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Modeling of a coupled fluid-structure system excited by piezoelectric

actuators

Flavio Luiz Cardoso-Ribeiro1, Valerie Pommier-Budinger2, Jean-Sebastien Schotte3 and Denis Arzelier4

Abstract— Structural vibrations can have severe conse-
quences on airplane design like fatigue, aeroelastic instability
and reduced manoeuvrability. Fuel sloshing inside wing tanks
can increase these problems. This work is intended to model a
system that consists of a cantilever aluminum plate with a fluid
tank near the free tip. Piezoelectric patches are used to excite
the system. Three different methodologies were used to obtain
a state-space model of the system: analytical (exact) solutions
of simplified problems, numerical approximated methods and
system identification techniques. Results show good agreement
between theory and experiments.

I. INTRODUCTION

One of the main characteristics of each new generation of

airplanes design is the constant goal of reducing total weight.

This goal inevitably leads to an increase in the structural

flexibility. Sloshing of fuel in large jet airplanes can cause

vibration which interacts with the flexible wing, and can lead

to problems related to the maneuverability of the aircraft,

fatigue and instabilities. This work focuses on the use of

piezoelectric patches for rejection of vibrations on this type

of system.

To study this problem, we use an experimental device,

which consists of a cantilevered plate with a tank partially

filled with fluid near the tip. The experimental device can be

seen as a simplified experimental model of a very flexible

wing with tip fuel tank. Piezoelectric patches are used

as actuators. Various types of measurement output can be

considered (as the measurement given by an accelerometer

or a piezoelectric transducer).

This work is a continuation and extension of the thesis

of Bogdan Robu (Refs. [16], [17]). Robu studied a can-

tilevered flexible plate with a fuel tank attached to the

tank tip. Piezoelectric patches were used both as actuators

and sensors. The final goal was to use feedback control to

attenuate the structural vibration and fluid sloshing. His first

challenge was to define how to mathematically model the

system. For structural dynamics, a plate model was used.

He used “assumed modes” method to find a finite-dimension

representation. The sloshing dynamics was then addressed by
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using a rectangular tank approximation. A finite-dimension

representation was obtained using an analogy with a mass-

pendulum system. Both dynamics were then represented as

a set of coupled ordinary differential equations. Finally, he

used HIFOO Toolbox (Refs. [5] and [6]) to find a low-

order controller, capable of attenuating vibrations of the first

modes.

Fig. 1. Experimental set up.

Previous work lacked of accurate modeling and experi-

mental validation of the full experimental device. In Ref.

[16], differences between experimental and theoretical results

were solved by model matching (natural frequencies were

obtained directly from experiments, instead of theoretical

model). It is clear that more effort needs to be addressed

concerning the modeling of the coupling between structural

dynamics and fuel sloshing and validation with experimental

results.

In this work, we tried to use the simplest mathematical

formulation as possible to describe the experiment. A simple

beam formulation was used to describe the plate. Piezo-

electric effect was added as generalized force/moment, as

described in Ref. [13].

As done in previous work, we used a simple inviscid

sloshing model in a rectangular tank (Refs. [1], [2], [7],

[9], [11], [15]). This model is convenient since it is one

of the only approaches that leads to an analytical model

(more complicated sloshing models can only be solved by

numerical methods). Despite the simplifications, this method

allows a good approximation concerning the sloshing modal

frequencies.

Our contribution concerns the modeling of the full exper-

imental device by coupling the structural dynamics with the

sloshing equations, the validation of the theoretical frequency

response by experimental measurements and the analysis of



the limit of the model.

Sections II and III show how to obtain a state-space

representation for the beam and for sloshing dynamics, re-

spectively. Then, both representations are coupled in Section

IV. Finally, Section V presents the results and comparisons

between the analytical, numerical and experimental meth-

ods.

II. STRUCTURAL DYNAMICS

In this section, we show the mathematical model of a

beam in bending and torsion. Voltage applied to piezoelectric

patches and point-forces are used as inputs of the system.

