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Abstract

A lot of recent progress has been made in ultra low-
bit quantization, promising significant improvements in la-
tency, memory footprint and energy consumption on edge
devices. Quantization methods such as Learned Step Size
Quantization can achieve model accuracy that is compara-
ble to full-precision floating-point baselines even with sub-
byte quantization. However, it is extremely challenging to
deploy these ultra low-bit quantized models on mainstream
CPU devices because commodity SIMD (Single Instruction,
Multiple Data) hardware typically supports no less than
8-bit precision. To overcome this limitation, we propose
DeepGEMM, a lookup table based approach for the exe-
cution of ultra low-precision convolutional neural networks
on SIMD hardware. The proposed method precomputes all
possible products of weights and activations, stores them in
a lookup table, and efficiently accesses them at inference
time to avoid costly multiply-accumulate operations. Our
2-bit implementation outperforms corresponding 8-bit inte-
ger kernels in the QNNPACK framework by up to 1.74× on
x86 platforms.

1. Introduction

Deep learning methods have achieved state-of-the-art
performance on several computer vision tasks, but deploy-
ing these algorithms on mainstream CPU platforms is chal-
lenging due to cost and latency constraints [17]. Ultra low-
bit quantization [2, 5, 7, 10, 15, 23] presents an attractive
option for reducing neural network inference costs. A 2-
bit quantized model offers a theoretical model compression
rate of 16× relative to the 32-bit floating-point (FP32) base-

Table 1. Top-1 accuracies on ImageNet dataset with LSQ.

Model Accuracy@Precision
32-bit 8-bit 2-bit

ResNet18 70.5% 71.1% 67.9%
ResNet34 74.1% 74.1% 72.4%
ResNet50 76.9% 76.8% 74.6%
VGG16 73.4% 73.5% 71.4%

line, but achieving low latency inference with ultra low-bit
models on general purpose processors (GPPs) remains an
active area of research [8, 11, 19].

Deep learning workloads on CPUs are typically accel-
erated by exploiting data-level parallelism through SIMD
programming. However, ultra low-bit deep learning oper-
ators can not be efficiently executed on these devices be-
cause sub-8-bit instructions are not generally supported in
the vectorized instruction sets of mainstream CPU architec-
tures including SSE/AVX instructions on x86 and Neon in-
structions on Arm. Therefore, to enable ultra low-precision
model deployment on these GPPs, it is imperative to de-
velop techniques that leverage the available SIMD instruc-
tions for ultra low-precision computations.

Ultra low-bit quantization methods are highly competi-
tive with industry standard 8-bit (INT8) quantization tech-
niques, especially on classification tasks. For example, as
shown in Tab. 1, at 2 bits of precision, the state-of-the-art
uniform quantization method LSQ [10] achieves a 2.3% and
2% accuracy drop on the ImageNet dataset when quantizing
the networks ResNet50 and VGG16, respectively. In com-
parison, the same method at INT8 precision results in an
accuracy loss of 0.1% and improvement of 0.1% over the
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32-bit full-precision baseline, respectively. The improved
compression and latency of the 2-bit model makes the mild
accuracy degradation tolerable in many use cases.

Moreover, ultra low-bit quantization can also be em-
ployed using a mixed precision approach to prevent the po-
tentially significant accuracy loss resulting from quantizing
all layers in a network. Sensitive layers can be kept at higher
precision (FP32, FP16, INT8) and less sensitive layers can
be quantized down to ultra low-precisions. HAWQ-V3 [22]
presents such a solution that determines the bitwidth per
layer by solving an integer linear programming problem to
balance the accuracy-performance tradeoff.

