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Abstract

This paper studies the impact of geometrical imperfections (gaps in the links, center distance, inclination angle,
etc.) on the stability and the dynamic behavior of mechanical systems exhibiting friction-induced vibrations (braking
systems, clutches, etc.). It comes further to two papers relating to improved modeling of friction and separation at the
interface of a rotor-stator system. The latter is a phenomenological model which is composed of an embedded beam
on which a disc is mounted, called the stator, in contact with another disc called the rotor. The phenomenological
mechanical system used in this paper is a new version of the latter model taking into account some of the geometrical
imperfections present in real mechanical sytems. In the proposed model, the rotor and stator discs have the ability to
move radially thanks to the gaps in the links. The inclination angle of the rotor disc and a center distance between the
stator and the rotor discs are also introduced. The inclusion of these three geometrical imperfections induces additional
complex phenomena that have a strong impact on the stability and dynamic behaviour of the mechanical system,
because the coupling of the imperfections with the rotor rotation gives rise to a non-autonomous dynamical system.
Consequently, stability studies of fixed points must be replaced by stability studies of periodic orbits involving the
construction of a monodromy matrix. In conclusion, significant differences in the values of the bifurcation point and
the levels of the associated instabilities can be observed, unlike in a study that does not take geometrical imperfections
into account.

Key words: Friction-induced vibrations, nonlinear phenomena, geometrical imperfections, stability of fixed points,
orbital stability, temporal integrations.

1. Introduction

Mechanical systems exhibiting friction-induced vibration instabilities are commonly encountered by design engineers
working in industry. The elementary design of systems presenting this type of instability is often very similar (sta-
tionary and rotative part), although they can be difficult to compare in some cases. There are many examples of such
systems, the best known of which are braking systems (automotive [1-4], aeronautics [5-9], railway [10]), on which
many works have been carried out, and other systems like those for clutches [11, 12] or simplified mechanical systems
[13-21]. The mechanisms or physical phenomena at the origin of these vibrations, which are detrimental to structures
(damage, rupture, premature wear, etc.), have been studied for many years by means of experimental and numeri-
cal simulations. From all the research work relating to friction-induced vibrations, two main mechanisms have been
evidenced to explain their appearance. The first is called stick-slip and is related to the tribological characteristics
of the materials in contact. The first works to refer to the stick-slip phenomenon were those of [22]. Further works
by [23-26] also helped to explain this phenomenon. Other, more applied studies have been carried out with models
presenting this phenomenon in [13, 27-29]. Physically, the stick-slip phenomenon appears when the adhesion (static)
and friction (dynamic) coefficients are different. In this case, the tangential force depends on the velocity relative to the
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interface. This dependence can be continuous or discontinuous. In the discontinuous case, a jump from the boundary
of the adhesion cone to that of the friction cone appears. In the continuous case, a decrease in the friction coefficient
is achieved by following a certain law, as in the works of [30-34]. The second mechanism is called a sprag-slip and
is linked to the geometric characteristics of the parts. It was put forward in the work by [35] to explain brake squeal
noises. Physically, this phenomenon is due to the coupling between the normal and tangential forces (sprag phase),
then a release from the latter (slip phase). When the sprag-slip theory was generalized, the notion of mode coupling
thus appeared. Theoretically, sprag-slip requires at least two degrees of freedom (tension-compression and bending).
Many additional studies relating to mode coupling have been carried out [36-39].

This paper follows on from studies of phenomena located at the interface of the rotor and stator discs of a very simpli-
fied phenomenological model [40, 41]. The mechanical system associated with this model consists of an embedded
beam on which a stator disc is mounted. Another disc called a rotor, with a rotation velocity, is in frictional con-
tact with the stator disc. According to the values of the parameters and in particular the coefficient of friction at the
rotor-stator interface, the friction at the interface can induce a vibratory instability called Whirl mode. This instability
corresponds to the coalescence of the two bending modes of the beam. A damping is often introduced into models in
order to obtain realistic levels, due to a lack of nonlinear phenomena in the modeling. In the two papers cited, two
improvements were analyzed. The first consisted of a better description of the velocities field relating to the rotor-
stator interface. This first improvement makes it possible to introduce a damping due to friction at the interface which
is proportional to the pressure at the interface and inversely proportional to the velocity rotation of the rotor disc.
The second improvement consisted in taking into account the separation at the interface, something which is often
neglected in order to simplify the calculations. The separation at the interface gives rise to a new mode called Squeal
that is not detectable by fixed point stability analyses because it corresponds to a change of the basin of attraction.

In this paper and based on the above improvements, a new version of the described phenomenological model is stud-
ied. Gaps in the links associated with the stator and rotor discs are modeled, which induces a division of the discs into
two parts. Further, a center distance between the axles of the stator and rotor discs is taken into account. Last, an in-
clination angle of the rotor disc is introduced into the modeling. These three geometrical imperfections are most often
not taken into account so as not to complicate modeling or lengthen calculation times. However, these improvements
make it possible to better model the design of most mechanical systems. Indeed, in many mechanical systems, the
discs are mounted in sliding links with other parts and there is thus a gap in the link. Moreover, as the geometry is not
perfect, a center distance and a difference in axis between the stationary and rotating parts may exist. The coupling
of these three geometrical imperfections with the rotor disc rotation induces a periodic excitation and the associated
dynamical system becomes non-automonous. The usual studies of the stability of fixed points are in some cases no
longer possible and so the main aim of this study is to analyze the influence of the three imperfections on stability
with the help of the phenomenological model. First, the phenomenological model and the associated hypotheses will
be presented. Next, the equations of motion will be written using a Lagrangian approach. Finally, a parametric study
will be carried out including determination and stabiliy studies of fixed points and periodic orbits.

2. Model presentation and main hypotheses

The phenomenological model studied is represented in figure (1) and the associated parameters are given in table (1).
This is a mechanical system moving in the Euclidian space E and whose structure is composed of an embedded beam,
arotor disc and a stator disc. In order to simplify the mechanical problem, the small perturbations hypothesis is made.

2.1. Beam

This first main set is a deformable beam named b, occuping domain Q,;(¢) C E at each time r € T = [0, t,4.]. The
frame on which the beam is fixed is chosen as the reference inertial frame and is designated by Ry. The point O chosen
in the embedding and the basis B, make it possible to build the cartesian coordinate system Ry = (O, ey, ez, e3). The
displacement field of the beam is defined as u® Q) xT — R3, (x,1) — u (x, 1) and must verify ub0,) =0 Vre
T. In order to simplify the mechanical problem associated with the beam, new hypotheses are made:

e The beam is considered infinitely rigid in tension, compression and torsion.
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o The Euler-Bernoulli hypothesis (L > b and L > h):

0 0 0
b
Vxg = xes € R, ul(x,0) = u(xg, 1) + 0" (x, 1) A (x — xg) = |ub(xg, )| + |- 225621 A |y (1)
(xg, 0] |_2aen| |z
X

where: xg € R?, is the position vector associated with the center of the section. This is a movement of rigid
oub (xg.t)

bodies of each section with small strains from where 6°(xg, 1) = =

It should also be specified that the geometrical parameters, in particular those of the noted beam b, were chosen to
satisfy the assumption of the model and in particular that of textit Euler-Bernoulli. For example, the external force
F .., must induce displacements at the end of the beam satisfying this last hypothesis. The spatial approximation of the
displacement field u is carried out using the Rayleigh-Ritz method. This method allows one to build an approximation
sub-space of finite dimension called V' included in the Sobolev space V), = H}(Q,(1), R?) (null fieds in x = 0).
Therefore, the approximated displacements and velocities fields of beam b are written:

~ dN(x)
b _ b

@ (x,1) = Nx) ¢"(0) Fan=—g 1
Vx € Qu(r) V1 €T, ., b a . AN ) 2)

u’(x,t)=N(x)q’ (1) 8 (x, 1) = qb(t)

’ dx
with:
0
) qb () = |q1(¢)| € R3, the vector containing the generalized coordinates ¢;(f) and g(¢) which correspond to the
q2(0)

displacements of point O; (extremity of the beam) following directions y and z and measured in inertial frame
Ry thanks to Ry = (0, e1, €3, €3).

o N(x) € M33(R), the matrix containing the shape functions.