A. Bending equations

The following equation, derived from Euler-Bernoulli

equation, can represent the dynamic behaviour of a uniform

beam in bending (Ref. [14]):

EI
∂4w

∂x4
= −µ

∂2w

∂t2
+ q(x, t), 0 ≤ x ≤ L. (1)

where x is the position along the beam, L is the beam length,

w = w(x, t) is the beam deflection, E is the material Young’s

modulus, I is the second moment of area, q(x, t) is the force

applied per unit lenght, µ is the mass per unit lenght.

In the case of a beam clamped in a wall at x = 0 and free

at x = L, we have the following boundary conditions: At

the clamped end:w(0, t) = 0, ∂w
∂x (0, t) = 0; at the free end:

EI ∂2w
∂x2 (L, t) = 0, ∂

∂x

[

EI ∂2w
∂x2 (L, t)

]

= 0.

The dynamic equations can be solved using modal decom-

position as a set of independent ordinary differential equa-

tions (for the case of zero initial conditions). The solution

w(x, t) is given as an infinite sum and approximating by

truncating on the “n-th” term:

w(x, t) =
∞
∑

i=1

Wi(x)T
w
i (t) ≈

n
∑

i=1

Wi(x)T
w
i (t), (2)

Where Tw
i (t) is i − th bending mode displacement. It

is given by a system of second order ordinary differential

equations:

T̈w
i (t) + ω2

i T
w
i (t) = Fi, (3)

where T̈w
i (t) =

∂2Tw
i (t)

∂t2 , ωi is the i-th bending mode’s

natural frequency, Fi is the generalized external force ap-

plied to mode i. The natural frequency is given by: ωi =

β2
i

√

EI
µ , where β is the solution of the following equation:

cos (β L) cosh (β L) + 1 = 0.

The generalized forces can be calculated from the modal

shapes and external forces. In the case of a point force q(t)
perpendicular to the beam, at position xf , Fi is given by:

Fi(t) = Wi(xf )q(t) (4)

It’s possible to re-write Eq. 3 as:

Ẋ = AX +Bu (5)

where X =
[

Ṫw
i Tw

i

]

, u = q(t).

Choosing as output the tip deflection:

Y = w(L, t) =
∞
∑

i=1

Wi(L)T
w
i (t) ≈

n
∑

i=1

Wi(L)T
w
i (t). (6)

It is possible to write it in the matrix form:

Y = CX. (7)

From these equations, we see that matrix A can be obtained

from the modes natural frequencies, and matrices B and C

are directly obtained from the modal shapes.

B. Torsion - shaft dynamics

The torsion dynamics of a uniform beam can be approxi-

mated by (See Refs. [4], [10]):

GJ
∂2θ(x, t)

∂x2
+m(x, t) = I

∂2θ(x, t)

∂t2
, 0 ≤ x ≤ L. (8)

where θ(x, t) is the local torsion angle, x is the position

along the beam, t is time, m(x, t) is the local external torsion

moment, G is the material shear constant, J is the section

torsion constant and I is the section polar moment of inertia

per unit lenght.

Here we are dealing with a clamped-free beam. The

boundary conditions are given by: condition on the clamped

tip (no displacement): θ(x, t) = 0, at x = 0; Free

condition: G(x)J(x)∂θ(x,t)∂x = 0, at x = L.
As in the bending case, the dynamic equations can be

solved using modal decomposition:

T̈ θ
i (t) + ω2

i T
θ
i (t) = Mi, (9)

where T θ
i (t) is i-th torsion mode displacement, ωi is the

i-th torsion mode natural frequency, Mi is the generalized

external force applied to mode i.
The angular displacement at any position x can then be

calculated from:

θ(x, t) =

∞
∑

i=0

Θi(x)T
θ
i (t) ≈

n
∑

i=0

Θi(x)T
θ
i (t). (10)

Where Θi(x) is the eigenfunction and wi the modal natural

frequency, given by: ωi = iπ2

√

GJ
IL2 , i = 1, 3, ....

