-vehicle model is also shown. The
thicknesses tPML and tPML are indicated.

1 The notation 2k , common in literature, is not utilized to avoid confusion with the
wave-number k

2 In the theory of Design Of Experiment (DOE), each experimental run is called
‘‘test”, see [56], page 1; here this nomenclature is not used, in order to avoid
confusion; the word ‘‘simulation” is used instead.
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resolution of 4Hz are perceived as similar to artificial head record-
ings [16]. This result was later confirmed by Trollé et al. in the case
of vibroacoustic applications [17]. The software used to run the
simulations was Actran [20]; a convergence analysis has been pre-
viously carried out to ensure the correctness of the results; for sake
of conciseness, this study is not illustrated in this paper.

2.4. Design of experiment

The next step requires to properly prepare and produce the
others simulations. Recalling that the main purpose is to evaluate
the perception of the numerical errors, a strategy must be defined
including the definitions of:

(1) factors, namely those parameters that have a major influence
on the accuracy of simulations;

(2) levels, namely the values assumed for each factors;
(3) effects, the qualitative or quantitative metrics used to derive

conclusions.

Regarding factors, a summary of results from previous sections
can provide a direction to the most appropriate choices. The order
of polynomial shape functions pFE and the average size of the finite
elements h play a significant role in controlling approximation and
pollution error. This two parameters are related together through
the nodal resolution of the mesh N ¼ kmin

h�pFE where kmin is relative to

the maximum frequency, and h � pFE is the product of h and pFE.
Two other key factors are the thickness of the PML and the thick-
ness of the FE volume tFE.
7

Another crucial aspect regards the strategy to test the error
introduced by these factors and their levels. Since there is a lack
of results in this field, the most reasonable approach is a full facto-
rial experiment. In the present case, it consists in choosing some
levels for each factor. Then, all the possible combinations of the
levels across all factors are used to define the simulations.

Two levels L for each factor are chosen, giving raise to a so-called
2n factorial experiment1, where n is the number of factors. For each
factor, level L = 2 represents the most accurate solution, with level
L = 1 being a poorer choice. The reference numerical model has all
the factors at level L = 2, thus being the most accurate simulation2.
On the other hand, level L = 1 should be poor enough to introduce
errors that make the simulated sounds perceptually different from
the reference one. However, the difference should not be excessive;
indeed, jury tests are conceived to analyse similarities (see next
section), and the introduction of too different sounds might affect
final results. Participants may use such extremely different sounds
as the reference for the score ‘‘very different”, consequently rating
as ‘‘very similar” all the others (see chapters 4 for more details about
the meaning of these scores). This fact would obviously be
counterproductive. In the following, L[�] indicates the level of the
generic factor �.

The values of the factors at each level chosen for creating the
numerical models are the following:

(1) L[N]=1 corresponds to a nodal resolution of four nodes per
minimum wavelength, while L[N]=2 corresponds to twelve
nodes per minimum wavelength;

(2) L[pFE]=1 corresponds to an order of interpolation of the FE
shape functions equal to 1 (linear FE) and L[pFE]=2 corre-
sponds to an order of interpolation equal to 2 (quadratic
finite elements);

(3) L[ tFE
kmax

]=1 corresponds to a FE thickness equal to 0.4 times the
largest wavelength and L[N]=2 corresponds to a FE thickness
equal to one maximum wavelength;

(4) L[tPML
kmax

]=1 corresponds to a PML thickness equal to 0.6 times

the largest wavelength and L[tPML
kmax

]=2 corresponds to a PML
thickness equal to one maximum wavelength.

A remark about the nodal resolution of quadratic and linear
models deserves special attention: models with L[N]=2 have six
elements per minimum wavelength if they are quadratic (namely,
if L[pFE]=2) and twelve elements per wavelength if they are linear
(L[pFE]=1); models with L[N]=1 have two elements per minimum
wavelength if are quadratic and four elements per wavelength if
are linear. Each model comprises only one type of FE. The latter
two values are rather low, and are used to introduce the numerical
error into the TFs. Table 4 summarizes these details; in the follow-
ing, the subscripts min and max are omitted where this does not
create confusion. In the end, 24 ¼ 16 models have been created,
and details of their levels for each factor are available in Table B.9.

To create realistic sounds, impulse response functions (IRFs) are
calculated via inverse fast Fourier Transform (ifft function in Mat-
lab); given the 4 Hz frequency step of the FRFs, the IRFs length is
0.25 s. Then, each of these IRFs is convoluted with a tire noise sig-
nal of 3 s recorded in real conditions; in detail, the signal is
obtained from a much longer laboratory time recording of a
195/65R15 tire rolling on a drum equipped with a rough surface.
The test is a coast-down from 120 to 20km/h (constant decelera-



Table 4
Factors and their levels L.

Factor L = 1 L = 2

N ¼ kmin
h�pFE

4 12

pFE 1 2
tFE
kmax

0.4 1
tPML
kmax

0.6 1

Fig. 7. RVACmatrix between of the model with levels: L N½ � ¼ 1, L pFE½ � ¼ 1, L tFE
k

� � ¼ 1

and L tpml

k

h i
¼ 1.
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tion of 1km/h/s) performed in a semi-anechoic environment. The
part used for the convolution is between 51.5 and 48.5km/h.
Fig. 6 shows the amplitude of the source’s power spectrum calcu-
lated with the Welch’s method in Matlab [57]. TheWelch’s method
was set on Hanning windows lasting 0.25s with 50% overlap.

3. Qualitative analysis of numerical models

Numerical errors affect TFs, and consequently auralized sounds,
due to the convolution. Therefore, it makes sense to split the anal-
ysis into two steps: first, focusing on TFs; second, taking into
account the effect of the source.