2.2. Stator and rotor discs

At the end of the beam (point O), a stator disc is mounted, denoted s and composed of two parts. The first, denoted
s1, is fixed to beam b and point O, is the mass center. The second, denoted s, is a plate mounted in the slide link with
s1 and can have a relative movement measured in the inertial frame R as reference inertial of the cartesian coordinate
system R;(f) = (Ol(t), (1), e;‘ o, e;‘ (t)). This relative displacement is given by the generalized coordinate, denoted
qs(1), at each time ¢ € ’111 The passage from frame R; to Ry induces a change of cartesian system and is associated
with the following affine application:

Frior, : B — R, X' (1) — x(1) = Co,0,0(1) + P, 0,8,(1) X' (t) 3)
with:
L+
e Coo,n() =00¢(t) =| qi(t) | ,the origin changing (translation).
(1) |,
COS(Zqu(t)) COS(Zqz(t)) _ sin(zq‘(t)) _ COS(quI(I)) sin(zqz<t))
s s s . . .
o Pg g (t) = [ell(f) e, (1) esl(t)]gl(,) 5 = COS(#) sm(#) cos(@) —sm(#) sm(@)
’ o290 2q2(0)
sin(=1=) 0 cos(=F=) B1(.80

, the passage matrix associated with the basic changing (8B, (¢) to By).
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As for stator disc s, then rotor disc denoted r is also composed of two parts. The first, denoted r|, has a constant
inclination angle 8 with respect to direction z and rotates at a rotation velocity w,. More, r is kept in contact (interface
(82 — r2)) with the stator disc s by an external force F'.,;. These two parameters (w, and F,,;) were considered constant
since their influences on the dynamic behavior of this system have already been studied in [40, 41]. The existence
of this inclination angle 8 implies that the axes of stator s; and rotor s, discs are no longer parallel and coincident.
Consequently, it is rotating around direction x” (different from x”) with a velocity rotation w, = 6,¢, t € T and can
have an axial displacement (following direction x) represented by the generalized coordinate g3(¢) in the reference
inertial frame Ry. A center distance, denoted d, between the axes of stator s; and rotor r; may also exist. This center
distance d implies that the axes of stator s; and rotor r| discs are no longer the same if the angle of inclination 3 is
zero. When angle S is different from zero, the existence of a center distance d amplifies the geometric imperfection:
the axes are not parallel and not confused. The second, denoted 7, is a plate mounted in the slide link with r; and
can have a relative movement measured in inertial frame R, as reference inertial of the cartesian coordinate system
Ry(t) = (03 ), e;‘ 0, e;‘ ), e;‘(t)). This relative displacement is given by the generalized coordinate, denoted g(?).
The passage from frame R, to Ry, a change of cartesian system, is done by the following affine application:

FraRo : RY — R, x” () = x(t) = Co,0,0(t) + P, 0,5,(t) X" (1) (€]
with:
L+3e+qs0)
o Coo0,0(t) = 00;3(t) = 0 , the origin changing.

0 By
cos(B) —sin(B) cos(6,(¢))  sin(B) sin(6,(1))
=[sin(B) cos(B) cos(6,(t)) —cos(B) sin(6.(1)) , the pas-
0 sin(6,(1)) cos(6,(1))
sage matrix associated with the basic changing (8,(¢) to By).

¥ r r
o Py, (0 =[]0 €0 931(’)]:32(;),30

Ba(1),B

In order to simplify the mechanical problem, the following hypotheses are made:
e The stator and rotor discs are considered undeformable:
i (1) =i (xo,.0) + 6 (x0,.0) A (x = x0,) Vx € Qy(1)

- S2 _ 551 .52 )51 _

VieT u/Ro(x, 1) = u/Ro(xol, H+ u/R1 (x0,.1) + O/Ro(xol, HAx=-x9,) Yx Q1) )
’ - T _ ' _

u/RO(x, 1= u/Ro(x03, 1+ 0/R0(x03’ HAX-—x0,) YxeQ, (1)

.12 Y 1 .12 Nl _
u/RO(x, 1= u/Ro(x03, 1+ W (x0,,1) + O/Ro(xos, HAx—x0,) Yxe€Q,()



Parameter name Notation ~ Value Unit

System density o 7800  kg.m~>
Thickness of the beam following y b 251072 m
Thickness of the beam following z h 31072 m
Beam length L 210! m

Contact stiffness per area unit k 2510° Nm™3
Young modulus E 21010° Pa
Coulomb modulus G 8110° Pa
Thickness of the rotor and stator discs e 11072 m
Radius of the stator R, 7.51072 m
Radius of the rotor R +00 m

<

Table 1: Values of constant parameters

(@

Y Stator part1 (s1) ¥’
Stator part 2 (s5)
Rotor part 1 (1)

€z

€3

Figure 1: Presentation of the phenomenological model. (a) Different parts of the associated mechanical system. (b) System movement with

inclination angle 8 and center distance dj.

3. Motion equations

The kinetic and potential energies of the beam are written in the first, as presented in Annex 1. Then, the generalized
force containing a contact and friction stress at the interface (s, —r,) is expressed and the developement is presented in
Annex 2. Finally, the use of Lagrange equations gives rise to the discrete problem containing a system of second-order

nonlinear differential equations, stated as follows:

Find ¢ : T — R such that:
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d{(o 0

T (Wé)) - Wft) =0®) (Lagrange equations) )
"1q(0) = q¢ (Displacements initial condition) ©)

q(0) = qo (Velocities initial condition)

with:

e q) =01 @) ¢ g5(0) gs®]" €R® respectively ¢(1) = [0:1(D) @) 431 45 Gs®)] €
IR%), the vector containing the generalized coordinates (respectively the temporal derivative of generalized co-
ordinates).

o L:R xR xT — R, (q0),4(0),1) — L(q(0), q(t),1) = Tjp (1) = Vi (1), is the Lagrangien. Here, T} (1) = T, () + 7,

is the sum of all kinetic energies and (V‘/SRO = (V?Ro(t) is the sum of all potential energies given in Annex 1.

o O() = 0% (1) + Q2 (1) + Q% (t) + Q"' (¢) € R, the vector including the generalized forces at interfaces (s; — r2),
(s1 — s2) and (r; — rp) given in Annex 2.

The nonlinear differential equations system of the problem (6) can be written matricially:

Find ¢ : T — R such that:

Mgit)+ Kqt)=Q()  (Second order differential equations system)
Yt e T,<q(0) = qo (Displacements initial condition) @)
q(0) = qo (Velocities initial condition)
with:

o M € M;s(R), the mass matrix.
o K e M;s5(R), the stiffness matrix.

In order to be able to work more efficiently, the system of second-order nonlinear differential equations of dimension
4 (7) is put in the state form. This gives rise to the following problem containing a nonlinear differential inclusions
system of the first order:

Find X : T — X c R!9 such that:

X0 = GX(@),t
VieT, (0 = GX(),n @®)
X(0) =Xy
with:
e X(1) = [Zgg € X c R0, the state vector composed of generalized coordinates as well as their temporal
variations.

e Gy : X — R'%(X(#)) = LX(¢), a linear map having the associated matrix L (GL € .L(X,RIO)).
0 1 . . . .
o L= MK 0 € Mjo,10(R), the matrix associated with the linear map Gp.

e G: X xT — R!9 anonlinear application.