To realize the goal of ultra low-precision model de-
ployment on GPPs, this paper proposes DeepGEMM, a
set of convolution kernels that utilize the SIMD instruc-
tions in modern processors to perform lookup operations
into precalculated tables. This method replaces expensive
multiply-accumulate (MAC) operations prevalent in deep
learning models with faster precomputed data retrieval from
a lookup table (LUT) provided that the table is small enough
to fit within the processor cache or registers. LUTs can be
used for operations that require dot products such as convo-
lutional and fully-connected layers which are the primary
building blocks of convolutional neural networks (CNNs).
Utilizing LUTs for these bottleneck layers can significantly
accelerate inference on mainstream CPU platforms where
some (mixed precision) or all of the layers in the network
are quantized to ultra low-bit, based on the accuracy re-
quirements. This paper makes the following contributions:

• We propose a novel approach for extremely low-bit
computations on CPUs with SIMD support that uti-
lizes lookup tables to replace MAC operations. The
dot product of two ultra low-bit input vectors can be
performed by retrieving precomputed products of the
input operands from a table stored in processor reg-
isters or cache eliminating costly arithmetic and en-
abling faster data access.

• We present DeepGEMM, a set of flexible ultra low-
precision convolution operators compatible with uni-
form and non-uniform quantization techniques, for the
x86 platform. The LUT based operators leverage ef-
ficient packing schemes and vectorization to minimize
latency in ultra low-bit model deployment.

• We provide detailed performance breakdown and pro-
filing results at the kernel, operator and model level.
DeepGEMM offers substantial improvements over
highly optimized GEMM libraries and state-of-the-art
methods for ultra low-bit inference on x86.

The rest of the paper is structured as follows: Section 2
provides some background on quantization and prior works

focusing on quantized inference on CPU architectures. Sec-
tion 3 introduces DeepGEMM with a brief overview of the
LUT approach and its different versions. Section 4 takes
a technical deep dive into the DeepGEMM algorithm de-
tailing different packing schemes and the vectorized imple-
mentation. Section 5 presents extensive experimental re-
sults with comparisons against optimized baselines and ul-
tra low-bit techniques. Section 6 discusses future enhance-
ments and work in progress. Finally, Section 7 concludes
the paper.

2. Background

2.1. Quantization

In convolutional neural networks, the inputs to the con-
volutions are feature maps which are tensors of padded ac-
tivations data that are convolved with weights. These ac-
tivations and weights can be quantized. Quantization con-
sists of mapping data from a larger set of potentially infinite
real values to a smaller set of finite values represented us-
ing a countable number of bits. Typically, feature map and
weight values are stored in floating-point format with 32
bits. It is possible to represent these values with fewer bits
through quantization. The advantages of reducing the num-
ber of bits are smaller memory footprint and lower com-
putational complexity typically leading to increased perfor-
mance with lower latency, higher throughput and improved
energy efficiency. The term quantization (resp. dequan-
tization) defines the process of converting 32-bit floating-
point numbers into (resp. from) lower precision represen-
tations. There are two main families of quantization tech-
niques: uniform and non-uniform.

In uniform quantization, the quantized values typically
correspond to integers and there is a linear relation between
intervals in the quantized and in the real domain. Two pa-
rameters are needed to define a particular quantization pro-
cess, which are a scaling factor s ∈ R and the zero-point
z ∈ R which is the integer value to which the real value
zero is mapped. Let xq ∈ {−2b−1,−2b−1 +1, ..., 2b−1} be
the quantized version of x ∈ R that can be computed with
the transformation given in Eq. (1).

xq = quantize(x)

= clip(round(s · x+ z,−2b−1, 2b−1 − 1))
(1)

The direct advantage of uniform quantization is that, op-
erations on real values can be transformed into operations
on integer values leading to optimized implementations on
integer processing hardware. On the other hand, it is also
possible to perform non-uniform quantization that generally
offers higher accuracy by using floating-point values for the
quantization levels. Although the transformation to integer
arithmetic is lost, the mean quantization error is reduced by
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(a) Vectorized packing

& 000...0000000 ... 000...0000001
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act. 011...0111110 ... 110...1010011

000...0000011 ... 000...0000011 masks

(b) Vectorized unpacking

Figure 1. Weight and activation values in floating-point are quantized to ultra low-bit and cast to integer before being packed into higher
percision data types in a vectorized manner using bitwise shift and OR operations in (a). Ultra low-bit weight and activation values are
extracted from the packed data types and concatenated to form indices for LUT access using vectorized masking and bitwise operations in
(b).

providing a better fit for the given distribution of weights
and activations.