C. Piezoelectric patches effect

Piezoelectric patches can be modelled as a generalized

force and moment applied to each modal equation. Ref. [12]

and [13] describes how to get the piezoelectric generalized

forces in a plate model. We can approximate our beam model

as a plate by considering that the deflection at a point x,y is

given by:

η(x, y) = w(x) + yθ(x), (11)

where (x,y) is a position in the plate plane - x is the position

along the beam axis, y is the distance to the mean axis. Then,

by adaptation of the formulation from Ref. [13] (Eq. 19), the

generalized forces in bending and torsion equations due to

piezoelectric effect are be obtained as:

Fi =
K2al

2
(
∂Wi(x2)

∂x
−

∂Wi(x1)

∂x
)vp (12)



Mi =
K2al

2

8
(
∂Θi(x2)

∂x
−

∂Θi(x1)

∂x
)vp (13)

where K2a = ζ(ζ+1)
1

1−ν
+ β

1−νp
(6ζ+12ζ2+8ζ3)

Ed31βh
2

(1−ν)(1−νp)tp
, β =

Ep/E, ζ = tp/h, E is the plate Young modulus, Ep is

the piezoelectric Young modulus, d13 is the piezoelectric

constant, tp is the patch thickness, h is the plate thickness, l
is the beam width, ν is the plate material Poisson’s ratio, νp
is the piezoelectric material Poisson’s ratio, x1 and x2 are the

piezoelectric patches starting and ending positions along the

plate, vp is the applied voltage. In both cases, it is considered

a single patch that occupies half of the beam width. Moment

equation changes sign depending on the piezoelectric patch

position (upper ou lower).

III. SLOSHING DYNAMICS

In this section, we show how we can find a dynamic rela-

tionship between translations of the fluid tank and pressures

at the tank walls. From these pressures, we can find the

resulting force and moment due to sloshing.

Consider the following hypothesis: small perturbations,

inviscid and incompressible fluid. From the principle of mass

conservation, we have the following equation:

∇2φ(x, y, z, t) = 0, (14)

where φ is the velocity potential, so that:

∂φ

∂x
= vx,

∂φ

∂y
= vy,

∂φ

∂z
= vz,

where vx, vy and vz are the fluid velocity components at

point (x, y, z), in directions x,y and z, respectively.

It is important to notice that we are using a rectangular

tank approximation. This approach leads to relatively easy to

solve partial differential equations (which is not the case of

sloshing in horizontal cylindrical containers). In order to find

a good agreement between the sloshing in rectangular and

cylindrical tanks, one must consider the same free-surface

area as well as the same total volume of fluid.

A. Rectangular tank under lateral oscillations

The tank is moving in the z direction at speed Ξ̇(t). Since

the tank walls are considered rigid and impermeable, the

following boundary conditions apply:

• At each lateral wall:

∂φ

∂z
= Ξ̇(t), at z = −a/2 and z = a/2. (15)

• At the tank bottom:

∂φ

∂y
= 0, at y = 0. (16)

From Euler equation (moment conservation):

∂φ

∂t
+ g(y − h) +

P

ρ
+

1

2
(v2x + x2

y + v2z) = 0 (17)

where P is the pressure, g is the gravity acceleration, h is

the fluid height.

Considering the small perturbation hypothesis, we can

ignore the quadratic terms:

∂φ

∂t
+ g(y − h) +

P

ρ
= 0. (18)

At the free surface, we have that P = 0 and:

y = h+ η, (19)

where η is the free-surface displacement relative to equi-

librium (note that it is a function of x,y and t). Then, at

free-surface, after derivating in respect to time:

∂2φ

∂t2
+ gη̇ = 0, at z = h+ η, (20)

with η̇ = vy = ∂φ
∂y (at y = h), then we have the following

boundary condition at y = h:

∂2φ

∂t2
+ g

∂φ

∂y
= 0. (21)

By using the following variable substitution: φ̃ = φ −
zΞ̇(t), we still have a Laplace Equation, but lateral and

bottom boundary conditions will be homogeneous. This

allows us to solve the problem by variables separation.

