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A B S T R A C T   

Anthropic potentially toxic element (PTE) releases can lead to persistent pollution in soil. Monitoring PTEs by 
their detection and quantification on large scale is of great interest. The vegetation exposed to PTEs can exhibit a 
reduction of physiological activities, structural damage … Such vegetation trait changes impact the spectral 
signature in the reflective domain 0.4–2.5 μm. The objective of this study is to characterize the impact of PTEs on 
the spectral signature of two pine species (Aleppo and Stone pines) in the reflective domain and ensure their 
assessment. The study focuses on nine PTEs: As, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Zn. The spectra are measured by an 
in-field spectrometer and an aerial hyperspectral instrument on a former ore processing site. They are completed 
by measurements related to vegetation traits at needle and tree scales (photosynthetic pigments, dry matter, 
morphometry …) to define the most sensitive vegetation parameter to each PTE in soil. A result of this study is 
that chlorophylls and carotenoids are the most correlated to PTE contents. Context-specific spectral indices are 
specified and used to assess metal contents in soil by regression. These new vegetation indices are compared at 
needle and canopy scales to literature indices. Most of the PTE contents are predicted at both scales with Pearson 
correlation scores between 0.6 and 0.9, depending on species and scale.   

1. Introduction 

Potentially toxic elements (PTEs), released by various anthropic ac-
tivities like mining, smelting or other industrial activities, can lead to 
persistent pollution in soil even after the exploitation has ceased. The 
environment is then exposed to the transfer and dissemination of PTEs 
causing water and soil contamination and loss of biodiversity. Currently, 
environmental monitoring mainly depends on traditional geochemical 
methods using, for example, in-situ measurements with portable XRF (X- 
Ray Fluorescence) devices completed by laboratory analysis of soil 
samples (Lemière, 2018; Parsons et al., 2013). These methods are 
time-consuming and unsuitable for large-scale monitoring. Therefore, 
monitoring PTEs (i.e. detecting and quantifying them) on large scale for 
various land covers (from bare soil to dense vegetation) is of great in-
terest and can be achieved by remote sensing (Ong et al., 2019). 

Vegetation exposed to PTEs can exhibit a modification of physio-
logical activities (revealed e.g. by pigment concentrations) and struc-
tural damage at leaf and canopy scales (Küpper and Andresen, 2016; 

Slonecker et al., 2010; Zhou et al., 2018). Such changes in vegetation 
traits impact the spectral signature in the reflective domain [400–2500 
nm]. Passive optical remote sensing devices, in particular hyperspectral 
ones, have been widely used to assess these vegetation traits (Blackburn, 
2007; Homolová et al., 2013; Kokaly et al., 2009; Lausch et al., 2016). 
The information contained in the optical hyperspectral signal is then 
exploited via two types of approaches (Verrelst et al., 2019; Zhang et al., 
2021): machine learning regression methods based on the empirical 
relationship between spectral variables (e.g. spectral signatures or 
transformations: continuum removal, spectral indices, first derivate) 
and vegetation traits like pigment concentrations (Peng et al., 2018; 
Verrelst et al., 2012) or numerical inversion of physically-based leaf and 
canopy Radiative Transfer Models (RTM) (Feret et al., 2019; Lassalle 
et al., 2019a; Li et al., 2019). Some hybrid regression methods combine 
RTM simulations with machine learning regression methods (Verrelst 
et al., 2019). 

PTE pollution can have a minor impact and be species-dependent 
according to their sensitivity to particular PTEs. Coniferous species are 
very common and widespread in European forests. Pines were noted to 
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be sensitive to PTEs (Shin et al., 2019). The measurement of optical 
properties of coniferous needles is known to be difficult, due to their 
geometry, and is underrepresented in published reports compared to 
broadleaves (Mõttus et al., 2017; Rautiainen et al., 2018). 

The PTE effects are also combined with other natural or environ-
mental stressors of greater impact, such as drought, poor soil quality or 
surface runoff (Gamon et al., 2019; Moor et al., 2017). The retrieval of 
PTE effects on vegetation by hyperspectral data is challenging and 
site-specific (Wang et al., 2018). 

To reduce environmental stressor impact and achieve sensitive spe-
cies inventory, PTE effects on vegetation spectral signature can be first 
studied at leaf or canopy scales before upscaling to airborne or satellite 
levels (Lassalle et al., 2019b, 2021). The accuracy of prediction may 
then be reduced when transposed to canopy scale, with the increasing 
influence of background signal, mixed pixels and canopy structure 
(Rautiainen et al., 2018). Several studies have assessed the ability of 
field spectrometers to retrieve in-field foliar PTE contents, including 
pine needles, or soil PTE contents in vegetated lands (Mirzaei et al., 
2019; Shin et al., 2019; Zhou et al., 2018). 

For various plant species (white birch, Mongolian oak, grapevine - 
Vitis vinifera cv. Askari, rice - Oriza sativa L., cotton grass), many studies 
proposed approaches coupling optimized or existing spectral vegetation 
indices applied to in-situ spectral measurements and multiple regressions 
to explore the relation with PTE contents (such as As, Cd, Co, Cr, Cu, Zn, 
Pb, Mo, and Ni) in leaves (Bandaru et al., 2016; Lassalle et al., 2021; 
Mirzaei et al., 2019; Zhou et al., 2018). They found a determination 
coefficient ranging from 0.43 to 0.84 between estimated and measured 
foliar PTE contents. Some studies dealt with the relation between 
vegetation reflectances at specific spectral bands and PTE contents in 
soil without assessment of foliar PTE contents. Shi et al. demonstrated 
that two indices from the literature in the VISible (VIS)-Near InfraRed 
(NIR) spectral domain (400–900 nm), PRI (Photochemical Reflectance 
Index) and REP (Red Edge Position) may be used as vegetation indices to 
monitor arsenic contamination in agricultural soils planted with rice 
(Oryza sativa L.) (Shi et al., 2016). They retained three spectral bands 
(552, 568 and 716 nm) to build an optimized spectral index. Mirzaei 
et al. identified the most sensitive wavelengths in the VIS-NIR domains 
for the estimation of Cu, Zn, Pb, Cr, and Cd contents in the grapevine 
(Vitis vinifera cv. Askari) leaves (Mirzaei et al., 2019). Shin et al. (2019) 
demonstrated the correlation between the first derivatives of needle 
spectral signatures at 668 nm and 1648 nm and As contents in needles 
and soil (determination coefficient between As contents in pine needles 
and soil samples of 0.79). This study was however based on needles of a 
unique pine species P. densiflora and a single PTE, As, while metal 
contamination in soils is usually polymetallic (Doumas et al., 2018). 

Few studies go through airborne remote sensing for detecting and 
characterizing PTE soil contamination in vegetated areas. Airborne 
hyperspectral imagery in VIS-NIR spectral domain was used to map leaf 
metal contents (Cr, Cu, Ni and Zn) of the species Rubus fruticosus L. over 
industrial brownfields (Lassalle et al., 2021). Optimized normalized 
vegetation indices, exploiting pigment-related wavelengths, were spec-
ified and allowed the prediction of metal contents with good accuracy in 
the field and on the image, especially Cu and Zn (r ≥ 0.84). This study 
however concerned a single species, the bramble (Rubus fruticosus L.), 

and four PTEs. Another study provided good accuracy to detect plants 
affected by several soil PTE (As, Cr, Cu, Sn and Zn) in mining area from 
airborne hyperspectral imagery and Random Forest algorithm (Yang 
et al., 2020). 

