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Polynomial optimization in geometric modeling

Soodeh Habibi, Michal Kočvara and Bernard Mourrain

Abstract In this chapter, we review applications of Polynomial Optimization tech-
niques toGeometricModeling problems.We present examples of topical problems in
Geometric Modeling, illustrate their solution using Polynomial Optimization Tools,
report some experimental results and analyse the behavior of the methods, showing
what are their strengths and their limitations.

1 Geometric Modeling and Polynomials

Geometric modeling aims at describing shapes of the real world by digital models.
These digitalmodels are used inmany domains: visualization in scientific computing,
rendering and animation, design and conception, manufacturing, numerical simula-
tion, analysis of physics phenomena, mechanics, performance optimization . . .

Most of the digital models used nowadays in Computer Aided Design (CAD)
involve models based on spline representations, which are piecewise polynomial
functions with global regularity properties [5]. Among them, the representation or
approximation of shapes by meshes is certainly the most popular and corresponds
to piecewise linear splines. Higher order splines allow to increase the accuracy of
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the representation and the efficiency to describe complex shapes. By increasing
the degree of the polynomials of the representation, one needs less pieces and
thus less data for the same level of approximation. The “unreasonable" power of
polynomial approximation makes piecewise polynomial representations ubiquitous
in Geometric Modeling. Standard digital representations of shapes correspond to
the image of simple domains like triangles, squares, cubes by piecewise polynomial
maps, which define so called patches. These patches are trimmed and assembled
together to define the boundary surface or the volume of an object.

Although piecewise polynomialmodels are very effective in representing complex
shapes, they also require advancedmethods and tools in practice.Many operations on
shapes, such as patch intersections, distance computation, boundary volumes, etc.,
involve solving nonlinear and difficult problems [4]. In what follows, we illustrate
how polynomial optimization methods can help solve these issues and discuss their
practical performance. See also [9] for other examples of applications of polynomial
optimization in geometric modeling.

2 Polynomial Optimization Problems and Convex Relaxations

Polynomial Optimization Problems (POP) are problems of the form

min
x∈S

f (x) (1)

where

S = {x ∈ Rn s.t. gj(x) ≥ 0, j = 1, . . . ,mI , hk(x) = 0, k = 1, . . . ,mE }

is the semi-algebraic set defined by the sign constraints g = (g1, . . . ,gmI ) and the
equality constraints h = (h1, . . . , hmE ), for polynomial functions f ,gj, hk : Rn →
R, j = 1, . . . ,mI , k = 1, . . . ,mE . Problem (1) is a special instance of nonlinear
nonconvex optimization. In the following, we will discuss how these problems are
translated into Semidefinite Programming (SDP) problems.

There are various approaches to solving polynomial optimization problems, such
as using a hierarchy of convex (semidefinite) relaxations to approximate (1). Such
relaxations can be built using two methods: the SoS representation of nonnegative
polynomials and the dual theory of moments. The general approach started with the
work of Shor [14] and Nesterov [11]. Then, it was further developed by Lasserre [8]
and Parrilo [12]. Here, we describe the two dual approaches to this development.
Each will give additional complementary information about the problem.
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2.1 Sum of Squares Relaxations

Sum-of-Squares (SoS) relaxation is a type of convex relaxation in which polynomial
non-negativity constraints are replaced by SoS constraints which are more computa-
tionally tractable, and can be represented by semidefinite programs. This relaxation
transforms nonlinear polynomial optimization problems into sequences of convex
problems whose complexity is captured by a single degree parameter. To approxi-
mate the solutions of (1), it uses the following finite dimensional convex cones, also
called truncated quadratic modules,

Q` = {p = s0 + s1g1 + smI gmI + t1h1 + · · · + tmE hmE , sj ∈ Σ
2
2 `−d j

, tk ∈ R[x]2 `−d′
k
},

where

• gj are the non-negativity polynomials of degree dj and hk are the equality
polynomials of degree d ′

k
(we take g0 = 1 and d0 = 0 for notation convenience),

• Σ2
` = {p =

∑
i q2

i , qi ∈ R[x] `
2
} is the convex cone of polynomials of degree ≤ `,

which are sums of squares,
• R[x]` is the vector space of polynomials of degree ≤ ` in the variables x =
(x1, . . . , xn). It is of dimension s(`) =

(n+ b`c
n

)
.We will denote the dual to R[x]`

by R[x]∗` .

We verify that the truncated quadratic module Q` is a convex cone since it is stable
by scaling by a positive scalar and by addition. By construction, the polynomials in
Q` are non-negative on S.

We approximate the solution of (1) by the solution of the following convex
optimization problem:

f ∧,` = sup λ
s.t. λ ∈ R (2)

f (x) − λ ∈ Q` .

For ` big enough, this problem is feasible. We check that if f (x) − λ ∈ Q` then
∀x ∈ S, f (x) − λ ≥ 0 and f ∗ ≥ λ. This shows that f ∧,` ≤ f ∗ for all ` ∈ N. Under
some conditions on g,h (see e.g. [8]), we have lim`→∞ f ∧,` = f ∗.

The convex cones Q` are tractable, since they involve sums of multiples of sum-
of-squares cones Σ2

2` and multiples of linear spaces R[x]2`−d′
k
. Problem (2) is a

tractable semidefinite program that can be solved by classical convex optimization
techniques, such as interior point methods [3, 16].

