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Abstract—How many copies of a quantum process are nec-
essary and sufficient to construct an approximate classical de-
scription of it? We extend the result of Surawy-Stepney, Kahn,
Kueng, and Guta (2022) to show that Õ(d6/ε2) copies are
sufficient to learn a d-dimensional quantum channel to within ε
in the diamond norm. Moreover, we show that Ω(d6/ε2) copies
are necessary for any strategy using incoherent non-adaptive
measurements. This lower bound applies even for ancilla-assisted
strategies.

I. INTRODUCTION

We consider the problem of quantum process tomogra-
phy which consists of approximating an arbitrary quantum
channel–any linear map that preserves the axioms of quan-
tum mechanics. This task is an important tool in quantum
information processing and quantum control which has been
performed in actual experiments (see e.g. [1], [2], [3]). Given
a quantum channel N : Cd×d → Cd×d as a black box, a
learner could choose the input state and send it through the
unknown quantum channel. Then, it can only extract classical
information by performing a measurement on the output state.
It repeats this procedure at different steps. After collecting
a sufficient amount of classical data, the goal is to return a
quantum channel Ñ satisfying:

∀ρ ∈ Cd×d ⊗ Cd×d : ∥id⊗ (N − Ñ )(ρ)∥1 ≤ ε∥ρ∥1 (1)

with high probability. In this work, we investigate the opti-
mal complexity of non-adaptive strategies using incoherent
measurements. These strategies can only use one copy of
the unknown channel each step and must specify the input
states and measurement devices before starting the learning
procedure.

Contribution First, we show that the process tomography
algorithm of [4] can be used to approximate an unknown
quantum channel to within ε in the diamond norm (1) using
a number of incoherent measurements Õ(d6/ε2). For this, we
only need to relate the diamond norm between two quantum
channels and the operator norm between their corresponding
Choi states which improves on the usual inequality with the
1-norm: ∥M∥⋄ ≤ d∥JM∥1 (see e.g. [5]). Next, we prove
that this bound is almost optimal for non-adaptive algorithms.
Precisely, we prove a general lower bound of Ω(d6/ε2)
on the number of incoherent measurements for every non-
adaptive process learning algorithm. For this, we construct
an Ω(ε)-separated family of quantum channels close to the
completely depolarizing channel of cardinal M = exp(Ω(d4))

by choosing random Choi states of a specific form. This family
is used to encode a message from [M ]. A process tomography
algorithm can be used to decode this message with the same
error probability. Hence, the encoder and decoder should share
at least Ω(d4) nats of information. On the other hand, we show
that the correlation between the encoder and decoder can only
increase by at most O(ε2/d2) nats after each measurement.
Note that the naive upper bound on this correlation is O(ε2),
we obtain an improvement by a factor d2 by exploiting the
randomness in the construction of the quantum channel. This
result is stated in Theorem IV.1.

Related work The first works on process tomography
including [6] and [7] follow the strategy of learning the
quantum states images of a complete set of basis states
then obtaining the quantum channel by an inversion. The
problem of state tomography using incoherent measurements
is fully understood even for adaptive strategies [8]–[11]: the
optimal complexity is Θ(d3/ε2). So, learning a quantum
channel can be done using O(d5) measurements, but this
complexity doesn’t take into account the accumulation of
errors. The same drawback can be seen in the resource analysis
of different strategies by [12]. Another reductive approach
is to use the Choi–Jamiołkowski isomorphism [13], [14] to
reduce the process tomography to state tomography with a
higher dimension [15], [16]. However, this requires an ancilla
and only implies a sub-optimal upper bound O(d8/ε2) for
learning in the diamond norm. [4] propose an algorithm for
estimating the Choi state in the two norm that requires only
Õ(d4/ε2) ancilla-free incoherent measurements. This article
extends this result to the diamond norm and shows that this
algorithm is optimal up to a logarithmic factor. Finally, ancilla-
assisted quantum process tomography (which can be related
to quantum imaging [17], [18]) was proven to provide an
advantage over ancilla-free strategies for some problems [19],
[20]. However, in this work, we show that ancilla-assisted
strategies cannot overcome ancilla-free strategies for process
tomography.