Following expression satisfies both the Laplace equation and

the new boundary conditions:

φ̃(y, z, t) =

∞
∑

n=0

sin(λnz) cosh(λny)Tn(t). (22)

The free-surface condition can allow us to find Tn(t):

∂2φ̃

∂t2
+ g

∂φ̃

∂y
= −z

...
Ξ, at z = h, (23)

From Eqs. 22 and 23, after manipulations:

T̈n(t)+gλn tanh(λnh)Tn(t) = −
4a

π2

(−1)n

cosh(λnh)(2n+ 1)2
...
Ξ.

(24)

Applying Laplace transform and substituing ω2
n by

gλn tanh(λnh):

L{Tn(t)}(s) = −
4a

π2 cosh(λnh)

(−1)n

(2n+ 1)2
s

(s2 + ω2
n)

L{Ξ̈}(s).

(25)

It is possible to calculate the force due to sloshing as:

Flat = b

∫ h

y=0

P (y, z = a/2, t)− P (y, z = −a/2, t)dy

(26)

where P (y, z, t) = −ρ∂φ
∂t (y, z, t) + g(y − h). Then:

L{Flat}(s) = −sL{Ξ̇}

(

abhρ−

∞
∑

n=0

8a3bρω2
n

gπ4(2n+ 1)4
s2

s2 + ω2
n

)

(27)



The moment expression is given by:

Mlat =b

∫ h

y=0

−(h/2− y) (P (y, z = a/2, t))dy (28)

− b

∫ h

y=0

−(h/2− y) (P (y, z = −a/2, t))dy

+ b

∫ a/2

z=−a/2

zP (y = 0, z, t)dz

After calculating the moment expression and applying
Laplace transform we get:

L{Mlat}

L{Ξ̇}
= −

ba3ρs

12
+ (29)

+

∞
∑

n=0

ω2

n

g

8a3bρ

π4(2n+ 1)4

[

h

2
−

2a tanh(λnh/2)

(2n+ 1)π
+

g

ω2
n

]

s2

s3 + ω2
n

.

B. Rectangular tank under pitch oscillations

Under forced pitch oscillations given by the pitch-rate θ̇
(around x axis), the following force and moment expressions
are obtained:

L{Fpit}

L{θ̇}
= −s

(

ρa3b

12
− (30)

∞
∑

n=0

ω2

n

g

8a3bρ

π4(2n + 1)4

(

h

2
−

2a tanh(λnh/2)

(2n + 1)π
+

g

ω2
n

)

s2

s2 + ω2
n

)

L{Mpit}

L{θ̇}
=

ba3ρg

12
(31)

+ s

∞
∑

n=0

ω2

n

g

8a3bρ

π4(2n + 1)4

[

h

2
−

2a tanh(λnh/2)

(2n + 1)π
+

g

ω2
n

]

2 s2

s2 + ω2
n

+ s

∞
∑

n=0

8a3bρ

π4(2n + 1)

[

h

2
−

a tanh(λnh/2)

(2n + 1)π
+

g

ω2
n

]

+ s

∞
∑

n=0

8h3bρ

π4(2n + 1)4

[

a

2
−

3h tanh(λnh/2)

(2n + 1)π

]

C. State-space representations

The Laplace transforms previously obtained lead to:

[

L{F}
L{M}

]

=





L{Flat}

L{Ξ̇}

L{Fpit}

L{θ̇}
L{Mlat}

L{Ξ̇}

L{Mpit}

L{θ̇}





[

L{Ξ̇}

L{θ̇}

]

(32)

This can be converted in a state-space representation. The

following state-space representation uses the tank lateral and

angular accelerations as inputs. Forces and moments due to

sloshing are represented as outputs:

Ẋsl = AslXsl +Bslusl (33)

ysl =

[

F
M

]

= CslXsl +Dslusl (34)

where usl =
[

Ξ̈ θ̈
]T

D. Including damping in structural and sloshing dynamics

Eqs. 3 and 9 (structural dynamics), and (Eq. 24) (sloshing)

are sets of second order undamped systems. Obviously, a real

structure (and fluid) has a damped dynamics. Since damping

is often related to viscous effects, adding a term proportional

to modal rate of change (η̇) is a usual simplified solution to

this problem. By using this approach, modal shapes aren’t

affected by this “proportional” damping (See Ref. [8] for

usual structural dynamics damping and [1] (Chapter 4), [11]

(Chapter 3) for sloshing damping).