The TFs depends on the quality of the numerical model. In this
research, it is assumed that the quality of numerical model is suf-
ficient to describe the TFs themselves. To assess the quality of
numerical models, the response vector assurance criterion (RVAC,
Sometimes called frequency response assurance criterion, FRAC,
see [58,59]) is chosen.

This method consists in calculating the following correlation
matrix RVAC:

RVAC f i; f ref
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUi f ið ÞHUref f ref

� �j2
jUi f ið ÞHUi f ið ÞjjUref f ref

� �HUref f ref
� �j

vuut ð9Þ

where Uref is the vector of TFs calculated with the reference numer-
ical model, Ui is the vector of TFs computed with the model to com-
pare. H denotes the Hermitian transpose. Each element of the RVAC
matrix is associated with two frequencies: one of the reference
model (f ref ), and the other with the compared model (f i). The mag-
nitude of the elements represents the correlation between the two
models at the given frequencies: a value equal to 0 indicates that
the two vectors are orthogonal, a value of 1 indicates that the vec-
tors are identical. Fig. 7 shows this matrix between the reference
numerical model and the model with levels: L N½ � ¼ 1, L pFE½ � ¼ 1,

L tFE
k

� � ¼ 1 and L tpml

k

h i
¼ 1. The darkest blue areas represent points of

high correlation.
Given two equal models, the diagonal of the RVAC matrix

would be unitary; this diagonal is the red line in Fig. 7. Because
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Fig. 6. Spectrum of the source signal (only the amplitude is shown).
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of differences introduced by numerical models, the points of high-
est correlation (not necessarily equal to 1) do not lie always on the
diagonal. The white line in Fig. 7 represents the points of highest
correlation between the twomodels. The more this line of maximal
correlation is far from the diagonal, the higher the frequency shift
between the two models. Since the reference numerical model
used as a reference is very accurate, a low correlation can be con-
sidered here as an index of poor numerical quality.

It is possible to group the models into four different sets accord-
ing to their performance (in terms of RVAC) as a function of fre-
quency, revealing also some effects of adaptivity. The four sets are:

(1) models with L pFE½ � ¼ 1 and L N½ � ¼ 1 with a RVAC that
decreases continuously, Fig. 8 (a). This set comprises models
ranked 1, 2, 3 and 7 according to Table B.9;

(2) models with L pFE½ � ¼ 2, L N½ � ¼ 1 and L tpml

kmax

h i
¼ 1, with a good

RVAC up to 1000Hz, which is the maximum frequency of one
of the adaptive bands, and a very poor one at higher frequen-
cies Fig. 8 (b). This set comprises models ranked 4 and 5;

(3) models with L pFE½ � ¼ 2, L N½ � ¼ 1 and L tpml

kmax

h i
¼ 2, and almost

constantly good, Fig. 8 (c). This set comprises models ranked
6 and 8;

(4) models L N½ � ¼ 2 with constantly good RVAC, Fig. 8 (d). This
set comprises models ranked 9 and 16.

This grouping sheds light on two aspects. Firstly, the error of
poor models increases together with the frequency: this effect is
due to the dispersive behaviour of the FEM. Secondly, the two

models with L pFE½ � ¼ 2, L N½ � ¼ 1 and L tpml

kmax

h i
¼ 1 behave worse than

models with L pFE½ � ¼ 1 and L N½ � ¼ 1, despite having higher order of
polynomial shape functions (which should guarantee a higher



(a)

0 500 1000 1500 2000
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1
RV

A
C

(b)

0 500 1000 1500 2000
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

RV
A

C

(c)

0 500 1000 1500 2000
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

RV
A

C

(d)

0 500 1000 1500 2000
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

RV
A

C

Fig. 8. Examples of RVAC; model factor levels: L N½ � ¼ 1, L pFE½ � ¼ 1, L tFE
k

� � ¼ 1 and L tpml

k

h i
¼ 1 (a), L N½ � ¼ 1, L pFE½ � ¼ 2, L tFE

k

� � ¼ 1 and L tpml

k

h i
¼ 1 (b), L N½ � ¼ 1, L pFE½ � ¼ 2, L tFE

k

� � ¼ 1 and

L tpml

k

h i
¼ 2 (c), L N½ � ¼ 2, L pFE½ � ¼ 2, L tFE

k

� � ¼ 2 and L tpml

k

h i
¼ 1 (d).
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accuracy with respect to pollution and approximation errors); this

lower accuracy depends on the thickness of the PML L tpml

kmax

h i
¼ 1 as

explained in the following paragraphs. The exterior acoustic com-
ponent of Actran does not allow setting the number of elements
per wavelength in the PML; in terms of elements resolution, the
user can control only the FE’s number of elements per wavelength.
The quadratic meshes used in this research have a number of ele-
ments per wavelength which is half of the one of the linear meshes,
in order to maintain the nodal resolution N ¼ kmin

h�pFE. As a result, the

quadratic meshes have a reduced number of elements in the
PML. Nevertheless, the perfectly matched layer does not work with
polynomial shape functions. At high nodal resolution (L N½ � ¼ 2),
the PML mesh of quadratic FE models, despite being coarser than
the linear ones, is still capable of performing correctly even with
a thin layer. On the contrary, at low nodal resolution (L N½ � ¼ 1),
to overcome the too coarse PML mesh, a thicker PML is needed.
9

