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COMMUNICATION AVOIDING BLOCK LOW-RANK PARALLEL
MULTIFRONTAL TRIANGULAR SOLVE WITH MANY RIGHT-HAND SIDES∗

PATRICK AMESTOY† , OLIVIER BOITEAU‡ , ALFREDO BUTTARI§ , MATTHIEU GEREST‡ ,
FABIENNE JÉZÉQUEL¶, JEAN-YVES L’EXCELLENT† , AND THEO MARY∥

Abstract. Block low-rank (BLR) compression can significantly reduce the memory and time costs of parallel
sparse direct solvers. In this paper, we investigate the performance of the BLR triangular solve phase, which we
observe to be underwhelming when dealing with many right-hand sides (RHS). We explain that this is because the
bottleneck of the triangular solve is not in accessing the BLR LU factors, but rather in accessing the RHS, which are
uncompressed. Motivated by this finding, we propose several new hybrid variants, which combine the right-looking
and left-looking communication patterns to minimize the number of accesses to the RHS. We confirm via a theoretical
analysis that these new variants can significantly reduce the total communication volume. We assess the impact of
this reduction on the time performance on a range of real-life applications using the MUMPS solver, obtaining up
to 20% time reduction.

Key words. numerical linear algebra, block low-rank matrices, data sparse matrices, LU factorization, triangular
solve, linear systems, low-rank approximations, communication avoiding algorithms
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1. Introduction. We consider the solution of a large sparse system of linear equations

Ax = b

by means of direct solvers, such as the multifrontal method [8]. Direct methods first compute a
sparse LU factorization of the matrix, A = LU , and then directly solve the system by two triangular
solves, Ly = b and Ux = y. In many applications, the matrix A and its LU factors possess a block
low-rank (BLR) structure [1]: we can permute them and partition them in blocks in such a way
that most of the off-diagonal blocks can be accurately approximated by low-rank matrices. This
BLR structure can be exploited to reduce the computational complexity of direct solvers [5] and
therefore reduce their time and memory consumption significantly. The BLR format is notably
used in the MUMPS [7, 6], PaStiX [10, 16, 15], and STRUMPACK [17, 9] solvers.

This paper is concerned with the performance of the triangular solve phase, which is critical
in several contexts. Indeed, the BLR factorization is often used as a preconditioner for iterative
solvers [3, 11], which require several iterations and thus solves. Moreover, even in a pure direct
solver context, some of the real-life applications where BLR solvers have been the most successful
are in the field of geosciences [14, 4, 18, 13], where we need to solve a system

AX = B

with many right-hand sides (RHS): B ∈ Rn×nrhs is a (possibly sparse) matrix with nrhs columns,
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where nrhs is typically in the thousands or tens of thousands. In this case, the triangular solves
LY = B and UX = Y are the bottleneck of the computation.

This work started from the observation that the performance of the BLR solve with multiple
RHS is underwhelming, compared with the single RHS case. This is illustrated in Table 1.1, which
provides the time for the forward solve LY = B both for the BLR and dense (no compression) solvers,
depending on the number of RHS, for a few problems of interest. For a single RHS (nrhs = 1),
the BLR compression reduces the solve time by significant factors for all problems. However, with
multiple RHS (nrhs = 250), the speedup achieved thanks to BLR compression becomes much smaller
for all problems (for example, for the Poisson120 problem, the 3.9× speedup with nrhs = 1 becomes
only a 1.7× speedup with nrhs = 250).

Table 1.1: Some motivating examples: forward solve time (s) for the dense (no compression) and
BLR solvers on 2× 18 cores.

nrhs = 1 nrhs = 250
Matrix Dense BLR Ratio Dense BLR Ratio

Poisson120 0.24 0.06 3.9× 1.37 0.78 1.7×
Geoazur100 0.23 0.10 2.4× 2.31 1.95 1.2×
atmosmodl 0.14 0.06 2.3× 0.67 0.52 1.3×
Geo_1438 0.19 0.12 1.6× 1.51 1.35 1.1×
Queen_4147 1.69 0.38 4.5× 11.13 5.90 1.9×
Serena 0.20 0.12 1.6× 1.81 1.23 1.5×
Transport 0.15 0.06 2.6× 0.77 0.73 1.0×

Therefore this motivated us to rethink the BLR solve algorithms. The key observation is that
with BLR compression, the performance of the triangular solve is memory bound, even for multiple
RHS. Therefore, the performance of the BLR solve is mainly determined by its communication
costs. Crucially, while BLR compression reduces the size of the LU factors and therefore the cost of
accessing them, it does not reduce the size of the RHS, which are uncompressed. The consequence
is that when there are many RHS, the cost of accessing them is likely to dominate the cost of
accessing the LU factors, thereby reducing (or even cancelling) the performance benefits of the
BLR compression.

The main contribution of this paper is to overcome this limitation by proposing new hybrid
algorithms that reduce the number of accesses to the RHS and therefore the total volume of com-
munications.

The rest of this paper is organized as follows. After recalling some preliminaries on the existing
BLR solve variants in section 2, we describe in section 3 several novel variants of the BLR solve that
reduce its communication costs. We confirm that these new variants are indeed communication-
avoiding by performing a theoretical communication volume analysis in section 4. To quickly
analyze the performance of these new variants and assess their potential, we first develop a simplified
prototype code and present our results on synthetic data in section 5. Based on these results, we
implement a selected subset of the most promising variants in the MUMPS solver and test their
performance on a range of real-life applications in section 6. Finally, we provide our concluding
remarks in section 7.