Let vj denote a basis of R[x] 2 `−dj
2

and wk a basis of R[x]2 `−d′
k
. Then (2) is

implemented as a semidefinite program of the form
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f ∧,` = sup λ
s.t. λ ∈ R, Aj < 0, Bk ∈ R

NK

f (x) − λ −
mI∑
j=1

gj(x)vTj Ajvj −

mE∑
k=1

hk(x)wT
k Bk = 0 ,

where Aj ∈ R
sj×sj for sj = s(` − d j

2 ) is positive semidefinite, i.e. Aj < 0, if for any
vector v ∈ Rs×s vT Ajv ≥ 0. The last polynomial constraint can be written as∑

|α | ≤2 `
cα(λ, A1, . . . , AmI ,B1, . . . ,BmE )x

α = 0

where (xα) |α | ≤2 ` is the monomial basis of R[x]` . It corresponds to a sequence of
coefficient constraints cα(λ,A,B) = 0, which are linear in λ, A = (A1, . . . , AmI ), B =
(B1, . . . ,BmE ).

We verify that Q` ⊂ Q`+1 so that (Q`) is a hierarchy of nested convex finite
dimensional cones.

Example of a Sum-of-Squares relaxation

We consider the semi-algebraic set S defined by

g = {1 − x, x − y2}
h = {}

corresponding to the blue domain on the adjacent fig-
ure. The objective function is f = x, corresponding
to the vertical red line.

We construct a SoS relaxation at order ` = 2. Here is how it can be constructed
with the Julia packages MomentTools1 and DynamicPolynomials.
> using MomentTools, DynamicPolynomials
> X = @polyvar x y
> M = SOS.Model(:inf, x, [], [1-x, x-y^2], X, 2)

This gives a semidefinite program with three matrix variables A0 ∈ R
6×6 for

s0 ∈ Σ
2
4, A1 ∈ R

3×3 for s1 ∈ Σ
2
2 , A2 ∈ R

3×3 for s2 ∈ Σ
2
1 and no Bk since h = {}. There

are 15 linear constraints corresponding to the coefficients of the 15 monomials of
degree ≤ 4 in the variables x, y.

1 https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
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2.2 Moment Relaxations

The dual formulation of (2) is

f ∨,` = inf Λ( f )
s.t. Λ(1) − 1 ∈ R∨ = {0} (3)

Λ ∈ L` := (Q`)∨

where
L` = (Q`)

∨ = {Λ ∈ R[x]∗2` | ∀p ∈ Q`,Λ(p) ≥ 0}

is the dual cone of Q` and R∨ = {σ : R → R | ∀x ∈ R, σ(x) ≥ 0} = {0}. The
elementsΛ ∈ L` are linear functionalsΛ : R[x]2 ` → R, represented in the dual basis
xα of R[x]2 ` by the coefficient vector (Λα) |α | ≤2 ` . The coefficients Λα := Λ(xα) are
called the pseudo-moments ofΛ. These coefficients correspond to the slack variables
associated to the linear constraints cα(λ,A,B) in (2).

The constraint Λ ∈ L` translates into the conditions

∀s0 ∈ Σ
2
2 `, Λ(s0) ≥ 0, (4)

∀sj ∈ Σ2
2 `−d j

, Λ(gj sj) ≥ 0 for j = 1, ...,mI , (5)

∀tk ∈ R[x]2 `−d′
k
, Λ(hk tk) = 0 for j = 1, ...,mE . (6)

The first two types of constraints (4), (5) correspond to semidefinite constraints

H0(Λ) < 0, Hg j (Λ) < 0, for j = 1, ...,mI ,

where

• H0(Λ) = (Λ(xα+β)) |α |, |β | ≤` is called the moment matrix of Λ in degree (`, `);
• Hg j (Λ) = (Λ(gj xα+β))

|α |, |β | ≤`−
dj
2
is called the localizing moment matrix of Λ

at gj in degree ` −
d j

2 .

We denote by H`,`′(Λ) = (xα+β)) |α | ≤`, |β | ≤`′ the moment matrix of Λ in degree
(`, `′).

The third type of constraints (6) corresponds to linear constraints on Λ of the
form

Λ(hkxα) = 0 for |α | ≤ 2 ` − d ′k, k = 1, ...,mE .

Therefore, (3) is also a tractable semidefinite program.
As the evaluation eξ : p ∈ R[x]2` 7→ p(ξ) at a point ξ ∈ S is an element in L`

such that eξ(1) = 1, we have f ∨,` ≤ f (ξ) for ξ ∈ S. This implies that

f ∨,` ≤ inf
ξ∈S

f (ξ) = f ∗.
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We verify that for Λ ∈ L` with Λ(1) = 1 and λ ∈ R such that f − λ ∈ Q` , we have
Λ( f ) − λ ≥ 0 since L` = (Q`)∨, so that f ∧,` ≤ f ∨,` ≤ f ∗. Under certain conditions
on g,h (see [8]), we also have lim`→∞ f ∨,` = f ∗.

Example of a Moment Relaxation

The moment relaxation at order ` = 2 for the previous example where S = {(x, y) ∈
R2 | 1 − x ≥ 0, x − y2 ≥ 0} and the objective function is f = x is built as follows:
> using MomentTools, DynamicPolynomials
> X = @polyvar x y
> M = MOM.Model(:inf, x, [], [1-x, x-y^2], X, 2)

It is a convex optimization program on the moment sequence Λ ∈ R15 with a linear
objective function Λ( f ) (as a function of Λ) and with SDP constraints on moment
matrices in R6×6,R3×3,R3×3.