Most of the published studies were limited to in-field spectral mea-
surements without addressing airborne measurements and have focused 
on the spectral range [400–900 nm] not considering the spectral bands 
beyond 1000 nm. Few studies concerned pine species, a priori sensitive 
to PTEs in soil, and polymetallic contamination by various metals and 
metalloids. To our knowledge, there is no published study based on a 
comprehensive database construction (including spectral measure-
ments, soil metal contents, biophysical, biochemical and structural 
traits) to identify pine species traits altered by chemical contamination. 

The objective of our study was to assess PTE contents in soil by the 
spectral signature of two pine species in the reflective spectral domain 
[400–2500 nm] measured by an airborne hyperspectral instrument. This 
study focused on nine PTEs: As, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Zn. The 
studied contaminated land is a former ore processing site which has been 
phytostabilized for several years (§ 2.1). A complete database was built 
with needle-scale spectral signatures measured during an in-situ exper-
iment completed by soil PTE contents, foliar pigment contents and other 
biophysical vegetation traits at needle and tree scales (§ 2.2 and 2.3). 
This database allowed to define the most sensitive vegetation parame-
ters to each soil PTE and to select the best suited wavelengths estab-
lishing context-specific spectral indices. Those indices were used by an 
empirical approach to assess the sensitive vegetation parameters and 
soil PTE contents by regression (§ 2.5). They were compared to indices 
provided in the literature. Finally, the performance of the proposed 
approach was assessed on the hyperspectral image, at the canopy scale 
(§ 3). The behaviours of two pine species were compared in order to 
identify the most sensitive one and to analyse behaviour similarities and 
differences in this contaminated context (§ 4). 

2. Materials and methods 

2.1. Study site 

The site is a former ore processing site under a Submediterranean 
climate located in Southern France closed in 2004 and managed by an 
operator of the French public body. This site has been phytostabilized in 
2006 to avoid the mobility of PTEs in soil, and natural vegetation has 
grown over the years (Fig. 1) (Fabre et al., 2020). The control pines are 
located 2–3 km from the contaminated area in the opposite direction of 
the prevailing winds to avoid the potential deposition of PTEs. Studied 

Main abbreviations 

DBH Diameter at Breast Height 
NIR Near-Infrared 
PTE Potentially Toxic Element 
SWIR Short-Wave Infrared 
VI Vegetation Indices 
VIS Visible  

Fig. 1. Former ore processing site. The image was extracted from the RGB 
representation of the hyperspectral image (spatial resolution: 0.75 m). The area 
of interest is delineated in the red line (19.4 ha). The 26 pines of the contam-
inated area are in green dots. 
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PTEs were contained in the original ore or used in the extraction process. 
Two pine species (Aleppo- Pinus halepensis, Stone- Pinus pinea) were 

selected for this study (Fig. 2). These species are mostly naturally 
established in the surrounding area, and they have been introduced into 
the contaminated land during the phytostabilisation process. The tree 
crown size range allows the monitoring of these species by airborne 
remote sensing. 

26 pines (13 pines of each species) and 9 pines (5 Aleppo and 4 Stone 
pines) were sampled in the contaminated and control areas respectively 
(Fig. 2). The trees within the contaminated area were of comparable 
ages (about 15 years), and control pines were of variable ages estimated 
from 12 to 35 years. Their geographical coordinates were acquired using 
a differential GNSS. 

Needle samples from contaminated and control sites have been 
measured in situ (structural traits, spectral signatures) and in laboratory 
(pigment concentrations, biophysical traits). These measurements were 
completed by soil PTE contents. All these soil and vegetation measure-
ments have filled out an exhaustive database. 

2.2. Soil measurements 

Under each pine, the upper soil layer (0–10 cm) was sampled at 
about 40 cm of the trunk with a plastic shovel, deposited in a hermetic 
bag, and analysed for measuring PTE contents (9 elements). Also, three 
in-situ sampling replicates have been collected in opposite directions of 
the trunk for nine pines covering the whole contamination range, to 
analyse the spatial variability around the trunks. Each collected soil 
sample was then divided into three subsamples after quartering and then 
dried in an oven for 24 h at 105 ◦C. The particles smaller than 2 mm after 
passing through a nylon sieve were retained for analysis. Each sub-
sample was split into three capsules (0.7–1 cm soil thickness) and then 
measured with a portable X-ray fluorescence elemental analyser (NITON 
XL3t GOLDD 900Analyzer, Thermo Scientific). Each sampling spot was 
then measured 3 × 3 times and the average PTE contents were retained 
as the final values. The nine elements are represented in Fig. 3a. Several 
elements are correlated with each other (Fig. 3b): Cu and As (Pearson r 
= 0.90); Ni, Mo, Fe and Mn (r > 0.77); Pb and Zn (r = 0.81). Mea-
surements were controlled with certified reference materials of soil (BCR 
141R, BCR 142R, BCR 145R, STSD3, LKSD3, IAEA SL1, WQB-1). For the 
9 selected elements, the median recovery rates ranged from 89% to 
124%, except for Ni which was 49%. The discrepancy for Ni could come 
from an overlapping band with Cu (Ran et al., 2014), and the reference 
contents were well retrieved. 

The soil PTE contents of the three soil replicates sampled for nine 
pines to inform on the spatial variability were quite homogeneous 
around each pine. The coefficient of variation of each PTE content 
ranged from 0.01 to 1.02, with median values from 0.14 to 0.36 for each 

PTE. The median variation range at each pine covered 11%–25% of the 
total range of PTE soil contents. 

2.3. Vegetation measurements 

Measurements were achieved for 13 Aleppo and 15 Stone pines in the 
contaminated and control lands on 24 February 2021. Seven pines in the 
contaminated area (§ 2.1, Fig. 1) were not sampled during the field 
campaign but introduced to analyse the results at the airborne scale. 

For each pine, needles were randomly sampled within the crown 
according to the study of Lhotáková et al. (2007). This study concluded 
that a random sampling of similar-aged needles within the crown might 
be used to study biochemical and spectral needle properties of a mature 
Norway spruce. 