Throughout the paper, we will discuss the case of the forward solve LY = B without loss
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of generality. The algorithms and ideas proposed in this paper also apply to the backward solve
UX = Y. For clarity of notation, we rename the forward solve LX = B hereinafter. In our
experiments with the MUMPS solver, we will measure the time spent in the computations for the
forward solve. The entire triangular solution phase of the solver also consists of the backward solve
and some additional non-computational parts (data copies, etc.), whose cost represents a fixed
overhead that is independent of the algorithm variants considered in this paper.

2. Preliminaries and notations.

2.1. Notations. With the multifrontal method, the forward solve LX = B amounts to a
bottom-up traversal of a tree whose nodes are associated with the frontal matrices. The solution
X of the global sparse problem is initialized to the right-hand side B. Then, at each node, a
partial forward elimination is performed with the corresponding frontal matrix. To be specific, let
L ∈ Rm×n be such a frontal matrix, with m ≥ n, and let X ∈ Rm×nrhs be the rows of the solution
X associated with the row variables of L. We denote as Lfs and Xfs the top n × n subparts of
L and X, respectively, and as Lcb and Xcb their bottom (m − n) × n subparts. Lfs corresponds
to the so called “fully-summed” (FS) variables of the frontal matrix; these variables are ready to
be eliminated by computing Xfs ← L−1

fs Xfs, which yields the final form of the solution Xfs. Lcb

corresponds to the so-called “contribution block” (CB) variables of the frontal matrix, which are
not ready to be eliminated; for these, the solution is merely updated as Xcb ← Xcb − LcbXfs. Xcb

is not the final form of the solution, it will be further updated by variables from other fronts, until
the fronts that have Xcb as fully-summed variables are reached.

When using BLR compression, the frontal matrix L is partitioned in p× pfs blocks Lij ∈ Rb×b,
with p = m/b, pfs = n/b, and where b denotes the block size (we assume for simplicity of notation
that it is the same for all blocks). The solution X is also partitioned into p blocks Xi ∈ Rb×nrhs . Lfs

is partitioned into pfs × pfs blocks and Lcb is partitioned into pcb × pfs blocks, where pcb = p− pfs.
The blocks Lij that are low-rank are approximated as Lij ≈ UijV

T
ij , with Uij , Vij ∈ Rb×r, where r

denotes the rank of the blocks (we again assume for simplicity of notation that it is the same for
all blocks).

We summarize below the notations used for a given front L and its corresponding part of the
solution X, which are illustrated in Figure 2.1.

L X

FS variables:
pfs blocks

CB variables:
pcb blocks

r b

b

nrhs

b

Fig. 2.1: A frontal BLR matrix L and its right-hand side X
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• A, X , B, L, U : the matrix, solution, RHS, and LU factors associated with the global sparse
problem;

• A, X, B, L, U , the matrix, solution, RHS, and LU factors associated with a given dense
frontal matrix;

• m, the number of rows of L and X;
• n, the number of columns of L;
• nrhs, the number of columns of X (the number of right-hand sides);
• b, the block size;
• r, the rank of the low-rank blocks;
• Lij ∈ Rb×b, the (i, j)th block of L, and UijV

T
ij , its low-rank representation;

• Xi ∈ Rb×nrhs , the ith block of X;
• pfs = n/b : the number of block rows in the FS part, also the number of block columns;
• pcb = (m− n)/b: the number of block rows in the CB part;
• p = pfs + pcb = m/b, the total number of block rows.
• We also define q = pfs(pfs − 1)/2 + pfspcb, the total number of off-diagonal blocks in L;
• FS = 1: pfs, the set of block indices for FS variables; and
• CB = pfs + 1: p, the set of block indices for CB variables.

With the block partitioning defined above, the FS elimination Xfs ← L−1
fs Xfs leads to the

recurrence relation
Xi ← L−1

ii (Xi −
∑
j<i

LijXj) (2.1)

for i ∈ FS . The CB update Xcb ← Xcb − LcbXfs takes the form

Xi ← Xi −
∑
j≤pfs

LijXj (2.2)

for i ∈ CB . The BLR representation of L is exploited by computing LijXj in the above expressions
as Uij(V

T
ij Xj).

Computations (2.1) and (2.2) thus involve two types of tasks:
• update(i, j) for i ∈ FS ∪ CB and j ∈ FS verifying i > j: Xi ← Xi − Uij(V

T
ij Xj), which

can be performed only after trsm(j) has been completed; and
• trsm(i) for i ∈ FS : Xi ← L−1

ii Xi, which can be performed only after update(i, 1), . . . ,
update(i, i− 1) have all been completed.

There are therefore some dependencies between tasks but also some independent tasks which can
be performed in any order, possibly concurrently. We next describe two variants using different
orders.

2.2. Right-looking and left-looking variants. Algorithm 2.1 describes the right-looking
(RL) variant, which performs the update(i, j) tasks as soon as they are ready to be performed (eager
approach): as soon as trsm(j) has been completed, all the update(i, j) for i > j are immediately
performed, as illustrated in Figure 2.2.