It is possible to summarize these results by averaging the RVAC
in the frequency domain. The resulting aritmetic average is indi-
cated as RVAC. Fig. 9 shows the RVAC in function of the size ranks
of Table B.9, and highlights a certain trend between them; in the
figure, the black line represents the degrees of freedom, and the
dashed line with a circle represents the RVAC. Not surprisingly,
the eight biggest models are the ones with L N½ � ¼ 2 and are the
most accurate (RVAC close to 1). Fig. 9 is missing one key aspect:
the RVAC dependency on frequency as showed in Fig. 8. To over-
come this limit, Fig. 10 shows four RVACband�i calculated by averag-
ing the vector RVAC only in limited frequency bands i (together
with the black line representing the degrees of freedom of the com-
putational models):

(1) 20–500Hz, blue continuous line;
(2) 504–1000Hz, blue dashed line;
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Fig. 9. DoF (black continuous line, left axis) and RVAC (right axis) in function of size
rank in (a).
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Fig. 10. DoF (black continuous line, left axis) and RVACband�i (right axis) averaged in
four frequency bands (20–500Hz: blue continuous line, circles; 504–1000Hz: blue
dashed line, circles; 1004–1500Hz: red continuous line, crosses; 1504–2000Hz: red
dashed line, crosses) in function of size rank.
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(3) 1004–1500Hz, red continuous line;
(4) 1504–2000Hz, red dashed line.

Fig. 9 shows how even models with poor settings perform
rather good at low frequencies, but their quality quickly decreases
in higher area of the spectrum, despite the use of adaptation
techniques.

4. Jury tests

4.1. Test design

Engineers use different kinds of procedure for sound quality
evaluation, depending on their purposes; a review is available here
[60]. Here, the natural choice is a paired comparison method since
it permits the evaluation of similarities between sounds in a fast
but efficient way. Specifically, given a TP, all the auralized sounds
Table 5
Data of the participants: identification number (ID), gender (Gen.) age in years, and natio

ID 1 2 3 4 5 6 7 8 9
Gen.1 f m f m m m f m m
Age 30 27 27 28 23 26 23 34 56
Nat.2 I I F S F F F Gh F

1m = male, f = female.
2F = French, I = Italian, C = Chinese, Ch = Chadian, S = Senegalese, Gh = Ghanaian, Ge
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can be compared with the reference sound, which is auralized with
the reference numerical model.

This experiment does not require any peculiar skill. Also, the
results of this research can be exploited virtually in any acoustic
problem that involves simulation. Therefore, it is desirable to
have untrained participants. In total, 18 people took part in this
experiment, recruited among the university personnel. They
reported no hearing issues. Table 5 summarizes the data and
shows each participant’s IDs that will be used throughout this
chapter.

Sounds are presented over professional headphones for sound
quality evaluation (Sennheiser HD 650). The listening environment
was the sound-proof booth in Fig. 12, which has a background
noise of 25dB(A). Participants can control the graphic interface
(GI) of the test on a screen with a mouse.

The sound samples are the ones described in the previous sec-
tion. Each sound has a total duration of 3 s. To avoid excessive
data-redundancy, only five transfer paths have been used for the
jury tests. They have been selected to have a high variance of: met-
ric and error variations, receivers, sources. The chosen TPs are: G-
11, G + 10, S-21, S + 11, S + 20.

Each participant was asked to compare, for each TP, the refer-
ence sounds with a set of sixteen sounds. The latter included all
the auralized sounds for that TP, including the reference sound
itself. Each sound was evaluated twice to collect data for repeata-
bility analysis. Furthermore, the test comprised five different sec-
tions, between which the participant was allowed to take a break
if needed; each session corresponded to the study of sounds asso-
ciated with one TP.

The test was delivered to participants via the ad hoc graphic
interface in Fig. 11. By clicking on the button ‘‘(re)écouter”, (french
for re-listening), they could listen to a pair of sounds lasting 3s and
separated by a pause of 1s. The pair consisted of the reference
sound for the given TP and one of the other 32 sounds to evaluate.
The participant could listen to a pair of sounds as many times as
desired. The task was to move the horizontal scroll bar between
‘‘très similaires” (very similar) and ‘‘très différents” (very different).
The resulting score was converted into a real value between 0
(‘‘très similaires”) and 10 (‘‘très différents”). Thereafter, the partic-
ipant could click on the button ‘‘suivant” (next).

The sounds were proposed in random order; this choice avoided
that participants’ evaluations could be influenced by sounds grad-
ually different from the reference.

This kind of tests often requires a training phase. Namely, par-
ticipants are allowed to listen to very similar sounds and very dif-
ferent ones, with the purpose to get an idea of what to expect
during the test [60]. However, in the proposed test, there are five
different sessions, and each would require a training portion; the
time consumption required for these training could alter the com-
fort of participants, affecting the results of the test. The solution
was to launch the test without any training. The researcher respon-
sible for the test informed the participants that there was the ref-
erence itself among the sounds to compare (thus, giving an idea of
when using the ‘‘very similar” rating).
nality (Nat.).

10 11 12 13 14 15 16 17 18
m m m m m m f m f
23 37 32 26 26 26 25 29 25
F Ch I Ge F I C C C

= German.