2.3.1. Biophysical and biochemical parameters 
Needle samples were collected on each pine during the field exper-

iment. Needle pigments were extracted in methanol adapting the pro-
tocol of Diepens et al. (2017) and analysed by High Performance Liquid 
Chromatography (HPLC). Needles were stored at − 80 ◦C after sampling, 
and then randomly subsampled for pigment analysis. Three subsamples 
per pine sample were processed for repetition. The selected needles were 
freeze-dried for 24 h in the dark to prevent light degradation. The 
needles were then ground in a mortar with liquid nitrogen in a dark 
room. The pigment extraction was done with approximatively 100 mg of 
ground needles with a solution of 1.5 ml of methanol buffered with 2% 
ammonium acetate. The solution was vortexed for 1 min inside a glass 
ball and with short breaks every 10 s then, let still for 15 min at − 20 ◦C. 
The solution was finally filtered with a 2 μm syringe filter after centri-
fugation (5 min, 4000 rpm at 4 ◦C). The extraction was done twice with 
the same needle material; and filtered extractions were pooled together 
and stored at − 80 ◦C before the HPLC analysis. The HPLC analysis was 
made on an Agilent LC1200 Series system (Diepens et al., 2017) 
(G1315B Diode Array Detector, G1316A column compartment, G1311A 
pump, G1329A sampler) at 440 nm (chlorophyll b, carotenoids) and 
665 nm (chlorophyll a), following the parameters of Barlow et al. 
(1997). Pigments were quantified with a calibrated, peak-area chro-
matogram analysis (Diepens et al., 2017). The pigment concentrations 
are expressed on the dry mass. The concentrations obtained with the 
three repetitions were averaged. The chlorophyll concentration was 
calculated with chlorophyll a and b measurements, and the carotenoid 
concentration was composed of β-carotene, lutein and antheraxanthin 
(Diepens et al., 2017). The Pearson correlation coefficient value between 
chlorophylls and carotenoids was 0.97. 

The water contents were the averages of five mass change mea-
surements. Five batches of five pairs of needles for each pine were 
randomly selected. The mass of the batch was measured before and after 

Fig. 2. Studied species (a) Aleppo pine, (b) Stone pine.  
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oven drying for 24 h at 105 ◦C. 
The main statistics of all these parameters for each species and each 

area are represented in Table S1, in the Supplementary materials. 

2.3.2. Structural parameters 
Even if passive optical instruments are not the best devices to give 

access to tree structural traits (height, Diameter at Breast Height-DBH) 
in comparison to LiDAR (Light Detection and Ranging) devices, can-
opy and foliage structure impact the spectral signature in the reflective 
domain. Structural traits, provided in Table 1, have been measured in 
situ at the individual tree level. We did not use the height and DBH 
measurements of three control pines, estimated to be more than 20 years 
old from historical aerial photographs, because of the high age differ-
ence with the pines in the contaminated area. The main statistics of all 
these parameters are provided in Table S1, in the Supplementary 
materials. 

2.3.3. Spectral signatures 
In-situ spectral reflectances of pine needles were acquired with an 

ASD FieldSpec Pro spectrometer in the [350–2500 nm] domain (Mal-
vern Panalytical, Malvern, UK). A protocol of spectral measurements 
specific to pine needles was defined beforehand to make the measure-
ment completely reproducible from one sample to another. Measure-
ments were performed with a contact probe device. They were acquired 
in radiance units and converted to reflectances according to the pro-
cedure detailed in (Lesaignoux et al., 2013). All spectral signatures were 
then resampled to the spectral resolution of the airborne image and the 
same band removal and smoothing procedures (atmospheric trans-
mittance <80% and Savitzky-Golay smoothing filter) were applied 
(Erudel et al., 2017) (§ 2.4). 

2.4. Hyperspectral airborne image 

The airborne hyperspectral image was acquired on February 13, 

2019 at 13:00 UT under clear sky conditions with the AISA FENIX-1K 
camera system. This push-broom camera was installed on-board the 
French ATR 42 environmental research aircraft of Safire. The flight 
height was around 1100 m above the site which led to a Ground Sam-
pling Distance (GSD) of 0.75 m. This image had a spectral resolution 
ranging from 3.3 in the Visible-Near-InfraRed domain (VNIR, [380–980 
nm]) to 7.8 nm in the Short-Wave InfrarRed domain (SWIR, [980–2500 
nm]). After radiometric corrections taking into account the instrument 
calibration and the silica plane window transmission, atmospheric cor-
rections using COCHISE (atmospheric COrrection Code for Hyper-
spectral Images of remote-sensing SEnsors) were applied (Miesch et al., 
2005). The image was then projected on a geographic grid. Finally, the 
image obtained represented the top-of-canopy spectral reflectance with 
a spatial resolution of 0.75 m in the [380–2500 nm] domain. Because of 
the low signal-to-noise ratio (SNR), bands with atmospheric trans-
mission below 80% were excluded, as described in Erudel et al. (2017). 
A Savitzky-Golay spectral smoothing filter was also applied, with a 
window size of 5 and a polynomial degree of 2 for both in-situ and 
airborne data. Due to the flight line footprint, five of the control pines 
were not covered by the hyperspectral image. 15 Aleppo and 15 Stone 
pines in the contaminated and control sites were then captured. Crowns 
were delineated manually, avoiding shadowed pixels, and covered 1 to 
74 pixels (median of 7 pixels by crown, mean of 10 pixels). Fig. 4 rep-
resents the extracted hyperspectral images of the contaminated and 
control areas with the delineated tree crowns. All pixels of each crown 
were spatially averaged to retrieve each pine spectral signature. Fig. 5 
shows a subset of in-situ (considered as needle scale) and airborne 
(mentioned as canopy scale) spectral signatures for the same trees, ac-
cording to soil PTE exposure. 

2.5. Method 

The method was based on a linear bivariate regression analysis be-
tween different sets of variables built with laboratory, in-situ and 
airborne measurements. Vegetation traits (pigments, structural and 
biophysical parameters) were then linked to soil PTEs to select the most 
sensitive parameter for each soil PTE (§ 2.5.1). Secondly, the measured 
or transformed spectral measurements (needle and canopy scales) (§
2.5.2) and derived vegetation indices (§ 2.5.3) were correlated with 
selected vegetation parameters and soil PTE contents to provide the 
most relevant spectral bands to predict soil PTE contents (§ 2.5.4). The 
specified vegetation indices were compared with vegetation indices 

Fig. 3. (a) Relative contents of the nine PTEs, normalized for confidentiality. A.: study Area, Co.: Control area, the number of samples in each boxplot is given in 
brackets. (b) Pearson correlation coefficient values between PTEs. *value significant at a level of 0.05; † value significant at a level of 0.01. 

Table 1 
Structural traits measured in situ. DBH: Diameter at Breast Height.  

Traits Level Number of replicates 

Height Tree – 
DBH Tree – 
Length Needle 5 
Width Needle 5  
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defined in the literature. This methodology was applied to each species. 

2.5.1. Parameter selection 
Vegetation traits capturing soil PTE contamination were selected 

from correlation analysis: the relationship between two variables was 
assessed with a bivariate linear regression and the Pearson correlation 
coefficient (r). This correlation analysis has also been led on the com-
ponents obtained by the dimension reduction technique Principal 

Component Analysis (PCA) applied to soil PTEs and to pigment con-
centrations, without conclusive results. 

At the end of this stage, for each PTE, at least one sensitive vegetation 
parameter was retained. 

2.5.2. Spectral transformations 
Many transformations (normalizations, Continuum Removal-CR, 

derivatives) were used to process spectral signatures enhancing ab-
sorption features in order to retrieve vegetation traits and enhance 
prediction performance (Erudel et al., 2017; Lassalle et al., 2019b). 