Conversely, Algorithm 2.2 describes the left-looking (LL) variant, which performs the update(i, j)
tasks as late as possible (lazy approach): for a given i, the update(i, j) are delayed until they are
all ready to be performed together, as illustrated in Figure 2.3.

The RL and LL variants perform the same computations in two different orders. In a sequential
context, it is not clear whether one variant can be expected to yield better performance than
the other. However, in a parallel context, a major difference appears. The RL variant can be
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Algorithm 2.1 Right-looking variant.
1: for j ∈ FS do ▷ Sequential loop
2: Xj ← L−1

jj Xj ▷ trsm(j)
3: for i > j do ▷ Parallel loop
4: Xi ← Xi − Uij(V

T
ij Xj) ▷ update(i, j)

5: end for
6: end for

L

X

Fig. 2.2: Step j = 3 of Algorithm 2.1 (right-looking variant).

Algorithm 2.2 Left-looking variant.
1: for i ∈ FS do ▷ Sequential loop
2: for j < i do ▷ Parallel loop
3: Xi ← Xi − Uij(V

T
ij Xj) ▷ update(i, j)

4: end for
5: Xi ← L−1

ii Xi ▷ trsm(i)
6: end for
7: for i ∈ CB do ▷ Parallel loop
8: for j ∈ FS do ▷ Sequential loop
9: Xi ← Xi − Uij(V

T
ij Xj) ▷ update(i, j)

10: end for
11: end for

parallelized efficiently by executing the loop on block rows (line 3 of Algorithm 2.1) in parallel,
since all update(i, j) tasks are independent for a fixed j. This approach is usually efficient because
it does not lead to any conflict and the size of the loop, p − j, is large enough to expose a high
amount of concurrency. In contrast, the parallelization of the LL variant is more difficult. The CB
part of the update can be efficiently parallelized by executing the loop on the block-rows (line 7 of
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L

X

(a) Step i = 3 of Algorithm 2.2: Update of an FS
block.

L

X

(b) Step i = 5 of Algorithm 2.2: Update of a CB
block.

Fig. 2.3: Left-looking variant.

Algorithm 2.2) in parallel, since the updates for different block-rows are independent and the size of
the loop, pcb, is large enough. However, for the FS part of the computation, the only loop that can
be executed in parallel is the loop on the block columns (line 2 of Algorithm 2.2), which presents
two difficulties. First, it requires a reduction operation to avoid conflicts since all update(i, j) tasks
for a fixed i modify the same block Xi. Second, the loop is only of size i− 1, with i ≤ pfs, so that
there is very little concurrency in the first steps of the loop, and even for the later steps because
pfs is typically much smaller than pcb.

2.3. Parallelism in multifrontal solve. As mentioned above, in the multifrontal solution,
we must carry out several partial solves with frontal matrices following a bottom-up traversal of a
tree. As a result, two types of parallelism can be exploited.

• Node parallelism consists in processing a given front in parallel, by parallelizing the partial
solve as described above for the RL and LL variants. The amount of work required by
one partial solve is usually sufficient to be efficiently parallelized only for the largest fronts,
which are at the top of the tree.
• Tree parallelism consists in processing multiple fronts on different branches concurrently,

using only one process per front. This allows for efficiently parallelizing the bottom of the
tree, which consists of many independent fronts of small size.

Since node and tree parallelism are more efficient for the top and bottom of the tree, respectively,
the best approach is to combine both types of parallelism. One possibility to do so is to exploit
tree parallelism for the bottom layers of the tree, and switch to node parallelism after a given layer
(so-called the “L0” layer) is reached. This L0 approach is implemented in MUMPS [12].

With this approach, the frontal triangular solve algorithms described above can be called either
in a sequential setting (corresponding to fronts under the L0 layer) or in a parallel one (corresponding
to fronts above the L0 layer). Both settings are therefore of interest in the following.
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An additional source of parallelism lies in the RHSs: these can be partitioned into blocks and
all blocks can be handled concurrently. This type of parallelism must be used with care because
partitioning the RHSs in excessively small blocks might degrade performance due to the small
granularity of computations. In this work we focus on exploiting parallelism within a single block
of RHSs.

3. New hybrid variants of the BLR triangular solve.

3.1. A novel hybrid variant. As mentioned in section 1, the performance of the BLR solve is
underwhelming when dealing with many RHS. Based on the description of the RL and LL variants,
we can see that one common weakness of both variants is that they require multiple accesses to the
entire RHS. Indeed, at each step the RL variant only reads one block of the RHS, but needs to write
all the bottom part of the RHS. Conversely, at each step the LL variant only writes one block, but
needs to read all the top part of the RHS. We will precisely measure the volume of communications
in the next section, but it is clear that when the number of RHS nrhs is large, the accesses to the
RHS can represent a much larger volume than the accesses to the BLR factors, and thus constitute
the bottleneck of the computation.

Motivated by this observation, we propose in this section a novel BLR solve variant that is based
on a hybrid scheme that only needs to read and write one block of the RHS per step. The main
idea is to perform the read operations following a right-looking scheme, and the write operations
following a left-looking scheme. To do so, we divide the update(i, j) task Xi ← Xi − Uij(V

T
ij Xj)

into two separate subtasks:
• updateV(i, j): Wij = V T

ij Xj ;
• updateU(i, j): Xi ← Xi − UijWij .