2.2. Related Works

Prior efforts on low-bit implementation of CNNs on
GPPs have primarily focused on 8-bit quantization. QN-
NPACK [9] is a highly optimized library that is integrated
within the PyTorch [16] framework and provides high per-
formance convolution kernels for 8-bit quantization tar-
geting both x86 and Arm architectures. NCNN [18] and
gemmlowp [13] can also be used for efficient implementa-
tions of 8-bit quantized GEMM algorithms. Similarly, the
CMSIS-NN framework [14] includes optimized 8-bit con-
volution kernels for Arm Cortex-M processors.

Quantized inference on GPPs with fewer than 8-bits is
more rare in the literature. [19] proposes an implementation
based on bitwise ANDs and popcount instruction to perform
the elementary operations of the convolutions. Indeed, if
weights and activations are represented with a single bit, a
multiplication can be implemented as an AND, and accu-
mulation can be performed using the popcount operation.
By adding shifts to the equation, one can also support com-
putations on 2-bit or higher precision data enabling efficient
data parallelism and lower latency compared to standard
higher precision operators.

This bit-serial approach with bitwise ANDs and pop-
count operations is also used in [8] and [1] where bit-
serial kernel implementations for Arm-based targets are
provided within the TVM [4] machine learning compiler
framework. This allows the algorithms to take advantage of

existing compiler optimizations including loop tiling, loop
unrolling, vectorization and multicore parallelization. The
method is tested on a ResNet18 network, and the through-
put gains are significant, especially for 1-bit quantization
(6× over FP32).

Another framework that increases the performance
of GEMM processing at ultra low-precision is ULP-
PACK [20]. Depending on the number of bits, this imple-
mentation is shown to achieve better performance than the
bit-serial method. The principle is to pack multiple sub-byte
weight and activation values within an 8-bit integer. Then a
regular 8-bit multiply operation produces the expected dot-
product result. This principle can be further extended to
16-bit and 32-bit multiply operations with even more in-
puts. Full networks are implemented using this technique,
and it is shown that ULPPACK outperforms other low-bit
implementations such as QNNPACK, gemmlowp, and the
bit-serial version at certain bitwidths.

[11] have also proposed an implementation of extremely
low-bit quantization of CNNs. The performance gains are
achieved with a clever usage of MAC operations that are
vectorized using the Arm Neon instruction set, reducing the
number of cycles needed to perform a single convolution.
Throughput gains are significant and are even observed for
4-8 bits, while the bit-serial approach in [8] had only re-
ported gains with 1-3 bits.

Bitflow [12] implements binary network on CPUs. It de-
scribes a code generator that produces 1-bit quantized op-
erators and uses data-level and thread-level parallelism to
achieve good performance. A PressedConv layer is intro-
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Figure 2. Lookup table accessed to retrieve precomputed products
of ultra low-bit activation and weight values that are represented
by the corresponding indices.

duced that performs bit-packing along the channel dimen-
sion, and then applies bitwise XORs and popcount opera-
tions. A feature that is specific to this implementation is the
use of AVX512 instructions on Xeon Phi architecture.

3. Methodology
3.1. Overview

The overall DeepGEMM algorithm is composed of three
primary steps: packing, unpacking and lookup table ac-
cess. Packing involves loading multiple low-bit values
within a standard higher precision data type. Fig. 1a depicts
the vectorized packing of 2-bit input values within larger
data types. Unpacking extracts the low-bit values from the
packed representation as illustrated in Fig. 1b. Both pack-
ing and unpacking steps only require inexpensive bitwise
masking and shifting operations. Unpacked low-bit weight
and activation values are concatenated to construct indices
that are used for LUT access as shown in Fig. 2.

3.2. LUT Versions

We developed two different implementations of our LUT
approach: the first uses SIMD operations on a lookup table
with 16 entries (LUT-16) while the second uses a lookup
table with 216 entries (LUT-65k). In both cases, the weight
and activation values are quantized to 2 bits. The implemen-
tations target x86 CPUs with AVX2 support using 256-bit
vector registers. For both versions, the lookup table entries
are 8-bit values implicitly assuming that the result of the
MAC operations will not overflow 8 bits. If required, higher
precision data types can be chosen for the lookup table en-
tries to account for larger accumulation results to be stored
in the table.

