
HAL Id: hal-04082519
https://hal.science/hal-04082519

Submitted on 26 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Enabling timing predictability in the presence of store
buffers

Alban Gruin, Thomas Carle, Christine Rochange, Pascal Sainrat

To cite this version:
Alban Gruin, Thomas Carle, Christine Rochange, Pascal Sainrat. Enabling timing predictability in
the presence of store buffers. 31st International Conference on Real-Time Networks and Systems
(RTNS 2023), Jun 2023, Dortmund, Germany. pp.1-10, �10.1145/3575757.3593653�. �hal-04082519�

https://hal.science/hal-04082519
https://hal.archives-ouvertes.fr

Enabling timing predictability in the presence of store buffers
Alban Gruin

alban.gruin@irit.fr

IRIT – Univ. Toulouse 3 – CNRS

Toulouse, France

Thomas Carle

thomas.carle@irit.fr

IRIT – Univ. Toulouse 3 – CNRS

Toulouse, France

Christine Rochange

christine.rochange@irit.fr

IRIT – Univ. Toulouse 3 – CNRS

Toulouse, France

Pascal Sainrat

pascal.sainrat@irit.fr

IRIT – Univ. Toulouse 3 – CNRS

Toulouse, France

ABSTRACT
We study the effect of store buffers on the timing predictability

of processor pipelines. We show that the concurrency between

the load unit and the store buffer to access the memory bus is

an obstacle to timing predictability, even in simple scalar in-order

pipeline designs.We then propose a gatingmechanism that removes

these shortcomings. We model subsets of pipelines that implement

our mechanism using an established logic framework. Using the

Coq proof assistant, we prove that it enables timing predictability.

Finally, we show that the performance cost of our mechanism

measured on an FPGA-synthesized RISC-V core is around 2% only

on average, with a minimal increase in resource usage.

CCS CONCEPTS
• Hardware → Theorem proving and SAT solving; Safety
critical systems.

KEYWORDS
computer architecture, timing predictability, timing anomalies, Coq

ACM Reference Format:
Alban Gruin, Thomas Carle, Christine Rochange, and Pascal Sainrat. 2023.

Enabling timing predictability in the presence of store buffers. In The 31st
International Conference on Real-Time Networks and Systems (RTNS 2023),
June 7–8, 2023, Dortmund, Germany. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3575757.3593653

1 INTRODUCTION
The growing complexity of real-time embedded software as well

as the search for increased performance lead to the adoption of

advanced processors that implement complex hardware accelera-

tion mechanisms such as cache memories, speculative execution

and store buffers. At the same time, reliable worst-case execution

time (WCET) upper bounds are required to build safe real-time

systems. In the past years, it has been shown that even the simplest

This work was partially supported by the ANR LabEx CIMI (grant ANR-11-LABX-0040)

within the French State Programme “Investissements d’Avenir.”.

This work was supported by a grant overseen by the French National Research Agency

(ANR) as part of the ProTiPP (ANR-22-CE25-0004) project.

RTNS 2023, June 7–8, 2023, Dortmund, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in The 31st International
Conference on Real-Time Networks and Systems (RTNS 2023), June 7–8, 2023, Dortmund,
Germany, https://doi.org/10.1145/3575757.3593653.

processor core designs can be prone to timing anomalies [18]. A
timing anomaly occurs when a shorter latency for one instruction

in a sequence (e.g. a cache hit instead of a cache miss for a load

instruction) counter-intuitively makes the execution time of the se-

quence longer, or when a longer latency for one instruction leads to

an even longer increase for the total execution time of the sequence.

Timing anomalies make usual compositional analyses unsound for

multi-core processors [13].

Timing anomalies appear when components (e.g. caches, buffers)

concurrently access a shared resource. A series of works have inves-

tigated the design of provably timing-anomaly-free cores [6, 8, 12].

The proposed solutions control concurrency by design, through

gating mechanisms that ensure that one given component always

has priority over another one when accessing a shared resource.

The main challenge is to guarantee the absence of timing anomalies

while inducing a minimal decrease in performance. In these papers,

the main focus has been put on the concurrency between the in-

struction and the data cache for accesses to the memory bus. Here,

we focus on store buffers and show that they jeopardize the timing

predictability of cores, in very simple pipeline designs as well as in

more complex ones. We propose a new gating mechanism and use

the Coq proof assistant [19] to prove that it prevents timing anom-

alies related to memory accesses. We implemented this mechanism

in a RISC-V core that we synthesized on a FPGA, and we measured

its impact on the performance of the core.

2 STORE BUFFERS
In a processor pipeline, a store buffer [1] allows store instructions to

leave the memory stage and be committed while the write request

has not been sent to the memory yet. This way, the write latency is

hidden.

2.1 In-order pipelines
In a simple scalar in-order pipeline such as the textbook 5-stage

pipeline considered in [14], all memory accesses (loads and stores)

are processed in the same memory stage. Without a store buffer, a

store to a memory block that does not reside in the data cache must

stay in the memory stage for at least the latency of the access to the

memory, stalling all subsequent instructions. This is illustrated in

Figure 1(a): instruction 𝑖0 is a store that accesses the memory bus

and stalls the pipeline until the write to the memory is completed.

Although this stall is usually necessary for loads (since the loaded

data is likely to be used by the following instructions), stores can

often be delayed safely.

https://orcid.org/0000-0001-7306-1822
https://orcid.org/0000-0002-1411-1030
https://orcid.org/0000-0001-7257-7114
https://orcid.org/0000-0003-1039-2290
https://doi.org/10.1145/3575757.3593653
https://doi.org/10.1145/3575757.3593653

RTNS 2023, June 7–8, 2023, Dortmund, Germany A. Gruin et al.

FE

i3
DE

i2
EX

i1
MEM

i0
WB

Memory Bus

(a) Without store buffer.

FE DE

i3
EX

i2
MEM

i1
WB

i0

Memory Bus

– – – s0

SB

(b) With a store buffer.

Figure 1: In-order pipeline

A store buffer keeps track of the stores that have been executed

in the pipeline but have not yet been sent to the memory. As a

consequence, a store instruction to an uncached block does not

wait in the memory stage until the block has been loaded or the data

has been written to the memory: the address and data to be written

are pushed to the store buffer, and the instruction goes to the next

stage in the next clock cycle, allowing the flow of instructions to

progress in the pipeline. The store buffer then sends the pending

writes to memory whenever it gets access to the memory bus. This

is illustrated in Figure 1(b): store instruction 𝑖0 is not stalled in the

MEM stage. Instead the write (𝑠0) is enqueued in the store buffer,

and 𝑖0 progresses to the WB stage. In the example, instruction 𝑖1
enters the MEM stage and performs a load, thus requesting the

memory bus. When the load is completed, 𝑖1 advances to the WB

stage and 𝑖2 enters the MEM stage. If 𝑖2 does not request the bus,

the store buffer is able to send 𝑠0 to the memory.

2.2 Out-of-order loads and stores
In more complex architectures, load and store instructions to differ-

ent memory blocks may be executed out of order by using separate

instruction queues for loads and stores, or a reorder buffer in the

load/store unit (LSU). In this setup, a store buffer allows store in-

structions to advance in the pipeline even though an older load

instruction may be using the memory bus. In order to avoid break-

ing memory dependencies, addresses of loads are checked against

those of the stores in the store buffer. Figure 2 depicts an example of

such a design, in which we represent separately the load unit (LU)

and the store unit (SU). In order to remain as general as possible, we

only depict the portion of the pipeline related to memory accesses.