The updateV(i, j) tasks require to read the block Xj of the RHS; the updateU(i, j) tasks require
to write the block Xi of the RHS. Thus, the idea of this hybrid variant is to perform the updateV
tasks with a right-looking pattern (accessing Xj once and executing immediately all tasks for this
j) and the updateU tasks with a left-looking pattern (waiting that all tasks for a given i are ready
so as to access Xi only once). This is accomplished at the cost of having to store in a temporary
workspace the Wij matrices for i > j (Wij is created at step j and consumed at step i). However,
these Wij matrices are of small dimension r × nrhs, and so the cost of storing and accessing them
should be small.

This new hybrid variant is outlined in Algorithm 3.1 and illustrated in Figure 3.1.

3.2. Parallelism-driven hybrid variant. One issue with the hybrid variant of Algorithm 3.1
is that it suffers from the same problems as the left-looking variant in a parallel setting: the updateU
tasks corresponding to FS blocks of the RHS are performed following a left-looking pattern (loop
on line 2 of Algorithm 3.1), which is of small size and requires a reduction.

To overcome this issue, we propose in Algorithm 3.2 a modified hybrid variant that is more
amenable to a parallel execution. The idea is to use the hybrid scheme for the CB part of the
computation only, which can be efficiently parallelized with a parallel loop on the block rows
(line 11 of Algorithm 3.2), and to keep the efficiently parallelizable right-looking scheme for the FS
part (with a parallel loop on line 3). Since the FS part is typically much smaller than the CB part,
we can still expect to retain most of the benefits associated with the use of the hybrid scheme.

3.3. Low-rank updates accumulation. The hybrid variant described above minimizes the
number of accesses to the RHS in order to reduce the volume of communications. It also increases
arithmetic intensity of the BLR solve, defined as the ratio between the number of flops (which is
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Algorithm 3.1 Hybrid variant.
1: for k ∈ FS do ▷ Sequential loop
2: for j < k do ▷ Parallel loop (left-looking)
3: Xk ← Xk − UkjWkj ▷ updateU(k, j)
4: end for
5: Xk ← L−1

kkXk ▷ trsm(k)
6: for i > k do ▷ Parallel loop (right-looking)
7: Wik = V T

ikXk ▷ updateV(i, k)
8: end for
9: end for

10: for k ∈ CB do ▷ Parallel loop
11: for j ∈ FS do ▷ Sequential loop (left-looking)
12: Xk ← Xk − UkjWkj ▷ updateU(k, j)
13: end for
14: end for

Algorithm 3.2 Parallelism-driven hybrid variant.
1: for k ∈ FS do ▷ Sequential loop
2: Xk ← L−1

kkXk ▷ trsm(k)
3: for i > k do ▷ Parallel loop (right-looking)
4: if i ∈ FS then
5: Xi ← Xi − Uik(V

T
ikXk) ▷ update(i, k)

6: else
7: Wik = V T

ikXk ▷ updateV(i, k)
8: end if
9: end for

10: end for
11: for k ∈ CB do ▷ Parallel loop
12: for j ∈ FS do ▷ Sequential loop (left-looking)
13: Xk ← Xk − UkjWkj ▷ updateU(k, j)
14: end for
15: end for

unchanged for all variants) and the volume of communications. In this section we now propose a
further modification of the BLR solve algorithm to further increase its arithmetic intensity. The
idea is based on using low-rank updates accumulation (LUA), that is, grouping together low-rank
updates on the same block rows and/or block columns and applying them with a single matrix
multiplication to increase the granularity of the computation.

The LUA technique has been originally proposed in [6] for the outer product operation in the
BLR LU factorization, and is used by default in MUMPS. In the BLR factorization, we compute
low-rank updates of the form

Aij ← Aij − (UikV
T
ik )(UkjV

T
kj).
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L

X

W

(a) updateU task for k = 3: access Ukj for j < k in
left-looking, and overwrite the FS block Xk.

L

X

W

(b) updateV task for k = 3: access Vik for i > k in
right-looking. Each product V T

ikXk is stored in Wik.

L

X

W

(c) UpdateU for k = 5 : access Ukj for j ∈ FS in left-
looking, and overwrite the CB block Xk.

Fig. 3.1: Hybrid variant.

In the left-looking variant of the BLR factorization, these low-rank updates can be grouped as

Aij ← Aij −
K∑

k=1

(UikV
T
ik )(UkjV

T
kj) = Aij −

K∑
k=1

Ūikj V̄
T
ikj ,

where either Ūikj = Uik(V
T
ikUkj) and V̄ikj = V T

kj or Ūikj = Uik and V̄ikj = (V T
ikUkj)V

T
kj , depending

on the ranks. The sum in the above expression can then be efficiently evaluated as a single matrix
multiplication Ū V̄ T . We emphasize that LUA in the BLR factorization is only possible with a
left-looking scheme.

