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Abstract

1. Freshwater is vital tomuch life onEarth and is an essential resource for humans. Cli-

mate change, however, dramatically changes freshwater systemsand reduceswater

quality, poses a risk to drinkingwater availability and has severe impacts on aquatic

ecosystems and their biodiversity.

2. The direct effects of climate change, such as increased temperatures and higher

frequency of extrememeteorological events, interact with human responses to cli-

mate change, which we refer to here as ‘indirect effects’. The latter possibly have

even greater impact than the direct effects of climate change. Specifically, changes

in land-use practices as responses to climate change, such as adjusted cropping

regimesor a shift to renewable hydroelectricity tomitigate climate change, can very

strongly affect freshwater ecosystems.

3. Hitherto, these indirect effects and the possibility of idiosyncratic outcomes are

under-recognized. Here, we synthesize knowledge and identify threats to freshwa-

ter environments in alpine and pre-alpine regions, which are particularly affected

by climate change.

4. We focus on the effects of adapted agriculture and hydropower production on

freshwater quality and ecological status, as these examples have strong indirect

effects that interact with direct effects of climate change (e.g., water temperature,

droughts, isolation of populations).

5. We outline how failure to effectively account for indirect effects associated with

human responses to climate change may exacerbate direct climate change impacts

on aquatic ecosystems. If managed properly, however, human responses to indirect

effects offer potential for rapid and implementable leverage to mitigate some of

the direct climate change effects on aquatic ecosystems. To better address looming

risks, policy- and decisionmakers must account for indirect effects and incorporate

them into restoration planning and the respective sectorial policies.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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1 INTRODUCTION

Freshwater biodiversity and the functioning of freshwater ecosys-

tems are declining at unprecedented rates (Albert et al., 2021; Dud-

geon, 2019; Reid et al., 2019). Nearly 80% of the world’s population

is exposed to high levels of threat to water security and biodiver-

sity loss (Vorosmarty et al., 2010), 8%−16 % of freshwater species

are extinct or critically endangered, and decline in freshwater popula-

tions is exceeding that of any other habitat type (Albert et al., 2021;

Dudgeon, 2019; Reid et al., 2019). Climate change has well-known

direct effects on aquatic systems (Heino et al., 2009; Woodward et al.,

2010), such as increased water temperatures and altered river flow

regimes due to changes in precipitation (Doll & Zhang, 2010; van Vliet

et al., 2013), leading to range shifts and changes in the distribution of

aquatic organisms (Alahuhta et al., 2011). Effects of climate change

on aquatic ecosystems are expected in all biomes, but alpine and pre-

alpine regions—key provider of water resources upon which 1.5 bil-

lion people depend (Viviroli et al., 2020)—are predicted to be particu-

larly affected by climate change (Parker et al., 2008; Primicerio et al.,

2007). These regions are not only undergoing higher-than-average

warming (Brunetti et al., 2009), but are furthermore transformed by

massive changes in the timing of discharge and runoff regimes due to

the retreat and vanishing of glaciers (Beniston et al., 2018; Pellicciotti

et al., 2014).

Besides direct climate change effects, it is well established that the

state and quality of aquatic systems depends strongly on other anthro-

pogenic activities, such as flow regulation, land-use or chemical pollu-

tion (Benateau et al., 2019; Dudgeon, 2019; Kaelin & Altermatt, 2016;

Vorosmarty et al., 2010). Importantly, climate change and these other

drivers can also interact (Figure 1). Here, we highlight how modifica-

tions in land-use or changes in economic practices, as consequences

of or adaptation to climate change, may have cascading and trigger-

ing effects on aquatic systems, herein referred to as ‘indirect effects’.

The study of such interactive effects, empirically done for individual

species such as brown trout (Borgwardt et al., 2020) or by modelling

(Mantyka-Pringle et al., 2014), has only recently been undertaken at

larger scales. Due to complex interactions between multiple drivers,

however, it is a non-trivial task to predict the impact and extent of

these combined effects (O’Connor et al., 2012) and to plan conser-

vation strategies for freshwater ecosystems (Bush et al., 2014). For

instance, the combination of severe droughts punctuated by extreme

rainfall due to climate change can result in pollution peaks in water

bodies (IPCC, 2021). This is particularly true in catchments that are

under intense anthropogenic pressure, where pollution peaks can orig-

inate in combined sewer outflows in urban catchments, or from fertil-

izers and pesticides in agricultural catchments (Benateau et al., 2019).

