Soodeh Habibi
email: s.habibi@bham.ac.uk

Michal Kočvara
email: m.kocvara@bham.ac.uk

Bernard Mourrain
email: bernard.mourrain@inria.fr

Polynomial optimization in geometric modeling

Keywords: 0, 9971812563313878 > norm sol u: 0, 9985517657681842

come

the representation and the efficiency to describe complex shapes. By increasing the degree of the polynomials of the representation, one needs less pieces and thus less data for the same level of approximation. The "unreasonable" power of polynomial approximation makes piecewise polynomial representations ubiquitous in Geometric Modeling. Standard digital representations of shapes correspond to the image of simple domains like triangles, squares, cubes by piecewise polynomial maps, which define so called patches. These patches are trimmed and assembled together to define the boundary surface or the volume of an object.

Although piecewise polynomial models are very effective in representing complex shapes, they also require advanced methods and tools in practice. Many operations on shapes, such as patch intersections, distance computation, boundary volumes, etc., involve solving nonlinear and difficult problems [START_REF] Farin | Handbook of Computer Aided Geometric Design[END_REF]. In what follows, we illustrate how polynomial optimization methods can help solve these issues and discuss their practical performance. See also [START_REF] Marschner | Sum-of-squares geometry processing[END_REF] for other examples of applications of polynomial optimization in geometric modeling.

Polynomial Optimization Problems and Convex Relaxations

Polynomial Optimization Problems (POP) are problems of the form

min x∈S f (x) (1)
where S = {x ∈ R n s.t. g j (x) ≥ 0, j = 1, . . . , m I , h k (x) = 0, k = 1, . . . , m E } is the semi-algebraic set defined by the sign constraints g = (g 1 , . . . , g m I) and the equality constraints h = (h 1 , . . . , h m E), for polynomial functions f , g j , h k : R n → R, j = 1, . . . , m I , k = 1, . . . , m E . Problem (1) is a special instance of nonlinear nonconvex optimization. In the following, we will discuss how these problems are translated into Semidefinite Programming (SDP) problems.

There are various approaches to solving polynomial optimization problems, such as using a hierarchy of convex (semidefinite) relaxations to approximate [START_REF] Baldi | On the Effective Putinar's Positivstellensatz and Moment Approximation[END_REF]. Such relaxations can be built using two methods: the SoS representation of nonnegative polynomials and the dual theory of moments. The general approach started with the work of Shor [START_REF] Shor | Quadratic optimization problems[END_REF] and Nesterov [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF]. Then, it was further developed by Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] and Parrilo [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF]. Here, we describe the two dual approaches to this development. Each will give additional complementary information about the problem.

Sum of Squares Relaxations

Sum-of-Squares (SoS) relaxation is a type of convex relaxation in which polynomial non-negativity constraints are replaced by SoS constraints which are more computationally tractable, and can be represented by semidefinite programs. This relaxation transforms nonlinear polynomial optimization problems into sequences of convex problems whose complexity is captured by a single degree parameter. To approximate the solutions of (1), it uses the following finite dimensional convex cones, also called truncated quadratic modules,

Q = {p = s 0 + s 1 g 1 + s m I g m I + t 1 h 1 + • • • + t m E h m E , s j ∈ Σ 2 2 -d j , t k ∈ R[x] 2 -d k },
where • g j are the non-negativity polynomials of degree d j and h k are the equality polynomials of degree d k (we take g 0 = 1 and

d 0 = 0 for notation convenience), • Σ 2 = {p = i q 2 i , q i ∈ R[x]
2 } is the convex cone of polynomials of degree ≤ , which are sums of squares, • R[x] is the vector space of polynomials of degree ≤ in the variables x = (x 1 , . . . ,

x n). It is of dimension s() = n+ n .We will denote the dual to R[x] by R[x] * .
We verify that the truncated quadratic module Q is a convex cone since it is stable by scaling by a positive scalar and by addition. By construction, the polynomials in Q are non-negative on S.