At the end, the knowledge at each instant ¢ € T of the state of the mechanical system contained in vector X () is derived
by means of a temporal integration of the system of differential equations (8). Mathematically, it is a non-autonomous
dynamic system named SP" = (X CRY,T,¢” he"”). pPheno - X x T — RI9 is the flow defined implicitly by the
system of differential equations (8).

6
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4. Parametric study

The main idea of this paper is to study the influence of goemetrical three imperfections (gap in the link associated
with gs(¢) and gs(?), center distance d, inclination angle ) on the stability and the dynamical behavior of mechanical
systems using a phenomenological model. After presenting the equations describing the dynamics of the phenomeno-
logical model, a parametric study is carried out, divided into two parts. This division into two parts is due to the
requirement to take into account a radial gap at interface (r; — r,). Indeed, the rotation of the rotor disc induces
friction on the area of interface (s, — r») in contact. In addition, inclination angle 8 of rotor disc r accentuates the non-
homogeneous pressure distribution at this interface. Consequently, when a gap exists at interface (; — r,), these two
phenomena (friction and pressure distribution) naturally induce a periodic relative sliding of rotor disc r, relative to r;.
This periodicity is related to the rotation of rotor disc ». On the other hand, if there is no gap (link (r; — ;) blocked),
these periodic relative slidings are not possible. If a gap exists in link (s; — s,), a relative sliding also appears and is
periodic only if link (7 — r;) is unblocked. These geometric imperfections and in particular the gap in the connection
(r1 — ry) and the inclination S of the rotating part are not often taken into account in current models. Without these
imperfections, the angular position 64(¢) changes nothing and the physical phenomena are invariant. This is why, very
often, the rotation does not appear in the equations and is often not taken into account or even forgotten. Only the
rotation velocity should appear since it has an important influence on the stability and on the dynamic behavior, as
shown in [40]. It should be understood that rotation 6,(¢) is important when these imperfections are present, which
is always the case in practice. This is why the aim of these two parts is to demonstrate the importance of taking
into account these geometric imperfections in the modeling of mechanical systems whose design can be linked to the
phenomenological model presented.

The first part of this study contains cases 1 and 2 described in table (2) and for which link (r; — ;) is always blocked
(ge(t) = 0, YVt € T). Consequently, rotation angle 6,(¢), t € T of rotor disc ; does not appear in the equations (8)
(vectors field G), which implies that the dynamic system S is autonomous. In order to study these two first cases,
the methods associated with fixed point calculus and the associated stability analysis can be used. Indeed, and given
that the dynamic system S”"" is autonomous, for each parameter set k € I, there exists an associated fixed point
denoted X f In case 1, link (s; —57) is blocked and the associated stiffness k; tends to infinity. In case 2 the opposite is
true: link (s; — s2) is unblocked and a nonlinear stiffness k;(¢gs(t)) described in Annex B is used and allows one to take
into account a certain gap, contacts (stop) and friction in the sliding link. The status of link (s; — s2) has no influence
on the dynamic system SP*"_ Indeed, the system remains autonomous even if the slide link (s; — s7) is unblocked.
The second part of this study consists of cases 3 and 4, also described in table (2), for which the slide link (r; — 7,)
is unblocked (g¢(f) # 0, V¢ € T). Consequently, the dynamic system SP*" is no longer autonomous because of the
presence of rotation angle 6,(¢) in the equations. This implies that a fixed point no longer exists for each parameter set

k € I,. In fact, it is a forced dynamic system where T, = 5% is the period of excitation associated with rotor rotation

0,(t). Methods including calculations of the periodic orbital; as well as their stability (construction of the Monodromy
matrix) must be used in the second part of this parametric study. As in the first part, in case 3, the slide link (r; —r;) is
blocked and the associated stiffness k, tends to infinity. In case 4 the opposite is true, link (r; — ;) is unblocked and
a nonlinear stiffness k(ge(#)) described in Annex B is used and allows one to take into account a certain gap, contacts
(stop) and friction in the sliding link .

Generally, only three parameters are studied: the friction coefficient at interface (s, — r;), rotation angle 8 and center

distance d. Rotation velocity w, is fixed at 100 rad/s and exterior force F,,; at 2000 N.

Case ki [N/m’] (g5 [m]) ko [N/m’] (g6 [m]) py,—r, w; [rad/s] BI°] d[m] Fex [N]
1 +oo (0) +o0 (0) [0,1] 100 {0;1;1.75)  {0;5;105.103 2000
2 k(g5 (1) +00 (0) [0,1] 100 {0:1;1.75)  {0:5;10}.1073 2000
3 ki(gs(0) ka(qe(1) [0,1] 100 {0;1;1.75)  {0;5;10}.1073 2000
4 +00 (0) ka(qe(1) [0,1] 100 {0:1;1.75)  {0:5;10}.1073 2000

Table 2: Different cases tested from 1 to 4
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4.1. Automous dynamical system (cases 1 and 2)

In this first part of this study, link (r; — ) is blocked. Mathematically, this implies that the dynamic system S?"" =
(X CR,T,¢) he"") is autonomous. In fact, time ¢ and, more precisely, w, ¢, does not appear explicitly in the vector
field G. It is thus possible to find, for each set of variable parameters WeR kel p» an associated fixed point
denoted Xf. This is a sliding static equilibrium state, as the rotor disc r; is always considered in rotation and there
is always friction at interface (s, — 7). For a dynamic system whose flow @?¢" is implicitly defined by a system of
nonlinear differential equations, this consists of writing for each set of parameters:

VkeI, Xf=0 = GX:,WH=0 )

e

Using the Newton-Raphson method, it is possible to construct a sequence (Yik)ieN(Y;‘ — X ;‘) for each set of parame-

1—00

ters k € 7 ,,. This sequence is defined by the following recurrence relation:
kK _ yk Ky yk)\ ! k wk
Y, =Y+ (1 (6. Wh) T GarE wh
Vke I, VieN ok (x,0) = p Al (x,1) Vx €T (1) (10)

ok (x,0) = sy, ok (2 D € (2 1) Vx €T ()

The stability of each fixed point X Zf , Yk € T, is achieved by building the Jacobian matrix denoted A¥ coming from
the limited development to the first order of the vector field G around the fixed point X f . By using the finite difference
method, the Jacobian matrix is approximated for each set of parameters, k € 1, as follows:

_ G(X*,Wk+5X*)-G(Xk, Wk
k= (x: ”2 (x: ) oXF— 0 Vker, (11)
5X

Then, in order to find out the behavior of the system and in particular the vibratory amplitudes, temporal integrations
of the differential equations system from many fixed point must be carried out. For this, a discretization of set T
into N equal parts of length 4 € R allows the construction of a sequence (f,,)ne[ , I, ={0;2;--- ;N} ¢ N. Finally,
the integrations are carried out with the Runge-Kutta 4 scheme. This allows the construction of a second sequence
denoted (f(,,)neL (where X,=X (t,)) whose recurrence relation is as follows:

X1 = H¥X,,n) Vnel, (12)

with:

- - A[ - Tn+1 -
o HRK . x5 7, — R (X, n) — X, + < (ky +2ky +2ks + kg) ~ X, + f G(X,,1,) dt, the Runge-Kutta
by
4 application where At = t,,; — t, is the time step coming from of recurrence relation associated with the se-

quence (t ,,)ne 7

e ki = G(X,,1,), the slope at the start of the interval.

® ky=G(X,+ % ki, t, + %t), the slope in the middle of the interval obtained with k;.

® k3=G(X,+ % ka, t, + %t), the slope in the middle of the interval obtained with k;.

o k4= G(X',, + At k3, t, + At), the slope at the end of the interval.