2.3 Computing the minimizers

The solution of the dual convex optimization problem (3) provides an optimal se-
quence of pseudo-momentsΛ∗ = (Λ∗α), fromwhich approximations of the optimizers
of the non-linear optimization problem (1) can be recovered under some conditions.
This can be done as follows. Assume that the set {ξ1, . . . , ξr } of minimizers of (1)
is finite and that Λ∗ is numerically close to the moment sequence of a weighted
sum µ =

∑r
i=1 ωiδξi of Dirac measures δξi at the minimizers, with ωi > 0 and∑r

i=1 ωi = 1. This is the case for a sufficiently large order ` of the moment relax-
ation, by the convergence properties of the moment hierarchy [8, 13, 1].

1. We form the moment matrix H∗ of Λ∗ in degree (` − 1, `).
2. We compute a Singular Value Decomposition (SVD) of H∗ = USVT , where U

and V are orthogonal matrices and S is diagonal, and deduce the numerical rank
r of H∗. Let U[r] denote the first r columns of U.

3. We extract from U[r] an invertible block U0 of r rows corresponding to a
monomial set b = {b1, . . . , br } of low degree. We compute the matrices Ui

corresponding to the rows associated to the monomials xi · b in U[r].
4. We compute the common eigenvectors of Mi = U−1

0 Ui . We deduce the points
ξ1, . . . , ξr , whose j th coordinate is the eigenvalue of Mj for the eigenvector
associated to ξi .

For more details on the algorithm, see [7, 10]. Notice that in the construction of H∗

in step 1, we use the pseudo-moments of Λ∗ up to degree 2 ` − 1.
We illustrate the behavior of this approach on different geometric problems, using

the package MomentTools2.

2 https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
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Example of minimizer computation

We continue with the previous example, and solve the moment relaxation at order
` = 2, using convex optimization tools from the Mosek3 library,
> using MomentTools, DynamicPolynomials, MosekTools
> X = @polyvar x y
> v, M = minimize(x, [], [1-x, x-y^2], X, 2, Mosek.Optimizer)

we obtain v = −6.371168130759666 · 10−10. The moment matrix H∗ of the optimal
pseudo-moment sequence Λ∗ computed as
> s = get_series(M)[1]; L1 = monomials(X, 0:2); L2 = monomials(X, 0:1)
> H = MultivariateSeries.hankel(s, L1, L2);

is the following matrix (rounded with 2 decimal digits).

H∗ =


1.0 0.0 −0.0 0.0 −0.0 0.0
0.0 0.0 −0.0 0.0 −0.0 0.0
−0.0 −0.0 0.0 −0.0 0.0 −0.0


T

.

The singular values of H∗ give a numerical rank r = 1 and the extracted matrix U[1]
is

U [1] =
[
−1.0 −0.0 0.0 −0.0 0.0 −0.0

]T
with entries indexed by the monomials [1, x, y, x2, x y, y2]. We haveU0 = [1] indexed
by b = {1} and U1 = [0.0] indexed by x · b = {x}, U2 = [0.0] indexed by
y · b = {y}. The eigenvector and eigenvalue computation of M1 = U−1

0 U1 = [0.0]
and M2 = U−1

0 U1 = [0.0] gives the unique minimizer ξ = (0.0,0.0). This minimizer
computation can be done directly as follows:
w, Xi = get_measure(M)

which yields the following weight ω and point Ξ for the approximation of Λ∗ as a
weighted sum of Dirac measures:

ω =
[
1.0

]
, Ξ =

[
0.0
−0.0

]
.

Solution of linear semidefinite optimization problems resulting from SoS or
Moment relaxations is often the bottleneck of the approach. With increasing order
of the relaxation, the size of the SDP problem grows very quickly. While the “small"
problems can be solved by general-purpose SDP solvers such as Mosek, larger
problems are beyond their reach. It is therefore necessary to use an algorithm and
software exploiting the particular structure of SoS relaxations. One of the features of
these SDP problems is the very low rank of the solution (moment matrix). Loraine
[6] is a new general-purpose interior-point SDP solver targeted to problems with
low-rank data and low-rank solutions. It employs special treatment of low-rank data
matrices and, in particular, an option to use a preconditioned iterative Krylov type

3 https://github.com/MOSEK/Mosek.jl
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method for the solution of the linear system. The used preconditioner is tailored to
problemswith low-rank solutions and proved to be rather efficient for these problems;
for more details, see [6].

3 Minimal enclosing ellipsoids of semi-algebraic sets

In this section, we consider another type of optimization problems, which appears
in geometric modeling, namely computing the minimal ellipsoid enclosing a semi-
algebraic set. Let S be a semi-algebraic set defined as in Section 2:

S = {x ∈ Rn s.t. gj(x) ≥ 0, j = 1, . . . ,mI , hk(x) = 0, k = 1, . . . ,mE } .

Let ξi(x), i = 1, . . . , ν, be given polynomial functions. Define the set

Ŝ = {η ∈ Rν s.t. ηi = ξi(x), i = 1, . . . , ν, x ∈ S} .

This set typically represents a parametric subset of Rn described by parameters x;
see the next section.