We approximate the solution of (1) by the solution of the following convex optimization problem:

f ∧, = sup λ s.t. λ ∈ R (2) f (x) -λ ∈ Q .
For big enough, this problem is feasible. We check that if f (x) -λ ∈ Q then ∀x ∈ S, f (x) -λ ≥ 0 and f * ≥ λ. This shows that f ∧, ≤ f * for all ∈ N. Under some conditions on g, h (see e.g. [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]), we have lim →∞ f ∧, = f * . The convex cones Q are tractable, since they involve sums of multiples of sumof-squares cones Σ 2 2 and multiples of linear spaces 2) is a tractable semidefinite program that can be solved by classical convex optimization techniques, such as interior point methods [START_REF] De Klerk | Aspects of semidefinite programming: interior point algorithms and selected applications[END_REF][START_REF] Todd | On the Nesterov-Todd direction in semidefinite programming[END_REF].

R[x] 2 -d k . Problem (
Let

v j denote a basis of R[x] 2 -d j 2 and w k a basis of R[x] 2 -d k . Then (2) is implemented as a semidefinite program of the form f ∧, = sup λ s.t. λ ∈ R, A j 0, B k ∈ R N K f (x) -λ - m I j=1 g j (x)v T j A j v j - m E k=1 h k (x)w T k B k = 0 ,
where A j ∈ R s j ×s j for s j = s(-

d j
2) is positive semidefinite, i.e. A j 0, if for any vector v ∈ R s×s v T A j v ≥ 0. The last polynomial constraint can be written as

|α | ≤2 c α (λ, A 1 , . . . , A m I , B 1 , . . . , B m E)x α = 0 where (x α) |α | ≤2 is the monomial basis of R[x] . It corresponds to a sequence of coefficient constraints c α (λ, A, B) = 0, which are linear in λ, A = (A 1 , . . . , A m I), B = (B 1 , . . . , B m E).
We verify that Q ⊂ Q +1 so that (Q) is a hierarchy of nested convex finite dimensional cones.

Example of a Sum-of-Squares relaxation

We consider the semi-algebraic set S defined by We construct a SoS relaxation at order = 2. Here is how it can be constructed with the Julia packages MomentTools1 and DynamicPolynomials.

g = {1 -x, x -y 2 } h = {}
> using MomentTools, DynamicPolynomials > X = @polyvar x y > M = SOS.Model(:inf, x, [], [1-

x, x-y^2], X, 2)
This gives a semidefinite program with three matrix variables

A 0 ∈ R 6×6 for s 0 ∈ Σ 2 4 , A 1 ∈ R 3×3 for s 1 ∈ Σ 2 2 , A 2 ∈ R 3×3 for s 2 ∈ Σ 2
1 and no B k since h = {}. There are 15 linear constraints corresponding to the coefficients of the 15 monomials of degree ≤ 4 in the variables x, y.

Moment Relaxations

The dual formulation of (2) is

f ∨, = inf Λ(f) s.t. Λ(1) -1 ∈ R ∨ = {0} (3)
Λ ∈ L := (Q) ∨ where L = (Q) ∨ = {Λ ∈ R[x] * 2 | ∀p ∈ Q , Λ(p) ≥ 0} is the dual cone of Q and R ∨ = {σ : R → R | ∀x ∈ R, σ(x) ≥ 0} = {0}. The elements Λ ∈ L are linear functionals Λ : R[x] 2 → R, represented in the dual basis x α of R[x] 2 by the coefficient vector (Λ α) |α | ≤2
. The coefficients Λ α := Λ(x α) are called the pseudo-moments of Λ. These coefficients correspond to the slack variables associated to the linear constraints c α (λ, A, B) in [START_REF] Ben-Tal | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF].

The constraint Λ ∈ L translates into the conditions

∀s 0 ∈ Σ 2 2 , Λ(s 0) ≥ 0, (4
)
∀s j ∈ Σ 2 2 -d j , Λ(g j s j) ≥ 0 for j = 1, ..., m I , (5)
∀t k ∈ R[x] 2 -d k , Λ(h k t k) = 0 for j = 1, ..., m E . (6)
The first two types of constraints (4), (5) correspond to semidefinite constraints

H 0 (Λ) 0, H g j (Λ) 0, for j = 1, ..., m I ,
where

• H 0 (Λ) = (Λ(x α+β)) |α |, |β | ≤ is called the moment matrix of Λ in degree (,); • H g j (Λ) = (Λ(g j x α+β)) |α |, |β | ≤ - d j 2
is called the localizing moment matrix of Λ at g j in degree -

d j 2 . We denote by H , (Λ) = (x α+β)) |α | ≤ , |β | ≤ the moment matrix of Λ in degree (,).
The third type of constraints (6) corresponds to linear constraints on Λ of the form

Λ(h k x α) = 0 for |α| ≤ 2 -d k , k = 1, ..., m E .
Therefore, (3) is also a tractable semidefinite program.