We now discuss how to adapt this LUA technique to the BLR solve. The situation is more
complicated due to the presence of the RHS, which is not under low-rank form. In fact, we will see
that LUA cannot be fully used in either the RL or LL variants of the BLR solve, but only partially.
The hybrid variant allows us to take full advantage of LUA, as we now explain.

updateU accumulation: the updateU(k, j) tasks Xk ← Xk − UkjWkj can be grouped together
9



for all j as

Xk ← Xk −
J∑

j=1

UkjWkj = Xk −
[
Uk1 · · ·UkJ

][
WT

k1 · · ·WT
kJ

]T
, (3.1)

with J = k − 1 for the FS updates and J = pfs for the CB updates. The sum in (3.1) can be
efficiently evaluated using only one matrix–matrix product, instead of J smaller ones. In order to
do so, all Ukj , j ≤ J , must be allocated contiguously in memory, as well as all Wkj , j ≤ J .

updateV accumulation: the updateV(i, k) tasks Wik = V T
ikXk can be grouped together for all i

as [
WT

i0k · · ·W
T
pk

]T
=

[
Vi0k · · ·Vpk

]T
Xk (3.2)

with i0 = k + 1. This operation can also be performed using only one matrix–matrix product
instead of p − k. In order to do so, all Vik, i > k, must be allocated contiguously, as well as all
Wik, i > k. Note that this allocation of the “W ” workspaces is not compatible with the one needed
for the updateU accumulation: updateU requires each block row to be a contiguous array, whereas
updateV requires the same of each block column. As a result, if we wish to accumulate both types of
tasks, the “W ” arrays need to be transformed (that is, copied) from the updateU allocation scheme
to the updateV one during the computation.

Note that the updateU tasks can only be accumulated with a left-looking scheme: thus, the
RL variant can only benefit from the updateV accumulation. Conversely, the updateV tasks can
only be accumulated with a right-looking scheme, so that the LL variant can only benefit from the
updateU accumulation. The hybrid variant uses the right-looking scheme for the updateV tasks
and the left-looking scheme for the updateU tasks: it can thus benefit from both LUA strategies.
Naturally, in the parallelism-driven hybrid variant, LUA can only be used on the CB updates.

4. Communication volume analysis. In this section we develop a theoretical communica-
tion analysis that aims at measuring the total volume of communications required by the different
BLR solve variants. In particular we seek to prove that the hybrid variant can significantly reduce
the volume of accesses to the RHS, which should provide a benefit in the case where nrhs is large.

To perform the analysis, we use a simple model of a two-level memory hierarchy: a fast but
limited memory (such as a cache) and an unlimited but slow memory (such as RAM). To simplify,
we assume that we have the control over the transfers of data between the two levels of memory,
that is, that we can choose which data are discarded from the fast memory to make space for other
data that we need to load from the slow memory. We also assume that the fast memory is large
enough to accommodate all the data required to perform any given update(i, j) or trsm(j) tasks
(essentially one BLR block and two RHS blocks, plus any temporary workspace associated with the
computation). Conversely we assume that the fast memory is not large enough to accommodate
all the data needed to perform more than one of these tasks, so that after one task is completed
all the data required by the next task that were not already used by the previous task need to be
loaded from the slow memory.

Under this model, we compute the volume of data that have to be transferred from the slow
memory to the fast one for each BLR solve variant. This analysis provides an estimate of the cost
of each variant, since the BLR solve tends to be a memory-bound computation in most practical
cases.

Throughout the analysis, we distinguish three types of transfers: read-only (RO: the data are
used but not modified), write-only (WO: data are created for the first time) and read/write (RW:
existing data are used and modified). As an example, in the operation C ← C − AB, A and B
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require RO transfers and C requires a RW transfer, whereas in the operation C = AB, C requires
a WO transfer.

4.1. Analysis.
Right-looking variant. At each step j ∈ FS , the RL variant (Algorithm 2.1) requires the fol-

lowing transfers:
• trsm(j) reads the diagonal block Ljj and reads/writes the RHS block Xj → b2 RO transfers

and bnrhs RW transfers;
• each update(i, j) for i > j reads the BLR block UijV

T
ij ; Xj is also needed but is already

in the fast memory → 2(p− j)br RO transfers; each update(i, j) also reads and writes the
RHS block Xi → (p− j)bnrhs RW transfers.

Summing over all steps j ∈ FS , the RL variant therefore requires a total volume of communications
of

• 2qrb+ pfsb
2 RO transfers,

• qbnrhs + pfsbnrhs RW transfers,
where we recall that q = pfs(pfs − 1)/2 + pfspcb denotes the total number of off-diagonal blocks in
L.

Left-looking variant. At each step i ∈ FS , the LL variant (Algorithm 2.2) requires the following
transfers:

• each update(i, j) for j < i reads the BLR block UijV
T
ij and the RHS block Xj → (i −

1)(2br+ bnrhs) RO transfers; each update(i, j) also reads and writes the RHS block Xi, but
it only needs to be loaded once and can then be kept in the fast memory for all subsequent
updates → bnrhs RW transfers.

• trsm(i) reads Lii; it also reads and writes Xi, which is already in the fast memory from
the previous updates → b2 RO transfers.

Then, at each step i ∈ CB , it requires the following transfers:
• each update(i, j) for j = 1: pfs reads the BLR block UijV

T
ij and the RHS block Xj →

pfs(2br + bnrhs) RO transfers; each update(i, j) also reads and writes the RHS block Xi,
but it only needs to be loaded once and can then be kept in the fast memory for all
subsequent updates → bnrhs RW transfers.