LUT-16

In the LUT-16 version shown in Fig. 3, two 128-bit
lookup tables are stored in a single 256-bit vector regis-
ter. The values stored in the LUT are all possible re-
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Figure 3. Vectorized lookup with LUT-16.

sults of w · a, with w ∈ {ω00, ω01, ω10, ω11} and a ∈
{α00, α01, α10, α11}. A notable trick is that the weights in
7 are reordered so that after masking, the resulting vectors
9 and 10 can be directly combined with an OR operation,

without additional shifting needed. And this is cost-less at
inference time, because the rearrangement of weights can
be performed offline. The resulting values in 11 , 15 , 20

and 25 represent the indices that are used to retrieve the
precomputed products from the LUTs stored in 5 and 6

with the AVX2 shuffle instruction for table lookup.
This process produces 4, 8-bit dot products in vector reg-

isters 12 , 16 , 21 and 26 . A vectorized sum of the 8-bit
elements is performed across these registers. The final op-
eration is a horizontal addition of these values. The AVX2
implementation of this reduction is detailed in Listing 1.

Listing 1. Reduction after interleaving and lookup

1 m128i a = m m 2 5 6 c a s t s i 2 5 6 s i 1 2 8 ( sum ) ;
2 m128i b = m m 2 5 6 e x t r a c t i 1 2 8 s i 2 5 6 ( sum , 1 ) ;
3 m128i d = mm add epi64 ( b , a ) ;
4 m128i e = m m s h u f f l e e p i 3 2 ( d , 2 3 8 ) ;
5 m128i f = mm add epi64 ( e , d ) ;
6 o u t = m m c v t s i 1 2 8 s i 6 4 ( f ) ;

Upon close inspection, it can be inferred that the num-
ber of instructions to perform the convolution with the LUT
approach is actually comparable to the FP32 baseline. For
each pair of weight and activation values, we perform an
operation in both cases: a shuffle for our ultra low-bit LUT
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Table 2. Scaling LUT-16 to larger bitwidths.

Bitwidth 2 3 4

Index bitwidth 2 + 2 = 4 3 + 3 = 6 4 + 4 = 8

LUT entries 24 = 16 26 = 64 28 = 256

LUT size 128 bits 512 bits 2048 bits

AVX2 registers 1 2 8

Fits in L1 cache ✓ ✓ ✓

method and a multiplication for the standard FP32 method.
When loading vector registers with weight and activation
inputs, the number of values loaded in a register is given by
the vector register size (R) divided by the data size. For
2-bit quantized values with the LUT approach, R/2 val-
ues can be loaded in a register whereas in the case of FP32
data, only R/32 values can be loaded (R/8 in the case of
8-bit quantized data). Therefore, in addition to the latency
of shuffle operation being lower than multiplication, the ob-
served gains with the LUT method also result from substan-
tially fewer exchanges between the cache and registers.

LUT-65k

In the LUT-65k version, we create a lookup table with
216, 8-bit elements. The elements correspond to all possi-
ble combinations of the dot product between 4, 2-bit weight
and 4, 2-bit activation values. The index into this table is
16-bit wide and is constructed by concatenating the 8 bits
from the 4 weights with the 8 bits from the 4 activations.
This greatly simplifies the unpacking step as the 8 bits of
weights and activations can be easily interleaved using ex-
isting 8-bit vectorized instructions removing the need for
explicit masking and shifting operations to extract the rele-
vant values. With a total size of 64 KB, the lookup table can
be stored in cache, as it easily fits within a typical L2 cache
on modern processors.

3.3. Scalability to Larger Bitwidths

Currently DeepGEMM only supports 2-bit quantized
models, but the LUT-16 version can be easily extended to
larger bitwidths with the set of changes listed in Tab. 2. For
3-bit, we require a 6-bit index into the LUT resulting in 64
entries. Assuming each entry is an 8-bit integer, this would
require 64 bytes or 512 bits so the LUT can be stored in
2, 256-bit AVX2 registers or the L1 cache. The number of
packing and unpacking instructions remain the same as the
2-bit version but the LUT access time will slightly increase
due to accessing entries within a larger table. Similarly for
4-bit, an 8-bit index is needed to access a 256 entry LUT
that requires 256 bytes or 2048 bits for storage. The LUT
can be stored in 8 AVX2 registers or in the L1 cache. In-

Table 3. Average number of instructions needed per output for
different packing schemes.