As the evaluation e ξ :

p ∈ R[x] 2 → p(ξ) at a point ξ ∈ S is an element in L such that e ξ (1) = 1, we have f ∨, ≤ f (ξ) for ξ ∈ S. This implies that f ∨, ≤ inf ξ ∈S f (ξ) = f * .
We verify that for Λ ∈ L with Λ(1) = 1 and λ ∈ R such that f -λ ∈ Q , we have Λ(f) -λ ≥ 0 since L = (Q) ∨ , so that f ∧, ≤ f ∨, ≤ f * . Under certain conditions on g, h (see [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]), we also have lim →∞ f ∨, = f * .

Example of a Moment Relaxation

The moment relaxation at order = 2 for the previous example where S = {(x, y) ∈ R2 | 1x ≥ 0, xy 2 ≥ 0} and the objective function is f = x is built as follows:

> using MomentTools, DynamicPolynomials > X = @polyvar x y > M = MOM.Model(:inf, x, [], [1-x, x-y^2], X, 2)
It is a convex optimization program on the moment sequence Λ ∈ R 15 with a linear objective function Λ(f) (as a function of Λ) and with SDP constraints on moment matrices in R 6×6 , R 3×3 , R 3×3 .

Computing the minimizers

The solution of the dual convex optimization problem (3) provides an optimal sequence of pseudo-moments Λ * = (Λ * α), from which approximations of the optimizers of the non-linear optimization problem (1) can be recovered under some conditions. This can be done as follows. Assume that the set {ξ 1 , . . . , ξ r } of minimizers of (1) is finite and that Λ * is numerically close to the moment sequence of a weighted sum µ = r i=1 ω i δ ξ i of Dirac measures δ ξ i at the minimizers, with ω i > 0 and r i=1 ω i = 1. This is the case for a sufficiently large order of the moment relaxation, by the convergence properties of the moment hierarchy [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Schweighofer | Optimization of Polynomials on Compact Semialgebraic Sets[END_REF][START_REF] Baldi | On the Effective Putinar's Positivstellensatz and Moment Approximation[END_REF].

1. We form the moment matrix H * of Λ * in degree (-1,). 2. We compute a Singular Value Decomposition (SVD) of H * = USV T , where U and V are orthogonal matrices and S is diagonal, and deduce the numerical rank r of H * . Let U [r] denote the first r columns of U. 3. We extract from U [r] an invertible block U 0 of r rows corresponding to a monomial set b = {b 1 , . . . , b r } of low degree. We compute the matrices U i corresponding to the rows associated to the monomials

x i • b in U [r] . 4. We compute the common eigenvectors of M i = U -1 0 U i .
We deduce the points ξ 1 , . . . , ξ r , whose j th coordinate is the eigenvalue of M j for the eigenvector associated to ξ i .

For more details on the algorithm, see [START_REF] Harmouch | Structured low rank decomposition of multivariate Hankel matrices[END_REF][START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF]. Notice that in the construction of H * in step 1, we use the pseudo-moments of Λ * up to degree 2 -1.

We illustrate the behavior of this approach on different geometric problems, using the package MomentTools2.

Example of minimizer computation

We continue with the previous example, and solve the moment relaxation at order = 2, using convex optimization tools from the Mosek3 library, > using MomentTools, DynamicPolynomials, MosekTools > X = @polyvar x y > v, M = minimize(x, [], [1-x, x-y^2], X, 2, Mosek.Optimizer)

we obtain v = -6.371168130759666 • 10 -10 . The moment matrix H * of the optimal pseudo-moment sequence Λ * computed as > s = get_series(M) [START_REF] Baldi | On the Effective Putinar's Positivstellensatz and Moment Approximation[END_REF]; L1 = monomials(X, 0:2); L2 = monomials(X, 0:1) > H = MultivariateSeries.hankel(s, L1, L2);

is the following matrix (rounded with 2 decimal digits).