II. PRELIMINARIES

We consider quantum channels acting on a system of
dimension d. We use the notation [d] := {1, . . . , d}. We
adopt the bra-ket notation: a column vector is denoted |ϕ⟩
and its adjoint is denoted ⟨ϕ| = |ϕ⟩†. With this notation,
⟨ϕ|ψ⟩ is the dot product of the vectors ϕ and ψ and, for a
unit vector |ϕ⟩ ∈ Sd, |ϕ⟩⟨ϕ| is the rank-1 projector on the



space spanned by the vector ϕ. The canonical basis {ei}i∈[d] is
denoted {|i⟩}i∈[d] := {|ei⟩}i∈[d]. A quantum state is a positive
semi-definite Hermitian matrix of trace 1. A d-dimensional
quantum channel is a map N : Cd×d → Cd×d of the form
N (ρ) =

∑
k AkρA

†
k where the Kraus operators {Ak}k satisfy∑

k A
†
kAk = I. For instance, the identity map id(ρ) = ρ

admits the Kraus operator {I} and the completely depolar-
izing channel D(ρ) = tr(ρ) I

d admits the Kraus operators{
1√
d
|i⟩⟨j|

}
i,j∈[d]

. A map N is a quantum channel if, and

only if, it is:
• completely positive: for all ρ ≽ 0, id⊗N (ρ) ≽ 0 and
• trace preserving: for all ρ, tr(N (ρ)) = tr(ρ).
We define the diamond distance between two quantum

channels N and M as the diamond norm of their difference:

d⋄(N ,M) := max
ρ

∥id⊗ (N −M)(ρ)∥1

where the maximization is over quantum states and the
Schatten p-norm of a matrix M is defined as ∥M∥pp =

tr
(√

M†M
p
)

. The diamond distance can thought of as a
worst case distance, while the average case distance is given
by the Hilbert-Schmidt or Schatten 2-norm between the corre-
sponding Choi states. We define the Choi state of the channel
N as JN = id ⊗ N (|Ψ⟩⟨Ψ|) where |Ψ⟩ = 1√

d

∑d
i=1 |ii⟩ is

the maximally entangled state. However, to have comparable
distances, we will normalize the 2-norm which is equivalent
to unnormalize the maximally entangled state and we define
the 2-distance as follows:

d2(N ,M) := d∥JN − JM∥2 = ∥id⊗ (N −M)(d|Ψ⟩⟨Ψ|)∥2.

This is a valid distance since the map J : N 7→ id ⊗
N (|Ψ⟩⟨Ψ|) is an isomorphism called the Choi–Jamiołkowski
isomorphism [13], [14]. Note that J should be positive semi-
definite and satisfy tr2(J ) = I

d to be a valid Choi state
(corresponding to a quantum channel).

We consider the channel tomography problem which con-
sists of learning a quantum channel N in the diamond distance.
Given a precision parameter ε > 0, the goal is to construct a
quantum channel Ñ satisfying with at least a probability 2/3:

d⋄(N , Ñ ) ≤ ε.

An algorithm A is 1/3-correct for this problem if it outputs a
quantum channel ε-close to N with a probability of error at
most 1/3. We choose to learn in the diamond distance because
it characterizes the minimal error probability to distinguish
between two quantum channels when auxiliary systems are
allowed [21].

The learner can only extract classical information from the
unknown quantum channel N by performing a measurement
on the output state. Throughout the paper, we only consider
unentangled or incoherent measurements. That is, the learner
can only measure with a d (or d×d)-dimensional measurement
device. Precisely, a d-dimensional measurement is defined by a
POVM (positive operator-valued measure) with a finite number
of elements: this is a set of positive semi-definite matrices

M = {Mx}x∈X acting on the Hilbert space Cd and satisfying∑
x∈X Mx = I. Each element Mx in the POVM M is

associated with the outcome x ∈ X . The tuple {tr(ρMx)}x∈X
is non-negative and sums to 1: it thus defines a probability.
Born’s rule [22] says that the probability that the measurement
on a quantum state ρ using the POVM M will output x is
exactly tr(ρMx). Depending on whether an auxiliary system
is allowed to be used, we distinguish two types of strategies.

a) Ancilla-free strategies: At each step t, the learner
would choose an input d-dimensional state ρt ∈ Cd×d and
a d-dimensional measurement device Mt = {M t

x}x∈Xt ∈
(Cd×d)Xt . It thus sees the outcome xt ∈ Xt with a probability
tr(N (ρt)M

t
xt
).

b) Ancilla-assisted strategies: At each step t, the learner
would choose an input d × d-dimensional state ρt ∈ Cd×d ⊗
Cd×d and a d × d-dimensional measurement device Mt =
{M t

x}x∈Xt
∈ (Cd×d ⊗ Cd×d)Xt . It thus sees the outcome

xt ∈ Xt with a probability tr(id⊗N (ρt)M
t
xt
).