Fig. 12. Graphic interface of the jury test.
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Fig. 13. Repeatability of each participant;; TP G-11 is in black circles, TP S-21 is in
dark blue plus signes, TP G + 10 is in red asterisks, TP S + 11 is in magenta crosses
and TP S + 20 is in light blue squares.
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4.2. Data processing

First of all, an analysis to check repeatability is easily performed
since each sound has been scored twice. For each participant p, the
following repeatability index Ip is defined:

Ip ¼ 1
n

Xn
i¼1

a1i;q � a2i;q
		 		 ð10Þ

in which a1i;q and a2i;q are the two similarity scores assigned to the i-
th sample by the participant q, and n ¼ 16 is the total number of dif-
ferent sounds used in each test. This index has values 0 < Ip < 10,
with 0 meaning that each sound has always obtained the same
score, and 10 representing the maximum variation (each sound
has been scored once 0 and once 10). The minimum Ip has been
0.0446, while the maximum 4.1853, with most values between 1
and 3. Fig. 13 shows repeatability index Ip for each participants
and for each TPs; TP G-11 is in black circles, TP S-21 is in dark blue
plus signes, TP G + 10 is in red asterisks, TP S + 11 is in magenta
crosses and TP S + 20 is in light blue squares. Usually, in jury test
analysis, repeatability is considered satisfactory if it is lower than
two (on a 0–10 scale [60]), but this value needs to take into account
the complexity of the test. In the performed test case, many partic-
ipants exceed the threshold of 2, indicating that they faced signifi-
cant difficulties. Interestingly, participants 8 and 9 consistently
outperformed all the others; however, the subsequent analysis will
explain that these two participants are not more precise than the
others: instead, they are more conservative.
11
Fig. 14 (a) and (b) are two boxplots referring, respectively, to
TPs G-11 and S + 11, showing the entire range of similarity scores
used by participants. On each box, the central red mark indicates
the median, and the blue box contains all values between the
25th and 75th percentiles, respectively. The whiskers extend to
the most extreme data points not considered outliers, the latter
being plotted individually using the red plus symbols. It is clear
from these data that participants used different scales to evaluate
the similarities between sounds. Surprisingly, some participants
never used the minimum score, meaning that they did not recog-
nize the equal sounds. This data reflects the difficulty of the test.
It is worth noticing that participants 8 and 9 used a similar scale,
much limited with respect to other people: this is the reason
why their repeatability index Ip is lower than the others in Fig. 13.

At this point, each pair of similarity scores a1i;q and a2i;q was sub-
stituted by its average ai;q ¼ a1i;q þ a2i;q

� �
=2. Then, data are stan-

dardized according to the following transformation:

ai;q ¼ ai;q � aq
rq

; ð11Þ

where aq is the average of all the ai;q across the five TPs and rq is the
associated standard deviation. Then, data consistency has been
checked, exploiting the correlation matrice. It is found that partici-
pant 18 is always uncorrelated (or slightly negatively correlated) to
the others, except in the case of TP G-11. Because of this reason, this
participant has been removed from the following analysis (this sub-
ject may have misinterpreted the graphic interface of the test and
assigned high scores to similar sounds). Besides participant 18,
there is only one other case of negative correlation between partic-
ipant 8 and 16 in the test on the G + 10 TP: they have a correlation
of �6.45%.

Lastly, it is interesting to check whether a group of participants
could be consistently clustered together across the different test; if
yes, it would make sense to analyze it separately. Hierarchical clus-
tering techniques have been used to answer this question. Specif-
ically, Ward algorithm [61] based on euclidean distances has
been used to cluster participants. A specific group of participants
did not appear, and data can be analyzed altogether.

4.3. ANOVA

In the studied case, each transfer path represents a variable,
each participant an observation. A comprehensive framework to
serve these needs is the analysis of variance (ANOVA). The ANOVA
requires stringent hypothesis [62]:
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1. independence of observations;
2. normal distribution of observations on the dependent variable

in each group;
3. homogeneity of variance (co-variance matrix), also called

homoscedasticity.

However, the robustness of ANOVA to non-normality and
heteroscedasticity (namely, inhomogeneous variance) has been
object of research for a long time. Recent results focused, among
others, on skewness and kurtosis [63] to discuss normality, and
on variance ratio (which is the ratio of the largest variance to the
smallest of the groups, [64]) to discuss homoscedasticity. In gen-
eral, limits for the variance ratio of 1.5, for the skewness of 2 and
for the kurtosis of 6 are accepted [62]. There is not a uniform agree-
ment on more extreme cases, but scientists regularly use these
tools anyway. If these hypotheses are not satisfied, other
approaches coming from non-parametric statistics are preferable,
such as the Kruskal–Wallis test [65]. However, non-parametric
approaches have the limits of loosing all the quantitative part of
the information, being based only on ranks; for this reason, they
are not considered in the following analysis.

Here, skewness and kurtosis reached levels higher than the rec-
ommended ones, depending on the considered subset. In details, if
the data associated with a model and a TP had a critically high
value of kurtosis (> 6), the same was true for skewness (> 2),
and vice versa. Six datasets (each associated with a numerical
model) reached such critical values: two models in the case of
the TP G-11, one in the case of TP S-21, two in the case of TP
G + 10, zero in the case of TP S + 11 and one in the case of TP
S + 20. Even variance ratio did not satisfy the previously mentioned
limits, being higher than 1.5.

Therefore, only the independence of observations is considered
satisfied (although biases could be present due to the limited num-
ber of participants). However, given the small amount of subsets
that do not satisfy the above mentioned criteria, the total dataset
is considered sufficiently close to a normal one to perform an uni-
variate ANOVA with multiple factors is performed. Besides the four
numerical parameters used in the last chapter (that is,), also the
TPs are considered as factors, bringing the total number to five.
Two-factor interactions are considered as well. For each of the five
Table 6
ANOVA test results for the five considered factors: p-values.

FACTOR TP [N ¼ k
h�pFE] [pFE] [tFEk ] [tPML

k ]

p-value <0.001 <0.001 <0.001 0.017 <0.001
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factors and for each interaction, the H1 hypothesis is that the factor
or the interaction itself affects the perception of auralized sounds.
Given the low number of participants, the H0 hypothesis is rejected
with a p-value of 1%.
4.3.1. Main effects
Table 6 shows the p-values associated to each factor. Interest-

ingly, TPs play a critical role in this test. A quantitative analysis will
provide more details later on. Regarding numerical parameters,
they play a role in accordance with theory.The indices N; pFE, and
tPML
k are important contributing factor since the p-value is zero. On

the other hand, tFE
k seems not to play any role.