H * =      
1.0 0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 -0.0 0.0 -0.0 0.0 -0.0

      T .
The singular values of H * give a numerical rank r = 1 and the extracted matrix U [1] is

U [1] = -1.0 -0.0 0.0 -0.0 0.0 -0.0 T with entries indexed by the monomials [1, x, y, x 2 , x y, y 2]. We have U 0 = [1] indexed by b = {1} and U 1 = [0.0] indexed by x • b = {x}, U 2 = [0.0] indexed by y • b = {y}.
The eigenvector and eigenvalue computation of

M 1 = U -1 0 U 1 = [0.0] and M 2 = U -1 0 U 1 = [0.0]
gives the unique minimizer ξ = (0.0, 0.0). This minimizer computation can be done directly as follows:

w, Xi = get_measure(M)
which yields the following weight ω and point Ξ for the approximation of Λ * as a weighted sum of Dirac measures:

ω = 1.0 , Ξ = 0.0 -0.0 .
Solution of linear semidefinite optimization problems resulting from SoS or Moment relaxations is often the bottleneck of the approach. With increasing order of the relaxation, the size of the SDP problem grows very quickly. While the "small" problems can be solved by general-purpose SDP solvers such as Mosek, larger problems are beyond their reach. It is therefore necessary to use an algorithm and software exploiting the particular structure of SoS relaxations. One of the features of these SDP problems is the very low rank of the solution (moment matrix). Loraine [START_REF] Habibi | Loraine-an interior-point solver for low-rank semidefinite programming[END_REF] is a new general-purpose interior-point SDP solver targeted to problems with low-rank data and low-rank solutions. It employs special treatment of low-rank data matrices and, in particular, an option to use a preconditioned iterative Krylov type method for the solution of the linear system. The used preconditioner is tailored to problems with low-rank solutions and proved to be rather efficient for these problems; for more details, see [START_REF] Habibi | Loraine-an interior-point solver for low-rank semidefinite programming[END_REF].

Minimal enclosing ellipsoids of semi-algebraic sets

In this section, we consider another type of optimization problems, which appears in geometric modeling, namely computing the minimal ellipsoid enclosing a semialgebraic set. Let S be a semi-algebraic set defined as in Section 2:

S = {x ∈ R n s.t. g j (x) ≥ 0, j = 1, . . . , m I , h k (x) = 0, k = 1, . . . , m E } .
Let ξ i (x), i = 1, . . . , ν, be given polynomial functions. Define the set

Ŝ = {η ∈ R ν s.t. η i = ξ i (x), i = 1, . . . , ν, x ∈ S} .
This set typically represents a parametric subset of R n described by parameters x; see the next section.

Assume that Ŝ is bounded in R ν . We are looking for a smallest-volume ("minimal") ellipsoid E that is enclosing the set Ŝ, i.e., all feasible positions of the ν-dimensional

point ξ(x) = (ξ 1 (x), . . . , ξ ν (x)).
It is well-known that finding a minimal enclosing ellipsoid of a set of points S P = {x (1) , . . . , x (m) } ⊂ R ν amounts to solving a semidefinite optimization problem; see, e.g., [START_REF] Ben-Tal | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF][START_REF] Todd | Minimum-Volume Ellipsoids[END_REF]. Let us first recall this formulation.

Assume that the convex hull of S P has a nonempty interior. We consider an n-dimensional ellipsoid represented by a strictly convex quadratic inequality with D ∈ S ν , D 0:

E = {y ∈ R ν | (y -c) T D(y -c) ≤ 1} .
The volume of such an ellipsoid is

Vol(E) = (det(D)) -1 2 ,
so minimizing it amounts to maximizing det(D) and, further, to maximizing log det(D), as D is assumed to be positive definite. The minimal ellipsoid enclosing the set S P can be computed from the solution of the following convex semidefinite optimization problem sup

Z ∈S ν , z∈R ν , γ ∈R log det(Z) (7) s.t. 1 -(x (i)) T Zx (i) + 2z T x (i) -γ ≥ 0, i = 1, . . . , m , γ z T z Z 0 ,
where γ = c T Dc. Let (Z * , z * , γ *) be the solution of the above problem, then the minimal ellipsoid containing S P is given by