This portion may be inserted in a much longer pipeline and/or in

parallel with other functional units. In Figure 2(a), instruction 𝑖0
just advanced to stage 𝑆𝑛 after enqueuing its store 𝑠0 in the store

buffer in the last cycle. Instruction 𝑖1 (a load) just entered the LU

stage and started using the bus, while instruction 𝑖2 (another store)

just entered stage 𝑆𝑝 . The state of the pipeline in the next cycle is

depicted in Figure 2(b): instruction 𝑖0 advances past the 𝑆𝑛 stage,

while 𝑖1 is still accessing the memory. 𝑖2 is allowed to progress to

the SU stage. In the following cycle, 𝑖2 will enqueue its store in the

store buffer. If 𝑖1 still has not finished its access to the memory, 𝑖2
will advance to stage 𝑆𝑛 .

A consequence of this design is the possibility for a load to be

delayed or not before accessing the bus, depending on the state

of the store buffer. As we will see in Section 4, this feature is a

problem for timing predictability. Additionally, depending on the

design, a store instruction may be blocked in the LSU because the

Sp–1 Sp

i2 SU

LU

i1
Sn

i0

Memory Bus

– – – s0

SB

(a) 𝑖0 has enqueued its store in the
store buffer and advanced to the 𝑆𝑛
stage. In the meantime 𝑖1 has ad-
vanced to the LU stage and started
accessing the bus.

Sp–1 Sp

SU

i2

LU

i1
Sn

Memory Bus

– – – s0

SB

(b) 𝑖0 advances past 𝑆𝑛 . 𝑖1 is still ac-
cessing the bus and 𝑖2 progresses to
the SU stage.

Figure 2: Out-of-order memory accesses

store buffer is full while a subsequent load may be allowed to use

the memory bus, thus delaying the advance of the store instruction.

This can also be problematic for timing predictability.

3 GENERAL MODEL DESCRIPTION
In this section, we introduce the formal elements that we use to

model the pipelines and reason on their timing predictability prop-

erties. Most of these elements are taken from or inspired by [11].

We consider a sequence of instructions I = 𝑖0, 𝑖1, ..., 𝑖𝑛 pro-

cessed through a pipeline.

Definition 1. (Instruction kinds) Each instruction 𝑖 ∈ I has a
kind: 𝑖 .kind ∈ {load, store, other}.

Definition 2. (Pipeline) A pipeline is a set of stages S, partially
ordered by ⊏S .

Instructions flow through the pipeline stages in an order com-

patible with ⊏S . Note that depending on the pipeline and on their

kind, instructions may not flow through all the pipeline stages. The

progress of an instruction is a record of the stage it currently resides

in and of the number of remaining cycles to process it in this stage.

Definition 3. (Progress) The progress of an instruction belongs
to P := S × N0. Order ⊑P over this set is defined by:

(𝑠0, 𝑛0) ⊑P (𝑠1, 𝑛1) ⇐⇒ (𝑠0 ⊏S 𝑠1)
∨ ((𝑠0 = 𝑠1) ∧ (𝑛0 ≥ 𝑛1))

The state of the pipeline at a point of the execution of a program

records the current progress of all the instructions in the pipeline.

Definition 4. (Pipeline state) A pipeline state is described as a
subset C ⊆ I → P. Order ⊑ on pipeline states is defined by:

𝑐𝑎 ⊑ 𝑐𝑏 ⇐⇒ ∀𝑖 ∈ I, 𝑐𝑎 (𝑖) ⊑P 𝑐𝑏 (𝑖)
Definition 5. (Cycle function) Function cycle : C → C de-

scribes how instructions progress in the next clock cycle.

Definition 6. (Monotonicity) A pipeline has a monotonic prog-
ress if:

∀𝑐𝑎, 𝑐𝑏 ∈ C, 𝑐𝑎 ⊑ 𝑐𝑏 ⇒ cycle(𝑐𝑎) ⊑ cycle(𝑐𝑏)
In [11], the authors prove that monotonicity is a sufficient prop-

erty of a pipeline to guarantee the absence of timing anomalies. In

the remainder of the paper, we investigate the impact of using store

buffers on the monotonicity of pipelines.

Enabling timing predictability in the presence of store buffers RTNS 2023, June 7–8, 2023, Dortmund, Germany

S := {pre, EX , MEM, WB, post}

pre ⊏S EX ⊏S MEM ⊏S WB ⊏S post

cycle(𝑐) (𝑖) :=


(𝑐.nstg(𝑖), 𝑐 .nlat (𝑖)) : 𝑐.ready(𝑖)
∧ 𝑐.free(𝑐.nstg(𝑖))

(𝑐.stg(𝑖), 𝑐 .ncnt (𝑖)) : otherwise

𝑐.ncnt (𝑖) :=



𝑐.cnt (𝑖) − 1: 𝑐.cnt (𝑖) > 0 ∧ 𝑖 .kind = load ⇒
(𝑐.stg(𝑖) ≠ MEM
∨ 𝑐.busTaken(𝑖) ∨ dchit (𝑖))

𝑐.cnt (𝑖) : 𝑖 .kind = load ∧ 𝑐.stg(𝑖) = MEM
∧¬𝑐.busTaken(𝑖) ∧ ¬dchit (𝑖)

0 : 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐.nlat (𝑖) :=
{

memlatd (𝑖) : 𝑐.nstg(𝑖) = MEM ∧ ¬dchit (𝑖)
0 : otherwise

𝑐.nstg(𝑖) :=


EX : 𝑐.stg(𝑖) = pre
MEM : c.stg(𝑖) = EX
WB : c.stg(𝑖) = MEM
post : c.stg(𝑖) = WB

𝑐.ready(𝑖) := 𝑐.cnt (𝑖) = 0

∧ (𝑐.stg(𝑖) = pre ⇒ ∀𝑗 < 𝑖, 𝑐 .stg(𝑗) ⊐S pre)
∧ (𝑐.stg(𝑖) = MEM ⇒

(𝑖 .kind = store ⇒ ¬𝑐.sbFull()))

𝑐.free(𝑠) := 𝑠 = post
∨ (¬∃ 𝑗 . 𝑐 .𝑠𝑡𝑔(𝑗) = 𝑠)
∨ (∃ 𝑗 . 𝑐 .𝑠𝑡𝑔(𝑗) = 𝑠 ∧ 𝑐.ready(𝑗) ∧ 𝑐.free(𝑐.nstg(𝑗)))

Figure 3: cycle() function for the simplified in-order 5-stage
pipeline

4 STORE BUFFERS AND TIMING
PREDICTABILITY

In this section, we provide formal models to characterize the ef-

fect of store buffers on the two architectural designs discussed in

Section 2. In order to keep our results general, we do not provide

the complete cycle function for a specific pipeline. Instead we focus

on the portion of pipeline that is related to the store buffer, and

make no particular assumption about the topology of the rest of

the pipeline.

In order to model the occupancy of the memory bus (either by

the store buffer or by the memory/load unit) in each execution

cycle, we introduce the busTaken predicate. Given a pipeline state

𝑐𝑎 and an instruction 𝑖 such that 𝑖 .kind = load, 𝑐𝑎 .busTaken(𝑖) is
true if and only if 𝑖 is using the memory bus in the current cycle.

Note that for our proofs, we do not need a formula to compute the

value of busTaken.

4.1 Simple in-order pipeline
We define the 𝑐𝑦𝑐𝑙𝑒 function for the simplified 5-stage pipeline in

Figure 3. As pointed out earlier, we only focus on the EX, MEM

and WB stages. The previous stages are modeled by an abstract

FE DE EX MEM

i2
WB

i1

Memory Bus

– – s1 s0

SB

(a) 𝑐′𝑎

FE DE EX MEM

i2
WB

i1

Memory Bus

– – – s1

SB

(b) 𝑐′
𝑏

Figure 4: Monotonicity counterexample

stage called pre that initially holds all instructions. The retired

instructions go to an abstract stage called post after the WB stage.