In detail, the TPs with lower values are associated with acoustic
samples ranked more similarly to the reference. In other words,
simulation of the TPs with lower values produced more similar
sounds in terms of acoustic perception, even with poor meshes;
these TPs are called here low-score TPs: G + 10 and S + 11. On
the other hand, high-score TPs produced sounds more different
G-11 S-21 G+10 S+11 S+20
Transfer paths

Fig. 15. Jury test score, in black (left axis), and RVAC, in red (right axis), in the case
of TP G-11 (a) and S + 11 (b); standard errors in the vertical bars, size ranks (see
Fig. B.9) in the abscissa.



Table 7
ANOVA test results for the five considered factors: p-values.

INTERACTION TP*[N] TP*[pFE] TP*[tFEk ] TP*[tPML
k ]

p-value <0.001 <0.001 0.560 <0.001

INTERACTION [N]*[pFE] [N]*[tFEk ] [N]*[tPML
k ]

p-value <0.001 0.060 <0.001

INTERACTION [pFE]*[
tFE
k ] [pFE]*[

tPML
k ] [tFEk ]*[

tPML
k ]

p-value 0.012 <0.001 0.012
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from the reference with poor meshes. The influence of the TPs
reflect that the local properties of the FE errors: given a FE simula-
tion, the local error can significantly vary when considering differ-
ent points of the geometrical domain. Fig. 15 shows the ANOVA
results; the error-bars represent the 99% confidence interval for a
two-tailed distribution.

ANOVA results of the numerical parameters are shown in
Fig. 16 (the error-bars are calculated as in Fig. 15) The parameter
N, Fig. 16 (a), produced the biggest difference in terms of jury test
score: it is by far the most critical parameter, at least in this fre-
quency range. The parameters pFE, Fig. 16 (b), and tPML

k , Fig. 16 (c),
also impacted significantly the perception, but their impact is not
quite as much asN. Lastly, the impact of tFE

k , Fig. 16 (d), is minimum.

4.3.2. Two-factor interactions
Table 7 shows p-values for two-factor cross-interactions.
It resulted that TPs interacted strongly with all other meaning-

ful factors. This fact does not surprise: in low-score TPs, level 1 of
numerical factors did not affect perception as much as in high-
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Fig. 16. Jury test score, in black (left axis), and RVAC, in red (right axis), in the case of TP G
the abscissa.
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score TPs. In other words, this interaction reflects again the local
properties of the error.

About numerical parameters, there have been strong interac-
tions between all of them, with the exception of tFE

k . These cross-
interactions are expected for two reasons. First of all, the factor
pFE has a strong impact on pollution effect, while N has a more sig-
nificant impact on the approximation error; since both of these
errors concur in the final quality of a simulation, it is natural to
observe an interaction between these two factors. Secondly, the
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-11 (a) and S + 11 (b); standard errors in the vertical bars, size ranks (see Fig. B.9) in
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interaction between pFE and tPML is due to the PMLs of quadratic
models being coarser than the ones of linear models. As explained
in Section 3, this interaction takes place only at low numerical res-
olution, which explains the last interaction between N and tPML.
4.4. Ranking the models according to the jury-test scores

A posthoc analysis based on the Bonferroni test reveals that it is
possible to define statistically separate groups in the four out of the
five tested TPs with a p-value of 1% (a Tukey–Kramer test gave the
same results): TPs G-11 (a), S-21 (b), G + 10 (c), and S + 20 (d).
Fig. 17 shows the case of the TPs G-11 (a) and S + 11 (b); in the lat-
ter it was not possible to isolate statistically different groups; the
jury test scores are in the ordinate axis, the size ranks (see
Table B.9) in the abscissa. The red line is the RVAC (left y-axis),
which will be discussed afterwards. Models are in ascending order
based on the jury test score, and the error-bars represent the stan-
dard error. The standard error has been calculated for a two-tailed
distribution with 15 degrees of freedom and a p-value of 0.01 (thus
t0:995 15ð Þ ¼ 2:947) as:

err ¼ rffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p t0:995 15ð Þ;

where n is the sample size and r is the standard deviation. Fig. C.23
in the appendix shows the other cases.

It appeared that the worst six models (in terms of similarity
perception) are the same across the five TPs. Due to their consis-
tently poor performances, these six acoustic samples are consid-
ered to be ‘‘different” from the reference in terms of auditory
perception. Table 8 shows the models that produced such samples
and their performances.

The results in Table 8 can be analyzed with the help of some
graphs. Fig. 18, for instance, show the case of the transfer path
G-11. The models in Table 8 (different models) are represented
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Fig. 17. Jury test score, in black (left axis), and RVAC, in red (right axis), in the case of TP G
the abscissa.

Table 8
Models producing sounds different from the reference ones.

Model
Size rank L N½ � L pFE½ � L tFE

k

� �
L tPML

k

� �
1 1 1 1 1
2 1 1 1 2
3 1 1 2 1
7 1 1 2 2
4 1 2 1 1
5 1 2 2 1
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with a dotted red line, and are separated from the other models
represented with a continuous black line (similar models). In
Fig. 18 (a), the blue diamonds indicate the models with
L N½ � ¼ 2; these models are all in the group of the similar ones.
In other words, all the different models have L N½ � ¼ 1, which
explicates why the nodal resolution is such an important factor
in the ANOVA.

The other three graphs (b), (c) and (d) in Fig. 18 are built
following the same principles, but refer to the other numerical
factors.