Moreover, we only consider non-adaptive strategies: the
input states and measurement devices should be chosen before
starting the learning procedure and thus cannot depend on the
observations.

Given two random variables X and Y with values over the
sets [d] and [d′] respectively. The mutual information between
X and Y is the Kullback Leibler divergence between the joint
distribution P(X,Y ) and the product distribution PX × PY :

I(X : Y ) =

d∑
i=1

d′∑
j=1

P(X = i, Y = j) log

(
P(X = i, Y = j)

P(X = i)P(Y = j)

)
.

All the logs of this paper are taken in base e and the
information is measured in “nats”.

III. UPPER BOUND

In this section, we investigate the upper bounds on the
complexity of quantum process tomography problem. We
focus mainly on the algorithm proposed by [4] which is
ancilla-free.

Theorem III.1. [4] There is an ancilla-free process tomogra-
phy algorithm that learns a quantum channel in the distance
d2 using only a number of measurements N = O

(
d6 log(d)

ε2

)
.

Actually, this algorithm proceeds by providing an unbiased
estimator for the Choi state JN , then projecting this matrix
to the space of Choi states (PSD and partial trace I/d) and
finally by invoking the Choi–Jamiołkowski isomorphism we
obtain an approximation of the channel. This reduction from
learning the Choi state in the operator norm to learning the
quantum channel in the d2 distance uses mainly the inequality
d2(N ,M) = d∥JN − JM∥2 ≤ d2∥JN − JM∥∞. We
argue that this algorithm has a similar complexity for the
diamond distance. For this we show the following inequality
that permits the required reduction:



Lemma III.2. Let N1 and N2 be two quantum channels. We
have:

d⋄(N1,N2) ≤ d2∥JN1
− JN2

∥∞.

Proof. Denote by M = N1 − N2. Let |ϕ⟩ be a maximizing
unit vector of the diamond norm, i.e., ∥id ⊗ M(|ϕ⟩⟨ϕ|)∥1 =
d⋄(N1,N2). We can write |ϕ⟩ = A ⊗ I|Ψ⟩ where |Ψ⟩ =
1√
d

∑d
i=1 |ii⟩ is the maximally entangled state. |ϕ⟩ has norm

1 so 1
d tr(A

†A) = ⟨Ψ|A†A⊗ I|Ψ⟩ = ⟨ϕ|ϕ⟩ = 1. Hence,

d⋄(N1,N2) = ∥id⊗M(|ϕ⟩⟨ϕ|)∥1
= ∥I⊗M(A⊗ I|Ψ⟩⟨Ψ|A† ⊗ I)∥1
= ∥(A⊗ I)I⊗M(|Ψ⟩⟨Ψ|)(A† ⊗ I)∥1
= ∥(A⊗ I)JM(A† ⊗ I)∥1.

JM is Hermitian so can be written as : JM =
∑

i λi|ψi⟩⟨ψi|.
Using the triangle inequality, we obtain:

∥(A⊗ I)JM(A† ⊗ I)∥1

=

∥∥∥∥∥(A⊗ I)
∑
i

λi|ψi⟩⟨ψi|(A† ⊗ I)

∥∥∥∥∥
1

≤
∑
i

|λi|∥(A⊗ I)|ψi⟩⟨ψi|(A† ⊗ I)∥1

≤ max
i

|λi|
∑
i

∥(A⊗ I)|ψi⟩⟨ψi|(A† ⊗ I)∥1

= ∥J∥∞
∑
i

tr((A⊗ I)|ψi⟩⟨ψi|(A† ⊗ I))

= ∥J∥∞tr(AA† ⊗ I) = d2∥J∥∞.

This Lemma shows that the diamond distance and 2 distance
satisfy the same inequality with respect to the infinity norm
between the Choi states. Since the algorithm of [4] approxi-
mates first the Choi state in the infinity norm, we obtain the
same upper bound for the diamond distance:

Corollary III.3. There is an ancilla-free process tomography
algorithm that learns a quantum channel in the distance d⋄
using only a number of measurements:

N = O
(
d6 log(d)

ε2

)
.

This complexity was expected for process tomography with
incoherent measurements since the complexity of state tomog-
raphy with incoherent measurements is Θ

(
d3

ε2

)
[8] and learn-

ing channels can be thought as learning states of dimension
d2. We believe that the log(d)-factor can be removed from the
upper bound in Corollary III.3 using the same algorithm of [4]
and techniques of [9]. We refer to [23] for a generalization of
this result (with a complete analysis) for arbitrary input and
output dimensions. The natural questions that arise here: is
this complexity optimal for ancilla-free strategies? Can ancilla-
assisted algorithms outperform their ancilla-free counterparts
for process tomography? We answer both questions in the
following Section.

