Medical ultrasound image reconstruction using compressive sampling and norm minimization

In the last four years, a few research groups worked on the feasibility of compressive sampling (CS) in ultrasound medical imaging and several attempts of applying the CS theory may be found in the recent literature. In particular, it was shown that using -norm minimization with p different from 1 provides interesting RF signal reconstruction results. In this paper, we propose to further improve this technique by processing the reconstruction in the Fourier domain. In addition, -stable distributions are used to model the Fourier transforms of the RF lines. The parameter p used in the optimization process is related to the parameter obtained by modelling the data (in the Fourier domain) as an -stable distribution. The results obtained on experimental US images show significant reconstruction improvement compared to the previously published approach where the reconstruction was performed in the spatial domain.

Introduction

The low cost, non-ionizing characteristics, ease of use and real-time nature of ultrasound (US) imaging make it one of the most commonly used medical imaging modalities in a number of clinical applications. The real-time property is however limited by the volume of data, especially in 3D applications. Specific 2D applications such as heart monitoring could also benefit from higher acquisition frame rates. Compressive sensing could prove to be a powerful solution to enhance US images frame rate. Compressive sampling (CS) [START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF] is a recent theory providing theoretical guarantees of "perfect" signal or image reconstruction from relatively small amount of measurements (below the well known Shannon-Nyquist's criterion), based on two key conditions: i) the signal or image must be sparse in a known basis and ii) the measurements should be incoherent with this basis. If these conditions are respected, the reconstruction is usually done using greedy methods such as orthogonal matching pursuit [START_REF] Tropp | Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit[END_REF], or (or more generally ) norm minimization algorithms. In this context, in the last four years, a few research groups worked on the feasibility of compressive sampling in US imaging and several attempts of applying the CS theory may be found in the recent literature. For a complete overview the reader may refer to [START_REF] Liebgott | Compressive sensing in medical ultrasound[END_REF]. Based on various acquisition schemes and sparsity bases, the existing applications of CS in US imaging generally use basis pursuit -norm minimization algorithms. Moreover, it was shown in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF] that usingnorms (with p different from 1) provides better RF signal reconstruction. The value of p was automatically chosen by relating it to the -stable statistics of the RF signals.

In this paper, we show that the results provided in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF] may be further improved by doing the reconstruction in the Fourier domain. In the present work, the value of parameter p was related to the -stable statistics in the Fourier domain of the RF echoes (I/Q signals). Our reconstruction process relies on the iteratively reweighted least squares approach (IRLS) [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sampling[END_REF].

Basics of compressive sampling theory

Compressive sampling proposes theoretical guarantees and practical implementation schemes for sparse signal reconstruction from a relatively small number of linear measurements. Consider a vector of N elements, S-sparse in a given basis . That is, the vector has only elements different from 0. The main idea behind CS is to reconstruct , or more precisely , from linear measurements regrouped in a vector . Commonly, is taken as the projection of on random Gaussian vectors forming a matrix . That is, . The reconstruction is done by solving the following optimization problem:
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In other words, we search for the sparsest representation of (in the sense of the norm) in the domain that respects the measurements. Depending on the choice of and (namely the incoherence between the two), several theoretical results may be found in the literature giving the smallest number of measurements required for a perfect reconstruction with exceedingly high probability. The smallest number of measurements required is in the most classical cases a product between S, log(N) and a constant depending on the incoherence between and .

Proposed methodology

The statistics of ultrasound images are an ongoing research subject with various applications such as tissue characterization or image segmentation. Recently, a few research teams showed that the -stable distribution is well suited to model the RF signals [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF][START_REF] Kutay | On modeling biomedical ultrasound RF echoes using a power-law shotnoise model[END_REF][START_REF] Pereyra | Modeling ultrasound echoes in skin tissues using symmetric -stable processes[END_REF]. We recall the characteristic function of a symmetric -stable random variable as:

%&'( )*+&,-' . /0'0 1 (2 (1) 
where 3 is the characteristic exponent taking values in the interval (0,2], -&.42 4( is the location parameter and / (strictly positive) is the dispersion of the distribution. The Fourier transform of the RF lines can also be modeled by an -stable distribution. In our work, in order to determine the value of and the parameter p used in the l p -norm reconstruction process (related to ), we use the same methodology as the one proposed in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF].
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We denote hereafter by 7 8 an US RF image formed by J RF signals of length N, denoted by

x 1 , x 2 ,…,x J .
Moreover, we denote by 9 : ; the 1D Fourier transforms of x j , for j running from 1 to J.
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< ; is the 1D Fourier matrix. In this paper we propose to process the reconstruction using -norm minimization and the -stable fitting in the Fourier domain. As we compare our results to those obtained using [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF], where the reconstruction and the fitting are done in the spatial domain, we define hereafter the two problems. We denote by P 1 the model used in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF] and by P 2 the proposed one. The sampling schemes corresponding to the two problems are:
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In ( 3), E : and L : stand for Gaussian random matrices of size M , with M<<N the number of measurements. The measurements are denoted by : N in the spatial domain and by K : ; N in the Fourier domain. The purpose of problems P 1 and P 2 is to respectively recover the RF signals : and the Fourier transforms 9 : from the corresponding measurements. In [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF], it was shown that the problem P 1 is more accurately solved using norm minimization than classical basis pursuit with minimal prior. Thus, the optimization problem was formulated as follows:
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The problem P 2 addressed here is also solved using the minimization of the norm constrained with respect to the measurements. Thus, the problem P 2 consists in finding the vectors 9 : with the minimum norm by solving:
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where Q is a hyper-parameter accounting for the compromise between the data attachment and l p -norm minimization.