η̈i + ciη̇i + ω2
i ηi = Fi (35)

A usual value for the proportional term is ci = 2ωiξ. The

values of damping ratio ξ can be fitted from experiments. In

this work, we used a damping ratio ηn = 0.01.

IV. COUPLING FLUID-STRUCTURE EQUATIONS

In the previous sections, we’ve seen how to obtain a state-

space representation for the fluid sloshing in a rectangular

tank.

Ẋsl = AslXsl +Bslusl (36)

ysl =

[

F
M

]

= CslXsl +Dslusl (37)

where usl =
[

Ξ̈ θ̈
]T

. F and M are the force and moment

applied by the fluid in the tank due to sloshing.

We can represent the structural dynamics as:

Ẋ = AX +Bu+Bvv (38)

y = CX (39)

where X are the internal modal states, u is a vector including

point-force and moment (which is actually equal to ysl), y =
[

Ξ̇ θ̇
]T

is the output linear and angular velocities at a

specific point along the beam. v is the input voltage vector

in the piezoelectric actuators.

It is possible to manipulate this latter equation, in order

to find the acceleration as output, instead of velocities:

ẏ =

[

Ξ̈

θ̈

]

= Cẋ

[

Ξ̈

θ̈

]

= CAX + CBu+ CBvv (40)

After manipulations, we find a coupled set of linear
ordinary differential equations. We can write it in matrix
form:

[

Ẋsl

Ẋ

]

=

[

A1 A2

A3 A4

] [

Xsl

X

]

(41)

+

[

Bsl(I − CBslDsl)
−1CBv

Bv +B(I −DslCB)−1DslCBv

]

v

where: A1 = Asl + Bsl(I − CBslDsl)
−1CBCsl, A2 = Bsl(I −

CBslDsl)
−1CA, A3 = A+B(I −DslCB)−1Csl, A4 = B(I −

DslCB)−1DslCA.

Finally, from the structural modal displacements X
and modal shapes, it is possible to find the displace-

ment/velocities/acceleration at any point of the structure.

Above equation can be used to obtain the structural modal

frequencies and the frequency response function, which are

compared with experimental results in next section.



V. RESULTS

This section shows the comparison between theoretical,

numerical and experimental results. Experimental results

were obtained by exciting the structure with piezoelectric ac-

tuators and measuring the accelerations along the plate with 8

accelerometers. Two kind of sources were used: random and

frequency sweep signals. Results were analyzed with SDT

Toolbox (Ref. [3]), in order to obtain the modal frequencies,

damping and state-space representation. Numerical results

were obtained from a formulation developed at ONERA in

collaboration with CNAM (Ref. [18]). In all results, tank is

70% filled of water (in liquid height/diameter ratio).
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Fig. 2. Theoretical (plate + sloshing) vs experimental (sweep at 50 V)
FRF results for each accelerometer (using lower piezoelectric patch). Liquid
water.

Fig. 2 shows the frequency response obtained using the-

oretical model (plate coupled with sloshing) and measured

experimentally (frequency sweep of 50 V amplitude). Results

are presented for each accelerometer, using the lower piezo-

electric patch as input. Table I gives the resonant frequencies

obtained from theory, numerical method and experiments.

A few remarks from the results and relationship with

original structural and sloshing dynamics:

• 1st mode is closely related to the first bending mode (the

frequency value changes considerably from the frozen

water to liquid water case, about 0.65 Hz using liquid

water, about 0.83 Hz for ice).