Similarly, in rivers, where water temperature depends on tree cover-

age as well as on air temperature, deforestation or reforestation of

riparian vegetation increase or decrease the water temperatures to

an even greater extent than by direct global warming (Caissie, 2006;

Justice et al., 2017), with temperature fluctuations sometimes being

greater than 10◦C (Hester & Doyle, 2011). Thus, cutting or replant-

ing riparian forests, resulting from climate-change motivated land-use

modifications, may have stronger and faster consequences on streams

than those expected from direct climate change effects. In light of such

threats to rivers worldwide, Tonkin et al. (2019) have highlighted the

need for better predictions of likely changes in these ecosystems. We

propose that indirect effects may, at least in the short term, overrun

the impact of direct climate change on water bodies, and thus must be

considered in policy making, but without compromising efforts against

the overarching goal of stopping or reversing climate change itself. We

provide a visual summary of our argumentation in Figure 2, which is

based on the extensive review by Benateau et al. (2019), partly built

with individual interviews and discussions with experts (see also the

Supporting Information). We qualitatively compare direct and indirect

F IGURE 1 Interactions between climate change and
anthropogenic drivers, their effects on freshwater ecosystems (water
quality and ecological status) and their consequences on human’s
responses to changes with respect tomanagement andmitigation.
Climate change has well-known direct effects onwater
quality/quantity and ecological status of freshwater ecosystems
(green arrow). The indirect effects through human adaptation (purple
arrows), such as changes in in land-use practices, are less known but
may bemore influential and also cause feed-back loops. Black arrows
indicate additional pathwaysmentioned in this article
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F IGURE 2 Qualitative summary of direct and indirect effect sizes of climate change on freshwater systems. (a) Effects on water quality and
processes. (b) Effects on ecosystems. Figure partly based on data synthesized in Benateau et al. (2019), for further details see also supplementary
information

effect size of climate change on both freshwater quality and processes

as well as on freshwater ecology in order to identify areas of mitiga-

tions.Overall, direct and indirect climate change effects on aquatic sys-

tems often have similar effect sizes (Figure 2). A major consequence of

anthropogenic activities is an increasing concentrationof nutrients and

pollutants in all aquatic habitats observed worldwide, mostly induced

by agriculture. Another strong consequence is thermal and structural

habitat degradation. In alpine regions, this is often associated with

hydropower plants. In this perspective, we focus on indirect effects

of climate change caused by hydropower and agriculture as examples

of mitigation and adaption to climate change, respectively. Both have

strong influences on alpine and pre-alpine regions, and deep socio-

economic repercussions, but also offer fast, strong and implementable

leverage tomitigate climate change effects on aquatic ecosystems.

We highlight that human responses to climate change (indirect

effects) can markedly intensify most of the direct effects on water-

bodies, for instance bywithdrawingwater for irrigation from depleting

catchments duringmore andmore frequent and extremedroughts (see

Box 1). However, optimization of water utilization also has a remark-

able potential to preserve freshwater habitats, biodiversity andquality.

We conclude that managers and policymakers must account for indi-

rect effects of climate change and incorporate them into restoration

planning and consider these indirect effects in pertinent sectorial poli-

cies, such as agriculture or energy production.

2 HUMAN RESPONSES (INDIRECT EFFECTS)
TO CLIMATE CHANGE

2.1 Water use for energy production

Global electricity consumption has grown nearly each year since 1974,

with a shift towards renewables (IEA, 2021). Hydropower is the largest

source of renewable energy, accounting for 16% of the world’s gen-

erated electricity in 2019, while combined output from wind, solar

and geothermal energy only reached 8.4% (IEA, 2021). In many alpine

regions, surface freshwater is commonly used for hydropower produc-

tion, for instance accounting for up to 64% of the domestic electric-

ity production in the European Alps (Björnsen Gurung et al., 2016).

Hydropower includes both large dams (Zarfl et al., 2019) as well as

in-stream hydropower plants (Lange et al., 2018). Importantly, hydro-

electric energy is often used to reduce the greenhouse gas footprint of

energy production and thus is seen as a direct approach in mitigating

climate change (Berga, 2016). However, it often has large detrimen-

tal effects on aquatic systems. These indirect effects include changes

in hydrology and fragmentation that affect fauna and flora that are

already subject to the direct effects of climate change (Datry et al.,

2014). Big dams have long been known as factors of habitat destruc-

tion and ecological fragmentation (Belchik et al., 2004; Liermann et al.,

2012; Wu et al., 2004). However, a growing number of studies also
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suggests that, by reducingdownstream flowandcreatingobstacles, the

multiplication of small hydropower plants in alpine settings also cre-

ates habitat fragmentation to an alarming extent (Lange et al., 2018). In

riverine systems, biodiversity is strongly associated with the network

connectivity (Altermatt, 2013). Fragmentation or inter-basin water

transfers for hydroelectric installations, being known to affect whole

river networks (Grill et al., 2015), thus have strong effects on ecology

of aquatic organisms. For example, the isolation of populations in river

leads to loss of local genetic diversity (Horreo et al., 2011). To lever-

age seasonal fluctuations in flow regimes, water reservoirs are built

(Brunner et al., 2019). While this may be beneficial for energy pro-

duction, they also affect natural run-off dynamics, sediment transport

and hydrology (Evette et al., 2011), and thus can have negative effects

on the specific fauna adapted to more natural hydrological regimes.