In this first case, the locking of the displacement of stator s, following the direction z’ corresponds to the null gap at
interface (s; — s2). The parametric study associated with this first case is greatly simplified. Indeed, it consists in the
first place in determining the fixed point associated with each set of parameters k, k € 1 ,,. Then the stability of each

8
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fixed point is studied. Finally, temporal integrations initiated from the calculated fixed points are carried out.

The first influence studied is associated with parameter d corresponding to the center distance following direction y
between rotor disc r; and stator disc s;. In a first phase, the fixed points of the dynamical system SP*" are determined
for each parameter set k € 1. Figure (2) shows the evolutions of each component of fixed point X, with respect to
friction coefficient u,,_,,, for a force F,,, = 2000 N, a rotor velocity rotation w, = 100 rad/s and three values of
the center distance d (0, 5.1073 and 5.1073 m). Generally, the increase in the center distance parameter d induces an
increase in the bending at the end of the beam (point O,) following direction z, as shown by the generalized coordi-
nates q;q. For the bending following direction y (generalized coordinate qfq), the behavior is the same until friction
coeffcient y,,_,, reaches 0.5, then the bending decreases. The associated levels remain low (maximum 5 107° m),
which allows one to conclude that the center distance parameters have very little influence on the fixed point of the
dynamic system S”"“", Next, it is the stability of the fixed points calculated previously which is analyzed. Figure (3)
shows the evolution of real part Re(1) (a) and eigenfrequency f = I';—(zf) (b) with respect to friction coefficient pg,—,,
at interface (s, — ;) for an exterior force F,,; = 2000 N, a rotor velocity rotation w, = 100 rad/s and for three angles
B (0, 1 and 1.75 °). For an angle 8 = 0, the real part of each eigenvalue A is null before the bifurcation point (black
point in figure (3 (a)). This is a Hopf bifurcation of fixed point and of codimension 1. Indeed, only the variation in
friction coefficient uj,_,, allows this bifurcation. It corresponds to the coalescence of two bending modes of the beam
following directions y and z, as observed in figure 3 (b). The center distance d has very little influence on the value
of friction coefficient ug,—,, allowing the bifurcation. In the third phase, temporal integrations are realized with the
Runge-Kutta 4 scheme from three fixed points, as represented in figure (4). The center distance also has very little
influence on the dynamic behavior, especially the levels of limit cycles. This non-influence of the center distance on
the stability and the dynamics initially stems from the value of the parameter d, which must be realistic. Moreover,
with these values of d, the tangential stress field o, at the interface (s, — r;), changes little.

The second influence is studied with parameter S, corresponding to the inclination angle of rotor disc r; around direc-
tion z. As previously, calculations of fixed points, a stability analysis of these fixed points and temporal integrations
are done. Figures (5) and (6) show the same evolutions as previously, but for three values of angle 8: 0, 1 and 1.75
°. For B = 0, the bifurcation point is the same as previously. Neverthless, with higher values of 8 (1 and 1.75 °),
changes in fixed points are significant and the Hopf bifurcation appears for higher values of y;,_,, (about uy,_,, = 0.2
for # = 1 and p,_,, = 0.4 for B = 1.75). Moreover, the coalescence of frequencies (bending mode of the beam)
observed with 8 = 0 no longer appears for an inclination angle § different from zero; however whirl instability is
always present. The decrease of the eigenfrequencies is due to the inclination angle 3 of the rotor disc r; other than
zero which generates a more or less large separation on an associated part of the interface (s, — ;). Consequently, the
overall normal force decreases, which induces a decrease of the generalized forces Q;(¢) and Q,(¢). By carrying out
the limited development of these two forces generalized around each fixed point X f (corresponding to each coefficient
of friction us,—,,) at the first order, the coefficients (corresponding to stiffness) of the monomials associated with the
generalized coordinates ¢ (f) and g»(t), are weaker than in the case where 8 = 0. This reduction has a direct impact on
the eigenfrequencies. Concerning the loss of coalescence of the proper frequencies, this is due to the gyroscopic terms
corresponding to those of the monomials associated with the generalized coordinates ¢;(¢) and ¢,(¢). In conclusion,
the decrease in eigenfrequencies with the inclination angle 8 and the loss of coalescence demonstrate the importance
of taking this geometric imperfection into account in the model. In figure (7), the temporal integrations initiated from
three fixed points are presented for a friction coefficient p,,_,, = 0.4. An influence of the inclination angle 8 on the
levels of the limit cycles can be observed. In fact, the maximum amplitude of the limit cycle decreases when angle
B increases, as observed for angles § = 0 and 8 = 1 in figure (7). This is due to the inclination which increases
the pressure (normal stress o,(x,t)) at each point of the part of the interface fi{ (#) in contact with the rotor disc r,
and consequently the friction stress o(x, ¢). Finally, in the first order, a damping appears as shown in figure (6) and
increases with the angle of inclination 8. In addition, this friction has the effect of limiting the levels as shown in
figure (7).
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Figure 2: Evolution of fixed points X, of dynamical system S with respect to friction coefficient u 5,-r, for case 1 (k; — +oo, kp — +oo,
w, = 100 rad/s, Foy; = 2000N), an angle 8 = 0 and 3 values of the center distance d (d = 0, 5.107 and 10.10~3 m). (a) Generalized coordinate
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Figure 3: Evolution of eigenvalues A with respect to friction coefficient u,,, for case 1 (k; — +o0, ki — +00, w, = 100 rad/s, Fexy = 2000N), an

angle 8 = 0 and 3 values of the center distance d (d = 0, 5.1073 and 10.1073 m). (a) Real part of eigenvalues Re(1). (b) Eigenfrequencies f =
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Figure 5: Evolution of fixed points X, of dynamical system Srheno with respect to friction coefficient uy,_,, for case 1 (kj — +o0, kp — +oo,
= 100 rad/s, Feyy = 2000N), a center distance d = 0 and 3 values of angle 8 (8 = 0, 1 and 1.75 °). (a) Generalized coordinate qi{’. (b)

Generalized coordinate g5’
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Figure 6: Evolution of eigenvalues A with respect to friction coefficient uy,,, for case 1 (k; — +o0, kp — +o00, w, = 100 rad/s, F,y = 2000N), a

center distance d = 0 and 3 values of the angle 8 (8 = 0, 1 and 1.75 °). (a) Real part of eigenvalues Re(1). (b) Eigenfrequencies f =
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Figure 7: Temporal evolution of the dynamical system state X for case 1 (k; — 400, ko — 400, w, = 100 rad/s, F.x; = 2000N), a center distance
d =0 and 3 values of angle 8 (8 = 0, 1 and 1.75 °). (a) Generalized coordinate g (¢). (b) Generalized coordinate g2 (?).

In this second case, link (s; — s7) is unblocked and the value of the linear part of stiffness k; is fixed at 2.10° N/m. As
explained previously, this is a simplification of the modeling of the phenomena at interface (s; — s,) which accounts
for both contact and friction in direction y’. Moreover and for the reasons mentioned previously, blocking link (r; —r2)

(g6(t) = 0) simplifies the vector’s field expression G.