IV. LOWER BOUND

In this section, we would like to investigate intrinsic
limitations of learning quantum channels using incoherent
measurements. To avoid redundancy, we consider ancilla-
assisted strategies since they contain ancilla-free strategies:
one can map every d-dimensional input state ρ to the d × d-
dimensional input state ρ̃ = I

d ⊗ ρ and every d-dimensional
POVM M = {Mx}x∈X to the d × d-dimensional POVM
M̃ = {I⊗Mx}x∈X . Mainly, we prove the following theorem:

Theorem IV.1. Let d ≥ 8. Any non-adaptive algorithm for
process tomography in diamond distance requires

N = Ω

(
d6

ε2

)
incoherent measurements.

This theorem shows that the algorithm of [4] is almost
optimal.

Proof. We use here the construction of the Choi state

JU =
I

d2
+

ε

d2
(U + U†)− ε

d2
tr2(U + U†)⊗ I

d

where U ∼ Haar(d2). J is Hermitian and satisfies tr2(J ) =
I
d . Moreover, J ≽ 0 for ε ≤ 1/4. Indeed, U is a unitary so
it has an operator norm 1 thus ∥U + U†∥∞ ≤ 2. Besides,
∥tr2(U + U†) ⊗ I

d∥∞ ≤ 1
d∥tr2(U + U†)∥∞ ≤ maxi ∥I ⊗

⟨i|(U + U†)I⊗ |i⟩∥∞ ≤ 2. we claim that:

Lemma IV.2. We can construct an ε/2-separated (according
to the diamond distance) family {Nx}x∈[M ] of cardinal M =
exp(Ω(d4)).

Proof. It is sufficient to show that for U, V ∼ Haar(d2):

P(∥JU − JV ∥1 ≤ ε/2) ≤ exp
(
−Ω(d4)

)
.

because, once this concentration inequality holds, we can
choose our family randomly, and by the union bound, it
will be ε/2-separated with an overwhelming probability (1−
exp
(
−Ω(d4)

)
) using the inequality d⋄(NU ,NV ) ≥ ∥JU −

JV ∥1. First, let us lower bound the expected value.

E(∥JU − JV ∥1) ≥
ε

d2
E
(
∥U + U† − V − V †∥1

)
− ε

d3
E
(
∥tr2(U + U† − V − V †)⊗ I∥1

)
.

On one hand, we can upper bound the second expectation
using the triangle and the Cauchy Schwartz inequalities:

E
(
∥tr2(U + U† − V − V †)⊗ I∥1

)
≤ 4E(∥tr2(U)⊗ I∥1)

≤ 4dE(∥tr2(U)⊗ I∥2) ≤ 4d
√
E(tr(tr2(U)tr2(U†)⊗ I))

= 4d

√√√√√E
∑

i,j

∑
k,l

⟨i| ⊗ ⟨k|UI⊗ |k⟩⟨l|U†|i⟩ ⊗ |l⟩



= 4d

√√√√√E
∑

i,j

∑
k,l

dδk,l
d2

 = 4d2.



On the other hand, we can lower bound the first expectation
using the Hölder’s inequality.

E
(
∥U + U† − V − V †∥1

)
≥

√
(E(tr(U + U† − V − V †)2))3

E(tr(U + U† − V − V †)4)
≥
√

(4d2)3

28d2
≥ 3d2

2
.

Therefore:

E(∥JU − JV ∥1)

≥ ε

d2
E
(
∥U + U† − V − V †∥1

)
− 4ε

d3
E(∥tr2U ⊗ I∥1)

≥ 3ε

2
− 4ε

d
≥ ε for d ≥ 8.

Now, the function (U, V ) 7→ ∥JU − JV ∥1 is 8ε
d -Lipschitz.