Moreover, such reservoirs have been shown to be ‘stepping-stones’ for

aquatic species invasion, establishment of which may also be directly

promoted by climate change (Havel et al., 2015), and thus can have

further negative consequences on the aquatic communities. Overall,

adapted water usage for energy production as a human adaptation

and mitigation for climate change, modifies the hydrology of freshwa-

ter systems and may exacerbate the direct negative effects of climate

change on aquatic systems.

2.1.1 Recommendations

Building or removing dams, and changes to the managed flow regimes

have strong effects on the aquatic systems with respect to connectiv-

ity and hydrology including sediment budgets. Ecosystems can recover

within a few years after dam removal, with organisms that have high

rates of population turnover recovering even faster (Foley et al., 2017).

Alternatively, future dams, especially at highest elevation, could act as

water reservoirs, bridging summer droughts in areas where glaciers

will be gonewithin a few decades. At worst, loss of glaciers and intense

hydroelectric usage of remaining water would result in a complete

desiccation of large sections of alpine streams. At best, moderate use

and sufficient retention of meltwater could bridge otherwise future

drought periods and guarantee flow continuity in alpine streams.Mod-

ifications of hydropower use can be associatedwith economic or social

conflicts, and involvement of stakeholders is crucial to communicat-

ing and finding compromises such as fish passages (Lejon et al., 2009).

Thus, the exact location and intensity of hydropower production and

percentage of run-off water retained will decide if dam-building as a

mitigation to climate change has positive or negative indirect effects

on the functioning and biodiversity of aquatic systems.

2.2 Agricultural and pastoralism practices

Mountains are home to 15% of the world’s human population that

strongly relies on agriculture and pastoralism for food and income.

These activities are particularly affected by climate variability alter-

ing crop cycles, causing unpredictable yields or crop failure, and by

climate-induced disasters such as floods, drought and storms (Romeo

et al., 2020). Agricultural practices can have very strong effects on

water quality and the ecological state of freshwater systems through

two main pathways. First, the use of irrigation by agricultural systems,

next to rainfall, has consequences on thehydrology andwater availabil-

ity of freshwaters (Gentle & Maraseni, 2012). Second, the use of agro-

chemicals affectswater quality and the ecological communities therein

(Burdon et al., 2019). Both of these pathways may be strongly affected

by climate change through direct but also indirect effects. The direct

effects of climate change on land-use, and the resulting human adap-

tations (e.g., optimization of irrigation infrastructures, flood preven-

tion, cropmodification, diversification and rotation, breeding livestock

for greater tolerance, improving fertilizing applications) are well doc-

umented (Jacobs et al., 2019), but studies mostly fail to address the

repercussionsof theseadaptationsonaquatic systems.Webelieve that

indirect effects will likely have faster, stronger and potentially more

variable effects on aquatic systems, at least in the short-term, than the

predicted direct long-term effects of climate change.

An increasingly dry and less predictable climate (as a direct con-

sequence of climate change) will make rain-fed agriculture shift to

irrigated agriculture by redirecting and withdrawing water from fresh-

water habitats, and will require increasing amounts of water during

some periods of the year (Wriedt & Bouraoui, 2009). This use of water

for agriculture can have severe impacts on aquatic organisms (see

Belchik et al., 2004 and Box 1 for an example with high socio-economic

and ecological relevance). Under the impact of climate change, agri-

cultural activities can cause increased pressure on water quantity

(due to irrigation needs) but also on water quality due to increased

nitrate leaching during intensifying winter precipitations for example

(Zarrineh et al., 2020). The use of agrochemicals is dependent on the

agricultural type (e.g., growing crops is associated with higher pesti-

cide use than dairy farming), and changes in agricultural practices due

to climate change can have large effects on freshwaters. In alpine and

pre-alpine areas, rain-fed dairy farming is currently the most predomi-

nant formof agriculture, but in the future thesegrasslandsmaybecome

more and more dependent on irrigation. In an effort to alleviate irriga-

tion demand, cattle may be replaced by other ruminants, or grasslands

may even be replaced by different cropping systems, more adapted

to rising temperatures and increasing lengths of growing seasons, but

with different pest sensitivities and greater use of agrochemicals. For

instance, the extent of vineyards is strongly correlated with climatic

conditions (Mozell & Thach, 2014), as are the vineyard-associated side

effects of pesticides on aquatic systems (Sabatier et al., 2014). An

expansion of vineyards due to climate change making novel regions

favourable for this type of agricultures would thus possibly have cas-

cading effects on water quality and the ecological status of freshwater

habitats in these areas.