Instruction a b c d

AND 2 2 2 2
Shift 1.5 1 0.5 0.5
OR 1 0.5 1 0.5
Shuffle 1 1 1 1

Total 5.5 4.5 4.5 4

structions for packing are the same as the 2-bit version but
less instructions are required for unpacking since the 8-bit
index can be supported by the standard INT8 data type elim-
inating some masking and shifting operations. However, the
overhead for accessing the LUT will be slightly higher due
to retrieving results from a larger table spread across multi-
ple vector registers.

4. Implementation Details
4.1. Packing Schemes

We experimented with several packing schemes in order
to optimize the unpacking step. Fig. 4 displays 2 differ-
ent packing schemes and 2 unpacking processes for each
scheme. The first packing scheme used in (a) and (b) is
the most naive one. The inputs 7 and 8 are naturally or-
dered. In order to unpack them, 4 operations are needed to
put 2 of the inputs in the correct order, before being used
as index to the lookup operation, implemented with a shuf-
fle. To generate a second output, the same process would
be needed but with an additional shift before doing the fi-
nal lookup step. In figure (b), a small improvement is pro-
posed with the same packing scheme, but using different
masks ( 3 , 5 and 6 ), in order to reduce the number of
operations needed to unpack two pairs of weights and ac-
tivations. Further improvement can be performed with the
packing scheme described in schemes (c) and (d) (see 16 ).
With this new arrangement of weights performed offline,
there is one less shift operation to be performed in scheme
(c) compared to scheme (a) to produce 1 output. Finally,
scheme (d) uses both improvements, generating two pairs
of weights and activation as in (b), with the packing scheme
used in (c) to reduce the number of shifts needed. Tab. 3
lists the average number of instructions required to retrieve
a single entry from the LUT for one weight-activation pair
with these different schemes.

4.2. Vectorized Algorithm

We are able to execute 32 lookups at a time within a
256-bit vector register using the AVX2 shuffle instruction.
Algorithm 1 shows simplified pseudocode for the vector-
ized DeepGEMM algorithm. The precomputed products

5
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Figure 4. Packing schemes and corresponding operations for un-
packing.

are stored in the LUT at line 4. The prepacked activation
and weight values are loaded into 256-bit vector registers
in lines 5 and 6, respectively. The unpacking of inputs to
generate the index for LUT access happens at line 9. Fi-
nally, the lookup table is accessed to retrieve the precom-
puted product of the input values in line 10. The sum re-
duction of the LUT values is the last step before storing the
accumulated dot product results. Unlike Neon, AVX2 does
not offer an instruction that can be utilized for the horizon-
tal vector sum; the group of instructions that were utilized
for this reduction step are given in Listing 1.

Algorithm 1 DeepGEMM algorithm as pseudocode

1: mask: Register that extracts the 2 LSB bits from 8 bit
elements of a vector register.

2: lookup table: Lookup table containing every combina-
tion of multiplication of two 2-bit values.

3: addr[V ]: Returns the address of variable V .
4: lut← addr[lookup table]
5: veca ← addr[act tensor]
6: vecw ← addr[w tensor]
7: for i← 0 to 4 do
8: shift = i ∗ 2
9: indx = ((vecw >> shift)&mask)|((veca >>

shift)&mask)
10: res = shuffle(lut, indx)
11: end for
12: reduction sum
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Figure 5. Per-layer speedups over QNNPACK INT8.

