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Classification based on homogeneous logical

proportions

Ronei M. Moraes, Liliane S. Machado, Henri Prade, and Gilles Richard

Abstract A classification method based on a measure of analogical dissimilarity

has been proposed some years ago by Laurent Miclet and his colleagues, which was

giving very good results. We restart this study on a slightly different basis. Instead

of estimating analogical dissimilarity, we use the logical definition of an analogical

proportion. We also consider other related logical proportions and their link with

analogical proportion. The paper reports on an ongoing work and contributes to a

comparative study of the logical proportions predictive accuracy on a set of standard

benchmarks coming from UCI repository. Logical proportions constitute an inter-

esting framework to deal with binary and/or nominal classification tasks without

introducing any metrics or numerical weights.

1 Introduction

In problem solving, analogical reasoning [3, 5] is often viewed as a way to enhance

reasoning processes by transferring conclusions observed in known situations to an

only partially known situation. A particular instance of this reasoning style is de-

rived from the notion of analogical proportion linking 4 situations or items a,b,c,d
and stating that a is to b as c is to d, often denoted a : b :: c : d. This statement

basically expresses that a differs from b as c differs from d and vice-versa. In a clas-

sification context where a,b,c are in a training set, i.e., their class cl(a),cl(b),cl(c)
are known, and d is a new object whose class is unknown, this analogical proportion

leads to a common sense inference rule which can be stated as:
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if a is to b as c is to d, then cl(a) is to cl(b) as cl(c) is to cl(d)

In [13, 2, 6], this inference principle has been deeply investigated on diverse

domains and even implemented, using a measure of analogical dissimilarity. More

precisely, when dealing with classification problems as in [6, 12], the items a,b,c,d
are generally represented as vectors of values. To fit with real life applications, the

previous inference rule has to be (in some sense) weakened into: if an analogical

proportion holds for a large number of properties between the four items, then an

analogical proportion should also hold for the class of these items.

In the last past years, a logical model of analogical proportions has been proposed

[7, 9, 10]. It has been shown that analogical proportions are a special case of so-

called logical proportions [8]. Roughly speaking, a logical proportion between four

terms a,b,c,d equates similarity or dissimilarity evaluations about the pair a,b with

similarity or dissimilarity evaluations about the pair c,d. Among the set of existing

logical proportions, four homogeneous ones (in the sense that they are equating

similarities with similarities, or dissimilarities with dissimilarities), including the

analogical proportion, enjoy remarkable properties and seem particularly attractive

for completing missing values [10].

This paper suggests to use diverse homogeneous proportions to implement what

could be called “logical proportion-based classifiers”. We make use of analogical

proportion, but also of the three other homogeneous proportions. The implemen-

tation provides good results and suggests that logical proportions offer a suitable

framework for classification tasks.

The paper is organized as follows. After a short background on Boolean analogi-

cal proportion and three related proportions in Section 2, we briefly recall in Section

3 the work of [2] and we describe the new algorithm we suggest. In Section 4, we

report experiments on datasets coming from the UCI. Our results are analyzed and

compared to those obtained in [2]. We conclude in Section 5.

2 Logical proportions: a short background

A logical proportion [9] is a particular type of Boolean expression T (a,b,c,d) in-

volving four variables a,b,c,d, (whose truth values belong to B= {0,1}). It is made

of the conjunction of two distinct equivalences, involving a conjunction of variables

a,b on one side, and a conjunction of variables c,d on the other side of ≡, where

each variable may be negated. Both a∧b and a∧b capture the idea of dissimilarity

between a and b, while a∧b and a∧b capture the idea of similarity, positively and

negatively. For instance, (ab ≡ cd)∧ (ab ≡ cd)1 is the expression of the analogical

proportion [7]. As can be seen, analogical proportion uses only dissimilarities and

could be informally read as what is true for a and not for b is exactly what is true for

c and not for d, and vice versa. When a logical proportion does not mix similarities

1 a is a compact notation for the negation of a and ab is short for a∧b, and so on.



and dissimilarities in its definition, we call it homogeneous: For instance, analogical

proportion is homogeneous.