An instruction advances to the next stage when (1) it is ready to

advance, and (2) the next stage is guaranteed to be free in the next

cycle. The ready(𝑖) function first guarantees that instruction 𝑖 has

been processed in its current stage (cnt (𝑖) = 0, where cnt (𝑖) denotes
the counter of instruction i, i.e. the number of remaining cycles to

complete the processing of 𝑖 in its current stage). Then, depending

on the current stage of 𝑖 , it checks:

• if 𝑖 is in pre, that 𝑖 is the oldest instruction in pre (instructions
enter the pipeline in program order);

• if 𝑖 is in MEM, that if 𝑖 is a store, the store buffer is not full.

The free(𝑠) function tells whether stage 𝑠 will be empty in the

next cycle (it is already empty or the instructions it contains will

advance to their next stage).

The computation of the counter of remaining processing cycles

𝑐.cnt (𝑖) is performed as follows: for any instruction other than a

load (and for a load in any stage other than MEM), the counter

is decremented if it is positive, and a null counter remains equal

to zero. For a load instruction inside the MEM stage, its counter

is only decremented if the instruction performs a hit in the cache

(dchit (𝑖))1 or uses the bus in the current cycle (𝑐.busTaken(𝑖) is
true).

Theorem 1. Store buffers jeopardize the monotonicity of in-order
scalar pipelines.

Proof. We need to exhibit a counterexample where monotonic-

ity is broken, that is to say a sequence of instructions 𝑖1, ..., 𝑖𝑛 and

two pipeline states 𝑐𝑎 and 𝑐𝑏 such that 𝑐𝑎 ⊑ 𝑐𝑏 and cycle(𝑐𝑎) @
cycle(𝑐𝑏). We start with the states 𝑐′𝑎 and 𝑐′

𝑏
in Figure 4. In this

figure, 𝑖2 is a load instruction that requires the bus to access the

memory. We assume that in 𝑐′
𝑏
the 𝑠1 store has been initiated in

the previous cycle and will use the bus at least for the next two

cycles. As a result, 𝑐′
𝑏
.busTaken(𝑖2) is false and cycle(𝑐′

𝑏
) .cnt (𝑖2) =

𝑐′
𝑏
.cnt (𝑖2) = memlatd (𝑖2). Conversely, we assume that 𝑠0 will be

completed at the end of the current cycle in 𝑐′𝑎 . In the next cycle, 𝑠0
will get out of the store buffer, and 𝑖2 and 𝑠1 will compete for the

bus. Let us assume that 𝑖2 gets the bus (i.e. cycle(𝑐′𝑎).busTaken(𝑖2)).
Now, if we rename 𝑐𝑎 = cycle(𝑐′𝑎) and 𝑐𝑏 = cycle(𝑐′

𝑏
), we have

𝑐𝑎 ⊑ 𝑐𝑏 . From a less formal perspective that considers the stores

inside the store buffer, 𝑐𝑎 has made less progress than 𝑐𝑏 , as 𝑠1
has already started in 𝑐𝑏 and not in 𝑐𝑎 . Now, since 𝑠1 is assumed

1
As we will show in Section 5.2, the part regarding dchit (𝑖) is not necessary when

modeling a cache whose hit latency is 1 cycle. We keep it here in order to have a

general model.

RTNS 2023, June 7–8, 2023, Dortmund, Germany A. Gruin et al.

S := {𝑝𝑟𝑒, 𝑆𝑝 , 𝑆𝑈 , 𝐿𝑈 , 𝑝𝑜𝑠𝑡}

pre ⊏S 𝑆𝑝 ⊏S {𝑆𝑈 , 𝐿𝑈 } ⊏S post

cycle(𝑐) (𝑖) :=


(𝑐.nstg(𝑖), 𝑐 .nlat (𝑖)) : 𝑐.ready(𝑖)
∧ 𝑐.free(𝑐.nstg(𝑖))

(𝑐.stg(𝑖), 𝑐 .ncnt (𝑖)) : otherwise

𝑐.ncnt (𝑖) :=



𝑐.cnt (𝑖) − 1: 𝑐.cnt (𝑖) > 0 ∧ 𝑖 .kind = load ⇒
(𝑐.stg(𝑖) ≠ LU
∨ 𝑐.busTaken(𝑖) ∨ 𝑑𝑐ℎ𝑖𝑡 (𝑖))

𝑐.cnt (𝑖) : 𝑖 .kind = load ∧ 𝑐.stg(𝑖) = LU
∧¬𝑐.busTaken(𝑖) ∧ ¬dchit (𝑖)

0 : otherwise

𝑐.nlat (𝑖) :=
{

memlatd (𝑖) : 𝑐.nstg(𝑖) = LU ∧ ¬dchit (𝑖)
0 : otherwise

𝑐.nstg(𝑖) :=


𝑆𝑝 : 𝑐.stg(𝑖) = pre ∧ 𝑖 .𝑘𝑖𝑛𝑑 ∈ {load, store}
SU : 𝑐.stg(𝑖) = 𝑆𝑝 ∧ 𝑖 .kind = store
LU : 𝑐.stg(𝑖) = 𝑆𝑝 ∧ 𝑖 .kind = load
post : 𝑐.stg(𝑖) ∈ {SU , LU }

𝑐.ready(𝑖) := 𝑐.cnt (𝑖) = 0

∧ (𝑐.stg(𝑖) = pre ⇒ ∀𝑗 < 𝑖, 𝑐 .stg(𝑗) ⊐S pre)
∧ (𝑐.stg(𝑖) = SU ⇒

(𝑖 .kind = store ⇒ ¬𝑐.sbFull()))

𝑐.free(𝑠) := 𝑠 = post
∨ (¬∃ 𝑗 . 𝑐 .stg(𝑗) = 𝑠)
∨ (∃ 𝑗 . 𝑐 .stg(𝑗) = 𝑠 ∧ 𝑐.ready(𝑗) ∧ 𝑐.free(𝑐.nstg(𝑗)))

Figure 5: cycle() function for the separate store and load units

to last for at least another cycle, 𝑐𝑏 .busTaken(𝑖2) is false, and the

counter for 𝑖2 will remain unchanged in cycle(𝑐𝑏). On the other

hand, 𝑐𝑎 .busTaken(𝑖2) is true, so the counter for 𝑖2 will decrease in

cycle(𝑐𝑎). As a consequence, cycle(𝑐𝑎) @ cycle(𝑐𝑏). □

4.2 Separate Store and Load Units
We provide the definition of the cycle() function in Figure 5. The

main difference with the functions of the previous section concerns

the topology of the pipeline that now includes separate SU and

LU stages. In order to simplify the model, we consider only load

and store instructions in this portion of the pipeline (we assume

that other kinds of instructions are being directed to other parallel

portions of the pipeline that include their corresponding functional

units).

As before, the pre and post stages can model entire portions

of the pipeline that are located respectively before and after the

considered pipeline portion.

Theorem 2. Store buffers jeopardize the monotonicity of pipelines
with separate store and load units.