5. Experimental Results
5.1. Operator Profiling

On the x86 platform (Intel i7 9700k@3.6GHz), we com-
pare the performance of DeepGEMM on various classifi-
cation models against optimized INT8 kernels in the QN-
NPACK library. The results on a subset of the convolution
layers are given in Fig. 5 with each subfigure correspond-
ing to a classification model. The horizontal axis gives
the dimensions of each layer in (M,N,K) format repre-
senting an (M,N) × (N,K) GEMM computation. The
per-layer speedup increases with higher values of K as
the DeepGEMM kernel is vectorized along the K dimen-
sion. The overall geomean speedups across all the layers
tested are presented in Tab. 4. DeepGEMM achieves signif-
icantly lower latencies compared to QNNPACK with ge-
omean speedups of 1.74×, 1.64×, 1.67× and 1.57× on
MobileNetV1, ResNet18, ResNet34 and ResNet50 layers,
respectively.

5.2. End-to-end Profiling

End-to-end inference results for six convolutional neu-
ral networks tested with QNNPACK and DeepGEMM ker-
nels are presented in Fig. 6 and Tab. 5. All convolution
layers in the networks were quantized to either 8-bit for
QNNPACK or 2-bit for DeepGEMM. The results include
the execution time for packing, quantization and dequanti-
zation of activations while the packing and quantization of
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Table 4. Geomean speedups across convolution layers over QN-
NPACK INT8.

Model Geomean Speedup

MobileNetV1 1.74×
ResNet18 1.64×
ResNet34 1.67×
ResNet50 1.57×
Average 1.66×

weights was handled offline since the parameter values are
available after training. The results demonstrate significant
end-to-end speedups of up to 1.68× with DeepGEMM over
QNNPACK, specially on models such as ResNet, where
the convolution layers form the primary bottleneck during
model execution.

The latency improvements enabled with DeepGEMM
are complemented by advances in ultra low-bit quantization
methods where minimal accuracy degradation is observed
across entire networks with all layers converted to ultra low-
precision. This is demonstrated in Tab. 1 that gives the Top-
1 accuracies for the ResNet-based models at 32, 8 and 2 bits
with the quantized models trained using LSQ [10]. The 2-
bit ResNet18, ResNet34 and ResNet50 models only incur
accuracy drops of 2.6%, 1.7% and 2.3% compared to the
full-precision baselines, respectively. The accuracy losses
relative to the 8-bit baselines are 3.2%, 1.7% and 2.2%, re-
spectively. The higher inference performance realized with
DeepGEMM coupled with the considerable memory sav-
ings achieved through ultra low-bit model representations
can offset the minor accuracy dips in several applications.

5.3. Comparison with Ultra Low-bit Methods

State-of-the-art methods for ultra low-bit inference on
GPPs including bit-serial [8] and ULPPACK [20] primarily
focus on kernels for Arm CPU targets whereas DeepGEMM
provides a set of kernels for the x86 platform with porting
to Arm architecture still under development. ULPPACK
does offer some x86 performance results but no low-level
implementation details are provided so it was not possible
to reproduce the reported results on our platform. A com-
parison may be performed by using the per-layer through-
put numbers from ULPPACK on a subset of MobileNetV1
layers at 2-bit; ULPPACK achieves a geomean speedup of
1.77× whereas DeepGEMM achieves a geomean speedup
of 1.74× over QNNPACK as shown in Fig. 5a and Tab. 4.
In addition to offering competitive performance to SOTA,
DeepGEMM also provides more flexibility for quantization
and input representations.

The LUT can store either integer or floating-point val-
ues. Floating-point entries in the LUT that represent the dot

Table 5. End-to-end speedups over QNNPACK INT8.

Model End-to-end Speedup

ResNet18 1.62×
ResNet34 1.68×
ResNet50 1.59×
ResNeXt101 1.50×
GoogleNet 1.50×
InceptionV3 1.58×
Average 1.58×

products of input activation and weight values make Deep-
GEMM compatible with non-uniform quantization. Non-
uniform quantizers typically use floating-point values for
the quantization levels producing models with higher ac-
curacy compared to uniform quantizers. LCQ [21] uses
non-uniform quantization to outperform the SOTA LSQ
method by up to 1.3% in image classification, demonstrat-
ing the potential performance improvements enabled by
DeepGEMM. Bit-serial and ULPPACK only work with in-
teger values and are therefore not suitable for non-uniform
quantization.

