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Medical ultrasound image reconstruction using compressive sampling and �� norm 

minimization 
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Abstract 

In the last four years, a few research groups worked on the feasibility of compressive sampling (CS) in ultrasound 

medical imaging and several attempts of applying the CS theory may be found in the recent literature. In particular, it 

was shown that using ��-norm minimization with p different from 1 provides interesting RF signal reconstruction results. 

In this paper, we propose to further improve this technique by processing the reconstruction in the Fourier domain. In 

addition, �-stable distributions are used to model the Fourier transforms of the RF lines. The parameter p used in the 

optimization process is related to the parameter � obtained by modelling the data (in the Fourier domain) as an �-stable 

distribution. The results obtained on experimental US images show significant reconstruction improvement compared to 

the previously published approach where the reconstruction was performed in the spatial domain. 

1 Introduction 

The low cost, non-ionizing characteristics, ease of use and real-time nature of ultrasound (US) imaging make it one of 

the most commonly used medical imaging modalities in a number of clinical applications. The real-time property is 

however limited by the volume of data, especially in 3D applications. Specific 2D applications such as heart monitoring 

could also benefit from higher acquisition frame rates. Compressive sensing could prove to be a powerful solution to 

enhance US images frame rate. 

Compressive sampling (CS) [1] is a recent theory providing theoretical guarantees of “perfect” signal or image 

reconstruction from relatively small amount of measurements (below the well known Shannon-Nyquist’s criterion), 

based on two key conditions: i) the signal or image must be sparse in a known basis and ii) the measurements should be 

incoherent with this basis.  If these conditions are respected, the reconstruction is usually done using greedy methods 

such as orthogonal matching pursuit [2], or �� (or more generally���) norm minimization algorithms. 

In this context, in the last four years, a few research groups worked on the feasibility of compressive sampling in US 

imaging and several attempts of applying the CS theory may be found in the recent literature. For a complete overview 

the reader may refer to [3]. Based on various acquisition schemes and sparsity bases, the existing applications of CS in 

US imaging generally use basis pursuit ��-norm minimization algorithms. Moreover, it was shown in [4] that using ��-

norms (with p different from 1) provides better RF signal reconstruction. The value of p was automatically chosen by 

relating it to the �-stable statistics of the RF signals.  

In this paper, we show that the results provided in [4] may be further improved by doing the reconstruction in the Fourier 

domain. In the present work, the value of parameter p was related to the �-stable statistics in the Fourier domain of the 

RF echoes (I/Q signals). Our reconstruction process relies on the iteratively reweighted least squares approach (IRLS) 

[5].  

�

2 Basics of compressive sampling theory 

Compressive sampling proposes theoretical guarantees and practical implementation schemes for sparse signal 

reconstruction from a relatively small number of linear measurements. Consider a vector � of N elements, S-sparse in a 

given basis �. That is, the vector �� � �	
� has only � 
 � elements different from 0. The main idea behind CS is to 

reconstruct �, or more precisely ��, from � � � linear measurements regrouped in a vector � � ��
�. Commonly, � is 

taken as the projection of � on � random Gaussian vectors forming a matrix � � ��
�. That is, � � ��. The 

reconstruction is done by solving the following optimization problem: 



�� � ���� ����� �������� !"#�#$�������� � �
In other words, we search for the sparsest representation of � (in the sense of the �� norm) in the � domain that respects 

the measurements. Depending on the choice of � and � (namely the incoherence between the two), several theoretical 

results may be found in the literature giving the smallest number of measurements required for a perfect reconstruction 

with exceedingly high probability. The smallest number of measurements required is in the most classical cases a 

product between S, log(N) and a constant depending on the incoherence between � and �. 
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3 Proposed methodology 
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The statistics of ultrasound images are an ongoing research subject with various applications such as tissue 

characterization or image segmentation. Recently, a few research teams showed that the �-stable distribution is well 

suited to model the RF signals [4, 6, 7]. We recall the characteristic function of a symmetric �-stable random variable as: 

%&'( � )*+&,-' . /0'01(2 (1) 

where 3 is the characteristic exponent taking values in the interval (0,2], - � &.42 4( is the location parameter and /
(strictly positive) is the dispersion of the distribution.  

The Fourier transform of the RF lines can also be modeled by an �-stable distribution. In our work, in order to determine 

the value of � and the parameter p used in the lp-norm reconstruction process (related to �), we use the same 

methodology as the one proposed in [4]. 
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We denote hereafter by 7 � �	
8 an US RF image formed by J RF signals of length N, denoted by x1, x2,…,xJ. 