Indeed, we have ∥tr2(X) ⊗ I∥1 ≤ d∥tr2(X) ⊗ I∥2 =
d
√
d∥tr2(X)∥2 ≤ d2∥X∥2 where the last inequality can

be found in [24]. Therefore, by letting X = U − U ′ and
Y = V − V ′ and using the triangle inequality we obtain:

|∥JU − JV ∥1 − ∥JU ′ − JV ′∥1|

≤ 2ε

d2

[
∥X∥1 + ∥Y ∥1 +

∥∥∥∥tr2(X)⊗ I

d

∥∥∥∥
1

+

∥∥∥∥tr2(Y )⊗ I

d

∥∥∥∥
1

]

≤ 4ε

d
(∥U − U ′∥2 + ∥V − V ′∥2)

(CS)
≤ 8ε

d
∥(U − U ′, V − V ′)∥2

so by the concentration inequality for Lipschitz functions [25]:

P(∥JU − JV ∥1 ≤ ε/2)

≤ P(∥JU − JV ∥1 − E(∥JU − JV ∥1) ≤ −ε/2)

≤ exp

(
− d2ε2

48× 64ε2/d2

)
= exp

(
−Ω(d4)

)
.

Now we follow a standard strategy for proving lower bounds
of learning problems (see e.g., [26], [27]). We use this ε/2-
separated family of quantum channels {Nx}x∈[M ] (corre-
sponding to the Choi states {Jx}x∈[M ] found in Lemma IV.2)
to encode a uniformly random message X ∼ Uniform([M ])
by the map X 7→ NX . Using a learning algorithm for process
tomography with precision ε/4 and an error probability at
most 1/3, a decoder Y can find X with the same error
probability because the family {Nx}x∈[M ] is ε/2-separated.
By Fano’s inequality, the encoder and decoder should share at
least Ω(log(M)) nats of information.

Lemma IV.3 (Fano, [28]).

I(X : Y ) ≥ 2/3 log(M)− log(2) ≥ Ω(d4).

The remaining part of the proof is to upper bound this
mutual information in terms of the number of measurements
N , the dimension d and the precision parameter ε. Intuitively,
the mutual information after few measurements is very small
and then it increases when the number of measurements
increases. To make this intuition formal, let N be the number
of measurement sufficient for process tomography and let
(I1, . . . , IN ) be the observations of the learning algorithm, we

apply first the data processing inequality to relate the mutual
information between the encoder and the decoder with the
mutual information between the uniform random variable X
and the observations (I1, . . . , IN ):

I(X : Y ) ≤ I(X : I1, . . . , IN ).

Now we can apply the chain rule for the mutual information:

I(X : I1, . . . , IN ) =

N∑
t=1

I(X : It|I≤t−1)

where we use the notation I≤t = (I1, . . . , It) and I(X :
It|I≤t−1) is the conditional mutual information between X
and It given I≤t−1. A learning algorithm A would choose the
input states {ρt}t∈[N ] and measurement devices {Mt}t∈[N ]

which can be chosen to have the form Mt = {µt
i|ϕti⟩⟨ϕti|}i∈It

where µt
i ≥ 0 and ⟨ϕti|ϕti⟩ = 1 for all t, i. Using Jensen’s

inequality, we can prove the following inequality:

Lemma IV.4. Let η = 48Nε2
√

log(10)
M . Let M = N − D

where D(ρ) = tr(ρ) I
d .We have:

I(X : I1, . . . , IN ) =

N∑
t=1

I(X : It|I≤t−1)

≤ 3
∑
t,i

µt
i⟨ϕti|id⊗D(ρt)|ϕti⟩E

(
⟨ϕti|id⊗MU (ρt)|ϕti⟩
⟨ϕti|id⊗D(ρt)|ϕti⟩

)2

+ η

≤ 3N sup
t,i
E

((
⟨ϕti|id⊗MU (ρt)|ϕti⟩
⟨ϕti|id⊗D(ρt)|ϕti⟩

)2
)

+ 48Nε2
√

log(10)

M
.

See [23] for a detailed proof. Actually, we only prove this
statement with a probability at least 9/10. The error proba-
bility can be absorbed in the construction above by asking
the unitaries {Ux}x∈[M ] not only to satisfy the separability
condition, but also to satisfy the inequalities:

1

M

∑
t,i,x

µt
i⟨ϕti|id⊗D(ρt)|ϕti⟩

(
⟨ϕti|id⊗Mx(ρt)|ϕti⟩
⟨ϕti|id⊗D(ρt)|ϕti⟩

)2

≤
∑
t,i

µt
i⟨ϕti|id⊗D(ρt)|ϕti⟩EU

(
⟨ϕti|id⊗MU (ρt)|ϕti⟩
⟨ϕti|id⊗D(ρt)|ϕti⟩

)2

+ 48Nε2
√

log(10)

M
.