Summing over all steps i ∈ FS ∪ CB , the LL variant therefore requires a total volume of commu-
nications of

• 2qrb+ qbnrhs + pfsb
2 RO transfers,

• pbnrhs RW transfers.
Hybrid variant. At each step k ∈ FS , the hybrid variant (Algorithm 3.1) requires the following

transfers:
• updateU(k, j) for j < k reads Ukj and Wkj → (k−1)(b+nrhs)r RO transfers; updateU(k, j)

also reads/writes Xk, which only needs to be loaded once → bnrhs RW transfers;
• trsm(k) reads Lkk; Xk is already in the fast memory → b2 RO transfers;
• updateV(i, k) for i > k reads Vik and Xk, the latter still being in the fast memory; it also

writes Wik → (p− k)br RO transfers and (p− k)nrhsr WO transfers.
The following additional transfers are then required at each step k ∈ CB :

• updateU(k, j) for j ∈ FS reads Ukj and Wkj → pfs(b+ nrhs)r RO transfers; updateU(k, j)
also reads/writes Xk, which only needs to be loaded once → bnrhs RW transfers.

Summing over all steps k ∈ FS ∪ CB , the hybrid variant therefore requires a total volume of
communications of

• 2qrb+ qrnrhs + pfsb
2 RO transfers,
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• qrnrhs WO transfers,
• pbnrhs RW transfers.

Parallelism-driven hybrid variant. Finally, we compute the communication volume of the pa-
rallelism-driven hybrid variant (Algorithm 3.2), which is obtained by combining the RL volume for
the FS part of the computation with the hybrid volume for the CB part. At each step k ∈ FS , the
parallelism-driven hybrid variant requires the following transfers:

• trsm(k) reads Lkk and reads/writes Xk → b2 RO transfers and bnrhs RW transfers;
• update(i, k) for i > k and i ∈ FS reads Uik and Vik; it also reads Xk which is already

in the fast memory; and finally it also reads/writes Xi → 2(pfs − k)br RO transfers and
(pfs − k)bnrhs RW transfers;

• updateV(i, k) for i ∈ CB reads Vik and Xk, the latter still being in the fast memory; it also
writes Wik → pcbbr RO transfers and pcbnrhsr WO transfers.

The following additional transfers are then required at each step k ∈ CB :
• updateU(k, j) for j ∈ FS reads Ukj and Wkj ; it also reads/writes Xk, which only needs to

be loaded once → pfsbr + pfsnrhsr RO transfers and bnrhs RW transfers.
Summing over all steps k ∈ FS ∪ CB , the parallelism-driven hybrid variant therefore requires a
total volume of communications of

• 2qrb+ pfspcbrnrhs + pfsb
2 RO transfers,

• pfspcbrnrhs WO transfers,
• (p+ pfs(pfs − 1)/2)bnrhs RW transfers.

4.2. Discussion. First, we note that the RL and LL variants are not completely equivalent
in terms of communications: while they require the same overall volume regardless of transfer
type, our analysis shows that qbnrhs RW transfers in the RL variant have been replaced with the
same volume of RO transfers in the LL variant. Therefore, in a context where RW transfers are
more costly than RO ones the LL variant might outperform the RL one, at least in a sequential
environment. This could for example occur if a RW transfer requires a first transfer from the slow
to the fast memory and then a second transfer in the other direction.

We now seek to determine when the hybrid variant requires less communications than the LL
one. To do so, we must make an assumption on the relative cost of RO, WO, and RW transfers.
Under the assumption that RO and WO transfers are equally costly, and neglecting lower order
terms in the expression of the communication volume, we obtain a ratio between the LL volume
and the hybrid volume approximately equal to

2qrb+ 2qrnrhs

2qrb+ qbnrhs
=

1 + nrhs/b

1 + nrhs/2r
. (4.1)

Thus the condition for the hybrid variant to require less communications than the LL one is 2r ≤ b,
which we can expect to be always satisfied, since it corresponds to the condition for a block to be
low-rank (if r > b/2, the block requires less storage if represented as a dense block). We can thus
conclude that the hybrid variant should always communicate less than the LL one.

A more important question is when can we expect the hybrid variant to communicate much
less than the LL one: that is, when is ratio (4.1) much less than 1? In the regime where nrhs/2r
is small (just one or few RHS), the ratio (4.1) is close to 1. The hybrid variant therefore does
not significantly reduce the volume of communications for small numbers of RHS. However, in the
regime where nrhs/2r ≫ 1, the ratio (4.1) is approximately equal to 2r/nrhs + 2r/b. This shows
that (4.1) is much less than 1 if min(nrhs, b) ≫ 2r: that is, the hybrid variant leads to significant
gains when we have a large number of RHS and the blocks are very low-rank.
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As for the parallelism-driven hybrid variant, without surprise it achieves a tradeoff between the
hybrid and LL ones. It requires pfs(pfs − 1)/2(b − r)nrhs extra transfers corresponding to the FS
part of the computation which does not use the hybrid communication pattern. This extra volume
can be expected to be small for typical cases where pfs ≪ pcb.

We summarize in Table 4.1 the dominant terms in the total communication volume of the
different variants.

Table 4.1: Summary of the communication volume analysis: dominant terms for each variant.