Assume that Ŝ is bounded inRν .We are looking for a smallest-volume (“minimal")
ellipsoid E that is enclosing the set Ŝ, i.e., all feasible positions of the ν-dimensional
point ξ(x) = (ξ1(x), . . . , ξν(x)).

It is well-known that finding a minimal enclosing ellipsoid of a set of points
SP = {x(1), . . . ,x(m)} ⊂ Rν amounts to solving a semidefinite optimization problem;
see, e.g., [2, 15]. Let us first recall this formulation.

Assume that the convex hull of SP has a nonempty interior. We consider an
n−dimensional ellipsoid represented by a strictly convex quadratic inequality with
D ∈ Sν,D � 0:

E = {y ∈ Rν | (y − c)T D(y − c) ≤ 1} .

The volume of such an ellipsoid is

Vol(E) = (det(D))−
1
2 ,

so minimizing it amounts to maximizing det(D) and, further, to maximizing
log det(D), as D is assumed to be positive definite.

The minimal ellipsoid enclosing the set SP can be computed from the solution of
the following convex semidefinite optimization problem

sup
Z∈Sν , z∈Rν , γ∈R

log det(Z) (7)

s.t. 1 − (x(i))T Zx(i) + 2zTx(i) − γ ≥ 0, i = 1, . . . ,m ,[
γ zT
z Z

]
< 0 ,
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where γ = cT Dc. Let (Z∗,z∗, γ∗) be the solution of the above problem, then the
minimal ellipsoid containing SP is given by

E = {y ∈ Rn | (y − c)T D(y − c) ≤ 1}

where D = Z∗ and c = D−1z∗ (see, e.g., [2, Prop. 4.9.2]).
Now, to find the minimal enclosing ellipsoid of the semi-algebraic set Ŝ, we gen-

eralize the above problem and solve, to global optimality, the following polynomial
SDP problem

sup
Z∈Sν , z∈Rν , γ∈R, x∈Rn

log det(Z) (8)

s.t. 1 − ξ(x)T Zξ(x) + 2zTξ(x) − γ ≥ 0 ,[
γ zT
z Z

]
< 0 ,

gj(x) ≥ 0, j = 1, . . . ,mI ,

hk(x) = 0, k = 1, . . . ,mE .

The relaxation of order ` reads as

sup
Z∈Sν , z∈Rν , γ∈R
{σj }, {ψk }

log det(Z) (9)

s.t. 1 − ξ(x)T Zξ(x) + 2zTξ(x) − γ

−

mI∑
j=1

σj(x)gj(x) −
mE∑
k=1

ψk(x)hk(x) ∈ Σ2
` ,[

γ zT
z Z

]
< 0 ,

σj ∈ Σ
2
`−dj

2

, j = 1, . . . ,mI ,

ψk ∈ R[x]`−d′
k
, k = 1, . . . ,mE .

To implement this convex program, we replace the objective function log det(Z)
by t for a point (t,1, Z) in the log-det cone:

K = {(t, s, Z) ∈ R × R × Rν×ν | s log det(Z/s) ≥ t, Z < 0, s > 0}.

Using the fact that every SoS polynomial can be represented by a positive semidef-
inite matrix, we can rewrite (9) as the following convex SDP with linear matrix
inequalities:
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max
Z∈Sν , z∈Rν , γ∈R

Xj ∈S
s

(
`−dj

2

)
+ ,Yk ∈S

s(`−d′k )

log det(Z) (10)

s.t. 1 −
(
ξ(x)T Zξ(x)

)
α
+ 2

(
zTξ(x)

)
α
− γ

=

mI∑
j=0

〈
Xj,C

j
α

〉
+

mE∑
k=1

〈
Yk,Dk

α

〉
, for α = 0 ,

−

(
ξ(x)T Zξ(x)

)
α
+ 2

(
zTξ(x)

)
α

=

mI∑
j=0

〈
Xj,C

j
α

〉
+

mE∑
k=1

〈
Yk,Dk

α

〉
, for |α | ≤ `,α , 0 ,[

γ zT
z Z

]
< 0 ,

Xj < 0, j = 0, . . . ,mI ,

where (π(x))α is the α coefficient of the polynomial π(x), 〈A,B〉 = trace(AT B) for
any matrices A,B ∈ Rs×s , C j

α and Dk
α are matrices associated, respectively, with

polynomials gj(x) (g0(x) = 1) and hk(x) via, gj(x)v`(x)v`(x)T =
∑
α C j

αxα and

hk(x)v`(x)v`(x)T =
∑
α Dk

αxα for some basis v` of R[x]` , of size s(`) =
(
n + `

n

)
.

Denote by ξα ∈ Rν , α : |α | ≤ `, vectors containing α−coefficients of polynomials
ξi(x), i = 1, . . . , ν. Then (ξ(x)ξ(x)T )α =

∑
β+γ=α

ξβξ
T
γ .

Theorem 0.1 The dual problem to (10) reads as

inf
Ψ∈Sν , λ∈Rd[`]

λ0 − log det(Ψ) − ν (11)

s.t.


λ0

∑
α: |α | ≤2 `

λαξ
T
α∑

α: |α | ≤2 `
λαξα Ψ −

∑
α: |α | ≤2 `

λα

( ∑
β+γ=α

ξβξ
T
γ

)

< 0 ,

Ψ < 0 ,∑
α: |α | ≤2 `

λαC j
α < 0, j = 0, . . . ,mI ,∑

α: |α | ≤2 `
λαDk

α = 0, k = 1, . . . ,mE .