E = {y ∈ R n | (y -c) T D(y -c) ≤ 1}
where D = Z * and c = D -1 z * (see, e.g., [2, Prop. 4.9.2]). Now, to find the minimal enclosing ellipsoid of the semi-algebraic set Ŝ, we generalize the above problem and solve, to global optimality, the following polynomial SDP problem sup

Z ∈S ν , z∈R ν , γ ∈R, x∈R n log det(Z) (8)
s.t. 1 -ξ(x) T Zξ(x) + 2z T ξ(x) -γ ≥ 0 , γ z T z Z 0 , g j (x) ≥ 0, j = 1, . . . , m I , h k (x) = 0, k = 1, . . . , m E .
The relaxation of order reads as sup

Z ∈S ν , z∈R ν , γ ∈R {σ j }, {ψ k } log det(Z) (9)
s.t. 1 -ξ(x) T Zξ(x) + 2z T ξ(x) -γ - m I j=1 σ j (x)g j (x) - m E k=1 ψ k (x)h k (x) ∈ Σ 2 , γ z T z Z 0 , σ j ∈ Σ 2 -d j 2 , j = 1, . . . , m I , ψ k ∈ R[x] -d k , k = 1, . . . , m E .
To implement this convex program, we replace the objective function log det(Z) by t for a point (t, 1, Z) in the log-det cone:

K = {(t, s, Z) ∈ R × R × R ν×ν | s log det(Z/s) ≥ t, Z 0, s > 0}.
Using the fact that every SoS polynomial can be represented by a positive semidefinite matrix, we can rewrite (9) as the following convex SDP with linear matrix inequalities:

max Z ∈S ν , z∈R ν , γ ∈R X j ∈S s -d j 2 + , Y k ∈S s (-d k) log det(Z) (10) s.t. 1 -ξ(x) T Zξ(x) α + 2 z T ξ(x) α -γ = m I j=0 X j , C j α + m E k=1 Y k , D k α , for α = 0 , -ξ(x) T Zξ(x) α + 2 z T ξ(x) α = m I j=0 X j , C j α + m E k=1 Y k , D k α , for |α| ≤ , α 0 , γ z T z Z 0 , X j 0, j = 0, . . . , m I ,
where (π(x)) α is the α coefficient of the polynomial π(x), A, B = trace(A T B) for any matrices A, B ∈ R s×s , C j α and D k α are matrices associated, respectively, with polynomials g j (x) (g 0 (x) = 1) and

h k (x) via, g j (x)v (x)v (x) T = α C j α x α and h k (x)v (x)v (x) T = α D k α x α for some basis v of R[x] , of size s() = n + n . Denote by ξ α ∈ R ν , α : |α| ≤ , vectors containing α-coefficients of polynomials ξ i (x), i = 1, . . . , ν. Then (ξ(x)ξ(x) T) α = β+γ=α ξ β ξ T γ .
Theorem 0.1 The dual problem to [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF] reads as

inf Ψ∈S ν , λ ∈R d[] λ 0 -log det(Ψ) -ν (11)
s.t.

          λ 0 α:|α | ≤2 λ α ξ T α α:|α | ≤2 λ α ξ α Ψ - α:|α | ≤2 λ α β+γ=α ξ β ξ T γ           0 , Ψ 0 , α:|α | ≤2 λ α C j α 0, j = 0, . . . , m I , α:|α | ≤2 λ α D k α = 0, k = 1, . . . , m E .
Proof The Lagrangian function for [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF] can be written as

L(Z, z, γ, X,Y ; λ, Ξ, Θ) = log det(Z) + α:|α | ≤2 λ α 1 |α=0 -(ξ T Zξ) α + 2(z T ξ) α -γ |α=0 - m I j=0 X j , C j α - m E k=1 Y k , D k α + Ξ, γ z T z Z + m I j=1 Θ j , X j with λ ∈ R d[] , Ξ ∈ S ν+1
, Ξ 0 and Θ ∈ S ν , Θ j 0, leading to the following system of optimality conditions:

Z -1 - α:|α | ≤2 λ α β+γ=α ξ β ξ T γ + Ξ 2:ν+1,2:ν+1 = 0 (12
) α:|α | ≤2 λ α ξ α + Ξ 2:ν+1,1 = 0 λ 0 -Ξ 1,1 = 0 α:|α | ≤2 λ α C j α -Θ j = 0, j = 0, . . . , m I α:|α | ≤2 λ α D k α = 0, k = 1, . . . , m E .
The Lagrangian dual to [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF]