In Fig. 18 (b), the blue diamonds indicate the models with
L pFE½ � ¼ 2 and represent only 1/3 of the different models; this
explains why this parameter was important in the ANOVA, but
not as much as the nodal resolution N. In Fig. 18 (c), the blue dia-
monds indicate the models with L tPML

k

� � ¼ 2, and the situation is
exactly the same of Fig. 18 (b). Lastly, in Fig. 18 (d), the blue dia-
monds indicate the models with L tFE

k

� � ¼ 2, representing exactly
50% of the similar and different models, explaining why it does
not play any role in the ANOVA.

The above analysis remains valid in the cases relative to the
other TPs; indeed, although the order of the models in the abscissa
can slightly vary, the groups of similar and different models are
always the same.

4.5. Discussion of the jury test results

Two contrasting results can be observed: on the one hand, six
sounds are consistently ranked the worst; on the other hand, they
are not statistically different from the reference. However, because
of the complexity of the test and the non-normal dataset, statistical
results should be taken as hints. By taking into account such con-
text, it can be suggested that models with a low RVAC (in this case,
lower than 0.94 ) produce sounds that are perceived differently
from the reference since they are consistently ranked the worst,
(b)
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-11 (a) and S + 11 (b); standard errors in the vertical bars, size ranks (see Fig. B.9) in
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Fig. 19. Jury test scores vs. predictive model: S + 20 in blue diamonds, G-11 in red
circles, S-21 in magenta plus signs, G + 10 in light blue asterisks, S + 11 in green
crosses.

Fig. 18. Distribution of the numerical factors across the models in the case of TP G-11: the blue diamonds indicate the models with L N½ � ¼ 2 (a), L pFE½ � ¼ 2 (b), L tPML
k

� � ¼ 2 (c),
and L tFE

k

� � ¼ 2 (d); similar models in black continuous line, different models in red dotted line, standard errors in vertical errorbars.
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even if in a different order. At the same time, models with high
RVAC (in this case, higher than 0.98 ), are perceived very similarly
since they are always ranked the best, but in a different order. If a
similarity threshold for the RVAC exists, it should be between 0.98
and 0.94. Furthermore, the standard errors and the statistical dis-
tance between sounds can be interpreted as a strong signal of
the difficulty faced by participants: it can therefore be hypotised
that, although people could distinguish sounds auralized from
models with low RVAC, the differences are not so evident.

4.6. Criteria used by participants to distinguish noise samples

At this point, it is clear that participants could distinguish at
least some noise samples, although with varying degrees of diffi-
culties. A criticalstep is to understand which criteria participants
used to distinguish the samples and if these criteria were different
among the five TPs or were always the same. In order to do that,
this section makes use of the acoustic metrics loudness N and
sharpness S (calculated according to Zwicker [66].

As a first step, the following distances are defined:

dN sð Þ ¼ max Ns ;Nrefð Þ
min Ns ;Nrefð Þ ;

dS sð Þ ¼ max Ss ;Srefð Þ
min Ss ;Srefð Þ ;

s ð12Þ

where s identify the signal and the subscript ref identify the refer-
ence. No single metric proved to correlate well with jury test
results. On the other hand, a linear combination of N and S can
reproduce the perception quite satisfyingly. First, such regression
has been calculated separately for each TP, using the entire set of
data available, with a least square regression. The lowest value for
15
the correlation was 93%. However, the coefficients for the regres-
sion calculated for different TPs were not similar. For this reason,
a different approach has been used: a single dataset was built, com-
prising all the data. A least-square linear regression was then per-
formed. In this case, correlation q in the case of each TP was
calculated, giving the following valuess: 0.92 for the TP G-11, 0.98
for the TP S-21, 0.76 for the TP G + 10, 0.94 for the TP S + 11, and
0.92 for the TP S + 02; the correlation calculated over the entire
dataset was 0.88 The coefficient of the linear regression where
24,61 (multiplicative factor of the loudness distance), 50,9 (multi-
plicative factor of the sharpness distance) and �74,52 (intercept
term).
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Fig. 20. Reference TF (red dashed line) and TF computed with levels (blue
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h i
¼ 1 in the case of

TP S + 20 (a); spectra of the sounds auralized with these TFs in (b), and specific
loudness N0 calculated on the spectra in (c).
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Fig. 19 shows the test results as a function of the predictive
model. If the model was perfect, all the points would lie on the
bisector (dashed black line in the graph). In the picture, colors
and symbols identify the TPs: S + 20 in blue diamonds, G-11 in
red circles, S-21 in magenta plus signs, G + 10 in light blue aster-
isks, S + 11 in green crosses. The figure shows that the points are
not uniformly distributed:

(1) many points appear in the bottom-left corner, at low values
of the score;

(2) a significant amount of points appear in the center of the
graph, at medium values of the score;

(3) only few points appear in other areas.

Fig. 19 suggests that the three points in the top-right corner
(blue diamond, magenta plus and red cross) may impact signifi-
cantly the correlation of the model with the dataset. The correla-
tion has been recalculated after rejecting these three points,
resulting in 0.84. This value for the correlation is a strong index
of the model’s robustness.

The regressive model has a satisfying capacity to explain the
jury test scores and proved to be robust. In other words, people
mainly used a combination of loudness and sharpness to distin-
guish the noise samples. The combination of these two acoustic
metrics appear to retain quite well the differences in terms of
amplitude and frequency shift introduced by the numerical errors.

4.7. Linking numerical errors to acoustic metrics and to perception

The previous section showed that a regression comprising loud-
ness and sharpness represents the perceived similarity with a cor-
relation higher than 80%. Therefore, the link between these two
acoustic metrics and the numerical errors complete this research.