Proof. The example of monotonicity violation is just a variation

of the one we presented in Section 4.1, adapted to this particular

topology. We consider states 𝑐′𝑎 and 𝑐′
𝑏
as in Figure 6. 𝑖1 is a load

Sp–1 Sp

SU

LU

i1
Sn

Memory Bus

– – s1 s0

SB

(a) 𝑐′𝑎

Sp–1 Sp

SU

LU

i1
Sn

Memory Bus

– – – s1

SB

(b) 𝑐′
𝑏

Figure 6: Monotonicity counterexample on a pipeline with
separate store and load units

instruction that resides in stage LU. In state 𝑐′𝑎 , there are two stores
𝑠0 and 𝑠1 residing in the store buffer. 𝑠0 is currently being performed

and will finish at the end of the cycle. We thus assume that the

bus can be granted to the load unit in the next cycle. As a result,

cycle(𝑐′𝑎) .busTaken(𝑖1) is true. On the other hand, we assume a state

𝑐′
𝑏
in which the store buffer only holds 𝑠1. We also assume that 𝑠1 is

currently being performed, and will use the bus for at least the next

cycle. As a result, 𝑐′
𝑏
.busTaken(𝑖1) is false, and will remain false

for at least the next cycle. Consequently, cycle(𝑐′
𝑏
) .busTaken(𝑖1) =

false. If once again we rename 𝑐𝑎 = cycle(𝑐′𝑎) and 𝑐𝑏 = cycle(𝑐′
𝑏
),

we have 𝑐𝑎 ⊑ 𝑐𝑏 and since 𝑐𝑎 .busTaken(𝑖1), cycle(𝑐𝑎) .cnt (𝑖1) =

𝑐𝑎 .cnt (𝑖1) − 1, while cycle(𝑐𝑏) .cnt (𝑖1) remains unchanged. Finally,

we have 𝑐𝑎 ⊑ 𝑐𝑏 and cycle(𝑐𝑎) @ cycle(𝑐𝑏), so monotonicity is

broken. □

5 ENABLING TIMING-PREDICTABILITY
WITH STORE BUFFERS

5.1 Hardware modifications
In order to enforce timing predictability in the presence of store

buffers, we propose to add a new gating mechanism that blocks

load instructions in the stage before the one that actually performs

the load (i.e. before MEM or LU in our examples) as long as the

store buffer is not empty or there is a store instruction in MEM or

SU. The intuition behind this is to guarantee that the instructions

acquire the bus following the program order, so that an access

corresponding to an older instruction is always performed before

an access corresponding to a younger instruction. In the models of

Figures 3 and 5, this modification amounts to:

• adding a 𝑐.sbEmpty() predicate that is equal to 1 iff the store

buffer and the SU (or MEM) stage are empty in state 𝑐;

• adding the following line to the ready function using a con-

junction: (𝑐.stg(𝑖) = 𝑆𝑝 ⇒ (𝑖 .kind = load ∧ 𝑐.sbEmpty()))
(in which 𝑆𝑝 is replaced by EX in the model of Figure 3).

5.2 Proof of timing anomaly freedom
Using these definitions, we can prove the monotonicity of our

pipeline models using the Coq proof assistant.

5.2.1 Progress definition in Coq. Listing 1 shows type definitions
used for our proofs. First, we define the stages and instructions.

They depend on the pipeline being modeled: the stage definition on

line 1 corresponds to the model in Figure 5, and can be replaced by

Enabling timing predictability in the presence of store buffers RTNS 2023, June 7–8, 2023, Dortmund, Germany

Listing 1: Stage, instruction, and state definitions in Coq
1 Variant stage := Pre | Sp | Lu | Su | Post.
2 (* Variant stage := Pre | Ex | Mem | Wb | Post. *)
3

4 Variant instr :=
5 | Load (memlat : nat) (id : nat)
6 | Store (id : nat)
7 | Other (id : nat).
8

9 (* Common definitions *)
10 Definition iprog := (stage * nat)%type.
11 Definition istate := (instr * iprog)%type.
12 Definition pstate := list istate.
13

14 (* Definition of ⊑P *)
15 Definition iprog_leb ip1 ip2 :=
16 match ip1, ip2 with
17 | (s1, n1), (s2, n2) ⇒
18 if stage_beq s1 s2 then
19 Nat.leb n2 n1
20 else
21 leb s1 s2
22 end.
23

24 (* Definition of ⊑ *)
25 Definition pstate_leb p1 p2 :=
26 let comb := List.combine p1 p2 in
27 (List.length p1 =? List.length p2) &&
28 List.forallb (fun instr ⇒
29 match instr with
30 | ((_, ip1), (_, ip2)) ⇒ iprog_leb ip1 ip2
31 end) comb.
32

33 (* Compares an instruction across two pstates *)
34 Definition compare_two p1 p2 i :=
35 match List.nth_error p1 i, List.nth_error p2 i with
36 | None, _ | _, None ⇒ false
37 | Some (_, ip1), Some (_, ip2) ⇒ iprog_leb ip1 ip2
38 end.

the commented definition on line 2 for the model in Figure 3. In our

proofs, instructions are modeled by a unique integer identifier that

reflects their order in the program (line 4). Moreover, each instruc-

tion is characterized by its kind (Load, Store or Other). A Load
instruction also contains the memory latency (a natural number)

for the corresponding access (line 5). We then define instruction

progress as a couple of a stage and a latency on line 10. Finally, we

define a pipeline state as a list of couples composed of an instruction

and its progress on lines 11–12.

iprog_leb, defined on line 15, takes two iprogs (ip1 and ip2),
and if they are in the same stage (determined with stage_beq),
returns true if the latency of ip2 is lower or equal to that of ip1.
Otherwise, it compares their stages using leb. stage_beq is de-

fined automatically with the Scheme Equality statement, which

creates boolean equality comparators automatically. leb is defined

manually as an equivalent of the ⊑S operator from Definition 2.

pstate_leb (line 25) takes two pstates (p1 and p2). First, it
compares their length, and combines both pipeline states such

Listing 2: Pipeline model in Coq
1 Variant sbStateT := Empty | NotEmpty | Full.
2 Scheme Equality for sbStateT.
3

4 (* Ready function *)
5 Definition ready nextId sbState suUsed (i : istate) :=
6 match i with
7 | (opc, (Pre, 0)) ⇒ idx opc =? nextId
8 | (_, (Su, _)) ⇒ negb (sbStateT_beq sbState Full)
9 | (Load _ _, (Sp, 0)) ⇒
10 sbStateT_beq sbState Empty && (negb suUsed)
11 | (_, (_, cnt)) ⇒ cnt =? 0
12 end.
13

14 (* Free functions *)
15 Definition luSuFree nextId sbState trace suUsed stg :=
16 match get_istate_in_stage trace stg with
17 | Some i ⇒ ready nextId sbState suUsed i
18 | None ⇒ true
19 end.
20

21 Definition spFree nextId sbState trace suUsed :=
22 match get_istate_in_stage trace Sp with
23 | Some (opcode, (stg, lat)) ⇒
24 ready nextId sbState suUsed (opcode, (stg, lat)) &&
25 luSuFree nextId sbState trace suUsed (nstg stg opcode)
26 | None ⇒ true
27 end.
28

29 Definition free nextId sbState trace suUsed (i : istate) :=
30 let (opc, state) := i in
31 let (st, _) := state in
32 match nstg st opc with
33 | Lu ⇒ luSuFree nextId sbState trace suUsed Lu
34 | Su ⇒ luSuFree nextId sbState trace suUsed Su
35 | Sp ⇒ spFree nextId sbState trace suUsed
36 | _ ⇒ true
37 end.
38

39 (* Cycle functions *)
40 Definition cycle_i nextId busTaken sbState trace suUsed i :=
41 match i with
42 | (opc, (st, S n)) ⇒
43 if (negb (stage_beq Lu st)) || busTaken then
44 (opc, (st, n))
45 else
46 i
47 | (opc, (st, 0)) ⇒
48 if ready nextId sbState suUsed i &&
49 free nextId sbState trace suUsed i then
50 let nstg := nstg st opc in
51 (opc, (nstg, get_latency opc nstg))
52 else
53 i
54 end.
55

56 Definition cycle sbState busTaken trace :=
57 let nextId := get_next_id trace in
58 let suUsed := existsb (is_in_stage Su) trace in
59 map (cycle_i nextId busTaken sbState trace suUsed) trace.

RTNS 2023, June 7–8, 2023, Dortmund, Germany A. Gruin et al.

that for all i, comb(i) = (p1(i), p2(i)), and then compares the

iprogs of each couple. It effectively implements operator ⊑ from

Definition 4.

compare_two (line 34) also takes two pstates (p1 and p2) and a
natural number (i). Using List.nth_error, a standard Coq func-

tion, it tries to get the instructions at position i in both pstates,
and compares their iprogs using iprog_leb. If one of the lists does
not have i elements, it returns false. Otherwise, it is equivalent to:

compare_two p1 p2 i ⇐⇒ p1 (i) ⊑P p2 (i)

These three definitions are pipeline agnostic, relying on the

existence of stage, iprog, istate, pstate, stage_beq, and leb.