+ λ 0 - α:|α | ≤2 λ α Z, β+γ=α ξ β ξ T γ - α:|α | ≤2 λ α m I j=0 X j , C j α + m E k=1 Y k , D k α + Ξ 2:ν+1,s:ν+1 , Z + m I j=1 Θ j , X j = log det(Z) + λ 0 - α:|α | ≤2 λ α β+γ=α ξ β ξ T γ -Ξ 2:ν+1,2:ν+1 , Z = log det(Z) + λ 0 -Z -1 , Z = log det(Z) + λ 0 -ν . Setting Ψ := Z -1 = α:|α | ≤2 λ α β+γ=α ξ β ξ T γ -Ξ 2:
ν+1,2:ν+1 , we arrive at the objective function of the dual problem. The condition Ξ 0, together with the equalities [START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF], then leads to the constraints in the dual problem [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF].

The SDP formulation [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF] corresponds to the following moment problem:

inf Ψ∈S ν , Λ∈R[x] * Λ 0 -log det(Ψ) -ν (13)
s.t.

       Λ 0 Λ(ξ) T Λ(ξ) Ψ -Λ(ξ ξ T)        0 Ψ 0 , H g j (Λ) 0, j = 0, . . . , m I , Λ(x α h k) = 0, |α| ≤ 2 -d k , k = 1, . . . , m E ,
where

Λ(ξ) = [Λ(ξ 1 (x)), . . . , Λ(ξ ν (x))], Λ(ξ ξ T) = (Λ(ξ i (x)ξ j (x))) 1≤i, j ≤ν , g 0 = 1, d 0 = 0 and H g j (Λ) = (Λ(g j x α+β)) |α |, |β | ≤ 2 -d j 2 .

Parameterized surfaces

Most of the representations of shapes used in CAD are based on piecewise polynomial or rational parametrizations, namely the image of functions of the form σ : u ∈ D → (p 1 (u), . . . , p 3 (u)) ∈ R 3 , where D is typically an interval, the unit box in R 2 or the unit cube in R 3 and p i are spline or piecewise polynomial functions or a ratio of two spline functions. For the sake of simplicity, hereafter the functions p i will be polynomial functions. We illustrate the use of optimization tools on two types of problems involving surfaces parameterized by polynomials over the domain D = [0, 1] 2 . These examples generalize easily to parametric volumes.

Closest point and surface-surface intersection

Given a point A = (a 1 , a 2 , a 3) ∈ R 3 , finding the closest point to A on a parameterized surface σ :

(u 1 , u 2) ∈ D = [0, 1] 2 → (p 1 (u 1 , u 2), . . . , p 3 (u 1 , u 2
)) can easily be stated as a minimization problem. This minimization problem is the problem (1) with Fig. 1: A teapot model composed on 20 patches of bicubic polynomial parametrizations.

f = 3 i=1 (a i -x i) 2 , g = u j , 1 -u j , j = 1, 2 , (14)
h = {x i -p i (u 1 , u 2), i = 1, . . . , 3} .
The objective function is a polynomial of degree 2. We have 3 equality constraints x ip i (u 1 , u 2) = 0, i = 1, . . . , 3 and 4 sign constraints 0 ≤ u j ≤ 1. This usually gives a single closest point, except for points on the medial axis of the surface as illustrated in Figure 2.

To detect if two surfaces given by the parametrizations σ 1 : u 1 ∈ D → (p 1,1 (u 1), . . . , p 1,3 (u 1)) ∈ R 3 , σ 2 : u 2 ∈ D → (p 2,1 (u 2), . . . , p 2,3 (u 2)) ∈ R 3 intersect, we use a slightly different formulation in order to get generically a single minimizer: We solve the optimization problem (1) with

f = u 1 -u 2 2 , (15
)
g = u k, j , 1 -u k, j , j = 1, 2, k = 1, 2 , h = p 1,i (u 1) -p 2,i (u 2), i = 1, . . . , 3 .