Variant Communication volume
RO WO RW

Right-looking 2qrb qbnrhs

Left-looking 2qrb+ qbnrhs

Hybrid 2qrb+ qrnrhs qrnrhs

Parallelism-driven hybrid 2qrb+ pfspcbrnrhs pfspcbrnrhs (p+ p2fs/2)bnrhs

The above analysis of these hybrid variants also applies to the case where LUA is used. We do
not develop a specific analysis for the use of LUA: as mentioned, we can expect LUA to also reduce
the volume of communications by reducing the number of cache misses; this is however a more
complex phenomenon that our simple communication model used in this section does not capture.

5. Performance analysis based on a simplified prototype.

5.1. Experimental setting. In order to assess the potential of the new BLR solve variants,
we have first developed a prototype which implements a partial BLR solve of a given frontal matrix.
Since we aim to use this prototype for performance analysis only, we use a synthetic random matrix
and we make some further simplifications by forcing both the block size b and the ranks of the
blocks r to be constant.

The prototype implements the four BLR solve variants: RL, LL, hybrid, and parallelism-driven
hybrid. The prototype also allows for the optional use of LUA for the updateU and/or updateV
tasks.

As explained in section 2.3, the frontal BLR solve algorithms are both needed for large fronts
at the top of the tree, where node and tree parallelism are both exploited, but also for smaller
fronts at the bottom of tree, where only tree parallelism is exploited. Therefore, our goal is to
use the prototype to analyze the performance of the BLR solve in two types of configurations: the
first configuration uses tree parallelism only by running 36 instances in parallel, each using a single
thread; the second configuration uses both node and tree parallelism by running two instances in
parallel, each parallelized with 18 threads.

All our experiments were run on the Olympe supercomputer; each node is equipped with two
18-core Intel Skylake 6140 processors running at 2.3 GHz (for a total of 36 cores per node). We use
Intel MKL 2018 for the BLAS libraries.

5.2. Performance analysis of hybrid variants. We report our performance results in Fig-
ures 5.1 and 5.2 for the tree and node parallelism configurations, respectively. For all experiments
we set nrhs = 250 and pfs = p/5. For the node parallelism experiments, we use large fronts (BLR
block size b = 500 and p = 100 or 200, leading to a front size of 50, 000 or 100, 000). For the tree
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parallelism experiments, we use smaller fronts (BLR block size b = 250 and p = 30 or 50, leading
to a front size of 7, 500 or 12, 500).
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Fig. 5.1: Time spent in solve with tree parallelism (36 instances with 1 thread per instance), b = 250,
nrhs = 250, and pfs = p/5.
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Fig. 5.2: Time spent in solve with node+tree parallelism (2 instances with 18 threads per instance),
b = 500, nrhs = 250, and pfs = p/5.

These results show that, as could be hoped, the hybrid variants can be faster than the RL
and LL variants in many cases. The gains are the most significant when the rank r is small,
and when the problem size is large, with speedups reaching a factor 2.5× in the best case. The
parallelism-driven hybrid variant is not as fast as the standard hybrid one in the configuration
with tree parallelism, but is significantly superior, as expected, in the configuration with node
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parallelism. Indeed, as explained in section 3.2, the left-looking loop at line 2 of Algorithm 3.1
involves a reduction operation on a loop of small size, whose parallelization on 18 threads is not
very efficient. This is also confirmed in Figure 5.2 by the observation that for larger values of p the
performance of left-looking, hybrid and parallelism-driven hybrid variants gets closer.

5.3. Performance analysis of LUA. We finally analyze the time gains obtained when com-
bining the hybrid variant with the LUA approach described in section 3.3. We report the perfor-
mance with and without LUA in Figure 5.3. We use a node+tree parallelism configuration and
therefore take the parallelism-driven hybrid variant as baseline. The figure consists of two plots,
one where the number of block-rows p is fixed and the rank r varies, and the other where r is fixed
and p varies. These two plots illustrate two opposite trends:

• As r increases, the benefits of using LUA diminish, since the granularity of the low-rank
updates without accumulation is already large enough to achieve good performance.

• As p increases, the benefits of using LUA increase, since there are more blocks to accumulate
together, which leads to a better granularity.

Overall, the use of LUA can lead to significant speedups on large fronts with small ranks.
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Fig. 5.3: Time gains obtained with LUA, with node+tree parallelism (2 instances with 18 threads
per instance), b = 500, nrhs = 250, and pfs = p/5.

6. Results on real-life applications with the MUMPS solver. Based on the encouraging
results obtained with our prototype in the previous section, we have implemented a subset of variants
directly in the MUMPS solver. In addition to the existing RL variant (used so far by MUMPS),
we have implemented the LL, hybrid, and parallelism-driven hybrid variants. For now we have not
implemented the use of LUA, which we leave for future work.

We now present some experimental results obtained with these new variants of the MUMPS
BLR solve on a range of real-life matrices, listed in Table 6.1. All the experiments have been
performed on one node of the Olympe supercomputer previously described, using 2 MPI processes
and 18 threads per MPI process, except for the tests with the Poisson200 and thmgaz matrices,
which do not fit on a single node, and for which 4 × 18 threads were used. The BLR ϵ controls
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the accuracy of the BLR factorization: the low-rank blocks Lij ≈ UijV
T
ij are truncated such that

∥Lij − UijV
T
ij ∥ ≤ ϵ. We use double precision real arithmetic (“d”) for all problems except the

Geoazur ones, for which we use single precision complex arithmetic (“c”).

Table 6.1: List of matrices used for the experiments.