5.2.2 Pipeline model in Coq. The pipeline model of Figure 5 is

represented in Coq using the definitions of Listing 2. For the sake

of simplicity we leave out of this listing the definitions of the most

simple functions such as nstg and focus instead on the ready, free
and cycle functions.

The definition of the ready function (lines 5–12) follows closely

the definition of Figure 5. It pattern matches an instruction state:

• if the instruction is still is Pre, it is ready only if its id is the

smallest of all instructions still in Pre (line 7)
• if the instruction is in Su, it is ready if the store buffer is not

full (line 8)

• otherwise it is ready if the counter of the instruction in its

current stage has dropped to 0 (line 11).

We also added the predicate corresponding to our hardware

mechanism in line 10: if the instruction is a Load in Sp, it is ready
only if the store buffer and the Su stage are empty.

The free function from Figure 5 is recursive. This is an issue as

Coq requires a proof of termination, most of the time performed

automatically through structural induction. To keep things simple,

this function is split into three definitions: luSuFree, spFree, and
free. The luSuFree function corresponds to the Lu and Su stages.

It basically states that the stage given in input is free if there is

no instruction in it (line 18), or if the instruction is ready to leave

the stage in the next cycle (line 17). This is a simplification of the

definition of Figure 5, knowing that in the model the output stage

of Lu and Su is Post, which is always free. As the portion of the

pipeline that we model is assumed to be managed by a scoreboard,

this simplification is valid (instructions leaving the Lu or Su stage
can go to the commit stage without delay). We leave for future work

the elaboration of additional Coq code to support more complex

pipeline layouts. The spFree function manages the "fork" after the

Sp stage: the Sp stage is free if there is no instruction currently in it

(line 26) or if the instruction is ready to leave, and its next stage (Lu
or Su depending on its opcode) is free (line 23). The free function

defined in line 29 takes as input an instruction state, patternmatches

the next stage for the instruction, and determines if it is free, using

the luSuFree and spFree functions and knowing that the Post
stage is always free.

Finally, the cycle function is defined in line 56 as the point-wise

application of function cycle_i on each instruction state in the cur-
rent pipeline state (variable trace), at line 59. The cycle_i function
implements the cycle(𝑐) (𝑖) and 𝑐.ncnt (𝑖) functions of Figure 5:

• if the instruction has a positive counter (it has not yet been

fully processed in its current stage), its counter is decre-

mented, provided it is not a Load instruction in the Lu stage

(negb (stage_beq Lu st)), or the memory bus is available

(busTaken) (line 43). The busTaken boolean is an input to

the function that corresponds to the instruction. There is no

mention of the dchit (𝑖) predicate here since if the instruction
hits the cache, its counter is initialized to 0 when entering the

Lu stage, and thus the instruction state cannot be matched

to this pattern matching case.

• if the instruction counter is equal to 0, the instruction ad-

vances to the next stage in the pipeline if it is ready to ad-

vance and the next stage is free (lines 48–49), and remains

where it is otherwise.

5.2.3 Proofs in Coq. Listing 3 is an excerpt of the proofs in Coq, in

which we consider a sequence of instructions I = 𝑖1, 𝑖2, ..., 𝑖𝑛 pro-

cessed through a pipeline. The main idea of the proof is to assume

two pipeline states ca and cb such that ca ⊑ cb and any instruc-

tion 𝑖 ∈ I, and to show that ca (𝑖) ⊑P cb (𝑖) ⇒ cycle(ca) (𝑖) ⊑P
cycle(cb) (𝑖), which is equivalent to ca ⊑ cb ⇒ cycle(ca) ⊑ cycle(cb)
according to Definition 4

2
.

The initial assumptions are enforced in Coq using hypotheses,
among which we describe some of the most important ones. First,

we declare two pipeline states ca and cb, and assume that ca ⊑
cb using hypothesis Hleb on line 7. We consider that there is an

instruction i to execute in both pipeline states (hypotheses Hi, and
Hi’, lines 10–11). As a shortcut, we designate ca (𝑖) as ea and cb (𝑖)
as eb (hypotheses Hca and Hcb, lines 8–9). Then, we define ca’ and
cb’ as the respective successors of ca and cb (hypotheses Hca’ and
Hcb’, lines 12 and 13).

The proof handles separately the two initial configuration set-

tings:

• we first prove that, when ca (𝑖) and cb (𝑖) have the same

progress, cycle(ca) (𝑖) ⊑P cycle(cb) (𝑖). In Coq, we express

this in the following way: when ea = eb, then compare_two
ca’ cb’ i = true. Lemma unmoved_is_monotonic on

Line 15 is the proof of this statement.

• then, we prove that the property also holds when ca (𝑖) ⊏P
cb (𝑖) with lemma moved_is_monotonic (line 23).

Using theorem is_monotonic (line 33), we then deduce that

this property holds in all cases, since compare_two ca’ cb’ i =
true when ea is inferior or equal to eb, and since two instrs are

comparable (lines 44–45).

We used this strategy for the proofs of timing-anomaly freedom

for the two pipeline models of Figures 3 and 5. While theorem

is_monotonic is the same for both models, modifications were

needed to adapt unmoved_is_monotonic, moved_is_monotonic,
and other lemmas that depend on the layout of the core.

Some custom tactics were introduced to improve readability. For

the pipeline described in Figure 5 in particular, where LU can only

host loads, and SU only stores, a tactic was written to discriminate

invalid opcode/stage combinations. Other tactics could be written

to improve reusability between the models.

2
Keeping in mind that this equivalence holds for any pipeline design.

Enabling timing predictability in the presence of store buffers RTNS 2023, June 7–8, 2023, Dortmund, Germany

Listing 3: Main theorem in Coq
1 Variable i n n' : nat.
2 Variable ea eb : istate.
3 Variable opc : instr.
4 Variable st st' : stage.
5 Variable ca capre capost cb cbpre cbpost ca' cb' : pstate.
6

7 Hypothesis Hleb : pstate_leb t t' = true.
8 Hypothesis Hca : ca = capre ++ ea :: capost.
9 Hypothesis Hcb : cb = cbpre ++ eb :: cbpost.
10 Hypothesis Hi : i = List.length capre.
11 Hypothesis Hi' : i = List.length cbpre.
12 Hypothesis Hca' : ca' = cycle ca.
13 Hypothesis Hcb' : cb' = cycle cb.
14

15 Lemma unmoved_is_monotonic : forall n,
16 ea = (opc, (st, n)) →
17 (ea = eb →
18 (compare_two ca' cb' i = true)).
19 Proof.
20 (* ... *)
21 Qed.
22

23 Lemma moved_is_monotonic : forall n n',
24 ea = (opc, (st, n)) →
25 (eb = (opc, (st', n')) →
26 (istate_leb (st, n) (st', n') = true →
27 (ea <> eb →
28 (compare_two ca' cb' i = true)))).
29 Proof.
30 (* ... *)
31 Qed.
32

33 Theorem is_monotonic : forall n n',
34 ea = (opc, (st, n)) →
35 (eb = (opc, (st', n')) →
36 (istate_leb (st, n) (st', n') = true →
37 (compare_two ca' cb' i = true))).
38 Proof.
39 intros n n' He He' Hsl.
40

41 compare ea eb.
42 - now apply (unmoved_is_monotonic n).
43 - now apply (moved_is_monotonic n n').
44 - repeat decide equality. (* instrs are comparable *)
45 - repeat decide equality. (* iprogs are comparable *)
46 Qed.

5.2.4 Key points behind the proofs. We do not display the full

Coq scripts in this paper as they would take several pages, but

the sources are available at [9]. In the remainder of this section,

we present the key points of the proof of monotonicity of the

pipeline model described in Figure 5. All the cases listed below were

enumerated by the assistant, and therefore cover every situation.