In the first phase, the fixed points are determined for each value of inclination angle 8 (0, 1 and 1.75 °). The values of

12
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the other parameters are the same as in case 1, namely F,,; = 2000 and w, = 100 rad/s. The fixed points are plotted in
figure (8) with respect to friction coefficient y,_,,. For the generalized coordinates qfq and ng, there is no difference
with case 1, namely the increase of the amplitude when the coefficient of friction increases. For ng, the observation
is the same as for ¢| and ¢5". This is normal because there is gap j; in the link (s, — s,) and therefore the disc stator
sy can move relatively to s;. In the second phase, the stability of each fixed point is studied. The evolutions of the
real and imaginary parts (eigenfrequencies f = L

’21(]:1)) of the eigenvalues with respect to friction coefficient u,_,, at
interface (s, — r) are plotted in figure (9). The first observation is a shift of the bifurcation point compared to case
1. Indeed, for § = 0, the value of u,,_,, inducing a Hopf bifurcation is about 0.3. This value is about 0.1 when
ki — 400 (g5(1) = 0 ,t € T) (case 1). For the other values, the observation is the same, and for 8 = 1.75, there is
no bifurcation point before u,,_,, = 1. This shift can be explained physically by the sliding of stator disc s, limiting
the transmission force to beam b and consequently the bending of the latter in direction z. In addition and unlike
case 1, there is also no coalescence for a zero angle 8. As for the inclination, this difference is directly linked to the
unblocked link (s — 1 — s,) which reveals gyroscopic terms (first order monomials in ¢; () and ¢»(¢)) despite a zero
tilt angle 8. Finally, the translation mode of stator disc s, is visible in figure (9) and as for the case 1, the associated
eigenfrequency is higher for an angle g that is null. In the last phase, temporal integrations are performed from the
fixed points for a friction coefficient p,,_,, = 0.6 and the evolutions of each generalized coordinate are plotted in
figure (10). These evolutions show as for the case 1, that the amplitudes of the limit cycles tend to be smaller when
inclination angle S increases.

%107 (@) 0 x10™ (b)
— 27 — —pB=0°
B e, ——
g1 S
o o _10 L 1 ﬂ: 1.75°
O L
0 0.5 1 0 0.5 1
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E 10 ] k2ﬁ+oo(q6:0)
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o F_ =2000N
0
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Figure 8: Evolution of fixed points X, of dynamical system Spheno wwith respect to friction coefficient uy,,, for case 2 (kj — +o0, kp — +oo,
w, = 100 rad/s, Foy = 2000N), a center distance d = 0 and 3 values of angle 8 (8 = 0, 1 and 1.75 °). (a) Generalized coordinate q‘;q. (b)

Generalized coordinate ¢57. (c) Generalized coordinate g5’
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Figure 9: Evolution of eigenvalues A with respect to friction coefficient uy,,, for case 2 (k; — +o0, kp — +o00, w, = 100 rad/s, F,; = 2000N), a
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Figure 10: Temporal evolution of the dynamical system state X for case 2 (k; — +o0, kp — +00, w, = 100 rad/s, Fey =
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4.2. Forced dynamical system (case 3 and 4)

In this second part of the parametric study, link (r; — r,) is unblocked. The existence of a gap j, in the link induces
new phenomena, as explained previously. The gap in link (r; — r;) coupled with the friction and the rotation of rotor
disc r causes a periodic osicllation of the r, part of the rotor. To be convinced of this, it is important to note that
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inclination angle § of rotor disc r induces a non-homogeneous distribution of the pressure at interface (s, — r2), which
is invariant in time ¢ € T. Moreover, the tangential stress field o, (friction due to the permanent rotation velocity w,)
is also invariant in time ¢ € T. An inclination angle 3 of rotor disc r around direction z gives rise to a greater pressure
on the upper part of interface (s, — r;) than the lower part. A sliding of stator disc s, occurs naturally in direction z’.
As rotor disc 7 turns, this slip of s, is periodic. For rotor disc r,, the slip phenomenon also appears but the oscillation
period is that of the rotor disc, denoted 7, = 5, while for s, the period is divided by two. The important point to
remember is that without the existence of a gap in link (r; — ,), these phenomena of periodic slips cannot appear. In
order to confirm these explanations, cases 3 and 4 are presented and compared to cases 1 and 2. Consequently, the
dynamic system SP*"° becomes non-autonomous (explicit time dependence) and a periodic excitation takes place.
The vector field G thus becomes T,-periodic. When the system is periodically excited, the determination of fixed
points and their associated stability analyses are replaced by calculations of periodic orbits (via temporal integrations)
as well as of orbital stability. For the stability, the Monodromy matrix, denoted My, associated with each parameter
set k, k € T, must be built in the following way:

Let gPheme - T x X — X, (1, Xy) — gaf heno( X,), the flow of dynamical system SPhmo = (X, T, <pf he"") implicitly
defined by the nonlinear differential equations system given by expression (8). The Monodromy matrix serves to
analyze the variations of the solution for a period T following a variation of the initial condition. Therefore, tak-
ing t — ‘Pf heno X"y (respectively ¢ — gof heno (X" + 6Xy)), the periodic solution having as initial condition Xo*
(respectively Xo" + 6Xp), the temporal evolution of the gap between two solutions is given by:

SX(1) = @™ (Xy" + 6X0) — ¢} "' (Xy"), Vi €T (13)
After a period T' € T such that X(¢ + T) = X(¢), the gap is written:

#*

) (14)

By performing a limited development at the first order around an initial condition X,", we get:

SX(T) = @I (Xy" + 8Xo) — 1" (X

pheno *

(4
5X(T) = T T X, + 0(16Xol’) (15)
0

0X

The set of trajectory variations between two trajectories at t = T is given by the Monodromy matrix My, as follows:

0¢;hena(X0*)
Mcycle =——Fv € MIO,IO(R) (]6)
02Xy

The spectrum sp(M_ycle) of matrix My is obtained by finding the zeros of the characteristic polynomial written as
follows:
det(Mcycle -yD=0 amn

with:
e y € C, an eigenvalue of matrix Mycfe.

In practice, the solution associated with a given initial condition comes from the scheme of Runge -Kutta 4. Conse-
quently, it is an approximate solution inducing a dynamic system at a dicrete time denoted S = {X, 7, ¢f:he"”} whose
flow gPheno - X x T, — R0, (Xy, 1,,) —> HFK« o gRKs ... o gRK (X 1) comes from the recurrence relation (12).

nonce
Ultimately, the associated Monodromy matrix is expressed as follows:

a¢’1’v’:””"(xo* + 6Xp)
X,

Meyere = € My, 10(R) (18)

with:
15
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N NC — min ({I’l c I; | ¢1p;]heno(X0*) _ ¢0phen0(X0*)}) e N.

Numerically, the previous matrix is determined using the finite difference.