Moreover, we denote by�9: � ;	
� the 1D Fourier transforms of xj, for j running from 1 to J. 

9: � <�:2�������, � =>2?2 @ 2 AB2 (2) 

������< � ;	
	�is the 1D Fourier matrix.�

In this paper we propose to process the reconstruction using ��-norm minimization and the �-stable fitting in the Fourier 

domain. As we compare our results to those obtained using [4], where the reconstruction and the fitting are done in the 

spatial domain, we define hereafter the two problems. We denote by P1 the model used in [4] and by P2 the proposed 

one. The sampling schemes corresponding to the two problems are: 

C�D������: � E:�:��FGHI��, � =>2?2 @ 2 AB
�������������������������CJD�����K: � L:9: � L:<�:���FGHI�, � =>2?2 @ 2 AB (3) 

In (3), E: and L: stand for Gaussian random matrices of size�M 
 �, with M<<N the number of measurements. The 

measurements are denoted by �: � �N
� in the spatial domain and by K: � ;N
� in the Fourier domain. The purpose of 

problems P1 and P2 is to respectively recover the RF signals �: and the Fourier transforms 9: from the corresponding 

measurements. 

In [4], it was shown that the problem P1 is more accurately solved using �� norm minimization than classical basis 

pursuit with minimal �� prior. Thus, the optimization problem was formulated as follows: 

C�D�������: � ���O�:O��������� !"#�#$�����OE:�: . �:OP
P 
 Q�2�������R$S�, � =>2?2 @ 2 AB (4) 

The problem P2 addressed here is also solved using the minimization of the �� norm constrained with respect to the 

measurements. Thus, the problem P2 consists in finding the vectors 9: with the minimum �� norm by solving: 



CJD������9T: � ���O9:O��������� !"#�#$������OL:9: . K:OP
P 
 Q�2�������R$S�, � =>2?2 @ 2 AB2 (5) 

where Q is a hyper-parameter accounting for the compromise between the data attachment and lp-norm minimization.  

For this, we used the modified IRLS algorithm proposed in [5]. The value of p, following the considerations in [4], was 

set at U . VWV>, where � was obtained by fitting an �-stable distribution to the data. Finally the RF lines are obtained by 

inverting the estimated Fourier transforms: 

��: � <X�9T:2�������, � =>2?2 @ 2 AB2 (6) 

����56�������
�
�
�	�
����
	������	����
����

In this paper, the optimization problems P1 and P2 given in (4) and (5) are solved using the iteratively reweighted least 

squares approach (IRLS) [5]. The main idea of IRLS algorithm is to replace the �� norms in (4) and (5) by weighted �J
norms. Thus P2 in (5) is replaced in the IRLS optimization process by the following P2

IRLS
 problem: 

�

CJYZ[\D������9T: � ��� ] ^_`a_J
b

_c�
�������� !"#�#$������OL:9: . K:OP

P 
 Q�2�������R$S�, � =>2?2 @ 2 AB2 (5) 

Where d̀e stands for the i
th

 elements of vector 9:. The weights ^_ and the estimated vector 9T: are iteratively updated as 

shown by the pseudo-code given below. Note that in our work the real and imaginary parts of the Fourier transforms 9:
are estimated separately. Thus, in the pseudo code, all the vectors contain only real values. 

For each j running from 1 to J  

a. Initialization: 

 Iteration number�f � V
 Residual tolerance g � >

� � � Initial estimate�9T:
&h( � L:iK:�

   Set + equal to�3 . >, where 3 is obtained by 3 -stable fitting as shown in next section 

b. While g j >VXk and f 
 >VVV
i. f � f l >

ii. Find the weights ^_ � mn òa_pJ l gq
r
sX�

iii. Form a diagonal matrix tu whose entries are 
�

vw
Calculate the current estimate: 9T:

&u( � tuL:inL:tuL:ipX�K:

iv. If x9T:
&u( . 9T:

&uX�(x
P


 yz
�hh then g � {

�h
v. 9T:

&uX�( � 9T:
&u(

�

Output: for each j, 9T:
&u|(

 with f} the index of the final iteration for each j. 

�

3 Results 
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Before discussing the reconstruction accuracy, we show some results related to fitting the data with �-stable distribution. 