According to the model, instructions of kind other should not reach
𝑆𝑝 , and are therefore omitted from this proof.

Table 1: Coq notations and their equivalent in our formal
framework

Coq notation Meaning

i An arbitrary instruction

ca (resp. cb) Pipeline stage ca (resp. cb)
ea (resp. eb) ca (𝑖) (resp. cb (𝑖))
ca’ (resp. cb’) cycle(ca) (resp. cycle(cb))
compare_two ca cb i ca (𝑖) ⊑P cb (𝑖)

When ea and eb have the same progress: This lemma is carried

out in a case-by-case basis, depending on the stage where i can

currently reside in ca and cb.

• Instructions in post remain in this stage.

• Loads in LU progress if they are ready, otherwise their counter
decreases if they can take the bus. If a load in ca can take

the bus, a load in cb is also able to take it.

• Stores in SU progress if the store buffer is not full. If i is in
SU in ca and in cb, the buffer can be full in cb only if it is

also full in ca.
• Instructions in Sp progress differently, depending on their

opcode and the state of LU and SU.
– If the next stage is free in ca, and i progresses in the next

cycle:

∗ For loads, this means that there is no pending write in

the store buffer and in SU. This is also the case in cb, so
i is able to progress in both cases.

∗ For stores, this means that the store buffer is not full.

This is also the case in cb, so i progresses in both cases.

– If the next stage is not free in ca, but may be free in cb: i
progresses only in the latter, preserving the order.

• The progress of instructions in Pre depends on Sp, and
whether they are ready (all older instructions have left Pre)
or not.

– If Sp is empty in ca, then it is also empty in cb. In both

states, i can progress.

– If Sp is not empty in ca and its instruction cannot progress,
or if i is not ready in ca, then i does not progress in ca’.

When ea has less progress than eb: This proof is done for 4 sub-
cases.

(1) The counter of i is equal to 0 in both ca and cb. This means

that, in ca, i is in an earlier stage than in cb, and in the worst
case, it can only reach the same stage as in cb.

(2) The counter of i is higher than 0 in ca, but equal to 0 in cb.
Necessarily, in ca, i is in LU, and its counter may be reduced

by 1 in the next cycle. In cb, i is either in LU, in which case it

can progress to Post at the next cycle, or is already in Post,
hence compare_two ca’ cb’ i = true.

(3) In ca, the counter of i is equal to 0, while in cb, it is higher
than 0. Necessarily, i is in Pre or in Sp in ca, and in LU in

cb. In each case, the counter of i in cb is less or equal than

memlatd (𝑖).
• if i is in Pre in ca, it is in Pre or in Sp in ca’, so it has less
progress than in cb’: compare_two ca’ cb’ i = true.

RTNS 2023, June 7–8, 2023, Dortmund, Germany A. Gruin et al.

• if i is in Sp in ca, it is in Sp or LU in ca’. In the first case,

i has less progress in ca’ than in cb’. In the second case,

i enters LU so its counter is equal to memlatd (𝑖) in ca’.
As a result, compare_two ca’ cb’ i = true.

(4) The counter of i is higher than 0 in both ca and cb, and is

strictly higher in ca than in cb. Necessarily, both instructions
are in LU, and the counter of i in cb is strictly lower than

memlatd (𝑖). This means that in cb, the bus is taken by i (and
the corresponding memory request cannot be interrupted).

As a consequence, the counter of i will be decremented in

cb’ and will thus remain lower than the counter of i in ca’.
Thus, compare_two ca’ cb’ i = true.

This proof can be generalized to enable instructions to have a

non-zero latency in stages other than LU.

6 DESCRIPTION OF OUR EXPERIMENTAL
ARCHITECTURE

We implemented our proposed mechanism in the MINOTAuR RISC-

V core [6] to evaluate its impact on performance. MINOTAuR is a

6-stage in-order processor, featuring complex mechanisms such as

a scoreboard and parallel functional units. The load/store unit is

pipelined: in its second stage, stores are handled by the store unit,

and loads by the load unit. The memory hierarchy of MINOTAuR

is depicted in Figure 7.

This architecture is a superset of the model described in Figure 5.

The data cache acts as an intermediary between the core and the

memory bus. The mechanism used to send and remove commands

from the store buffer, which is abstracted in the model, is described

in the remainder of this section.

6.1 The store buffer
The store buffer is split into two queues. Store commands are in-

serted into the first one (the “speculative queue”) by the SU, and re-

main there until the corresponding instruction is committed. When

an instruction is committed, the corresponding command is moved

to the second queue (the “commit queue”), and remains there until

it can be sent to the memory hierarchy.

In the RV32 ISA, a write can be performed on 8, 16 or 32 bits.

Hence, the buffer retains the exact physical address and the size

of the write operation. When a request is issued to the data cache,

the data and the address are realigned to a 64-bit block. Once the

request has been acknowledged, the command is removed from the

buffer.

Before issuing a fetch request, the LU checks if there is a write

pending to the same 64-bit block in the store buffer. In this case,

the load will be put on hold in the LSU until the write has been

submitted and acknowledged by the cache.

6.2 The data cache
In MINOTAuR, the data cache is write-through (data are written in

the cache and the main memory at the same time), and does not

allocate entries on writes (if a line to be written is not cached, it is

not loaded). The data cache does not forward immediately requests

from the store buffer to the bus, but stores them in a write buffer.

Its purpose is to reduce the amount of requests performed on the

bus by merging pending writes to the same memory block. As part

Scoreboard LSU
SU

LU
Scoreboard

Data cache

Memory Bus

– – – –
Store Buffer

… …

Figure 7: Memory components in the MINOTAuR core

of our gating mechanism, we make sure that the LU stalls if there

is a store pending in this buffer, as well as in the store buffer. Its

exact operation is out of the scope of this paper, but does not affect

the validity of our proofs, nor the monotonicity of the pipeline.

The cache memory receives requests from the load unit, and can

answer in a single cycle if the line is already cached. It can also

read from the write buffer: if the LU requests a line awaiting to be

written, the cache will combine the dirty bytes in the buffer and

the line in the memory.

7 EXPERIMENTS
In our experiments, we compare the performance of theMINOTAuR

core with and without the gating mechanism described in Section 5,

to assess the cost of timing predictability regarding the store buffer.

Additionally, we also implemented a more aggressive version of our

gating mechanism in which load instructions are stalled directly

in the LU stage. We believe that this mechanism also enforces the

monotonicity of the pipeline. However, since it relies on implemen-

tation details of MINOTAuR, formally proving this property would

require adding details to the model that would undermine its gen-

erality. In the scope of this paper, we focus on generic mechanisms

and solutions, and thus leave the specific modeling (and proof) of

this particular implementation for future work.

7.1 Experimental setup
The modifications were made to the SystemVerilog description of

MINOTAuR, synthesized with Xilinx Vivado 2021.1 for a Xilinx

Zynq XC7Z020-1CLG400 on a Digilent Zybo Z7-20 board, with

a frequency of 25 MHz, and a memory latency of 11 cycles. All

the results presented in this paper correspond to actual measure-

ments performed on the FPGA, running either CoreMark
3
or the

TACLe
4
[10] benchmark suite compiled with gcc 10.2.05, respec-

tively at optimization level -O3 and -O2. We also ran the TACLe

benchmarks at optimization level -O0, to prevent gcc from improv-

ing the memory usage patterns, and thus potentially hiding part of

the cost of our changes.

We report various measurements for our cores: their LUT (Look-

Up Table) usage, their CoreMark score, the number of cycles taken

by the 50 programs from the TACLe benchmark suite, the arithmetic

and geometric means of the overheads in MINOTAuR induced by

our gating mechanism, as well as the total cycles overhead.