Example of closest point and intersection point computation

We illustrate in Figure 2 the computation of the closest point based on the moment formulation (3) for the polynomial objective and constraints (14) (the two yellow points, which are the closest to the red point on the pink patch) for patches of degree 3 in u 1 and 3 in u 2 (called bi-cubic patches). We also show an intersection point (the green point on the intersection of the pink and blue patches) corresponding to the solution of [START_REF] Todd | Minimum-Volume Ellipsoids[END_REF]. The orders of relaxation used for these computations are respectively = 3 and = 4.

Bounding box and enclosing ellipsoid of parametric surfaces

Computing simple minimal enclosing solids of a given shape is an important problem with many applications in animation, collision detection, simulation, robotics, etc. For minimal enclosing axis-aligned bounding boxes of parametric surfaces, this reduces to solving problems of the form [START_REF] Shor | Quadratic optimization problems[END_REF], where the objective function is replaced by ±x i .

For minimal enclosing ellipsoids, we need to solve the polynomial SDP (8) using SoS relaxations [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF]. Notice that (10) is not a standard (linear) SDP, due to the determinant function. It can be solved, for instance, by software Hypatia4 or Mosek using so called LogDetTriangular cones.

Example of minimal enclosing ellipsoid computation

In Figure 3, we present an example of a minimal enclosing ellipsoid for

p 1 (u, v) = u + v, p 2 (u, v) = 2u + u 2 -uv + v 2 , p 3 (u, v) = v + 1 2 u 3 + 1 2 v 3
solved by MomentTools at relaxation level = 2, with Mosek convex optimizer:

> s = [u+v, 2*u+u^2-u*v+v^2, v+1/2*u^3+ 1/2*v^3] > H = [x1-s[1], x2-s[2], x2-s[3]] > G = [u-u^2, v-v^2] > P = [x1, x2, x3] > c, U, M = min_ellipsoid(P, H, G, X, 2, Mosek.Optimizer)
It returns the center c and the matrix U, which columns are the principal axes of the ellipsoid.

Robots and mechanisms

A parallel robot is defined by a fixed platform

A = [A 1 , . . . , A 6] ⊂ R 3×6 ,
and a moving platform with initial position

B = [B 1 , . . . , B 6] ⊂ R 3×6 ,
connected by extensible arms A i -B i . Figure 4 shows two examples of parallel robots. The robot on the right is known as the Stewart platform, and it is the geometry that we are considering in our numerical experiments. We represent the displacement of the moving platform by a rotation R of the orthogonal group O(R 3) and a translation T ∈ R 3 so that the position of the points of the moving platform is

B i = RB i + T, i = 1, . . . , 6
with the length of the arms

d i = RB i + T -A i 2 , i = 1, . . . , 6.
The problem consists in analyzing the position of the moving platform under the constraints that the lengths of the arms are within some intervals:

m i ≤ d i ≤ M i , i = 1, . . . , 6 .
Here is the parameterization of the rotation by unit quaternion:

R = u 2 1 + u 2 2 -u 2 3 -u 2 4 -2u 1 u 4 + 2u 2 u 3 2u 1 u 3 + 2u 2 u 4 2u 1 u 4 + 2u 2 u 3 u 2 1 -u 2 2 + u 2 3 -u 2 4 -2u 1 u 2 + 2u 3 u 4 -2u 1 u 3 + 2u 2 u 4 2u 1 u 2 + 2u 3 u 4 u 2 1 -u 2 2 -u 2 3 + u 2 4 (16
) with u 2 1 + u 2 2 + u 2 3 + u 2 4 = 1 and the translation T = [x, y, z]. Then δ i (u 1 , u 2 , u 3 , u 4 , x, y, z) = d 2 i = B i 2 + A i 2 + T 2 + 2RB i • T -2RB i • A i -2T • A i (17)
is a polynomial function of u = (u 1 , . . . , u 4) and x, y, z of degree 2 in u and total degree 3 (here v • w stands for the standard inner product of vectors v, w ∈ R p).