Matrix Order BLR ϵ Arithmetic BLR compression
(% of dense)

Poisson120 1.7M 10−6 d 27%
Poisson160 4.1M 10−6 d 22%
Poisson200 8.0M 10−6 d 19%
Geoazur100 1.6M 10−4 c 52%
Geoazur140 3.8M 10−4 c 47%
atmosmodl 1.5M 10−6 d 30%
Geo_1438 1.4M 10−6 d 50%
Queen_4147 4.1M 10−6 d 28%
Serena 1.4M 10−6 d 40%
Transport 1.6M 10−6 d 42%
thmgaz 5.0M 10−6 d 30%

First, in Figure 6.1, we plot the time spent in the forward solve of MUMPS for each BLR front.
This leads to plots where we can distinguish two distinct groups of points. Those corresponding to
the smaller fronts in the lower part of the tree where tree parallelism is used, are each processed
using 1 thread. Those corresponding to the larger fronts higher in the tree, where node parallelism
is used, are processed using 18 threads. The figure shows that for the larger fronts with node
parallelism, the parallelism-driven hybrid variant is the fastest, whereas for the smaller fronts with
tree parallelism, the hybrid variant seems to be the best choice for most fronts. This confirms the
trends observed with the prototype experiments in the previous section.

The optimal approach therefore seems to be to combine the two types of hybrid variants by
using the standard one when only tree parallelism is used and the parallism-driven when node
parallelism is used.

To assess the impact of these per-front gains on the total time, we report in Table 6.2 the
cumulative time spent in all fronts. This includes the time spent in the dense fronts (the very
smallest fronts at the bottom of the tree, where BLR compression is not exploited), which are not
shown in Figure 6.1. The table compares the standard RL variant to the optimized hybrid variant
(which uses the parallelism-driven algorithm only on parallel fronts). The results confirm that the
hybrid variant can achieve significant time reductions overall.

7. Conclusions. The performance of BLR sparse triangular solve, which is critical in several
applications, is underwhelming when there are many RHS. This is explained by the fact that the
computational bottleneck is the memory access to the RHS, which are dense and far heavier than
the compressed BLR LU factors. To overcome this limitation, we have proposed novel hybrid
algorithms that combine right-looking and left-looking communication patterns to minimize the
number of accesses to the RHS. We have carried out a communication volume analysis that proves
that these new variants are indeed communication-avoiding. Based on a performance analysis on
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(a) Matrix Poisson200 (b) Matrix Geoazur140

(c) Matrix Queen_4147 (d) Matrix Thmgaz

Fig. 6.1: Time spent in each BLR front, in the forward solve of MUMPS.

synthetic data using a simple dense triangular solve prototype, we have selected a subset of the
most promising hybrid variants and implemented them in the widely used MUMPS solver. Using
this implementation, we have confirmed the potential of these new variants on several real-life
applications, obtaining up to 20% time reduction.

In this paper we have focused on the double precision solver. However, we mention as an
important perspective of this work that the new hybrid variants may be even more successful in a
mixed precision context. Indeed, in recent work, we have shown that the BLR LU factors can be
stored in mixed precision while preserving the same accuracy [2]. As a result, the mixed precision
BLR LU factors are further compressed and can reduce the triangular solve time. However, the
cost of accessing the RHS becomes even more dominant. This is illustrated in Table 7.1 for matrix
Queen_4147, which shows that the mixed precision approach can reduce the BLR LU storage by a
factor 1.4×. This storage reduction is translated into a comparable RL forward solve time reduction
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Table 6.2: Time spent in the forward solve in MUMPS; nrhs = 250 and 2 × 18 cores are used for
all problems except Poisson200 (4× 18).

Matrix Time (s) Gain
Right-looking Optimized hybrid

Poisson120 0.78 0.69 -12%
Poisson160 2.15 1.76 -18%
Poisson200 2.30 1.83 -20%
Geoazur100 1.95 1.78 -9%
Geoazur140 5.26 4.70 -11%
atmosmodl 0.52 0.49 -6%
Geo_1438 1.35 1.30 -3%
Queen_4147 5.90 4.80 -20%
Serena 1.23 1.20 -2%
Transport 0.73 0.67 -9%
thmgaz 2.53 2.53 -0%

with a single RHS (1.3× speedup), but not with multiple ones (only 1.1× speedup). In future work
it could therefore be promising to combine the use of mixed precision proposed in [2] and the new
hybrid variants proposed in this article.

The inherent irregularity of low-rank operations and the limitations to parallelism in the tri-
angular solve which we have highlighted in this work make our algorithms suitable to the use of
task-based parallelism, as provided, for example, by the OpenMP standard. Nevertheless, it must
be noted that a straightforward use of this parallel programming paradigm will not necessarily lead
to better performance because favorable data locality properties might be lost due to the eager and
asynchronous execution model. Although these properties might be preserved through a careful
scheduling of tasks, this is a research challenge of its own, which we reserve for future work.

Table 7.1: A perspective of this work: BLR LU factors storage (GB) and RL forward solve time
(s) for the BLR solver in double or mixed precision.

BLR LU storage (GB) Solve time (nrhs = 1) Solve time (nrhs = 250)
Matrix Double Mixed Ratio Double Mixed Ratio Double Mixed Ratio

Queen_4147 33.6 23.4 1.4× 0.38 0.30 1.3× 5.90 5.31 1.1×
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