3
www.coremark.org

4
Programs mpeg2 and susan were excluded because they failed to compile (resp.

execute) due to memory exhaustion.

5
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/ed53ae7

www.coremark.org
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/ed53ae7

Enabling timing predictability in the presence of store buffers RTNS 2023, June 7–8, 2023, Dortmund, Germany

Table 2: LUT usage, CoreMark score and performance on the
TACLe benchmarks

Gating mechanism

Disabled Enabled Gating at LU

LUTs 17,145 17,153 17,155

CoreMark score 110.44 108.67 110.20

Total cycles 603,439,496 606,237,172 605,359,342

Total cycles at -O0 1,202,647,474 1,225,049,748 1,216,564,217

7.2 Results
Table 2 shows that our gating mechanism does not significantly

increase the resource usage of the core: 8 LUTs are added to the

17,145 LUTs of the original design.

On average, our gating mechanism results in a loss of perfor-

mance of 2.07% on the TACLe benchmarks, as reported in Table 3.

On individual benchmarks, the performance loss is inconsistent:

some benchmarks, such as bitonic, are not significantly affected

by our gating mechanism, but programs with different memory ac-

cess patterns (i.e. md5, sha) are more impacted by this change. A few

benchmarks, such as h264_dec, are instead significantly faster. We

also see that performing the gating in the LU stage yields slightly

better average results than performing it in the LSU stage (around

0.5% improvement).

At optimization level -O0, our mechanism has a higher cost (3%

instead of 2% in average, and 2% instead of 0.5% overall), but its

impact remains low, even though memory access patterns are not

optimized.

8 RELATEDWORK
The concept of timing anomalies was first introduced in [16] for

processors featuring dynamic scheduling of instructions. Follow-

ing this publication, two main lines of work have been developed

regarding timing anomalies.

The first line of work represents an attempt to formally charac-

terize what timing anomalies are, and to detect their occurrence in

processors. In [20], the authors introduce a basic formal character-

ization of timing anomalies and separate them in two categories:

counter-directive (also called counter-intuitive in the literature) and

strong impact (also called amplifying) timing anomalies. A counter-

intuitive timing anomaly occurs when a local worst-case event (e.g.

a cache miss) does not lead to the WCET. On the other hand, an

amplifying timing anomaly occurs in the presence of variable la-

tencies: a local latency variation of 𝛿 (e.g. a division takes t+𝛿 time

units instead of t units) leads to a global variation of Δ > 𝛿 (e.g.

the program execution time takes T + Δ instead of T). Subsequent

works have characterized timing anomalies more finely using either

trace-based models [5] or a so-called canonical pipeline model [15].
More recently, Binder et al. [2] tried to define a unified formal-

ism to characterize all kinds of timing anomalies, in particular by

using the notion of causality [4] and applying it to the TriCore

architecture [3].

In the second line of work, researchers build provably timing

anomalies-free processor cores. The work that we present in this pa-

per falls within this category. In [11, 12], Hahn et al. introduce SIC:

a timing anomaly-free in-order core, as well as a formal modeling

and proof framework. Using the same framework, [17] introduced

Vicuna, a vector coprocessor that was proven free of timing anom-

alies. Finally [6, 8] presented MINOTAuR, an open source RISC-V

predictable core featuring a restricted degree of out-of-order execu-

tion as well as branch prediction mechanisms. However, in these

cores, the main focus was always put on the conflicts between the

instruction cache and the data cache to use the memory bus. To our

knowledge, this is the first time that conflicts related to the store

buffer are modeled and dealt with.

9 CONCLUSION
In this paper, we considered store buffers and their impact on the

monotonicity of processor pipelines. We first showed that using

store buffers breaks the monotonicity of pipelines, both in simple

and in more complex pipeline designs.

We then proposed a simple gating mechanism: a load instruc-

tion is prevented from entering its memory unit as long as a store

is pending in the store buffer. Using the Coq proof assistant, we

proved that we achieve monotonicity when this gating mechanism

is enabled, both on single-stage and multi-stage memory units.

We then implemented this gating on the MINOTAuR processor,

measured its performance impact, and concluded that this impact

was negligible on average (around 2% on the TACLe benchmark

suite). The changes to the MINOTAuR core presented in this paper,

as well as the proofs in Coq, are provided as open-source code [7, 9].

In the future, we plan on generalizing our Coq proofs to more

complex architectures (complete pipelines and stages with non-zero

latency). Our objective is to write (or to a certain extent generate)

proofs that can be reused for different core designs. At the same

time, we also plan on designing a predictable core with more com-

plex mechanisms such as a superscalar pipeline and out-of-order

execution.

REFERENCES
[1] R. Bhargava and L.K. John. 2000. Issues in the design of store buffers in dynami-

cally scheduled processors. In 2000 IEEE International Symposium on Performance
Analysis of Systems and Software. ISPASS. 76–87. https://doi.org/10.1109/ISPASS.

2000.842285

[2] B. Binder, M. Asavoae, B. Ben Hedia, F. Brandner, and M. Jan. 2021. Is This

Still Normal? Putting Definitions of Timing Anomalies to the Test. In 27th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA 2021, Houston, TX, USA, August 18-20, 2021. 139–148. https:

//doi.org/10.1109/RTCSA52859.2021.00024

[3] B. Binder, M. Asavoae, F. Brandner, B. Ben Hedia, and M Jan. 2022. Formal

modeling and verification for amplification timing anomalies in the superscalar

TriCore architecture. Int. J. Softw. Tools Technol. Transf. 24, 3 (2022), 415–440.
https://doi.org/10.1007/s10009-022-00655-1

[4] B. Binder, M. Asavoae, F. Brandner, B. Ben Hedia, and M. Jan. 2022. The Role of

Causality in a Formal Definition of Timing Anomalies. In 28th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications,
RTCSA 2022, Taipei, Taiwan, August 23-25, 2022. 91–102. https://doi.org/10.1109/

RTCSA55878.2022.00016

[5] F. Cassez, R. Rydhof Hansen, and M. C. Olesen. 2012. What is a Timing Anomaly?.

In 12th International Workshop on Worst-Case Execution Time Analysis. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 1–12. https:

//doi.org/10.4230/OASIcs.WCET.2012.1

[6] A. Gruin, T. Carle, H. Cassé, and C. Rochange. 2021. Speculative Execution and

Timing Predictability in an Open Source RISC-V Core. In IEEE Real-Time Systems
Symposium (RTSS). 393–404. https://doi.org/10.1109/RTSS52674.2021.00043

https://doi.org/10.1109/ISPASS.2000.842285
https://doi.org/10.1109/ISPASS.2000.842285
https://doi.org/10.1109/RTCSA52859.2021.00024
https://doi.org/10.1109/RTCSA52859.2021.00024
https://doi.org/10.1007/s10009-022-00655-1
https://doi.org/10.1109/RTCSA55878.2022.00016
https://doi.org/10.1109/RTCSA55878.2022.00016
https://doi.org/10.4230/OASIcs.WCET.2012.1
https://doi.org/10.4230/OASIcs.WCET.2012.1
https://doi.org/10.1109/RTSS52674.2021.00043

RTNS 2023, June 7–8, 2023, Dortmund, Germany A. Gruin et al.