Proof The Lagrangian function for (10) can be written as
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L(Z,z, γ,X,Y ;λ,Ξ,Θ) = log det(Z)

+
∑

α: |α | ≤2 `
λα

©«1 |α=0 − (ξ
T Zξ)α + 2(zTξ)α − γ |α=0 −

mI∑
j=0

〈
Xj,C

j
α

〉
−

mE∑
k=1

〈
Yk,Dk

α

〉ª®¬
+

〈
Ξ,

[
γ zT
z Z

]〉
+

mI∑
j=1

〈
Θj,Xj

〉
with λ ∈ Rd[`], Ξ ∈ Sν+1, Ξ < 0 and Θ ∈ Sν, Θj < 0, leading to the following
system of optimality conditions:

Z−1 −
∑

α: |α | ≤2 `
λα

( ∑
β+γ=α

ξβξ
T
γ

)
+ Ξ2:ν+1,2:ν+1 = 0 (12)∑

α: |α | ≤2 `
λαξα + Ξ2:ν+1,1 = 0

λ0 − Ξ1,1 = 0∑
α: |α | ≤2 `

λαC j
α − Θj = 0, j = 0, . . . ,mI∑

α: |α | ≤2 `
λαDk

α = 0, k = 1, . . . ,mE .

The Lagrangian dual to (10) reads as

inf
λ,Ξ,Θ

sup
Z ,z,γ,X ,Y

L(Z,z, γ,X,Y ;λ,Ξ,Θ)

and, using (12), we get

sup
Z ,z,γ
L(Z,z, γ,X,Y ;λ,Ξ,Θ) = log det(Z)

+ λ0 −
∑

α: |α | ≤2 `
λα

〈
Z,

∑
β+γ=α

ξβξ
T
γ

〉
−

∑
α: |α | ≤2 `

λα
©«
mI∑
j=0

〈
Xj,C

j
α

〉
+

mE∑
k=1

〈
Yk,Dk

α

〉ª®¬
+

〈
Ξ2:ν+1,s:ν+1, Z

〉
+

mI∑
j=1

〈
Θj,Xj

〉
= log det(Z) + λ0 −

〈 ∑
α: |α | ≤2 `

λα

( ∑
β+γ=α

ξβξ
T
γ

)
− Ξ2:ν+1,2:ν+1 , Z

〉
= log det(Z) + λ0 −

〈
Z−1, Z

〉
= log det(Z) + λ0 − ν .
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SettingΨ := Z−1 =
∑

α: |α | ≤2 `
λα

( ∑
β+γ=α

ξβξ
T
γ

)
−Ξ2:ν+1,2:ν+1, we arrive at the objective

function of the dual problem. The condition Ξ < 0, together with the equalities (12),
then leads to the constraints in the dual problem (11). �

The SDP formulation (11) corresponds to the following moment problem:

inf
Ψ∈Sν ,Λ∈R[x]∗

`

Λ0 − log det(Ψ) − ν (13)

s.t.


Λ0 Λ(ξ)T

Λ(ξ) Ψ − Λ(ξξT )

 < 0

Ψ < 0 ,
Hg j (Λ) < 0, j = 0, . . . ,mI ,

Λ(xαhk) = 0, |α | ≤ 2 ` − d ′k, k = 1, . . . ,mE ,

where Λ(ξ) = [Λ(ξ1(x)), . . . ,Λ(ξν(x))], Λ(ξξT ) = (Λ(ξi(x)ξj(x)))1≤i, j≤ν , g0 = 1,
d0 = 0 and Hg j (Λ) = (Λ(gjxα+β)) |α |, |β | ≤ 2 `−dj

2
.

4 Parameterized surfaces

Most of the representations of shapes used inCADare based on piecewise polynomial
or rational parametrizations, namely the image of functions of the form σ : u ∈
D 7→ (p1(u), . . . , p3(u)) ∈ R3, where D is typically an interval, the unit box in R2

or the unit cube in R3 and pi are spline or piecewise polynomial functions or a
ratio of two spline functions. For the sake of simplicity, hereafter the functions pi
will be polynomial functions. We illustrate the use of optimization tools on two
types of problems involving surfaces parameterized by polynomials over the domain
D = [0,1]2. These examples generalize easily to parametric volumes.

4.1 Closest point and surface-surface intersection

Given a point A = (a1,a2,a3) ∈ R
3, finding the closest point to A on a parameterized

surface σ : (u1,u2) ∈ D = [0,1]2 7→ (p1(u1,u2), . . . , p3(u1,u2)) can easily be stated
as a minimization problem. This minimization problem is the problem (1) with
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Fig. 1: A teapot model composed on 20 patches of bicubic polynomial parametriza-
tions.

f =
3∑
i=1
(ai − xi)2,

g =
{
u j, 1 − u j, j = 1,2

}
, (14)

h = {xi − pi(u1,u2), i = 1, . . . ,3} .

The objective function is a polynomial of degree 2. We have 3 equality constraints
xi − pi(u1,u2) = 0, i = 1, . . . ,3 and 4 sign constraints 0 ≤ u j ≤ 1. This usually gives
a single closest point, except for points on the medial axis of the surface as illustrated
in Figure 2.