In case 3, link (s; — s7) is blocked and (r; — r,) is unblocked. As for the previous cases (case 1 and case 2) and in
order to simplify the modeling of the phenomena, a nonlinear stiffness k, is used to model the contact with friction at
interface (r; — ;). In these two previous cases, rotation angle 6,(f) has no influence on the dynamics of the system.
Indeed, the blocking of link (r; — r,) induces a simplification of the expression of vector field G, removing the terms
depending on rotation angle w,. Unlike the two previous cases, the calculation of fixed points is no longer possible
given the explicit dependence of time ¢ € T, because of the presence of rotation angle 6,(¢) in the expression of
vector field G. It is thus essential to carry out periodic orbital stability studies for each set of parameters k € I,. In
order to be able to compare the studies and in particular that relating to the stability and the bifurcation point, fixed
point calculations and their stability analyses are carried out. This amounts to forcing and considering that rotation
angle 6,(¢) is zero for all of time ¢ € T. This is an important comparison, given that this rotation angle 6,(¢) is often
overlooked in studies of mechanical systems exhibiting friction-induced vibrations. Indeed, this simplification may be
desired in order to simplify the modeling and calculation time. But it can also be unwanted and in this case, important
associated phenomena are not modeled.
In a first phase, rotation angle 6,(¢) is forced at zero (6,(¢) = 0, ¥Vt € T). Figure (11) shows the evolutions of the fixed
points of the autonomous dynamic system S”"° with respect to friction coefficient y;,,,. No difference compared to
cases 1 and 2 is observed. Then, the stability analyses of the calculated fixed points are performed and the evolutions
of the real and imaginary parts (eigenfrequencies f = Im(’l)) of the eigenvalues with respect to friction coefficient
Us,—r, at interface (s, — ry) are plotted in figure (12). The ﬁrst difference with cases 1 and 2 concerns the bifurcation
points for § = 1° and 8 = 1.75°, which have decreased overall. Moreover, the translation mode of stator s, does not
appear, which makes sense given that link (s; — s,) is blocked. Finally, the temporal integrations initiated from three
points associated with three inclination angles 8 (0, 1 and 1.75 °) are represented in figure (13) for a coefficient of
friction p,,_,,. When the rotation angle is null, the Whirl mode appears for each inclination angle £.
In a second phase, the system is forced (6,(f) = wt, ¥t € T). The same temporal integrations as previously are carried
out and the temporal evolutions of generalized coordinates are presented in figure (14). The major difference with the
case where rotation angle 6,(¢) is forced at zero is that a Whirl mode no longer appears for an angle 8 of 1.75°. In
addition, the levels of the limit cycles are lower and it is possible to distinguish a frequency associated with rotation
angle 6,(¢) in the temporal evolution of the generalized coordinate g¢(¢). For the generalized coordinates ¢, (¢) and g,(?),
the same frequency is observed but is multiplied by two. When the angle of rotation 6,(¢) of the rotor r; is 7+e€m, € € Z,
the rotor disc r», which moves in the direction z” of the cartesian coordinate system R, = (03(l), e;' 0, e;‘ ), e;‘ (t))
describes an elliptical trajectory in the global cartesian coordinate system Ry = (O, ej, e3,e3). This closed cycle is
performed twice when the rotor r; has turned one revolution (6,(f) = 2 ). At each half-turn and through the contact
with friction at the interface s, — r,, the movement of the rotor r; is transmitted to the stator s, which transmits it to
51 then to the beam b. A cycle of period Z- can be observed through the generalized coordinates ¢ (f) and ¢»(#). This
means that taking into account the dlfference J» in the link (7] — ;) (movement of the rotor discs r, radially), is very
important. An orbital stability study is then carried out by varying the friction coefficient yj,—,, in a range from 0 to
1. The Monodromy matrix is calculated for this same range and the eigenvalues are plotted in the complex plane, as
shown in figure (15). The transervation of the visible unit circle 7' corresponds to the bifurcation of Neimark-Saker
or secondary Hopf. Figure (16) (respectively (17)) shows the temporal evolutions of the generalized coordinates for a
value of the friction coefficient located before (resepctively after) the critical value inducing a bifurcation: y,,_,, = 0.1
(respectively u,,—,, = 0.3). Before the bifurcation, a limit cycle with a frequency corresponding to the rotation of
the rotor disc 7y, is visible for each generalized coordinate ¢;(¢), i = {1;2;6}. The frequency associated with g¢(?)
corresponds to the frequency rotation of r; and those of ¢,(¢) and ¢»(¢) at half this frequency. This observation was
justified previously. After the bifurcation, the amplitudes associated with Whirl instability appear around the cycle
associated with the rotor rotation and are visible on each temporal evolution of the generalized coordinates g;(?),
= {1;2;6}. The value of uj,_,,, for which the system presents a Hopf bifurcation, is clearly visible in figure (15)
(about 0.2). Consequently, for an inclination angle 8 = 1°, a small difference appears in the limit cycle amplitude
(figure (2) between the autonomous and forced systems, but the bifurcation occurs for the same coefficient of friction
(about 0.2), as shown in figures (12) and (15). Finally, the same analyses are performed with an angle 8 of 1.75° and
16
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presented in figures (18), (19) and (20). With an angle 8 = 1.75°, the critical friction coefficient u determined by fixed
point stability analysis (rotation angle 6, forced at zero) is different from that determined by a orbital stability analysis
(rotation of the rotor disc 6, = w, t, t € T) and is about 0.65 instead of 0.45. The observations that can be made on
the figures (19) and (20) are the same as for an inclination angle 8 of 1 °. Nevertheless, a small difference appears on
the temporal evolutions of the generalized coordinates after bifurcation. Indeed , the instability is less visible on g¢(?)

and the amplitudes of g;(¢) and g,(¢) are greater.

x107 (@) o 10 (b)
’g 2 [ Fg* _ﬂ:O °
= = 5 /’/\ —p=1°
g1 g §
< S 01 B=1.75°
() .
0 0.5 1 0 0.5 1
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X lO'4 (c) d=0m
0 k, = + 00 (q=0)
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o O
= 10 F_ =2000N
0 0.5 1
'us -r
2

Figure 11: Evolution of fixed points X, of dynamical system SP""® with respect to friction coefficient Hs,-r, for case 3 (k; — +oo, kp — +oo,
w, = 100 rad/s, F.x; = 2000N), a center distance d; = 0 and 3 values of angle 8 (8 = 0, 1 and 1.75 °). (a) Generalized coordinate q‘;q. (b)

Generalized coordinate ¢5. (c) Generalized coordinate g¢’.
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Figure 14: Temporal evolution of the dynamical system state X for case 3 (k; — +c0, ko — +c0, w, = 100 rad/s, F.x; = 2000N), a center distance
d; = 0, 3 values of angle B (8 = 0, 1 and 1.75 °) and with rotor disc rotation (6,(f) = w,t). (a) Generalized coordinate ¢; (7). (b) Generalized

coordinate ¢g2(#). (c) Generalized coordinate g¢(f).
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Figure 16: Temporal evolution of the dynamical system state X for case 3 (k; — +o0, kp — +00, w, = 100 rad/s, F.y; = 2000N), a center distance
dy = 0, an angle 8 = 1°, a friction coefficient rank (u,,-,, € {0;0.02;...;1}) and with rotor disc rotation (6,(f) = w, t). (a) Generalized coordinate
q1(1). (b) Generalized coordinate ¢»(f). (c) Generalized coordinate g¢(?).
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Figure 17: Temporal evolution of the dynamical system state X for case 3 (k; — +o0, k — 400, w, = 100 rad/s, F.y; = 2000N), a center distance
dy = 0, an angle 8 = 1°, a friction coefficient rank (u,-», € {0;0.02;...;1}) and with rotor disc rotation (6,(f) = w, t). (a) Generalized coordinate
q1(?). (b) Generalized coordinate g»(7). (c) Generalized coordinate g¢(?).
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Figure 18: Evolution of Monodromy matrix eigenvalues in the complex plane with respect to friction coefficient (us,—r, € {0;0.02;...; 1}) for case
3 (ky — +o0, ky — +00, w, = 100 rad/s, F,y; = 2000N), a center distance d; = 0, an angle 8 = 1.75°. (a) Eigenvalues of Mcyce. (b) Period 7' of
generalized coordinate g (¢). (c) Period T, of generalized coordinate ¢»(¢). (d) Period T, of generalized coordinate ge(?).
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Figure 19: Temporal evolution of the dynamical system state X for case 3 (k; — +o0, kp — 400, w, = 100 rad/s, F.y; = 2000N), a center distance
dy =0, an angle 8 = 1.75°, a friction coefficient rank (uy,—,, € {0;0.02; ...; 1}) and with rotor disc rotation (6,(f) = w; t). (a) Generalized coordinate
q1(t). (b) Generalized coordinate ¢»(f). (c) Generalized coordinate g¢ (7).
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Figure 20: Temporal evolution of the dynamical system state X for case 3 (k; — +o0, k — +00, w, = 100 rad/s, F.y; = 2000N), a center distance
dy =0, an angle 8 = 1.75°, a friction coefficient rank (uy,—,, € {0;0.02;...; 1}) and with rotor disc rotation (6,(f) = w; t). (a) Generalized coordinate
q1(1). (b) Generalized coordinate ¢»(f). (c) Generalized coordinate g¢(?).