Now fix t ∈ [N ], it ∈ It and |ϕ⟩ = |ϕtit⟩. We can write
ρt =

∑
i λi|ψi⟩⟨ψi|. Recall that the maximally entangled state

is denoted |Ψ⟩ = 1√
d

∑d
i=1 |ii⟩, every |ψi⟩ can be written as

|ψi⟩ = Ai ⊗ I|Ψ⟩ such that tr(AiA
†
i ) = d so:

id⊗D(ρt) =
∑
i

λi(id⊗D)(Ai ⊗ I|Ψ⟩⟨Ψ|A†
i ⊗ I)

=
∑
i

λi(Ai ⊗ I)id⊗D(|Ψ⟩⟨Ψ|)(A†
i ⊗ I)

=
∑
i

λi(Ai ⊗ I)
I

d2
(A†

i ⊗ I)

=

∑
i λiAiA

†
i

d
⊗ I

d
. (1)



On the other hand, using the notation V = U − tr2(U)⊗ I
d ,

we can write:

id⊗M(ρt) =
∑
i

λiid⊗M(Ai ⊗ I|Ψ⟩⟨Ψ|A†
i ⊗ I)

=
∑
i

λi(Ai ⊗ I)id⊗ (N −D)(|Ψ⟩⟨Ψ|)(A†
i ⊗ I)

=
∑
i

λi(Ai ⊗ I)
(
JN − I

d2

)
(A†

i ⊗ I)

=
ε

d2

∑
i

λiAi ⊗ I
(
U + U† − tr2(U + U†)⊗ I

d

)
A†

i ⊗ I)

=
ε

d2

∑
i

λi

[
(Ai ⊗ I)V (A†

i ⊗ I) + (Ai ⊗ I)V †(A†
i ⊗ I)

]
.

Now, by Lemma IV.4, we need to control the expectation
EU ⟨ϕ|id ⊗ MU (ρt)|ϕ⟩2. First, we replace id ⊗ M(ρt) with
the latter expression, then we apply the inequality (x+ y)2 ≤
2x2 + 2y2 to separate the terms involving U and the terms
involving tr2(U). The first term can be computed and bounded
as follows.
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†
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†
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=
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(
⟨ϕ|
∑
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λiAiA
†
i ⊗ I|ϕ⟩

)2

. (2)

Let’s move to the second term which involves the partial trace.
Let Mij = (A†

i ⊗ I)|ϕ⟩⟨ϕ|(Aj ⊗ I).
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(3)

since E
(
tr2(U

†)tr2(U)
)
= Id. Indeed for k, l ∈ [d]:

E
(
⟨k|tr2(U†)tr2(U)|l⟩

)
=
∑
i,x,y

E
(
⟨k|⟨x|U†|i⟩|x⟩⟨i|⟨y|U |l⟩|y⟩

)
=

1

d2

∑
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δx,yδk,l = δk,l.

Using the equality (1) and the two inequalities (2) and (3), we
deduce:

E
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Hence by Lemma IV.4:

I(X : I1, . . . , IN ) =

N∑
t=1

I(X : It|I≤t−1)

≤ 3N sup
t,it

E

(( ⟨ϕtit |id⊗MU (ρt)|ϕtit⟩
⟨ϕtit |id⊗D(ρt)|ϕtit⟩

)2
)

+ η

≤ 24N
ε2

d2
+ 48Nε2

√
log(10)

M
≤ O

(
N
ε2

d2

)
because M = exp(Ω(d4)). But from the data processing
inequality and Lemma IV.3, I(X : I1, . . . , IN ) ≥ I(X : Y ) ≥
Ω(d4), we deduce that:

O
(
N
ε2

d2

)
≥ I(X : I1, . . . , IN ) ≥ Ω(d4).

Finally the lower bound yields:

N ≥ Ω

(
d6

ε2

)
.

V. CONCLUSION AND OPEN QUESTIONS

In this work, we find the optimal complexity of quantum
process tomography using non-adaptive incoherent measure-
ments. Furthermore, we show that ancilla-assisted strategies
cannot outperform their ancilla-free counterparts contrary to
Pauli channel tomography [19]. Still, many questions remain
open. First, it is known that adaptive strategies have the
same complexity of non-adaptive ones for state tomography
[11], could adaptive strategies overcome non-adaptive ones
for quantum process tomography? Secondly, can entangled
strategies exploit the symmetry and show a polynomial (in
d) speedup as they do for state tomography [8]? Lastly, what
would be the potential improvements for simpler problems
such as testing identity to a fixed quantum channel or learning
the expectations of given input states and observables?
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