To detect if two surfaces given by the parametrizations σ1 : u1 ∈ D 7→

(p1,1(u1), . . . , p1,3(u1)) ∈ R
3, σ2 : u2 ∈ D 7→ (p2,1(u2), . . . , p2,3(u2)) ∈ R

3 in-
tersect, we use a slightly different formulation in order to get generically a single
minimizer: We solve the optimization problem (1) with

f =‖u1 − u2‖
2, (15)

g =
{
uk , j, 1 − uk , j, j = 1,2, k = 1,2

}
,

h =
{
p1,i(u1) − p2,i(u2), i = 1, . . . ,3

}
.

Example of closest point and intersection point computation

We illustrate in Figure 2 the computation of the closest point based on the moment
formulation (3) for the polynomial objective and constraints (14) (the two yellow
points, which are the closest to the red point on the pink patch) for patches of degree
3 in u1 and 3 in u2 (called bi-cubic patches). We also show an intersection point
(the green point on the intersection of the pink and blue patches) corresponding
to the solution of (15). The orders of relaxation used for these computations are
respectively ` = 3 and ` = 4.
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Fig. 2: Closest points and intersection point for bicubic parametric surfaces.

4.2 Bounding box and enclosing ellipsoid of parametric surfaces

Computing simpleminimal enclosing solids of a given shape is an important problem
with many applications in animation, collision detection, simulation, robotics, etc.

For minimal enclosing axis-aligned bounding boxes of parametric surfaces, this
reduces to solving problems of the form (14), where the objective function is replaced
by ±xi .

For minimal enclosing ellipsoids, we need to solve the polynomial SDP (8) using
SoS relaxations (10). Notice that (10) is not a standard (linear) SDP, due to the
determinant function. It can be solved, for instance, by software Hypatia4 or Mosek
using so called LogDetTriangular cones.

Example of minimal enclosing ellipsoid computation

In Figure 3, we present an example of a minimal enclosing ellipsoid for p1(u, v) =
u + v, p2(u, v) = 2u + u2 − uv + v2, p3(u, v) = v + 1

2 u3 + 1
2 v

3 solved by MomentTools
at relaxation level ` = 2, with Mosek convex optimizer:
> s = [u+v, 2*u+u^2-u*v+v^2, v+1/2*u^3+ 1/2*v^3]
> H = [x1-s[1], x2-s[2], x2-s[3]]
> G = [u-u^2, v-v^2]
> P = [x1, x2, x3]
> c, U, M = min_ellipsoid(P, H, G, X, 2, Mosek.Optimizer)

It returns the center c and the matrix U, which columns are the principal axes of the
ellipsoid.

4 https://github.com/chriscoey/Hypatia.jl
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Fig. 3: Closest points, intersection point and minimal enclosing ellipsoid for bicubic
parametric surfaces.

5 Robots and mechanisms

A parallel robot is defined by a fixed platform

A = [A1, . . . , A6] ⊂ R
3×6,

and a moving platform with initial position

B = [B1, . . . ,B6] ⊂ R
3×6,

connected by extensible arms Ai–Bi . Figure 4 shows two examples of parallel robots.
The robot on the right is known as the Stewart platform, and it is the geometry that
we are considering in our numerical experiments.

Fig. 4: Parallel robots with a fixed platform (red platform), moving platform (blue
platform) and extensible arms (yellow arms).
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We represent the displacement of the moving platform by a rotation R of the
orthogonal group O(R3) and a translation T ∈ R3 so that the position of the points
of the moving platform is

B̂i = RBi + T, i = 1, . . . ,6

with the length of the arms

di = ‖RBi + T − Ai ‖2, i = 1, . . . ,6.

The problem consists in analyzing the position of the moving platform under the
constraints that the lengths of the arms are within some intervals:

mi ≤ di ≤ Mi, i = 1, . . . ,6 .

Here is the parameterization of the rotation by unit quaternion:

R =

[
u2

1 + u
2
2 − u

2
3 − u

2
4 −2u1u4 + 2u2u3 2u1u3 + 2u2u4

2u1u4 + 2u2u3 u2
1 − u

2
2 + u

2
3 − u

2
4 −2u1u2 + 2u3u4

−2u1u3 + 2u2u4 2u1u2 + 2u3u4 u2
1 − u

2
2 − u

2
3 + u

2
4

]
(16)

with u2
1 + u2

2 + u2
3 + u2

4 = 1 and the translation T = [x, y, z]. Then

δi(u1,u2,u3,u4, x, y, z) = d2
i = ‖Bi ‖

2 + ‖Ai ‖
2 + ‖T ‖2 + 2RBi ·T − 2RBi · Ai − 2T · Ai

(17)
is a polynomial function of u = (u1, . . . ,u4) and x, y, z of degree 2 in u and total
degree 3 (here v · w stands for the standard inner product of vectors v,w ∈ Rp).

5.1 Direct kinematic problem

The direct kinematic problem consists in finding the position of the moving platform
such that a point C attached to the platform is at given point X0 in the space. To solve
this problem, we search for a position of the platform, which minimizes the norm of
the translation T , solving the optimization problem (1) with

f = ‖T ‖2, (18)
g =

{
δi − m2

i ,M
2
i − δi, i = 1, . . . ,6

}
,

h =
{
(X0)j − (RC + T)j, j = 1, . . . ,3 ,
‖u‖2 − 1

}
.