More generally, it has been proved that there are 120 semantically distinct logical

proportions that can be built [8]. Moreover, each logical proportion has exactly 6

lines leading to true (i.e., 1) in its truth table, the 10 remaining lines lead to false (i.e.,

0). Logical proportions are quite rare in the world of quaternary Boolean formulas,

since there are 8080 quaternary operators that are true for 6 and only 6 lines of

this truth table. Inspired from the well known numerical proportions, two properties

seem essential for defining the logical proportions that could be considered as the

best counterparts to numerical proportions:

• Numerical proportions remain valid when is exchanged (a,b) with (c,d). Simi-

larly, logical proportions T should satisfy symmetry property:

T (a,b,c,d) =⇒ T (c,d,a,b) (1)

• A valid numerical proportion does not depend on the representation of the num-

bers in a particular basis. In the same spirit, logical proportions should satisfy the

code independency property:

T (a,b,c,d) =⇒ T (a,b,c,d) (2)

insuring that the proportion T holds whatever the coding of falsity with 0 or

1, or if we prefer, T holds whatever we consider a property or its negation for

describing the objects.

Only 4 among the 120 proportions satisfy the two previous properties [10]. These

four proportions also satisfy other properties associated with the idea of proportion

such as central permutation

T (a,b,c,d) =⇒ T (a,c,b,d) (3)

In Table 1, we provide the definitions of the 4 homogeneous logical proportions and

in Table 2, we give their truth tables, restricted to the 6 valuations leading to truth

value 1.

Table 1 4 remarkable logical proportions: A,R,P, I

A R P I

(ab ≡ cd) ∧ (ab ≡ cd) (ab ≡ cd) ∧ (ab ≡ cd) (ab ≡ cd) ∧ (ab ≡ cd) (ab ≡ cd) ∧ (ab ≡ cd)

These proportions, denoted by A(a,b,c,d), R(a,b,c,d), P(a,b,c,d) and

I(a,b,c,d), are called analogy, reverse analogy, paralogy and inverse paralogy [9],

and respectively express that a (resp. b) differs from b (resp. a) as c (resp. d) differs

from d (resp. c), that a is to b as d is to c, that what a and b have in common, c and

d have it also, and that what a and b have in common, both c and d miss it). The 4

homogeneous proportions are linked together:



A(a,b,c,d)≡ R(a,b,d,c)≡ P(a,d,c,b)≡ I(a,b,c,d). (4)

The semantical properties of these 4 proportions have been investigated in [10].

Table 2 A, R, P, I: Boolean truth tables

A R P I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0

1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1

0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1

1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

The idea of proportion is closely related to the idea of extrapolation, i.e., to

guess/compute a new value on the ground of existing values. In other words, if

for some reason, it is believed or known that a proportion holds between four bi-

nary items, three of them being known, then one may try to infer the value of the

fourth one. The problem can be stated as follows. Given a logical proportion T and

a 3-tuple (a,b,c), does there exist a Boolean value x such that T (a,b,c,x) = 1, and

in that case, is this value unique? It is easy to see that there are always cases where

the equation has no solution since the triple a,b,c may take 23 = 8 values, while

any proportion T is true only for 6 distinct 4-tuples. For instance, when we deal

with analogy A, the equations A(1,0,0,x) and A(0,1,1,x) have no solution. And it

has been proved, for instance that the analogical equation A(a,b,c,x) is solvable iff

(a ≡ b)∨ (a ≡ c) holds. In that case, the unique solution is x = a ≡ (b ≡ c). Sim-

ilar results hold for the 3 remaining homogeneous proportions. As sketched in the

introduction, this equation solving property can be the basis of a constructive clas-

sification rule over binary data by adopting the following inference rule: having 4

objects −→a ,
−→
b ,−→c ,

−→
d (three in the training set with classes cl(−→a ),cl(

−→
b ),cl(−→c ), the

fourth being the object to be classified where cl(
−→
d ) is unknown:

∀i ∈ [1,n],A(ai,bi,ci,di)

A(cl(−→a ),cl(
−→
b ),cl(−→c ),cl(

−→
d ))

Then, if the equation A(cl(−→a ),cl(
−→
b ),cl(−→c ),x) is solvable, we can allocate to

cl(
−→
d ) the solution of this equation. Obviously, A could be replaced with R, P or I.