• 2nd up to 7th modes are strongly related to sloshing

modes. Coupling with first bending modes is visually

obvious;

• Our theoretical model wasn’t able to predict the 4th

(sloshing) mode. When trying to visualize this mode,

it is clear it’s related with tank yaw motion. This

motion wasn’t modelled by our sloshing model (we only

considered pitch and lateral accelerations);

• 8th mode is closely related to the first torsion mode (6.3

Hz using liquid water, 6.0 Hz using ice);

TABLE I

NATURAL FREQUENCY AND DAMPING RESULTS FOR COUPLED SYSTEM

WITH LIQUID WATER

Mode Theory Numerical Exp. Exp.
(Hz) (Hz) (Hz) damping

ratio (%)

1 (bend) 0.66 0.64 0.65 1.2
2 (slosh) 1.36 1.36 1.33 1.2
3 (slosh) 2.17 2.12 2.20 0.9
4 (slosh) NaN 2.83 2.86 4.0
5 (slosh) 2.87 2.90 2.95 0.7
6 (slosh) 3.41 3.38 3.48 59.4
7 (slosh) 3.87 NaN 4.00 42.0
8 (torsion) 6.57 6.56 6.33 0.3
9 (bending) 8.16 9.22 8.68 0.6
10 (??) NaN NaN 14.82 0.3
11 (bending) 20.45 24.52 21.91 1.3
12 (bending) 46.52 54.03 47.15 0.6

• 9th mode is the second bending mode (8.7 Hz using

liquid water, 7.9 Hz using ice);

• 10th mode is not predicted by any theoretical model; it

appears both with liquid water or ice;

• 11th and 12th mode are the third and fourth bending

modes.

• System identification of modes 4, 6 and 7 wasn’t well

acomplished using SDT (values are presented, since

an initial choice of natural frequencies are choosen by

the user, but damping is unrealistic and agreement of

frequency response near these frequencies is not good).

It is important to notice, however, that these modes have

a very small effect in the measured FRFs;

Fig. 3. Large sloshing waves near second bending mode

Nonlinear behavior was clearly observed when exciting

the system to large voltages using stepped-sine or frequency

sweep near resonant frequencies of the system. Visually,

large sloshing waves are observed as those presented in Fig.

3. Fig. 4 shows the different behaviors of the FRF near the

second bending mode, for each input signal. It is easy to see

that very different responses are obtained, depending on the

input amplitude (and method).
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Fig. 4. Frequency response for the system with liquid water in the tank
(70% filled) near the second bending mode - voltage amplitude variation -
Input:1, Output:2.

• The coherence obtained for frequency sweep inputs

using 10 V is almost 1 for the entire frequency range

(in this case, sloshing waves are not visually observed

for this frequency range);

• When using larger voltages, the coherence between

results degradates. This indicates a nonlinear behavior;

• Concerning the coherence obtained for the random

signal, it is nearly 1. This happens because during these

tests the displacements are small, far from the sloshing

nonlinear behavior.

VI. CONCLUSIONS

This article presents the modeling of a coupled fluid-

structure system and the results obtained with 3 differ-

ent methodologies (analytically, numerically and experimen-

tally). The analytical method allows to quickly find a state-

space representation of a beam coupled with a fluid-filled

rigid tank. Although we used several restrictive hypothesis

to find this model, it presented an acceptable agreement

with experimental and numerical results. This analytical

framework can be used for very simple structures, as well as

during early design of structures that can be approximated

as a beam coupled with point-masses or point-coupled fluid

tanks (like slender high aspect ratio wing with tip tanks).

In more complex structures, a fully-numerical schema or

experimental tests are needed.

For a high-amplitude excitation, however, nonlinear slosh-

ing waves changes the dynamic behavior of the system

and linear hypothesis are no longer valid as seen from

experiments. The modeling of the damping, as well as the

nature of nonlinear sloshing waves should be better explored

in further work.

In addition, our next goal is to use the piezoelectric

patches to actively control the system and reduce the system

vibrations.

APPENDIX

Experimental data

Fig 5 describes the experimental setup used in this work.

Accelerometers are represented as asterisks, marked from 1

to 8. Piezoelectric patches (actuators) are marked as I:1 and

I:2. Detailed experimental data are presented in Refs. [16].

1

2

3

4

5

6

7

8
I:2

I:1

Fig. 5. Accelerometers and piezoelectric actuators positions and numbering.
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