This is when we know the problem is feasible. If we are uncertain about the existence
of a feasible solution, we reformulate the objective functions and the constraints to
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f = ‖T ‖2 + ρ‖X0 − (RC + T)‖2, (19)
g =

{
δi − m2

i ,M
2
i − δi, i = 1, . . . ,6

}
,

h =
{
‖u‖2 − 1

}
,

where ρ is a penalty parameter (we choose ρ = 1000 in our experiments). The
minimizer of this problem yields the translation(s) Tnew and rotation(s) Rnew re-
quired to locate the new position of the platform. This position is calculated by
Bnew
i = RnewBi + Tnew for i = 1, . . . ,6.

Example of a direct kinematic problem

In Figure 5, we illustrate the computational result of solving problem (1) for finding
the new position of a Stewart platform. The values of the fixed platform A0 and the
initial position of the moving platform B0 of this geometry are produced in Julia by
> function pl(x,r) [r * cos(x), r * sin(x), 0] end
> A0 = [pl(0,1), pl(pi/12,1),pl(2pi/3,1), pl(2pi/3+pi/12,1),

pl(4pi/3,1), pl(4pi/3+pi/12,1)]
> B0pre = [pl(5pi/3+pi/12,1/2), pl(pi,1/2), pl(pi/12+pi/3,1/2),

pl(pi/3,1/2), pl(pi+pi/12,1/2), pl(5pi/3,1/2)]
> Xi0 = [1, 0, 0, 0, 0, 0, 1]
> R0 = Rotation(Xi0[1:4]...); T0 = Xi0[5:7]
> B0 = [R0*a + T0 for a in B0pre]

where the function Rotation is the quaternion parametrization of rotations given
in (16). In this numerical experiment, we consider the point C to be the centre of the
moving platform and the point X0 reached by the moving platform (shown in green
in Figure 5), to be
> C = sum(b for b in B0)/length(B0)
> X0 = [0.6,0.4,1]

In addition, the upper bound and lower bound on the lengths are
> D0 = norm.(B0-A0)
> ub = D0 .+ 2.5
> lb = D0 .- 2.5

where D0 is the vector of the lengths of the robot arms in the initial position. We
consider the objective function and constraints to be
> f = nrm2(T)
> g = []; for i in 1:6 g = [g; D1[i] - lb[i]^2; ub[i]^2 - D1[i]] end
> h = [u1^2+u2^2+u3^2+u4^2-1]
> h = [h; X0-(R*C+T)]

We solve the moment relaxation of order ` = 3 by using Mosek convex optimizer:
> using MomentTools, DynamicPolynomials, MosekTools
> X = @polyvar u1 u2 u3 u4 x y z
> v, M = minimize(f, h, g, X, 3, Mosek.Optimizer)
> w, Xi = get_measure(M)

By selecting the minimizers Xi[:,i] with a big enough weight w[i], we obtain
Tnew and Rnew needed to find the platform’s new position:
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> Sol = []
> for i in 1:length(w)

if abs(w[i]) > 0.1 push!(Sol,Xi[:,i]) end
end

> R_new = Rotation(Sol[1][1:4]...)
> T_new = Sol[1][5:7]

and the new platform will be
> B_new = [R_new *a + T_new for a in B0]

which is demonstrated in violet in Figure 5.

Fig. 5: The new position of the platform is shown in violet such that the middle of
the blue platform is at a given point in the space (the green point).

5.2 Bounding box of robot workspace

Let C be a point attached to the moving platform B; in our numerical experiments
it is the center of the platform but it can be any other point. We will be looking for
the axis-aligned bounding box problem of this point after all possible rotations and
translations, i.e., of the point Ĉ = RC + T . The bounds can be obtained by solving
the optimization problem (1) with

f = ± Ĉk = (RC + T)k, k = 1,2,3, (20)
g =

{
δi − m2

i , M2
i − δi, i = 1, . . . ,6

}
,

h =
{
‖u‖2 − 1

}
.
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One needs to solve six optimization problems, three with objective Ĉk and three with
−Ĉk , k = 1,2,3, to find an interval for each coordinate of Ĉ. By using these values,
we obtain the extreme positions for different faces of the intended bounding box.

Example of computing the bounding box

In Figure 6–left, we present the computational result of solving problem (1) to find
the bounding box of a Stewart platform. The coordinates of the platform points for
this robot are as mentioned in the previous example. We choose the upper bound and
lower bound of the lengths to be
> ub = D0 .+ 0.2
> lb = D0 .- 0.2

The constraints of this problem are
> g = []; for i in 1:6 g = [g; D1[i]-lb[i]^2; ub[i]^2-D1[i]; B1[i][3]] end
> h = [u1^2+u2^2+u3^2+u4^2-1]

where
> B1 = [R*a+T for a in B0]

As we mentioned, to find the bounding box, we need to solve six optimization
problems. If we consider
> C_hat = R*C+T

where C is the centre of the moving platform, the objective functions of these
problems for i = 1, . . . ,3 will be
> f[i] = C_hat[i]

We solve six moment relaxations by using Mosek software
> for i in 1:3

b[i], Mb[i] = minimize(f[i],h,g,X,l,opt)
B[i], MB[i] = maximize(f[i],h,g,X,l,opt)

end

from which we deduce the bounding box shown in Figure 6–left. These moment
relaxations are of order ` = 3. Only to find b[3], we needed a higher order relaxation
and we considered ` = 4. In order to find out if the order of relaxation is sufficient,
we check whether u2