In case 4, in addition to unblocking link (s; — s;), link (r; — r;) is unblocked. For the same reasons mentioned in
case 3, the search for a fixed point for a non-autonomous dynamical system makes no sense. This is a forced dynamic
system whose forcing corresponds to rotation angle 6,(¢) of rotor disc r;.

As for the previous case, in a first phase, rotation angle 6,(¢) is forced to zero for each time ¢ € T. This allows one to
make a comparison with the case where the system is forced. The calculations of fixed points and the analysis of their
stability are done with the same values of parameters as in the previous case and are presented in figures (21) and (22).
Concerning the evolution of the fixed points, there is no difference with the previous cases and in particular cases 2
and 3 which respectively contain link (s; — s3) and (r; — ;) unblocked. For the stability study, the first difference with
case 3 concerns the bifurcation points for angles § = 1 and = 1.75°, which are greater. Moreover, a coalescence of
eigenfrequencies appears for an angle 8 = 1°. Finally, the translation mode of rotor disc r; is visible in figure (22) and
the associated frequencies are lower than those associated with the translation mode of stator disc s,. The temporal
integrations represented in figure (23) are performede with a friction coefficient p,,_,, = 0.5. The observations are
similar to those in the previous case, i.e., the levels of the limit cycles are lower when angle £ is large.

In a second phase, rotation angle 6,(¢) of rotor disc r; is no longer forced to zero. Figure (24) shows the temporal
evolution of each generalized coordinate in the case where the dynamical system is forced. A first important difference
appears concerning the rotor rotation, which is visible for the generalized coordinate g¢(f) where angle S is null. This
rotor rotation is also visible on the generalized coordinates ¢;(¢) and g,(#), but it is multiplied by two. Moreover,
unlike in case 3 where the system is forced, the whirl mode which appears for an angle 8 = 1 no longer appears,
as the figures show (23) and (24). It would therefore seem that the bifurcation point for the parameters considered
(here uy,—,,) is no longer the same when the system is forced. To verify these observations, an orbital stability study
is carried out by changing the friction coefficient y,,_,, and for the same values of the other parameters. Figure (25)
presents the values of the Monodromy matrix for each coefficient of friction y;,—,, in a range from O to 1. The crossing
of the unit circle C for conjugated complex values (for 4 = 0.6) indicates that it is a secondary Hopf bifurcation or
a Neimark-Saker, as in case 3. This bifurcation is of codimension 1, given that it can appear by having only friction
coefficient y,_,, vary. Figure (26) (respectively (27)) presents the temporal evolutions of the generalized coordinates
for a value of friction coefficient uy,_,, located before (respectvively after) the critical value (about 0.6) for which the
dynamic system S presents a Neimark-Sacker bifurcation. These temporal integrations are initiated from fixed
points associated with the load of rotor disc F,,;,for an angle 8 = 1 and for a rotation angle 64(¢) of rotor disc r; which
is null. In conclusion, the system presents a bifurcation for a value of y,_,, around 0.6. There is thus a difference of
0.2 compared to the p,,_,, of 0.4 in the case where rotation angle 64(¢) is fixed to zero. The difference in the critical

22
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coeflicient of friction y,_,, between the cases with and without rotation shows that with the existence of this closed
cycle, classical studies of fixed point stability no longer make sense and must be replaced by studies of orbital stability.
Indeed, these studies will be over-predictive and the mechanical systems studied will be oversized.
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Figure 25: Evolution of Monodromy matrix eigenvalues in the complex plane with respect to friction coefficient (us,—r, € {0;0.02;...; 1}) for case
4 (ki = +00, ky — +00, w, = 100 rad/s, F; = 2000N), a center distance d; = 0, an angle 8 = 1°. (a) Eigenvalues of M¢ycr. (b) Period
T, of generalized coordinate g (¢). (c) Period T, of generalized coordinate g>(¢). (d) Period T, of generalized coordinate gs5(f). (e) Period T, of
generalized coordinate g¢(?).
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Figure 26: Temporal evolution of the dynamical system state X for case 4 (k; — +o0, kp — 400, w, = 100 rad/s, F.; = 2000N), a center distance
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Figure 27: Temporal evolution of the dynamical system state X for case 4 (k; — +o0, k — +00, w, = 100 rad/s, F.y; = 2000N), a center distance
dy = 0, an angle 8 = 1°, a friction coefficient rank (u,,-,, € {0;0.02;...;1}) and with rotor disc rotation (6,(f) = w, t). (a) Generalized coordinate
q1(1). (b) Generalized coordinate ¢2(f). (c) Generalized coordinate g5(#). (d) Generalized coordinate g(%).

5. Conclusion

The main objective of this paper was to study the influence of three geometrical imperfections on the stability and
the behavior of a phenomenological model describing the generalized design of many mechanical systems. These
are mainly mechanical systems composed of two parts (stationary and rotating) and exhibiting vibratory instabilities
induced by friction. The first imperfection studied is the gaps j; and j, located in the links serving to connect the
rotor and stator discs to the structure of the studied system. In the model presented, only radial gaps are modeled
(links (s; — s2) and (r; — r2)). The second imperfection is a center distance d between the axis of the stationary part
(first part s; of stator disc s) and that of the rotating part (first part r; of rotor disc r). The thrid imperfection is an
inclination of the rotating part (rotor disc 7) by an inclination angle called .

Firstly, the mechanical problem and associated hypotheses were presented in their entirety. Next, the equations of
motion were written by means of a Lagrangian approach including a Rayleigh-Ritz method for the spatial discretization
of the beam. All developments and simplifications of the equations are detailed in Annexes A and B. Among these
simplications, the contacts with friction at interfaces (s; — s2) and (r; — r,) were simplified by means of two nonlinear
laws described in Annex B.

Secondly, a parametric study was carried out to analyze the influence of imperfections on the stability and the dynamic
behavior of the system. Since there is a large difference in unstable behaviors between a gap located at link (s; — s7)
and a gap located at link (r; — r3), this study was divided into two parts, each comprising two cases. In the first part,
cases 1 and 2 were studied, and for each, link (r; — r,) is always considered blocked. Consequently, the dynamic
system is not forced and the stability analyses could be done by analyzing the fixed points. In conclusion to this first
part of the study, the center distance d has very little influence on the stability of fixed points but it would have an
influence if there were very high values which have little physical meaning. The temporal integrations initiated from
these fixed points also showed a very slight influence of the center distance parameter on the dynamic behavior, in
particular the amplitudes of the limit cycles. Nevetheless, the inclination angle 8 has a strong influence on the fixed
points and their stability. The values of friction coeffcient u;, ,, for which dynamic system SP*" presents a Hopf
bifurcation are globally weaker when link (s; — s7) is blocked. Finally, the amplitudes of the limit cycles are lower
with an increase in angle . In the second part, cases 3 and 4 were studied, and for each, link (r; — r,) is unblocked.
Therefore, given that the system becomes non-autonomous, stability analyses were carried out on periodic orbits by
constructing, for several values of the coefficient of friction p,_,,, the associated Monodromy matrix. The period of
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these orbits corresponds to that of rotor disc r;. However, in order to compare these orbital stability analyses, fixed
point studies, which don’t take into account the rotation effect were also performed. The main observation concerns
large differences in the values of critical friction coefficient u;,_,,, which were found between the fixed point and
orbital stability analyses. In particular, it clearly appears that the gap in the links coupled with the inclination of
the rotating part (rotor disc r) is responsible for these differences. This is an interesting result, demonstrating the
importance of modeling these phenomena even if calculation times increase and stability analyses are more technical
to perform.