2.5.3. Vegetation indices 
Two kinds of vegetation indices were retained. Numerous vegetation 

indices from the literature were applied, mostly designed for pigment 
retrieval, vegetation health and stress, as well as specific to PTE 
retrieval; leading to a total of 179 indices covering the reflective spectral 
domain (Bandaru et al., 2016; Erudel et al., 2017; Fabre et al., 2020; 
Gimenez et al., 2022; Kupková et al., 2011). The notations and formulas 
used in these articles were retained for the rest of this study. Only the 
most suitable indices for our study context are provided in this paper. 

New vegetation indices optimized to our context (defined by the 
species and vegetation traits or PTEs studied) were specified. The index 
formula retained was: 

VI(A,B)=
(ρB − ρA)

(ρB + ρA)
(1) 

with ρA the reflectance of the spectral band A in nm, and same for B. 
The next step of the methodology relied on assessing the correlation 

between all possible two-band combinations in equation (1) and vege-
tation parameters like pigment concentrations and/or each of the nine 
metal contents. Correlation maps of the square Pearson correlation 

Fig. 4. Extracted images of the hyperspectral flight line and the pine crown 
delineation. The two left panels show control areas, and the right one the 
contaminated area. 

Fig. 5. At needle and canopy scales and for both species, spectral signatures of the pines in the control and contaminated (Conta.) areas. Based on the groups 
resulting from the Pearson correlation coefficient values between PTEs (Fig. 3b), for each PTE group, the pines with the minimum (min.) and maximum (max.) PTE 
exposures were retained. This exposure per pine was calculated as the median of normalized PTE soil contents in the group. 
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coefficient were produced and thresholded in order to keep the opti-
mized spectral band pairs for both needle and canopy scales (§ 2.3.3, §
2.4). 

To summarize, two kinds of spectral indices were defined and 
selected: 

The indirect spectral indices specific to a vegetation parameter sen-
sitive to PTEs in soil:  

• VI-<variable> (A,B): spectral index suited, regardless the species, for 
a given sensitive vegetation parameter <variable> like chlorophyll 
concentration (with A and B the spectral bands in the index formu-
lation (1)),  

• VI-<species><variable>(A,B): index specified for a given 
<species> (defined by Al for the Aleppo and St for the Stone pine 
species), and sensitive to the vegetation parameter defined by 
<variable>, 

The direct spectral indices sensitive to PTEs in soil: noticed VI-(A,B) 
regardless the species and VI-<species>(A,B) for the given <species>
(Al for Aleppo or St for Stone pine species). 

2.5.4. Spectral correlation analysis 
The correlation analysis between spectral values (i.e. spectral sig-

natures, transformed signatures or vegetation indices) and vegetation 
parameters was performed according to the methodology described in 
section 2.5.1. The same correlation analysis concerning these spectral 
values and soil PTEs was led. 

3. Results 

3.1. Relation between vegetation parameters and soil PTE contents 

Looking at the measured pigments of the Aleppo pine needles, the 
carotenoid and chlorophyll concentrations were linked with significant 
(p-value <0.05) results to 4 soil PTEs: Cu, Ni, Fe Mn, plus Mo for 
chlorophylls (absolute r varied between 0.54 and 0.75; Table 2). The 
best results occurred for Cu (r of − 0.73 and − 0.75 for carotenoids and 
chlorophylls, respectively). The correlation values were similar for the 
two pigment families. For the Stone pines, pigments seemed less corre-
lated with soil PTEs than for the Aleppo pines: the r values (significant 
results) were higher than 0.5 only for As (r of − 0.52 and − 0.58 for 
chlorophylls and carotenoids, respectively) and Ni with carotenoids (r =
− 0.52). The pigments of Stone pine samples provided better significant 
correlations to As in soil than the one of the Aleppo pines. 

The needle water contents had no significant correlation with PTE 
contents (Table 3). For the Aleppo pines, the highest coefficients of 
correlation were for Ni and Cr (r of 0.53 and 0.68 respectively). For 
Stone pine needle, PTEs the highest r value was 0.53 for Zn. 

No measured structural trait of the Aleppo pines at needle or canopy 
scaleswas significantly correlated with any soil PTE in our context 
(Table 4). For the Stone pine, the best result was obtained for Zn with the 
needle length (r = 0.73, p-value <0.01). The mean difference of needle 
lengths between the Stone pines of the contaminated and reference sites 
was around 1 cm, but not significant at a 0.05 level (mean length of 9.1 
cm and 10.1 cm respectively). For this species, significant (with p-value 
<0.05) correlation values higher than 0.55 were also observed for the 

needle length and DBH with Pb and needle width with Cu. 

3.2. Exploitation of the needle spectral signatures 

The spectral signatures of needle samples were used to assess 
pigment contents. Among the spectral indices tested for Aleppo pine, 
NDLI (Normalized Difference Lignin Index) performed the best (r = 0.88 
for chlorophylls, r = 0.87 for carotenoids, significant results with p- 
value <0.01). NDLI is using the 1680 nm and 1754 nm bands, two bands 
mainly sensitive to lignin (Fourty et al., 1996; Serrano et al., 2002). 
Other indices presented also high correlations (over 0.85). Two new 
spectral indices VI-AlChl(593, 1203) and VI_Chl(610, 1687) provided 
similar significant (p-value <0.01) performance with r values of 0.87. 
MCARI (Modified Chlorophyll Absorption Ratio Index), sensitive to 
anthocyanin and chlorophylls and combining spectral bands (550, 705 
and 750 nm), and IRECI (Inverted Red-Edge Chlorophyll Index), which 
incorporates the reflectance in four spectral bands (665, 705, 740 and 
783 nm) to estimate canopy chlorophyll contents, were selected to be 
sensitive to carotenoids in our context (r values between 0.86 and 0.87, 
significant results with p-value <0.01) (Daughtry et al., 2000; Frampton 
et al., 2013). 

The r values of Stone pine species were higher than those of Aleppo 
pine species. Curvature Index (CI) performed the best considering the 
chlorophyll contents (|r| = 0.95, p-value <0.01). This index related to 
chlorophyll fluorescence is a function of the reflectance values at the 
675, 690 (originally 691 and 683 nm) spectral bands (Zarco-Tejada 
et al., 2000). The specified indices, VI_StChl(597, 1656), VI_StChl(610, 
1630) and VI_Chl(610, 1687), provided similar performance for chlo-
rophyll prediction with r values of 0.94 (p-value <0.01). The best as-
sessments of Stone pine species for carotenoid contents were obtained 
with the specified indices, VI_StChl(610, 1630) and VI_StChl(597, 1656) 
(r values equal to 0.94, p-value <0.01). The indices sensitive for both 
chlorophylls and carotenoids, CI and VI_StChl(610, 1630), provided 
similar performance. 

For the Stone pine, the NDLI index which performed well for Aleppo 
pine had an r value of 0.68 and 0.80 for chlorophylls and carotenoids (p- 
values <0.01), respectively. For the Aleppo pine, CI, considered as the 
best-performing for the Stone pine, had an absolute r value of 0.50 and 
0.39 (not significant). 