As this is directly related to the choice of p, it largely influences the quality of the reconstructions. For this, we 

considered a true ultrasound image acquired on a phantom using an Ultrasonix RP scanner, with a central frequency of 

6.6 MHz. The RF lines were sampled at 20 MHz. We show in Figure 1 the result of fitting an �-stable distribution on the 

histogram of one RF signal extracted from this image and on the histogram of its 1D Fourier transform (real part).  



Among all the parameters of the �-stable distribution, we are particularly interested in �, as it will determine the value of 

p considered in the reconstruction process. For the results shown in Figure 1, we found � equal to 1.21 when modelling 

the RF in space (or time) domain, and 0.74 for its Fourier transform. The values were similar for all the RF lines of the 

US image. This result confirms that the RF line is sparser in the Fourier domain than in the spatial domain, and motivates 

our choice of doing the reconstruction in the Fourier domain [8, 9, 10]. 

(a) (b) 

Figure 1. Example of �-stable modelling of one RF line (a) and of the real part of its 1D Fourier transform (b). 
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The reconstruction experiments were conducted using two ultrasound images. The first one was acquired on a phantom 

object using an Ultrasonix RP scanner, with a central frequency of 6.6 MHz and a sampling frequency of 20 MHz. The 

second image represents an in vivo healthy thyroid and was acquired with a Siemens Sonoline Elegra scanner using a 7.5 

MHz linear probe and a sampling frequency of 50 MHz. 

The proposed approach of solving the problem P2 was compared to the one presented in [4] and called P1 herein. 

Figures 2, 3 and 4 highlight the reconstruction results obtained with the approach in [4] and with the proposed one. All 

three results show the qualitative and quantitative improvements provided by the new reconstruction scheme. Moreover, 

the normalized root mean square errors provided in Table 1 confirm the visual impression given by the B-mode images 

and the RF plots. 

(a)                         (b)                                                       (c) 

Figure 2. Reconstruction results for the phantom image, using twice less measurements than the number of initial 

samples for each RF line. (a) B-mode images corresponding to true and reconstructed RF lines, (b) one RF line, (c) 

Reconstruction error for one RF line. The first row shows the original data, the second row corresponds to the 

reconstruction with P1 and the third row highlights our results (P2). 
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                                                                     Normalized Root Mean Square Error (NRMSE) 

Phantom (M=N/2) Thyroid (M=N/2) Thyroid (M=N/3) 

Following the scheme P1 0.68 0.51 0.69 

Following the proposed scheme P2 0.44 0.28 0.54 

Table 1. Normalized root mean square error for P1 and P2, for the three experiments detailed in the paper. The NRMSEs 

are calculated using the RF images. N is the number of initial samples and M the number of measurements. 

(a)                         (b)                                                       (c) 

Figure 3. Reconstruction results for the thyroid image, using twice less measurements than the number of initial samples 

for each RF line. (a) B-mode images corresponding to true and reconstructed RF lines, (b) one RF line, (c) 

Reconstruction error for one RF line. The first row shows the original data, the second row corresponds to the 

reconstruction with P1 and the third row highlights our results (P2). 

(a)                         (b)                                                       (c) 

Figure 4. Reconstruction results for the thyroid image, using three times less measurements than the number of initial 

samples for each RF line. (a) B-mode images corresponding to true and reconstructed RF lines, (b) one RF line, (c) 

Reconstruction error for one RF line. The first row shows the original data, the second row corresponds to the 

reconstruction with P1 and the third row highlights our results (P2). 

�

Finally, we show in Figure 5 the reconstruction result obtained with the proposed approach, for an entire RF image 

containing 256 RF lines. Note that in this case, for memory space requirements imposed by the size of the matrices, the 

reconstruction was processed blockwise. 
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�
Figure 5. Reconstruction result obtained with the proposed method for the hole thyroid image, using twice less 

measurements than the number of initial samples for each RF line. (a) B-mode image corresponding to the true RF data, 

(b) B-mode image calculated with the reconstructed RF data. Both images are plotted with the same dynamic range. 

4 Conclusion 

�

In this paper, we proposed a CS-based ��-norm reconstruction of US images by modelling the Fourier transform of RF 

signals as �-stable distributions. Moreover, we related the value of p used in the optimization process to �. The results 

show significant reconstruction improvement compared to the previously published approach where the reconstruction 

was performed in the spatial domain. More precisely, the normalized root mean square error was shown to be 

significantly smaller with the proposed approach for two experimental RF images (phantom and in vivo data). The 

method was evaluated for two amounts of measurements, two and respectively three times lower than the number of 

samples to be reconstructed. 
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