For this, we used the modified IRLS algorithm proposed in [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sampling[END_REF]. The value of p, following the considerations in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF], was set at U . VWV>, where was obtained by fitting an -stable distribution to the data. Finally the RF lines are obtained by inverting the estimated Fourier transforms: : < X 9 T : 2 , =>2?2 @ 2 AB2 (6)
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In this paper, the optimization problems P 1 and P 2 given in ( 4) and ( 5) are solved using the iteratively reweighted least squares approach (IRLS) [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sampling[END_REF]. The main idea of IRLS algorithm is to replace the norms in ( 4) and ( 5) by weighted J norms. Thus P 2 in ( 5) is replaced in the IRLS optimization process by the following P 2 IRLS problem:
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Where `de stands for the i th elements of vector 9 : . The weights ^_ and the estimated vector 9 T : are iteratively updated as shown by the pseudo-code given below. Note that in our work the real and imaginary parts of the Fourier transforms 9 : are estimated separately. Thus, in the pseudo code, all the vectors contain only real values.

For Output: for each j, 9 T : &u | ( with f } the index of the final iteration for each j.

Results

Before discussing the reconstruction accuracy, we show some results related to fitting the data with -stable distribution.

As this is directly related to the choice of p, it largely influences the quality of the reconstructions. For this, we considered a true ultrasound image acquired on a phantom using an Ultrasonix RP scanner, with a central frequency of 6.6 MHz. The RF lines were sampled at 20 MHz. We show in Figure 1 the result of fitting an -stable distribution on the histogram of one RF signal extracted from this image and on the histogram of its 1D Fourier transform (real part).

Among all the parameters of the -stable distribution, we are particularly interested in , as it will determine the value of p considered in the reconstruction process. For the results shown in Figure 1, we found equal to 1.21 when modelling the RF in space (or time) domain, and 0.74 for its Fourier transform. The values were similar for all the RF lines of the US image. This result confirms that the RF line is sparser in the Fourier domain than in the spatial domain, and motivates our choice of doing the reconstruction in the Fourier domain [START_REF] Quinsac | Frequency domain compressive sampling for ultrasound imaging[END_REF][START_REF] Quinsac | Compressed sensing of ultrasound images: sampling of spatial and frequency domains[END_REF][START_REF] Dobigeon | Regularized Bayesian compressed sensing in ultrasound imaging[END_REF].

(a) (b) Figure 1. Example of -stable modelling of one RF line (a) and of the real part of its 1D Fourier transform (b).

The reconstruction experiments were conducted using two ultrasound images. The first one was acquired on a phantom object using an Ultrasonix RP scanner, with a central frequency of 6.6 MHz and a sampling frequency of 20 MHz. The second image represents an in vivo healthy thyroid and was acquired with a Siemens Sonoline Elegra scanner using a 7.5 MHz linear probe and a sampling frequency of 50 MHz. The proposed approach of solving the problem P 2 was compared to the one presented in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF] and called P 1 herein. Figures 2, 3 and 4 highlight the reconstruction results obtained with the approach in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using -Stable Distributions[END_REF] and with the proposed one. All three results show the qualitative and quantitative improvements provided by the new reconstruction scheme. Moreover, the normalized root mean square errors provided in Table 1 confirm the visual impression given by the B-mode images and the RF plots. Finally, we show in Figure 5 the reconstruction result obtained with the proposed approach, for an entire RF image containing 256 RF lines. Note that in this case, for memory space requirements imposed by the size of the matrices, the reconstruction was processed blockwise. 

Conclusion

In this paper, we proposed a CS-based -norm reconstruction of US images by modelling the Fourier transform of RF signals as -stable distributions. Moreover, we related the value of p used in the optimization process to . The results show significant reconstruction improvement compared to the previously published approach where the reconstruction was performed in the spatial domain. More precisely, the normalized root mean square error was shown to be significantly smaller with the proposed approach for two experimental RF images (phantom and in vivo data). The method was evaluated for two amounts of measurements, two and respectively three times lower than the number of samples to be reconstructed.
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 213 Reconstruction results for the phantom image, using twice less measurements than the number of initial samples for each RF line. (a) B-mode images corresponding to true and reconstructed RF lines, (b) one RF line, (c) Reconstruction error for one RF line. The first row shows the original data, the second row corresponds to the reconstruction with P 1 and the third row highlights our results (P 2 ). Normalized root mean square error for P 1 and P 2 , for the three experiments detailed in the paper. The NRMSEs are calculated using the RF images. N is the number of initial samples and M the number of measurements. Reconstruction results for the thyroid image, using twice less measurements than the number of initial samples for each RF line. (a) B-mode images corresponding to true and reconstructed RF lines, (b) one RF line, (c) Reconstruction error for one RF line. The first row shows the original data, the second row corresponds to the reconstruction with P 1 and the third row highlights our results (P 2 ).

Figure 4 .

 4 Reconstruction results for the thyroid image, using three times less measurements than the number of initial samples for each RF line. (a) B-mode images corresponding to true and reconstructed RF lines, (b) one RF line, (c) Reconstruction error for one RF line. The first row shows the original data, the second row corresponds to the reconstruction with P 1 and the third row highlights our results (P 2 ).

Figure 5 .

 5 Figure 5. Reconstruction result obtained with the proposed method for the hole thyroid image, using twice less measurements than the number of initial samples for each RF line. (a) B-mode image corresponding to the true RF data, (b) B-mode image calculated with the reconstructed RF data. Both images are plotted with the same dynamic range.
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