In a first instance, it is worth noting that both loudness N and
sharpness S depend on a quantity called specific loudness as
following[66]:

N ¼
Z 24 Bark½ �

0
N0dz; ð13Þ

S ¼ 0:11
R 24 Bark½ �
0 N0g zð ÞzdzR 24 Bark½ �

0 N0dz
; ð14Þ

where N0 is the specific loudness and the integral is computed
across the entire audible spectrum (usually measured in Bark, see
D). The specific loudness is a function of frequency that combines
the spectral distribution of an acoustic input with the auditory fil-
ters of the human hearing system, and its unit of measure of N0 is
sonie/bark. For more information about specific loudness and criti-
cal bands, refer to [66].

Because both loudness and sharpness depend on the integral of
N0, it is crucial to evaluate the behaviour of the specific loudness of
the noise samples across in the frequency domain and how it is
related to the accuracy of the transfer functions, as in Fig. 20. In
detail, Fig. 20 (a) shows two TFs associated to the TP S + 20, the ref-
erence one (red dashed line) and the one calculated with the fol-
lowing levels (blue continuous line): L N½ � ¼ 1, L pFE½ � ¼ 2, L tFE

k

� � ¼ 2

and L tpml

k

h i
¼ 1. Fig. 20 (b) shows the spectra of the sound obtained

via convolution with the source shown in Fig. 6. Lastly, Fig. 20 (c)
shows the specific loudness of these sounds in function of the crit-
ical bands.
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As Fig. 20 shows, the changes in specific loudness are more
important where there are major differences between the TFs.
Since both the loudness N and the sharpness S depends on the
specific loudness, the use of these metrics may help in summariz-
ing the results. To understand the link between numerical accuracy
and acoustic metrics, it is appropriate to understand how much
such metrics change with respect to the reference. The differences
are estimated as ratios between each i-th model and the reference:
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DNi ¼ Ni=Nref ;DSi ¼ Si=Sref ; this approach is further justified by the
fact that loudness ad sharpness define ratio scales. Moreover, it
should be kept in mind that a just-noticeable-difference in loud-
ness is around 10% [66]. Fig. 21 shows these variations in the case
of TP rp02 for each model (represented by their size rank, see
Table B.9), and are relatively small despite the numerical error
introduced by the coarse meshes of the less accurate models, fur-
ther reinforcing the concept that the sounds are not so distant in
terms of perception.

It appears evident at this point why and how the perceived sim-
ilarities are dependant on the accuracy and precision of the
simulations.

5. Conclusions

In this research, sixteen different FE models have been used to
simulate a set of sixteen TPs. One model has been used as the ref-
erence; then, other fifteen models have been built by degrading the
mesh of the reference model. The quality of each model with
respect to the reference has been assessed with the vector
RVAC fð Þ and the average of its values RVAC. As expected, the vec-
tors RVAC fð Þ have lower values at higher frequencies. The analysis
of the simulated acoustic signals has been carried out by means of
jury tests. Participants feedback included the difficulties faced dur-
ing the tests and the differences detected mainly at high frequen-
cies. Analysis of data reflects the difficulties mentioned by
participants; specifically, it was found that repeatability was
higher than what usually found in industrial tests. It was not pos-
sible to find subset of participants that acted in a different way
from the others with the methodologies used, except for one par-
ticipants that had a negative correlation with almost all the others:
for this reason, this participants has been removed from the
dataset.

An univariate ANOVA shows that numerical errors are perceiv-
able; the ANOVA also highlights the interaction between pFE and
tPML
k . Results shows that N and pFE play a critical role, while tPML is
especially important due to its interaction with pFE and tFE did
not play any specific role. These results are in line with the previ-
ous ones.

About similarity rankings, participants consistently evaluated
six models (over sixteen) as the less similar from the reference.
This consistence suggests that these acoustic signals are actually
different, in perceptual terms, from the reference. In details, all
the models with N ¼ 4 and pFE ¼ 1 are part of this set of different
sounds; the other two have N ¼ 4; pFE ¼ 2 and tPML

k ¼ 0:6. These
17
six models are therefore considered different from the reference
in perceptual terms.

It was found that a linear regression of loudness and sharpness
has a high correlation (84%) with the perceived differences. There-
fore, it was shown how the numerical errors affect these two met-
rics, thus providing a link between the accuracy of the FE models
and the perception of the auralized sounds.

The most important result is probably about the difficulties
that participants faced during jury tests. These difficulties indi-
cate that acoustic signals were not so different. That is, low accu-
racy in the studied frequency range could be acceptable for sound
quality purposes, at least for some tasks. More precisely, a nodal
resolution of N ¼ 4, when combined with thick PML (tPML

k ¼ 1) and
quadratic elements, produced noise samples very similar to the
references. Only more degraded models were perceived as differ-
ent from the references. Generalization of this results must be
taken with cautions. As Anisworth showed [27], the accuracy of
the FEM at low nodal resolution is unpredictable and erratic. In
other words, similar experiments could in theory provide differ-
ent results.

The results discovered in this research are auspicious and wide
the door to a series of applications. To fully exploit the potentiality
of this work, further research should focus on three areas: general-
ization of the results, practical applications, and extension of these
results to different techniques.

The first way to generalize the results proposed here is to con-
tinue the same job with other examples and transfer paths. Besides
using different TPs, future work could focus on some specific
aspects:

(1) sources with different spectral characteristics which usually
appear in engineering applications, in order to study what
happens when the convolutions involve a source that intro-
duces more high-frequency energy content and when there
are tonal components in the source spectrum;

(2) studying internal problems, so to isolate the effect of pollu-
tion and approximation errors by removing the reflection
errors caused by boundary conditions used to ensure the
Sommerfield radiation condition; it is noteworthy that stud-
ies concerning the use of efficient methods for room acous-
tics exist, as previously mentioned, both for frequency and
time-domain problems [12–15]: further developments of
this research could concern the use of these formulations;

(3) studying external problems with a specific focus on tech-
niques such as PML, IEM and others;
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(4) extending the proposed results to higher frequencies, which
are especially hard to simulate (especially the so-called mid-
frequency range [11]); since this research indicates that
lower accuracy might be sufficient for sound quality applica-
tions, the computational cost in the mid-frequency range
may dramatically be decreased.