Let us investigate an implementation of this principle.



3 Analogical dissimilarity and algorithms

Learning by analogy, as presented in [2] is a lazy learning technique which uses

a measure of analogical dissimilarity between four objects. It estimates how far

four situations are from being in analogical proportion. Roughly speaking, the ana-

logical dissimilarity ad between 4 Boolean values is the minimum number of bits

that have to be switched to get a proper analogy. For instance ad(1,0,1,0) =
0,ad(1,0,1,1) = 1 and ad(1,0,0,1) = 2. Thus, A(a,b,c,d) holds if and only if

ad(a,b,c,d) = 0. Moreover ad differentiates two types of cases where analogy

does not hold, namely the 8 cases with an odd number of 0 and an odd number of 1

among the 4 Boolean values, such as ad(0,0,0,1) = 1 or ad(0,1,1,1) = 1, and the

two cases ad(0,1,1,0) = ad(1,0,0,1) = 2.

When, instead of having 4 Boolean values, we deal with 4 Boolean vectors in

B
n, we add the ad evaluations componentwise to get the analogical dissimilarity be-

tween 4 Boolean vectors, which leads to an integer belonging to the interval [0,2n].
This number is a numerical measure of how far the 4 vectors are from building,

componentwise, a complete analogy. It has been used in [2] to implement a classi-

fication algorithm where we have as input a training set S of classified items, a new

item
−→
d to be classified, and an integer k. The algorithm proceeds as follows:

Step 1: Compute the analogical dissimilarity ad between
−→
d and all the triples in

S3 that produce a solution for the class of
−→
d .

Step 2: Sort these n triples by the increasing value of ad wrt with
−→
d .

Step 3: If the k-th triple has the integer value p for ad, then let k′ be the greatest

integer such that the k′-th triple has the value p.

Step 4: Solve the k′ analogical equations on the label of the class. Take the winner

of the k′ votes and allocate this winner as the class of
−→
d .

This simple approach provides remarkable results and, in most of the cases, out-

performs the best known algorithms (see [6]). Our approach is a bit different and we

consider a simpler analogical dissimilarity that we denote ad∗ which, on binary val-

ues a,b,c,d, is equal to 0 when A(a,b,c,d) holds, and is 1 otherwise. If we consider

A(a,b,c,d) as a numerical value 0 or 1, the function:

ad∗(a,b,c,d) = (a−b− c+d)2)1/2, for a,b,c,d ∈ {0,1}, (5)

it is nothing more than ad∗(a,b,c,d) = 1−A(a,b,c,d). Of course, other functions

can be used and can provide the same results, as for instance: ad∗1(a,b,c,d) =
|a−b− c+d|.

It means that we do not differentiate the two types of cases where analogy does

not hold. Considering Boolean vectors in B
n, we add the ad∗ evaluations compo-

nentwise, to get a final integer belonging to the interval [0,n] (instead of [0,2n] in

the previous case). Namely,



ad∗(−→a k,
−→
b k,−→c k,

−→
d ) = ∑

i=1,n

ad∗(ak
i ,b

k
i ,c

k
i ,di). (6)

Our algorithm is as follows, taking as input a training set S, the item to be classi-

fied
−→
d , and a integer p, with 0 ≤ p ≤ n, which means for each quadruple analyzed,

we accept at most p features for which the considered proportion does not hold true.

Step 1: Compute ad∗(−→a k,
−→
b k,−→c k,

−→
d ) between

−→
d and all triples (−→a k,

−→
b k,−→c k)∈

S3.

Step 2: If ad∗(−→a k,
−→
b k,−→c k,

−→
d )≤ p, solve the class analogical equation. If there

is a solution, consider this solution as a vote for the predicted class of
−→
d .

Step 3: Take the winner of the votes and allocate it as the class of
−→
d .

In terms of worst case complexity, our algorithm is still cubic, due to step 1. But,

it avoids the sorting step of the previous algorithm, leading to a lower complexity

than the one of [2]. These options are implemented and the results are shown below.