According to the relation between chlorophylls/carotenoids and soil 
PTE contents (§ 3.1), and the significant correlation between NDLI and 
CI and these pigments, PTE contents were assessed with pigment pre-
dictions. For Aleppo pine species, Cu, Ni, Cr and Fe were predicted with r 
values higher than 0.7 (p-value <0.01, except for Cr < 0.05). Mn and Mo 
had less satisfactory significant performance, and pigments could not 
predict As, Zn and Pb contents at significant levels (Table 5). The results 
showed no difference between chlorophyll and carotenoid intermediate 
estimation. The poor scores for Stone pines showed no significant rela-
tionship between needle pigments and soil PTEs (Table 2). 

The existing vegetation indices and the new spectral indices were 
also used to directly assess the soil PTE contents. The best result for each 
pine species and metal element is provided in Table 6. Fig. 6 represents 
for the Aleppo pine the predicted soil PTE contents according to the 
measured contents for each PTE. Higher scores were obtained with 
direct spectral indices (Table 6) in comparison to the indirect assessment 
by the mean of pigment concentration prediction (Table 5). The most 

Table 2 
Pearson r coefficient values for pigment – soil PTE parameters. Car.: carotenoids, Chl.: total chlorophyll (a+b). Bold values indicate |r| > 0.50.  

Species Pigment Cu As Ni Cr Fe Mn Mo Zn Pb No. of samples 

Aleppo Chl. -0.75† -0.50 -0.70* -0.62 -0.62* -0.61* -0.57* 0.05 0.35 8–13 
Car. -0.73† -0.49 -0.67* -0.63 -0.59* -0.58* -0.54 0.05 0.38 12–15 

Stone Chl. 0.06 -0.52* -0.38 0.05 -0.22 -0.23 -0.18 0.28 0.35 8–13 
Car. -0.06 -0.58* -0.52* -0.07 -0.41 -0.38 -0.36 0.30 0.38 12–15 

*value significant at a level of 0.05; † value significant at a level of 0.01. The number of samples is provided in the last column. 
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Table 3 
Pearson r coefficient values for needle Water Content (WC) – soil PTE. Bold values indicate |r| > 0.50. No value was significant at a level of 0.05. The number of samples 
is provided in the last column.  

Species Cu As Ni Cr Fe Mn Mo Zn Pb No. of samples 

Aleppo -0.42 -0.28 -0.53 -0.68 -0.48 -0.42 -0.42 0.35 0.48 8–13 
Stone 0.07 -0.15 -0.32 0.10 -0.31 -0.17 -0.21 0.53 0.50 12–15  

Table 4 
Pearson r coefficient values for structural traits – soil PTE. Each trait was defined by its measurement scale: T for Tree and N for Needle. Bold values indicate |r| > 0.50.  

Species Parameter Cu As Ni Cr Fe Mn Mo Zn Pb Nb. of samples 

Aleppo T-Height -0.39 -0.47 -0.18 -0.05 -0.24 -0.26 -0.21 -0.09 -0.09 11–17 
T-DBH -0.30 -0.42 -0.38 -0.27 -0.31 -0.28 -0.30 0.13 0.09 12–18 
N-Length -0.37 -0.50 -0.31 -0.23 -0.28 -0.39 -0.24 0.50 0.11 8–13 
N-Diameter -0.18 -0.22 -0.09 0.12 -0.11 -0.16 -0.11 0.24 0.04 8–13 

Stone T-Height -0.34 -0.40 -0.43 0.21 -0.24 -0.33 -0.12 -0.06 -0.03 12–15 
T-DBH 0.29 -0.38 -0.33 0.06 -0.30 -0.29 -0.43 0.26 0.55* 14–17 
N-Length 0.18 -0.10 -0.20 0.09 -0.15 -0.12 -0.29 0.73† 0.62* 12–15 
N-Diameter 0.54* -0.11 0.29 0.42 0.41 0.25 0.08 0.38 0.34 12–15 

To conclude, Stone pines seemed less sensitive than Aleppo pines to soil PTEs. Stone pines had a different behaviour when confronted to soil contamination and it 
seemed that the needle length was the most impacted structural parameter. Pigment concentrations were the most promising parameters to predict soil PTEs. They 
have been then retained in the next to estimate soil PTE contents. 
*value significant at a level of 0.05; † value significant at a level of 0.01. The number of samples is provided in the last column. 

Table 5 
Pearson r coefficient values between predicted and measured soil PTEs, indirectly estimated at the needle scale from pigment prediction. The values are similar 
between chlorophylls and carotenoids. Bold values are for |r| > 0.50.  

Pine species Cu As Ni Cr Fe Mn Mo Zn Pb 

Aleppo (NDLI) 0.70y 0.42 0.77y 0.78* 0.70y 0.66* 0.66* 0.11 0.28 
Stone (CI) 0.04 0.42 0.44 0.07 0.25 0.25 0.16 0.28 0.29 

* value significant at a level of 0.05; † value significant at a level of 0.01. 

Table 6 
Pearson r coefficient values for soil PTE prediction with spectral indices applied to ineedle spectral measurements.  

Pine species Cu As Ni Cr Fe Mn Mo Zn Pb 

Aleppo -0.89† -0.73† 0.84† 0.92† 0.80† 0.78† 0.85† -0.52 -0.56* 
Index VI-Al (525,1216) VI-Al(504,1687) PSRI VI-Al(682,1222) PSRI REP_LI 

VI_Al(693, 1203) 
PSRI CACOI PSRI 

Stone 0.52* -0.61* 0.76† 0.64* 0.81† 0.78† 0.73† 0.65* 0.50 
Index SWIR_a_WP MSAVI SWIR_a_WP VI-(772,879) SWIR_a_WP SWIR_a_WP SWIR_a_WP GITELSON DATT3 

* value significant at a level of 0.05; † value significant at a level of 0.01. 

Fig. 6. Measured and predicted PTE soil contents for the Aleppo pines with selected indices applied to needle spectral reflectances (Table 6). pred.: predicted, 
meas.: measured. 
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significant results occurred for the Aleppo pine. Most of the good- 
matching indices were obtained with our newly developed indices (e. 
g. for Cu, As, Cr). For the Aleppo pine species, 7 PTEs (Cu, As, Ni, Cr, Fe, 
Mn and Mo) were predicted with r between 0.73 and 0.92 (p-values 
<0.01). Only Zn and Pb were assessed with a lower performance. The 
specified indices were selected for Cu, As and Cr: VI-Al (525, 1216), VI- 
Al(504, 1687) and VI-Al(682, 1222) respectively. The assessment of As, 
Cu and Cr contents needed new specific-context indices as no index in 
the literature reached this performance. For other PTEs, existing indices 
provided the best results. PSRI (Plant Senescence Reflectance Index) 
using 500, 678 and 750 nm spectral bands was retained for the pre-
dictions of Ni, Fe, Mo and Pb contents (Merzlyak et al., 1999). The 
Red-Edge Position Linear Interpolation (REP_LI) based on spectral bands 
700, 740, 780, 800 nm sensitive to chlorophyll provided the best 
assessment of Mn contents (Guyot and Baret, 1988). CACOI (CArotenoid 
COncentration Index) (using spectral bands at 515 and 550 nm) was 
selected for Zn (Gitelson et al., 2003). For Mn, a result identical to the 
one obtained with the literature indices was achieved using VI_Al(693, 
1203). The Stone pine was more sensitive to Ni, Fe, Mn and Mo than to 
the other PTEs with r values higher than 0.73 (p-values <0.01). Higher 
performance was reached for Zn in comparison to the one obtained with 
Aleppo pines. Like for Aleppo pine species, the estimation of the Pb 
contents with the needle spectral signatures seemed compromised. 
Among the selected indices, only one new context-specific index 
VI-(772, 879) was retained for Cr. Cu, Ni, Mn, Fe and Mo were predicted 
with SWIR_a_WP, corresponding to the spectral position of the 
maximum first derivative on the interval [1410–1810 nm] correlated to 
the water contents of the canopy (Erudel et al., 2017). Finally, three 
sensitive chlorophyll indices, MSAVI (Modified Soil Adjusted Vegetation 
Index) (Qi et al., 1994), the reflectance ratio at wavelength 700 nm 
(Gitelson et al., 1999) and DATT3 using 550, 708, 860 nm spectral bands 
(Datt, 1998) were exploited to predict As, Zn and Pb, respectively. 