With respect to practical applications, an important fields of
research is the study of the TFs accuracy for preference ratings
problems due to their importance when comparing different TPs.
Previous scientific work [18] shows that sounds auralized with
heavily different TFs can preserve preference ratings. A natural
extension of the research carried out during this paper moves in
this direction: up to which limit does the numerical errors affect
preference ratings? The difficulties that participants found during
jury tests are very promising in this sense: a relatively low accu-
racy would likely prove to be sufficient.

Lastly, the framework proposed in this paper could be helpful
for other techniques. Besides other boundary techniques to
ensure the Sommerfeld radiation condition, model order reduc-
tion and substructuring techniques are crucial for practical appli-
cations. Furthermore, other deterministic methods such as the
BEM and statistical techniques like ray tracing and SEA could
be studied, together with all the hybrid methodologies based
on them.
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Fig. A.22. Mock-up’s multiview ortographic projections; the li

18
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was performed within the framework of the LABEX
CeLyA (ANR-10-LABX-0060) of Université de Lyon, within the pro-
gram ‘‘Investissementsd’Avenir” (ANR-16-IDEX-0005) operated by
the French National Research Agency (ANR). The authors gratefully
acknowledge the European Commission for its support of the
Marie Sklodowska Curie program through the ETN PBNv2 project
(GA 721615).
Appendix A. Mock-up’s multiview ortographic projections

Fig. A.22 shows the multiview ortographic projections of the
virtual mockup used for this research; the light blue horizontal line
is the infinite, rigid baffled plane.
Appendix B. Computational size

A high number of degrees of freedom (DoF) is related to an
increased computational cost to solve the simulation. Due to the
importance of the computational aspects in practical applications,
it makes sense to evaluate the size of the matrices associated to the
numerical models used in this research. Because of adaptivity, each
ght blue horizontal line is the infinite, rigid baffled plane.



Table B.9
Number of degrees of freedom per adaptive frequency band for each model and size rank.

L N ¼ k
h�pFE

h i
L pFE½ � L tFE

k

� �
L tPML

k

� �
N� of DoF

20–52 56–100 104–252 256–500 504–1000 1004–1500 1504–2000 SUM RANK
[Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

1 1 1 1 12519 9649 14308 14284 21101 22174 28371 122406 1
1 1 1 2 20446 12566 22711 20940 32254 32203 40121 181241 2
1 1 2 1 26430 14842 28763 25254 39610 37746 38417 211062 3
1 1 2 2 43887 21036 37351 45984 57666 51837 54018 311779 7
1 2 1 1 16954 14900 19104 20727 29105 45224 82546 228560 4
1 2 1 2 24193 17437 26840 26916 40311 55852 93470 285019 6
1 2 2 1 31177 19764 34065 30758 43588 42603 47755 249710 5
1 2 2 2 47762 25208 50704 42766 61574 56501 62487 347002 8
2 1 1 1 192469 129341 224815 220474 381209 409307 533798 2091413 9
2 1 1 2 388728 192597 437617 382936 666792 655101 803823 3527594 11
2 1 2 1 529224 242256 564260 469812 815906 783546 980170 4385174 13
2 1 2 2 959061 389966 993873 777182 1299749 1129174 1340451 6889456 16
2 2 1 1 267314 194524 314328 314471 483768 501960 490207 2566572 10
2 2 1 2 475746 270949 537566 491095 796917 648834 792928 4014035 12
2 2 2 1 620356 320268 681518 579963 825358 753569 850889 4631921 14
2 2 2 2 957017 485461 1018774 776522 1269320 1111976 1210569 6829639 15
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simulation comprises several meshes. Therefore, the computa-
tional size is calculated as the sum of DoF of all meshes of each
model.

Table B.9 shows these data. The models are ranked in Table B.9
according to the sum of the numbers of degrees of freedom (last
column). As a first guess, it is expected to have here a classification
of the models, from the worst to the best according to the repre-
sentativeness of the simulated sounds. The two metrics defined
in the next section are introduced to check this first guess from
an objective point of view. However, the ranking should not be
taken as a strict metric of quality, but rather as an indicator. For
Fig. C.23. Jury test score with standard errors in the cases of S-2
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instance, the reference numerical model is ranked 15th, while
the biggest model has L pFE½ � ¼ 1. This situation is due to the lack
of central nodes in the reference model, causing a smaller number
of degrees of freedom in the reference model, and due to the coar-
ser PML mesh.
Appendix C. Jury test results - TPs: S-21, G + 10, S + 20

Fig. C.23 shows the results of the jury test in the case of TPs S-21
(a), G + 10 (b), S + 20 (c). The figure have to be read as Fig. 17:
1 (a), G + 10 (b), and S + 20 (c); size ranks in the abscissa.
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Appendix D. Critical bands

Table D.10 shows the 24 critical bands measured in Bark.
Table D.10
Relation between critical-band rate z and the cut-off frequency of critical-bands f c;
more details in [66].

z [Bark] f c [Hz] z [Bark] f c [Hz] z [Bark] f c [Hz] z [Bark] f c [Hz]

0 1
1 100 7 770 13 2000 19 5300
2 200 8 920 14 2320 20 6400
3 300 9 1080 15 2700 21 7700
4 400 10 1270 16 3150 22 9500
5 510 11 1480 17 3700 23 12000
6 630 12 1720 18 4400 24 15000
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