1 + u2
2 + u2

3 + u2
4 is close enough to one at the solutions. In our

numerical experiments to compute the minimum b[3] of the z-coordinate, with the
relaxation order ` = 3, we find 4 approximate minimizers with the following norm
for u:
> norm sol u: 0.9345868913061018
> norm sol u: 0.9796236439932896
> norm sol u: 0.6612425286297167
> norm sol u: 0.8916846004102044

Since these values are not close enough to 1, we increase the order of the relaxation
and for ` = 4, we obtain 4 approximate minimizers with
> norm sol u: 0.9973888649655355
> norm sol u: 0.9968397474090084
> norm sol u: 0.9971812563313878
> norm sol u: 0.9985517657681842
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The relaxation at order ` = 4 gives a good enough approximation of the minimizers
and of the minimum of z.

5.3 Enclosing ellipsoid of robot workspace

The minimal enclosing ellipsoid for all positions of point C from the above section
can now be found by the same technique as in Section 4.2. The points ξ(x) in (8) will
now be replaced by the point Ĉ, as a function of u1,u2,u3,u4, x, y, z as in problem
(20). Figure 6–left presents a comparison of the bounding box and the minimal
ellipsoid for the center point of the moving platform. The order of relaxation for
computing the minimal ellipsoid is ` = 4 in this example.

Fig. 6: On the left, we show a comparison of minimal enclosing ellipsoid and
bounding box. The initial position and extreme position of the platform minimizing
y is presented in the right.

5.4 Trajectories of a parallel robot

In this section, we analyse the trajectory of the point C attached to the platform B,
first when the first interval constraint is satisfied and the other five lengths have a
fixed value in their length interval; secondly when the first two interval constraints
are satisfied and the other four lengths have a fixed value.
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Case 1: Five fixed values

In this case, the trajectory of the point C is the curve consisting of the possible
positions of the C in the space. To obtain different positions of the platform under
these constraints, we minimize and maximize Ĉ1, so we will have an interval for
extreme positions corresponding to the first coordinate. This means that we need to
solve the problem (20) with objective ±Ĉ1 and the additional constraints

δi = δ
0
i , i = 2, . . . ,6 ,

in which δ0 = (d0)2 = ‖B0−A0‖. Next, we sample the interval between these extreme
values at intermediate values µk , k = 1, . . . ,m and solve feasibility problems with
an additional equality constraint Ĉ1 − µk = 0 for k = 1, . . . ,m. This minimization is
done by solving problem (1) with

f = 1 , (21)
g =

{
δ1 − m2

1, M2
1 − δ1

}
,

h =
{
Ĉ1 − µk, k = 1, . . . ,m ,

δi − δ
0
i , i = 2, . . . ,6 ,

‖u‖2 − 1
}
.

The minimizers of these problems yield the displacements (R,T) and the positions
of C in the space. The same computation is repeated for the other coordinates Ĉ2, Ĉ3
to get a better sampling of the trajectory.

Case 2: Four fixed values

We compute positions of C attached to the platform when the first two interval
constraints are satisfied and the other four lengths have a fixed value. This traces
out a surface of the positions of the point C. The problem is analogous to Case 1;
only,we need to compute the interval for extreme positions corresponding to the first
and second coordinates. Thus, we need to solve problem (1) with

f = ± Ĉk, k = 1,2 , (22)
g =

{
δi − m2

i , M2
i − δi, i = 1,2

}
,

h =
{
δi − δ

0
i , i = 3, . . . ,6 ,

‖u‖2 − 1
}
.

If we consider µ and γ to be values in the intervals obtained for the coordinates Ĉ1 and
Ĉ2, respectively, the final feasibility problem to solve should satisfy all the previous
constraints and the additional constraints Ĉ1 = µ, Ĉ2 = γ. The final problem to solve
is problem (1) with
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f = 1 , (23)
g =

{
δi − m2

i , M2
i − δi, i = 1,2

}
,

h =
{
Ĉ1 − µ, Ĉ2 − γ, ‖u‖2 − 1 ,

δi − δ
0
i , i = 2, . . . ,6

}
.

As a result, we will have a set of points approximating a surface. We obtain these
points by changing the constraints, choosing different values for Ĉ1 and Ĉ2 and
solving the corresponding optimization problem.

Figure 7 shows the computational result of solving problem (1) to find the tra-
jectories of a Stewart platform for these two cases. The order of relaxation for these
problems is ` = 3.

Fig. 7: On the left, the trajectory of the center of the platform with 5 arm lengths
fixed is shown. The trajectory of the center of the platform with 4 arm lengths fixed
is shown in the right.

6 Conclusion

We have demonstrated how techniques of polynomial optimization can be used in
the important area of geometric modeling. We focused on practical examples such
as finding the bounding box or minimum enclosing ellipsoid for parametric surfaces
or for a workspace of parallel robots. The limitations of our approach are typical for
polynomial optimization, in particular, reliability of the numerical solutions of the
resulting SDP problems and, sometimes, the necessity for higher order relaxations
resulting in very large SDPs. The latter is, however, not too restrictive, given the small
dimensions of the respective polynomial optimization problems.We thus believe that
this technique will find further use, in particular, in robotics.
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