3.3. Exploitation of the airborne image 

The exploitation of in-situ spectral response at needle sample scale (§
3.2) exhibited that the pigment assessment to estimate soil PTE contents 
in an indirect way (Table 5) had a lower score and lesser significance 
than direct soil PTE indices (Table 6). The direct estimation was retained 
to process the airborne image using the existing and context-specific 
spectral indices. 

The best performing index for each soil PTE content prediction is 
provided in Table 7. Fig. 7 shows an example of the Pearson r maps at 
both scales used to define the new context-specific index for prediction 
of Cu contents in soil. For the Aleppo pine species, the maximum cor-
relation was obtained for spectral bands at 518 and 1216 nm at needle 
scale and 1674 and 1681 nm at canopy scale. The correlation maps of 
the other PTEs are provided in Fig. S2. 

Values for the r coefficient were lower (not significant for four 
values) than those obtained with the needle spectral signatures (r range, 
for Aleppo pines, between 0.52 and 0.80 at the canopy scale and be-
tween 0.56 and 0.92 at the needle scale). For Aleppo pines, the highest 
deviation according to scale change was obtained for Cr (deviation of 
39% between the needle and canopy scales) and the lowest deviation 
was obtained for Cu and As (deviation of 9–10%), not mentioning Zn 

and Pb which led to the worst results. For the Stone pine, the highest 
deviation was related to Cr and Pb. It was not possible to significantly 
predict Cr using Stone pine spectral response at the canopy scale. In 
addition, better assessments were made for Pb at canopy scale (p-values 
<0.05). The lowest deviations between needle and canopy scales were 
obtained for As, Mn and Zn (deviations bellow 12%). There were only 
two indices used at both scales but not in the same context (PTE, spe-
cies): SWIR_a_WP and VI-Al(597, 1656) (the same as VI_StChl(597, 
1656)). 

The sensitivity to soil PTEs according to species was particularly less 
significant at canopy scale than at needle level. At canopy scale, better 
performance was obtained for As, Ni, Mn, Zn and Pb predictions 
considering Stone pines. This difference was the most important for Zn 
and Pb (deviation of 17% and 28% for Zn and Pb between the Aleppo 
and Stone pine species, respectively). As, Ni, Mn and Mo led to the 
lowest deviations between species (below 5%). 

For Aleppo pine, five soil PTEs (Cu, As, Fe, Mn, Mo) were assessed 
with r values higher than 0.63 (p-values >0.01). The best performances 
were for Cu prediction and equivalent results were obtained with a 
context-specific index and NDNI (Normalized Difference Nitrogen 
Index) using spectral bands at 1510 and 1680 nm (Serrano et al., 2002). 
Mn and Fe were assessed with the same new index VI-Al(597,1656). This 
index is the same as VI_StChl(597, 1656) used to predict the carotenoid 
contents of Stone pine. VI-(772, 879) was selected to estimate Ni and Cr 
(not significant for Cr). For As, Mn, Zn (not significant) and Pb, the 
following existing indices were retained respectively: SWIR_a_WP, NDNI 
and CAI (Cellulose Absorption Index based on the 2000, 2100 and 2200 
nm spectral bands) (Nagler et al., 2000). 

For Stone pine, five soil PTEs (As, Mn, Mo, Zn and Pb) were predicted 
with r values equal to or above 0.63 (p-values <0.05). The highest 
performance was obtained for Pb with the Modified Anthocyanin 
Reflectance Index (MARI) using spectral bands at 550, 700, 800 nm 
(Gitelson et al., 2001, 2009). This index was also retained to assess Zn. 
The new index VI-St(497,1518) was selected for Fe, Mn and Mo pre-
dictions. As was assessed with VI-St(518,2341). The Photochemical 
Reflectance Index (PRI) (using spectral bands at 531, 570 nm) used in 
literature for stress detection was selected for Ni (Gamon et al., 1992). 

The indices selected in Table 7 at canopy scale had poor performance 
at needle scale. Only three of them had an r-value higher than 0.50 at 
needlescale for Aleppo pine: VI-Al(504, 1687) for Cu, VI-Al(597, 1656) 
for Fe and VI-Al(597, 1656) for Mn. 

Some indices had however higher or similar (significant) prediction 
abilities for the Aleppo pines considering both needle and canopy scales 
(Table 8). No index was adapted to both scales for the Stone pines. 

4. Discussion 

4.1. Link between soil PTE contents and vegetation traits 

Many studies mentions that PTE stress could produce some changes 
in plant morphological and biochemical characteristics and some of 
them suggests that heavy metal stress reduced pigment contents for 
various species (Lassalle et al., 2021; Mirzaei et al., 2019; Li et al., 2015; 
Shin et al., 2019). This point is confirmed by our results in particular for 
Aleppo pine: the most relevant vegetation traits among those measured 

Table 7 
Pearson r coefficient values for soil PTE prediction with spectral indices at canopy scale.  

Pine species Cu As Ni Cr Fe Mn Mo Zn Pb 

Aleppo -0.80† 0.66† 0.57* 0.56 -0.63* -0.67† -0.65† -0.52 -0.52* 
Index VI-Al(504,1687) 

NDNI 
SWIR_a_WP VI-(772,879) VI-(772,879) VI- Al(597,1656) VI- Al(597,1656) NDNI CAI CAI 

Stone -0.42 -0.68† -0.59* 0.28 -0.51 -0.71† -0.63* -0.63* -0.73†

Index VI-(772,879) VI-St(518,2341) PRI SWIR_a_WP VI-St(497,1518) VI-St(497,1518) VI-St(497,1518) MARI MARI 

* value significant at a level of 0.05; † value significant at a level of 0.01. 
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to characterize soil contaminations were the chlorophyll and carotenoid 
pigments for this species. Several metal elements are essential for opti-
mum plant growth and development. They however become phytotoxic 
from a certain level depending on various factors such as the species and 
its growth and phenological stages, the soil characteristics and the type 
of metal and its speciation. It is difficult to propose a threshold for the 
toxic concentration of each metal (Datt, 1998; Lassalle et al., 2021). 

Previous studies observe dramatic reductions in chlorophyll contents 
with As accumulation in rice plants (Bandaru et al., 2016). These 
changes are attributed to damages of the leaf chloroplast membrane 
structures associated with As toxicity (Rahman et al., 2007). In our 
study, the correlation between As metalloid and measured pigments of 
Aleppo pine samples was not established, at the opposite of other metals 
like Cu, Ni, Fe, Mn. 