In general, expansion of crops to new areas modifies land-use and

can spread water conflict and water quality issues. Yet climate change

may also result in shifts to completely novel cropping systems or

crop types with lower impact on waterbodies. For example, in Central
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F IGURE 3 Graphic synthesis of the combination of direct and indirect effects of climate change on aquatic environments in alpine and
pre-alpine settings.We focus here on hydropower and agriculture. For a detailed explanation of the causes and consequences of the individual
effects, see supplement and Benateau et al. (2019)

Europe, shifts from growing potatoes (Solanum tuberosum, Solanaceae)

to growing sweet potatoes (Ipomoea batatas, Convolvulaceae) have

been recently seen in areaswhere the latter could not havebeengrown

for climatic reasons even a few decades ago. The cultivation of sweet

potatoes, which aremore resilient to drought and requiring fewer pes-

ticides, is a shift in production that can have amajor influence onwater

use andwater quality.

2.2.1 Recommendations

New agricultural incentives should be taken after basin‑wide assess-

ments of both direct and indirect effects of climate change. Indeed, it

is crucial to evaluate the indirect effects of new practices on aquatic

systems to ensure that they are neutral or beneficial to mitigate direct

climate change effects. Transition to novel crops should not only be

evaluated with respect to the crop’s climate niche and cultivability, but

alsowith respect towater requirements and fertilizer or pesticide foot-

prints on aquatic systems. The same is true for water-saving methods.

For instance, rainwater harvesting, a practice recommended to allevi-

ate water scarcity, could reduce streamflow and thus impede ground-

water reservoir recharge, which is threatened by depletion worldwide

mostly as a result of agriculture (Konikow&Kendy, 2005). Importantly,

in many countries, agricultural practices are strongly directed through

regulations and incentives (mostly financial subsidies). These act as

strong and fast leverages with proven effectiveness to reduce negative

impacts of climate change on freshwaters (Lehmann & Finger, 2014;

Zhu et al., 2018). In alpine regions with many dams, hydropower reser-

voirs canmitigate the decrease of run-off due to drought or disappear-

ing glaciers, and thus contribute to irrigation and river connectivity.

Storedwater can be retained and releasedmore evenly across the sea-

sons, guaranteeing flow continuity in streams as well as hydropower

production. This must critically include a careful division of available

water.
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BOX1. THEKLAMATHRIVER SALMONIDKILL

The Klamath River flows through the Klamath Mountains

(California,USA) and is home tomanycold-water fish species,

most notably salmon. In 2000, it faced the largest salmon kill

in the history of the United States. The kill was due to the

combination of direct and indirect effects of climate change.

Critical drivers were (1) intense drought and (2) unusual low

flowrate due to upstream utilization of water for distributed

irrigation in agriculture. Extreme temperatures perturbed

the fishes’ migration and induced high fish density in warm

water, providing ideal conditions for the proliferation of par-

asites and pathogens. These direct effects were aggravated

by indirect effects: water diverted for the benefit of farmers

aiming to mitigate the consequences of the drought on agri-

culture, resulted in even lower flow rates, causing the death

of 34,000−70,000 salmonid fishes. This event had severe

aftermaths on the fishing-dependent local economy, but also

on traditional, cultural and spiritual practices (May, 2018).

Belchik et al. (2004) concluded that if the flow from IronGate

Dam had been higher (as in previous years), and less water

used for irrigation, the fish killwould likely not haveoccurred.

This illustrates the importance of supervision and optimiza-

tion of human adaptations to climate change.

3 CONCLUDING REMARKS

Climate change is transforming and will further transform many

aspects of aquatic environments and ecosystems to dramatic extents

(Reid et al., 2019), particularly in alpine and pre-alpine regions. We

strongly support all measures to stop climate change and to reduce its

direct effects. However, it is unrealistic to expect that all direct climate

change effects can be reversed in the short-term, or for freshwater sys-

tems to return to pre-industrial thermal and chemical conditions. Yet,

indirect effects of climate change can exceed the direct effects, and

potentially have faster, stronger and more severe (negative) effects on

thewater quality andecological state of alpine freshwater systems (see

Figures 2 and 3). However, ifmanaged properly, they also offer tremen-

dous potential for rapid and implementable leverage to mitigate cli-

mate change effects on aquatic ecosystems. In fact, sensiblewater poli-

cies can both reduce water exploitation and preserve existing water

resources. To better address looming risks, policy- and decisionmak-

ers must consider freshwaters as a pivotal resource for humans and

as highly valuable ecosystems, in order to account for indirect climate

change effects, and incorporate possible indirect effects into restora-

tion planning and relevant sectorial policies.
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