The LUT can store either unsigned or signed data. This
allows the input activations and weights to be encoded as
unipolar (unsigned) or bipolar (signed). ULPPACK only
supports unsigned data and therefore requires additional op-
erations to be added before and after the GEMM computa-
tion to accommodate signed inputs such as neural network
weights. Although the bit-serial approach natively supports
both unipolar and bipolar data representations without the
addition of any operators to the network, the bipolar case
requires extra popcount instructions in the dot product cal-
culations [8]. DeepGEMM offers the distinct advantage of
providing identical latency regardless of the sign of the in-
put data enabling the same level of performance for higher
accuracy bipolar quantization techniques [3, 6, 10] relative
to purely unipolar methods.

Finally, since the LUT stores precomputed results, and
quantization constants including scaling factors are known
at compile-time, this potentially enables the fusion of quan-
tize, convolution and dequantize operators by storing the
combined results of the sequence of these layers in the LUT.
This can remove the overhead of activation quantization and
dequantization which can be significant for some layers.

5.4. Low-Level Kernel Profiling

Fig. 7 provides a detailed breakdown of the execution
times for individual layers with DeepGEMM on the x86
platform. Operations for a single convolution layer can
be categorized into activation quantization, activation pack-
ing, convolution with LUT (includes unpacking, lookup and
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Figure 6. End-to-end speedups over QNNPACK INT8.
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Figure 7. Kernel profiling on x86 platform.
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Figure 8. Kernel profiling on Arm platform.

accumulation) and activation dequantization. We used the
ONNX Runtime profiling tool to get the latencies for these
four stages and also used the Intel VTune™ Profiler to com-
pare the latencies of the three steps within the LUT convo-
lution stage. Activation packing and dequantization take a
minor amount of the overall execution time. For small lay-
ers, activation quantization can add considerable overhead,
but this can be addressed by the fusion of operators as dis-
cussed in the last point when comparing to SOTA methods
above. In all cases, it can be observed that the Lut-Conv step
that includes unpacking, lookup and accumulation, is the
primary bottleneck so DeepGEMM should still be perfor-
mant when the overhead of activation packing, quantization
and dequantization is considered. The VTune™ Profiler re-
sults further reveal that the unpacking step within Lut-Conv
consumes about 80% of the overall execution time. Since
unpacking has to be performed repeatedly on the packed

data and requires multiple bitwise instructions, it presents a
significant overhead compared to the lookup operation. In-
terestingly, even though table lookup is the defining feature
of DeepGEMM, it takes substantially less time compared
to both the input packing and unpacking steps promising
considerable performance improvements in the future with
more efficient unpacking schemes.

6. Future Work
As stated previously, the unpacking stage is currently

the primary bottleneck in the DeepGEMM algorithm. We
are exploring more efficient packing methods to reduce the
number of instructions required for unpacking. We are also
experimenting with operator fusion before and after convo-
lution to store precomputed results for a sequence of op-
erators in the LUT to remove the overhead resulting from
activation quantization. In addition to our x86 LUT ker-
nels, we also worked on extending DeepGEMM to Arm and
tested it on the Raspberry Pi 4B device (4×Arm Cortex-
A72@1.5GHz) as shown in Fig. 8. However, Neon lacks a
128-bit vectorized instruction for table lookup similar to the
AVX2 shuffle instruction so our current Arm implementa-
tion does not offer competitive performance.

7. Conclusion
In this work, we introduce DeepGEMM, a lookup table

based approach for CPUs that replaces the costly multiply-
accumulate arithmetic in dot product calculations with sim-
pler indexing operations into preconstructed tables for com-
puting ultra low-precision layers in convolutional neural
networks. The faster latency of table lookup coupled with
substantially fewer memory accesses for packed ultra low-
bit data results in significant performance gains over opti-
mized baselines. Compared to prior works on sub-byte op-
erators, DeepGEMM offers greater flexibility with support
for uniform and non-uniform quantization methods where
unsigned and signed, integer or floating-point results can be
precomputed and stored in the lookup table. We implement
vectorized DeepGEMM kernels for x86 platforms that out-
perform optimized 8-bit baselines by up to 1.74×.
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