Even if Pb strongly inhibits plant growth, chlorophyll production, 
and water contents, no significant correlation was observed between 
measured pine traits and Pb contents in soil except needle length and 
trunk diameter. A similar conclusion was drawn for Zn, only signifi-
cantly correlated to needle length. The behavior of PTEs in soil like Pb, 
and its impact on plants, is controlled by many factors that could explain 
the limited correlation with measured vegetation parameters: its 
bioavailable concentration, its speciation but also the soil pH, the soil 
particle size, the cation-exchange capacity, the root surface area and/or 
even the root exudation (Pourrut et al., 2011). Some studies also 
mention that contaminant effects should be determined not only by the 
total content of PTEs but also by their potential synergistic interactions, 
even at low individual concentrations (Pietrzykowski et al., 2014). 

In our context, two pine species have been simultaneously planted 
for phytostabilisation purpose and some control pines are of similar age. 
Even if significant height differences were observed between the 
contaminated and the control areas, tree height was not significantly 

correlated to contamination level. Structural behaviour differences were 
observed between Aleppo and Stone pines. The needle length of Stone 
pines seemed to be correlated to two metals (Zn, Pb). The structural trait 
analysis in relation to PTE contamination is an under-researched topic. 
Kozlov et al. evaluate the needle fluctuating asymmetry response to 
environmental pollution nearby a nickel-copper smelter and identify a 
difference in needle lengths of Scots pines (Kozlov and Niemela, 1999). 
A recent study on five pine species suggests that needle size strongly 
influences their anatomy, which, in turn, impacts the mechanical traits 
and physiological capacities (Wang et al., 2018). The difference in 
needle length among Stone pines could be considered as a proxy to 
detect soil contamination in the future. Further investigations are 
necessary to define if other structural parameters at tree scale like crown 
size, branch scale (diameter, length) or related to the characteristics of 
needle foliage (e.g. projected area or total surface area) are sensitive to 
soil PTEs. 

4.2. Assessment of pigment contents: new indices vs literature indices 

Leaf biochemical and structural parameters were rarely measured 
simultaneously with spectral measurements (Rautiainen et al., 2018). 
SWIR wavelengths data are often missing in contamination studies. Our 
study addressed these two limitations of the literature. 

Most of the published work is based on the inversion of leaf radiative 
transfer models such as PROSPECT or LIBERTY (Leaf Incorporating 
Biochemistry Exhibiting Reflectance and Transmittance Yields) to 
retrieve pigment contents in pine needles (Dawson et al., 1998; Jac-
quemoud and Baret, 1990; Moorthy et al., 2008; Lin et al., 2018; Zar-
co-Tejada et al., 2004). Some other studies are based on empirical 
algorithms using one or a few spectral indices in order to prove the 
correlation between spectral response and pigments concentrations in 
needles of pine species (Gamon and Berry, 2012; Kovãc et al., 2012; 
Kupková et al., 2011). The studied species are not Stone and Aleppo 
pines. 

In our study, many published indices for a wide range of species and 
new context-specific indices were compared to assess chlorophylls and 
carotenoids concentrations in needles of both Aleppo and Stone pine 
species. 

For these species, most of the powerful specific-context indices use a 
spectral band in the spectral region sensitive to photosynthetic pigments 
(e.g. 510, 597, 610 or 693 nm) and another one in the SWIR spectral 
domain (e.g. 1203, 1630, 1656 or 1687 nm) showing absorption fea-
tures of water contents in foliage and other chemicals (cellulose, lignin, 

Fig. 7. Correlation maps of Pearson r scores for the definition of a new optimized index relative to Cu soil contents, at needle and canopy scales. Each correlation 
map is divided in two parts: upper-left corner for Aleppo pine and bottom-right for Stone pine. 

Table 8 
Pearson r coefficient values at both needle and canopy scales, and the mean of 
their absolute values, for soil PTE prediction with spectral indices for Aleppo 
pines. Only mean r of 0.60 or more are represented.  

PTE Index Mean absolute r Needle r Canopy r 

Cu VI-Al(504,1687) 0.79 0.79† 0.80†

Ni VI-Al(710,1203) 0.62 0.71† 0.52 
Fe VI-Al(710,1203) 0.63 0.66* 0.60* 
Mn VI-Al(555,1203) 0.68 0.76† 0.60* 

* value significant at a level of 0.05; † value significant at a level of 0.01. 
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nitrogen …) (Gitelson and Merzlyak, 1998). 
The spectral response of Stone pines was more sensitive to pigment 

content variations than the one of Aleppo pines. Some indices in the 
literature have similar performance to these new indices. VI_StChl 
(610,1630) was selected for the Stone pine, providing similar perfor-
mance for chlorophyll and carotenoid predictions. CI, well-known to be 
sensitive to slight variations in the chlorophyll contents for various types 
of plant, was well-adapted to assess pigment contents in complement to 
the new indices for Stone pine. 

For Aleppo pine, NDLI, suited to determine biochemical concentra-
tions (nitrogen and lignin) and canopy structural features for a wide 
range of species, provided a high significant correlation with pigment 
contents and had a higher sensitivity in comparison to indices referring 
to photosynthetic pigments like MCARI or IRECI (Curran, 1989). A 
recent study in the frame of the agricultural field led by Bloem and al. 
shows a very high correlation of NDLI with dry matter and a high cor-
relation with chlorophyll and carotenoid contents (Bloem et al., 2020). 

4.3. Prediction of soil PTE contents: direct and indirect approach 
comparison 

At needle sample scale, existing or context-specific vegetation 
indices were defined to directly predict soil PTE contents, as well as 
through the intermediate prediction of a sensitive vegetation parameter, 
being the pigment contents (chlorophylls and carotenoids). The rela-
tionship between soil PTE contents and needle pigment contents s was 
more significant and stronger for Aleppo pine, and it was similar for the 
two pigment families. Although some metals or metalloids were indi-
rectly significantly correlated to vegetation indices, there was a signif-
icant (p-value <0.05) difference with direct estimations. There was a 
mean loss of absolute Pearson’s r of 0.2 and 0.4 from direct to indirect 
estimation for the Aleppo and the Stone pines, respectively. Considering 
the high ability to predict pigments with vegetation indices (r > 0.87, p- 
values <0.01), the correlation loss reasonably comes from the lower and 
only partially significant pigment – soil PTE relationship (Table 2). 

Many studies observe a photosynthetic pigment, chlorophyll-a and 
-b, concentration loss with increasing PTE exposition for various plant 
species, especially for rice and soil As (Azizur Rahman et al., 2007; 
Bakshi et al., 2018; Caporale et al., 2013; Shakya et al., 2008). Shi et al. 
developed a three-band vegetation index sensitive to total chlorophyll of 
rice - (Oryza sativa L.) for the direct estimation of soil As contents 
(significant absolute r of 0.67) (Shi et al., 2016). For Aleppo pine, we 
obtained good predictions of Cu, Ni, Cr, Fe contents in soil through 
NDLI, retained for pigment estimation (r values higher than 0.70, 
p-values <0.05). Non significant correlation scores were obtained for 
most of the elements with Stone pine. The foliar pigment vs. soil PTE 
content correlation score was specific to the metal or metalloid and the 
species. 