Table 3: Overheads for the gating mechanism on TACLe

Gating at LSU Gating at LU

At -O2 At -O0 At -O2 At -O0

binarysearch -0.32% 1.79% 2.32% 1.85%

bitcount 7.31% 2.48% 12.30% 3.10%

bitonic 0.00% 3.58% 0.00% 1.57%

bsort 0.00% 3.50% 0.00% 0.00%

complex_updates 0.01% 2.00% 0.07% 0.47%

cosf 0.05% -0.09% 0.07% 0.17%

countnegative 1.90% 3.11% 6.05% 1.56%

cubic 0.02% 0.85% 0.02% 0.42%

deg2rad 0.00% -0.34% 0.00% 0.00%

fac 0.00% 0.22% 0.00% 0.00%

fft 2.09% 0.57% 0.95% 0.42%

filterbank 0.00% 0.69% 0.01% 0.01%

fir2dim -0.40% 0.75% 0.12% 0.03%

iir -1.12% 9.41% 0.21% 0.09%

insertsort 7.41% 7.47% 1.23% 0.30%

isqrt 1.14% 8.85% 0.19% 0.04%

jfdctint 2.42% 7.64% 0.67% 0.55%

lms 1.07% 0.22% 0.29% 0.09%

ludcmp 0.03% 0.51% 0.06% 0.98%

matrix1 3.08% 1.77% 0.07% 0.01%

md5 12.39% 5.15% 2.28% 1.14%

minver 0.09% 0.68% 0.11% 0.91%

pm 0.55% 2.53% 0.00% 0.67%

prime -0.11% -1.07% 0.00% 0.19%

quicksort -0.99% 10.07% 1.38% 0.69%

rad2deg 0.00% -0.34% 0.00% 0.00%

recursion -0.23% -1.98% 0.00% 0.01%

sha 17.74% 4.60% 12.40% 0.10%

st 0.00% 0.06% 0.00% 0.16%

adpcm_dec 0.02% 2.45% 0.03% 0.05%

adpcm_enc 0.06% 2.46% 0.02% 0.07%

ammunition -0.06% 2.32% 0.36% 1.90%

anagram 2.94% 4.28% 2.55% 6.38%

audiobeam -0.02% 1.26% 0.10% 0.17%

cjpeg_transupp 10.41% 7.50% 7.23% 0.07%

cjpeg_wrbmp 7.67% 3.11% 6.44% 0.01%

dijkstra 0.20% -2.78% 0.22% 0.07%

epic 0.15% 0.13% 0.15% 0.07%

fmref 0.03% 0.16% 0.04% 0.09%

g723_enc 1.13% 2.69% 0.79% 0.94%

gsm_dec 2.00% 5.42% 1.18% 0.24%

gsm_enc 8.39% 6.87% 1.95% 1.27%

h264_dec -4.61% 2.00% 0.95% 0.10%

huff_dec 1.41% 2.54% 2.88% 0.39%

huff_enc 4.40% 7.15% 0.87% 1.33%

ndes 2.41% 7.77% 3.45% 0.15%

petrinet 0.00% 0.18% 0.00% 0.24%

rijndael_dec 3.87% 4.84% 0.46% 0.17%

rijndael_enc 3.82% 4.74% 0.46% 0.16%

statemate 5.31% 4.83% 5.48% 14.47%

Arithmetic mean 2.07% 2.89% 1.53% 0.88%

Geometric mean 2.00% 2,85% 1.49% 0.85%

Global overhead 0.46% 1.86% 0.32% 1.16%

Minimum -4.61% -2.78% 0.00% 0.00%

Maximum 17.74% 10.07% 12.40% 14.47%

[7] A. Gruin, T. Carle, H. Cassé, and C. Rochange. 2023. Repository for our changes to
MINOTAuR. https://gitlab.irit.fr/minotaur/MINOTAuR

[8] A. Gruin, T. Carle, C. Rochange, H. Cassé, and P. Sainrat. 2022. MINOTAuR: A

Timing Predictable RISC-V Core Featuring Speculative Execution. IEEE Trans.
Comput. 72, 1 (2022), 183–195. https://doi.org/10.1109/TC.2022.3200000

[9] A. Gruin, T. Carle, C. Rochange, and P. Sainrat. 2023. Source code for the Coq
proofs. https://gitlab.irit.fr/tacoq/storebuffer

[10] H. Falk et al. 2016. TACLeBench: A Benchmark Collection to Support Worst-Case

Execution Time Research. In 16th International Workshop onWorst-Case Execution
Time Analysis (WCET 2016) (OpenAccess Series in Informatics (OASIcs), Vol. 55),
Martin Schoeberl (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 2:1–2:10. https://doi.org/10.4230/OASIcs.WCET.2016.2

[11] S. Hahn and J. Reineke. 2018. Design and Analysis of SIC: A Provably Timing-

Predictable Pipelined Processor Core. In IEEE Real-Time Systems Symposium
(RTSS). 469–481. https://doi.org/10.1109/RTSS.2018.00060

[12] S. Hahn and J. Reineke. 2020. Design and analysis of SIC: A provably timing-

predictable pipelined processor core. Real Time Systems 56, 2 (2020), 207–245.
https://doi.org/10.1007/s11241-019-09341-z

[13] S. Hahn, J. Reineke, and R. Wilhelm. 2015. Towards compositionality in execution

time analysis: definition and challenges. ACM SIGBED Review 12, 1 (2015), 28–36.

https://doi.org/10.1145/2752801.2752805

[14] J. Hennessy and D. Patterson. 2011. Computer Architecture, Fifth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc.

[15] M. Jan, M. Asavoae, M. Schoeberl, and E. A. Lee. 2020. Formal Semantics of

Predictable Pipelines: a Comparative Study. In 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC). 103–108. https://doi.org/10.1109/ASP-

DAC47756.2020.9045351

[16] T. Lundqvist and P. Stenstrom. 1999. Timing anomalies in dynamically scheduled

microprocessors. In IEEE Real-Time Systems Symposium. IEEE, 12–21. https:

//doi.org/10.1109/REAL.1999.818824

[17] M. Platzer and P. Puschner. 2021. Vicuna: A Timing-Predictable RISC-V Vector

Coprocessor for Scalable Parallel Computation. In 33rd Euromicro Conference on
Real-Time Systems (ECRTS 2021) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 196), Björn B. Brandenburg (Ed.). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, 1:1–1:18. https://doi.org/10.4230/LIPIcs.

ECRTS.2021.1

[18] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and B. Becker.

2006. A Definition and Classification of Timing Anomalies. In 6th International
Workshop on Worst-Case Execution Time Analysis (WCET’06) (OpenAccess Series
in Informatics (OASIcs), Vol. 4), Frank Mueller (Ed.). Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany. https://doi.org/10.4230/OASIcs.

WCET.2006.671

[19] The Coq Development Team. 2022. The Coq Proof Assistant, version 8.15. https:

//doi.org/10.5281/zenodo.5846982

[20] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. 2005. Principles of timing

anomalies in superscalar processors. In Fifth International Conference on Quality
Software (QSIC’05). 295–303. https://doi.org/10.1109/QSIC.2005.49

https://gitlab.irit.fr/minotaur/MINOTAuR
https://doi.org/10.1109/TC.2022.3200000
https://gitlab.irit.fr/tacoq/storebuffer
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.1109/RTSS.2018.00060
https://doi.org/10.1007/s11241-019-09341-z
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1109/ASP-DAC47756.2020.9045351
https://doi.org/10.1109/ASP-DAC47756.2020.9045351
https://doi.org/10.1109/REAL.1999.818824
https://doi.org/10.1109/REAL.1999.818824
https://doi.org/10.4230/LIPIcs.ECRTS.2021.1
https://doi.org/10.4230/LIPIcs.ECRTS.2021.1
https://doi.org/10.4230/OASIcs.WCET.2006.671
https://doi.org/10.4230/OASIcs.WCET.2006.671
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.1109/QSIC.2005.49

	Abstract
	1 Introduction
	2 Store buffers
	2.1 In-order pipelines
	2.2 Out-of-order loads and stores

	3 General model description
	4 Store buffers and timing predictability
	4.1 Simple in-order pipeline
	4.2 Separate Store and Load Units

	5 Enabling timing-predictability with store buffers
	5.1 Hardware modifications
	5.2 Proof of timing anomaly freedom

	6 Description of our experimental architecture
	6.1 The store buffer
	6.2 The data cache

	7 Experiments
	7.1 Experimental setup
	7.2 Results

	8 Related work
	9 Conclusion
	References