4 First experiments and discussion

To ensure a fair comparison with the approach in [2], we use the same first 4 datasets

with binary and nominal attributes, all coming from the University of California at

Irvine repository [1]. We consider the following datasets.

• MONK 1,2 and 3 problems (denoted MO.1, MO.2 and MO.3). MONK3 problem

has noise added.

• SPECT heart data (SP. for short).

To binarize, we use the standard technique, replacing a nominal attribute having

n different values with n binary attributes. We summarize the datasets structure and

our results in Table 3.

As can be seen, the results obtained are very similar to those obtained in [6],

although we are using a counterpart ad∗ of the logical view of the analogical pro-

portion for estimating the analogical dissimilarity of four vectors, instead of the

more discriminating measure introduced in [6]. Note that for very small values of

p some instances
−→
d may not find a triple for predicting a class for them. This may

lead to a low accuracy, which then increases when p is less requiring. For too large

values of p then the accuracy generally decreases since the number of features for

which an analogical proportion holds becomes too small and then we allow “poor

quality” triples to vote.

Besides, instead of using ad∗(a,b,c,d) = 1−A(a,b,c,d), one may replace A by

reverse analogy R, or paralogy P, or inverse paralogy I. We have checked that the

results remain the same if we use R, or P instead of A. This is in perfect agreement

with the existence of permutations changing one proportion into another as highlight

in equation (4).



Table 3 Results

Information MO.1 MO.2 MO.3 SP.

nb. of nominal attributes 7 7 7 22

nb. of binary attributes 15 15 15 22

nb. of training instances 124 169 122 80

nb. of test instances 432 432 432 172

nb. of class 2 2 2 2

Our algorithm accuracy (best results) 97.22 99.77 97.22 57.22

Best value of p 1 0 2 4

Miclet et al. best result [6]a 98 100 96 58

Decision Table 97.22 66.21 97.22 71.12

PART 92.59 74.31 98.15 81.28

Multilayer Perceptron 100.00 100.00 93.52 72.73

Logistic 71.06 61.57 97.22 66.31

BayesNet 71.06 61.11 97.22 75.94

a Results were provided by [6] as presented here.

However, when considering ad∗(a,b,c,d) = 1− I(a,b,c,d), first results indicate

that the accuracy decreases substantially. This does not really come as a surprise,

since looking at the truth table of I, we then allow the simultaneous presence of pat-

terns such as (1,0,1,0) and (1,0,0,1), in complete disagreement with the measure

of analogical dissimilarity ad, even if I would apparently agree with the idea that

objects that share (almost) nothing should belong to different classes. Ultimately,

when a triple (a,b,c) belongs to S3, it does not imply that the triple (a,b,c) belongs

to S3, and then, thanks again to equation 4, the set of voters for I may be different

from the set of voters of A, R and P, for which the set is the same.

We made comparisons with some classifiers found in the literature and for these

ones, we used the Weka package [4] with default values. It is possible to note the

Multilayer Perceptron achieved the best accuracy for MO.1 and MO.2 databases, but

its performance is lower for the MO.3 database. PART classifier provides best clas-

sification for MO.3 and SP. databases, but its performance is not so good for MO.2.

Decision Table provides good classifications for MO.1 and MO.2 databases. Similar

results were found by [6]. Logistic and BayesNet classifiers have good performance

only for MO.3 database. So, for these four databases and this set of classifiers, only

our algorithm and [6] achieved good results for three databases. It shows that our

algorithm is a competitive approach for classification tasks of databases with binary

and nominal features.

5 Concluding remarks

This preliminary study shows that the logical view of analogical proportion leads

to good results in classification. More experiments currently under progress should



bring more light on the behaviour of the classification process with regard to p.

Using the same type of algorithm and the extension to multi-valued logics as done

in [11] will allow us to deal with numerical values and continuous attributes.

The algorithm, when compared with others found in the literature, provides com-

petitive results for three of of the four benchmarks considered. New comparisons

with other classifiers and other databases are under progress to better understand

the applicability and the competitiveness of the approach.
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