Some studies are based on the correlation between the pigment and 
the foliar PTE contents related to the soil underneath. Shin et al. observe 
that the As contents of the pine needles (Pinus densiflora) and the soil 
underneath are highly correlated, indicator of a transfer of As from soil 
to pine needles (Shin et al., 2019). They propose a regression model to 
predict needle As contents by the spectral variation of pine needles. In 
our study, the r values of As predictions for Aleppo and Stone pines were 
lower than those obtained for some other metals. These pine species may 
be less sensitive to As than to other metals like Ni, Cu, Fe, Mn and Mo. To 
complete our analysis, needle samples have been conserved to measure 
PTE contents in needles in the future. The direct approach, based on the 
correlation between needle spectral variation and each metal or 
metalloid content in soil, is the most promising for the two species at 
needle and canopy scales. This kind of approach has been little inves-
tigated as most published studies are based on leaf metal content 
assessment (Bandaru et al., 2016; Mirzaei et al., 2019; Shin et al., 2019). 
Pb and Zn contents are the most difficult to estimate considering both 
scales and species. 

For future works, it will be interesting to assess the performance of 
multiple linear regression models, especially for specific cases (species, 
PTE) for which two indices have an equivalent performance such as 
(Aleppo, Cr) or (Aleppo, Cu). 

4.4. Up-scaling management 

Performance at needle scale (in-situ measurement) was better than at 
canopy scale (airborne measurement) as mentioned in other studies 
(Erudel et al., 2017; Lassalle et al., 2019b, 2021). For the Aleppo pine 
species, r reached a value of 0.92 at needle scale and 0.80 at canopy one. 

The choice of the best index for quantifying a given soil PTE depends 
on the scale of the measurement due to the variation of pine reflectance 
spectra according to the spatial resolution. At the needle level, the main 
drivers of reflectance are leaf chlorophyll, water content and inner 
structure. At canopy scale, additional vegetation traits, like canopy 
structure (density, shadowing in the crown …) and optical properties of 
trunks, branches, and understory, systematically decrease canopy 
reflectance (Rautiainen et al., 2018). In the future, it will be interesting 
to carry out in-situ spectral measurements at canopy scale in order to 
analyse the robustness of the spectral indices to up-scaling from needle 
to canopy level. 

The part of the studied site composed of reduced crown pines planted 
in grids can be assimilated to open canopies. In this case, previous 
studies had difficulties in accurately predicting chlorophyll contents by 
the red-edge region response due to the direct understory and between- 
crown shadow impacts (Meggio et al., 2020; Zarco-Tejada et al., 2019). 
This may explain why the wavelength in the SWIR domain was nearly 
systematically used in the best-performing indices and in the different 
indices selected according to needle or canopy level measurements. UAV 
acquisitions should be investigated to provide an intermediate scale 
between needle and canopy-level data that could be more suitable to 
monitor contamination in soil by indirect effects on vegetation (de 
Castro et al., 2021). 

Although the best index selected depended on the spatial resolution, 
context-specific indices performed well at both scales in order to predict 
some metal contents in soil using the Aleppo pine species spectral 
response. The best performance was obtained by VI-Al(504,1687) to 
estimate Cu at both scales. Some studies have proposed spectral indices 
to analyse the spectral feature change of Cu stressed leaves for several 
vegetation types but few have been interested in pine trees and the SWIR 
bands have not been investigated (Cui et al., 2019; Zhang et al., 2019). 
Further investigations in other contaminated lands are needed to assess 
VI-Al(504,1687) robustness to up-scaling for the prediction of soil Cu 
based on pine spectral reflectance. 

4.5. Comparison of species response 

It is well known that spectral characteristics associated with PTEs 
vary between plant species (Slonecker et al., 2010) and, in this regard, 
according to the species of pine tree (Cindrić et al., 2018). Until now, no 
study has compared the sensitivity of pine species and studied their 
specific traits impacted in a contaminated land. Our study addresses this 
issue. 

While the sought relation between soil contamination and pigment 
contents showed to be statistically significant in the case of Aleppo pine, 
it was not applicable in the case of Stone pine. A previous study shows 
that Aleppo pine needles retain high contents of heavy metals in an 
urban context with long-term soil contamination by Pb, Cd, Cu and Zn 
(Al-Alawi and Mandiwana, 2007). Unfortunately, no specific informa-
tion on Stone pine is available. Our study proves that the most sensitive 
trait of Stone pine to PTE contamination is structural, the length of the 
needles varying according to the contents of a few PTEs in soil. 

In this study, Aleppo pine was the best species for estimating Cu, Fe 
and Cr contents in soils (not significant at canopy scale for the latter). 
The best predictions for Zn, Mn and Pb (not significant at needle scale for 
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the latter) contents in soil were obtained for Stone pine. Equivalent 
performance was achieved by both species for As, Ni and Mo. 

Entry of PTEs from the soil into plants can occur through the roots. 
Once taken up the PTEs can be immobilized within root tissues or be 
transported to another plant organ (accumulation of PTEs in their aerial 
tissues). The transfer of PTEs within the plant, called translocation, can 
vary considerably depending on the PTE, but also on the tree species. 

5. Conclusions 

This study aimed to quantify soil PTE contamination in a Sub-
mediterranean vegetated area using airborne imagery with very high 
spatial and spectral resolutions and covering the reflective domain. It 
focused on nine PTEs and two pine species (Stone and Aleppo) intro-
duced to phytostablize a former ore processing site. A two-step study 
was proposed according to the observation scale (needle or canopy 
scales). As a first step, the needle biochemical, biophysical and struc-
tural parameters sensitive to soil PTEs were analysed: photosynthetic 
pigments were the most relevant. The second step compared two ap-
proaches (direct and indirect) for each soil PTE content prediction, 
based on existing or context-specific spectral indices. The direct 
approach provided the most significant results and was the best per-
forming without the need for additional measurements of pigment 
contents. The best performing context-specific indices were often based 
on a spectral band in the SWIR domain, highlighting the importance of 
this part of the spectrum. Owing to significant uncertainties, Aleppo pine 
was suitable for Cu, Cr and Fe and Stone pine for Zn, Pb and Mn. 
Equivalent performances are achieved by both species for As, Ni and Mo. 
Further investigations will be needed (foliar PTE estimation, PTE 
bioavailability investigation) to define the pine species to consider as a 
valuable marker for each PTE in such a context. 

We have to acknowledge that the results reported within this study 
were only based on two pine species from a limited area. This study 
nonetheless demonstrates the feasibility of the proposed methods for 
PTE soil content prediction and should be deployed on all pines on the 
site after automatically identifying the species at tree scale by supervised 
classification approach based on machine learning algorithms. Prom-
ising perspectives of operational use to monitor large contaminated 
areas will arise in the future with the deployment of hyperspectral UAV 
sensors and the emergence of new hyperspectral satellite instruments. 
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des couverts végétaux. In: Signatures Spectrales d’objets en télédétection. 4 ème 
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