Annexe A: Expressions of kinetic and potential energies

For any time t € T = [0, #,,4,], the expressions of the kinetic and potential energies of the beam are denoted 7z, (f)
and V,(¢). They are associated with the movement of bending following directions y and z and are expressed in the
reference inertial frame R thanks to the cartesian coordinate system Ry:

. T (x t) 1, 3. pL ) )
T,Ro(t)zipZI,f —x dx+3pS Zf (u,/ko(x,t)) dx
i=2
1(4p L 1 (4p L
VteT, = -2+ 258 6,2 Z === St 6,2t (A.1)
2[3L+5’0 )611()+2(3L+SP g27(0)
3 2..b
0~ui (x, 1) 14 1 4 2GC
(V’/’R(,(t)— Z f ( = )dx 3T —LEgq 2(z)+2L3 Iquz(t)+ - — ¢
i=2
with:

o S? = b h, the beam section.

o b= fsb 22dS, = % (respectively /2 = fsb y?dSy = %), the area moment of inertia ofhe beam b around
direction y (respectively direction z).

The kinetic energies of stator discs s; et s, are due to the bendings of the beam in directions y and z. The potential
energy of each disc is always zero given that they are supposed to be undeformable. Rotor discs r; andt r, only
have the possibility of moving in axial direction x. For any time ¢ € T, the expressions of the kinetic and potential
energies associated with the stator and rotor discs are denoted 7, /g, (£), T s,/r, (1), T+ /-, (1) and T, ,r, (). They are also
expressed in the reference inertial frame R thanks to the cartesian coordinate system Ry:

3

3
s s [0 (x0,, D)% 1 ) , 2
T gD = pe Z[ ! (+ + EpeS‘ Z (u?(x()l,t)/qe“)

i=2

1 s dpel?\ 1 dpel} .
=5 pSte+ Lz*)q12<r)+5[psse+ o |a’0
Ve, IS (00X Dim, ). T 2 (A2)
Ti®=5pe 217 (— o ")+§peS“Z(u;.”(xoz,t)m,)
i=2 =2
T (1) = 2 pes” (il P L pes, ap
k(0= 5peS” (i (o 0ym) = 5peS,45(0)
o3 1 r P ) 2
T = 5 peS” (il (xo,.1)z,)

with:
o §% = ﬂR?, the section of the stator discs s; and s,.

o 5= [ 2dS, =" (respectively I{ = [ )*dS, = &), th t of inertia of stator di d
5 = Jg 7 dSy = = (respectively I3 = | y~dS = =), the area moment of inertia of stator disc s; and s,
around direction y (respectively direction z).
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Annexe B: Expressions of generalized forces

Interface (s, — r2) composed of A;, and A,,, presents a contact with friction. In this model and taking into account the
freedoms of each disc, it seems judicious that boundary A, of rotor disc s, is better suited to being master. Indeed,
rotor disc s is less free to move (only in axial direction x). For each point M € A;, positioned in x(?) € Fﬁf (2), the

C.

nearest geometric point M € A,, positioned in ¥(f) € F,f (#) must be sought. Mathematically, this consists of solving
the following optimization problem:

.1 1 c
% = argmin{zllx - yIF} = Au, (1) = min{Zle - yIF) Vx eI (B.1)
yerl yer
For each point M € A,, of stator disc s, positioned in x € l“f{ (¢) in the actual configuration, Signorini and Coulomb
conditions are expressed in the basic 84 = (e;Z(t), e;2 @), egz(t)) as follows:
- o-n(x, t) € a'//]R* (Aun(xa t))

* . B.2
—oy(x,0) € al//D(.uvzfrz a(x,0) (Atis(x, 1)) B-2)

Vx el () Vi e ’]I‘,{

with:

o Au,(x,1) = (U™ (xo,,1) —u?(x0,,1) + 0™ (x0,,1) A (X — x0,) — 6°*(x0,,1) A (x — xoz))~—e;’(t) (respectively Aut,(x, f) =

(z’t’z(x04, 1) —u*(xg,, 1) + o (x0,, D) N (X —x0,) — 9s2(x02, HA(x- xoz)) . —eff(x, 1)), the normal relative dis-

placement following the vector —eiz (7) (respectively the tangential relative velocity following vector —e:f (x,1)).
Attg(x,t

° ejf(x’ t) = M

U A e 0l
basic Bj4.

the friction direction in each point M positionned in x(t) € I“i[ () is expressed in the

o 0, (x,1) (respectively o(x, 1)), the normal stress or pressure following vector —e;’(t) (respectively the tangential

stress of interface A, on interface A,, following vector —ef’cf (1)).

e Oyp-+ (respectively 8(//1)%2_,_2 o> the sub-differential of Y+ : R — R (respectively of YDy, -1y e
R? — R), the indicator function of R* (respectively of D(uy,—,, 0,(x,1))). For a convex set K, Y is defined

as follows:
0si xekK

+o00 si x¢ K (B-3)

Yr(x) = {

® D(ig,—y, on(x,1)) = {at(x, 1) € R?, o¢(x, 1) < Msy—r, On(X, t)}, the feasible set of tangential stress o7¢(x, 7).

It is also necessary to specify that as for the reference [40, 41], the contact and the friction are simplified at interface
(82 — r2). The main goal is to simplify the calculations which are detailed below. First of all, the contact is simplified
by regularizing the multivalued potential, which gives rise to the normal stress expressed as follows:

of 0 si Auy(x,t) >0
VieT Vx el (1), onlx,1)= (B.5)
: e Auy(x, 1), p.>0 else
Moreover, the tangential stresses and in particular the Coulomb law are simplified. The simplification allows one to
consider that there is always sliding at interface (s, — r2), which amounts to neglecting the phenomenon of adhe-
sion. Consequently, at any point the tangential stress is always located on the border of the cone of friction. These
considerations can be used to write:

VieT, o%(x.1) = py,-, ox.0e7 (x,1) Vx e T (1) (B.6)

Given that the normal stresses o,(x, ) are zero on the detached interface part whose associated surface is denoted
l"gf 2, it is sufficient to directly perform the integrations associated with the generalized forces on the part in contact.
Consequently, the expressions of the generalized forces at interface (s, — r,) are written:

28



OCoo~NOOTh~WwW

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

with:

® F-\‘1/S2 =

b Ffl/rz =

ou’'(xg,, 1)
s _ 1
0 (1) = ~Fp, = 2=
ou'*(xg,, 1) ou’2(x,1)
Q;z(t) = F'sl/szT2 j(t) + f ¢rz/sz(x t) q ds
} o
VieT Vjel{l;2;3;4:5), ! . : / (B.7)
. ou" (xg,, 1)
Qj 1=~ (Fn/rz + Fext) 0—q,
. ou(xg,,t ou” 2(Jc t)
sz(t) = Frl/rz—4 /(t) _f ¢rz/sz(x t)
0q; qj
o F, =—F,,e; € R3, the external forces vector.
® Po,ir (X, 1) = —Pry/s, (X, 1) = pe Auy(x,1) e;‘ + fsy—r, O(X, 1) e:f (x,7) € R3, the stress vector at the interface

(s2 = 12).
kigs@) if |gs(®)] < ji
(1.5.1021 (lgs)l - 1.5.10-3)4 +2.106) gs(t) else

sum of two contributions: the friction forces (if |gs| < j;) and the contact forces (if |gs| > j;).

—F, /s, the simplied force corresponding to the

ki gs(®) if |qe(Dl < j2
(1.5.1021 (g5l = 1.5.107)" + 2.10") qo(t) else

sum of two contributions: the friction forces (if |g¢| < j») and the contact forces (if |g¢| > j2).

—F,,/;,, the simplied force corresponding to the

° l_"f; = {x € l"ff | u,(x,t) > 0} ,¥t € T, the area of the interface attached. The search for this contact area is

fully detailed in [40, 41].
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e The modeling of geometric imperfections (gap, center
distance, inclination angle) in systems with self-sustaining
vibrations (system consists of a stationary part and a
rotating part with friction), shows an important influence on
the stability of the system.
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