Direct kinematic problem

The direct kinematic problem consists in finding the position of the moving platform such that a point C attached to the platform is at given point X 0 in the space. To solve this problem, we search for a position of the platform, which minimizes the norm of the translation T, solving the optimization problem (1) with

f = T 2 , (18)
g = δ i -m 2 i , M 2 i -δ i , i = 1, . . . , 6 , h = (X 0) j -(RC + T) j , j = 1, . . . , 3 , u 2 -1 .
This is when we know the problem is feasible. If we are uncertain about the existence of a feasible solution, we reformulate the objective functions and the constraints to

f = T 2 + ρ X 0 -(RC + T) 2 , (19)
g = δ i -m 2 i , M 2 i -δ i , i = 1, . . . , 6 , h = u 2 -1 ,
where ρ is a penalty parameter (we choose ρ = 1000 in our experiments). The minimizer of this problem yields the translation(s) T new and rotation(s) R new required to locate the new position of the platform. This position is calculated by

B new i = R new B i + T new for i = 1, . . . , 6.

Example of a direct kinematic problem

In Figure 5, we illustrate the computational result of solving problem (1) for finding the new position of a Stewart platform. The values of the fixed platform A 0 and the initial position of the moving platform B 0 of this geometry are produced in Julia by > function pl(x,r) [r * cos(x), r * sin(x), 0] end > A0

= [pl(0,1), pl(pi/12,1),pl(2pi/3,1), pl(2pi/3+pi/12,1), pl(4pi/3,1), pl(4pi/3+pi/12,1)] > B0pre = [pl(5pi/3+pi/12,1/2), pl(pi,1/2), pl(pi/12+pi/3,1/2), pl(pi/3,1/2), pl(pi+pi/12,1/2), pl(5pi/3,1/2)] > Xi0 = [1, 0, 0, 0, 0, 0, 1] > R0 = Rotation(Xi0 [1:4] where the function Rotation is the quaternion parametrization of rotations given in [START_REF] Todd | On the Nesterov-Todd direction in semidefinite programming[END_REF]. In this numerical experiment, we consider the point C to be the centre of the moving platform and the point X 0 reached by the moving platform (shown in green in Figure 5), to be where D0 is the vector of the lengths of the robot arms in the initial position. We consider the objective function and constraints to be

> f = nrm2(T) > g = []; for i in 1:6 g = [g; D1[i] -lb[i]^2; ub[i]^2 -D1[i]] end > h = [u1^2+u2^2+u3^2+u4^2-1] > h = [h; X0-(R*C+T)]
We solve the moment relaxation of order = 3 by using Mosek convex optimizer: > using MomentTools, DynamicPolynomials, MosekTools > X = @polyvar u1 u2 u3 u4 x y z > v, M = minimize(f, h, g, X, 3, Mosek.Optimizer) > w, Xi = get_measure(M) By selecting the minimizers Xi[:,i] with a big enough weight w[i], we obtain T new and R new needed to find the platform's new position: which is demonstrated in violet in Figure 5.

Bounding box of robot workspace

Let C be a point attached to the moving platform B; in our numerical experiments it is the center of the platform but it can be any other point. We will be looking for the axis-aligned bounding box problem of this point after all possible rotations and translations, i.e., of the point C = RC + T. The bounds can be obtained by solving the optimization problem (1) with

f = ± C k = (RC + T) k , k = 1, 2, 3, (20)
g = δ i -m 2 i , M 2 i -δ i , i = 1, . . . , 6 , h = u 2 -1 .
One needs to solve six optimization problems, three with objective C k and three with -C k , k = 1, 2, 3, to find an interval for each coordinate of C. By using these values, we obtain the extreme positions for different faces of the intended bounding box.

Example of computing the bounding box

In Figure 6-left, we present the computational result of solving problem (1) to find the bounding box of a Stewart platform. The coordinates of the platform points for this robot are as mentioned in the previous example. We choose the upper bound and lower bound of the lengths to be

> ub = D0 .+ 0.2 > lb = D0 .-0.2
The constraints of this problem are

> g = []; for i in 1:6 g = [g; D1[i]-lb[i]^2; ub[i]^2-D1[i]; B1[i][3]] end > h = [u1^2+u2^2+u3^2+u4^2-1]
where

> B1 = [R*a+T for a in B0]
As we mentioned, to find the bounding box, we need to solve six optimization problems. If we consider

> C_hat = R*C+T
where C is the centre of the moving platform, the objective functions of these problems for i = 1, . . . , 3 will be

> f[i] = C_hat[i]
We solve six moment relaxations by using Mosek software

> for i in 1:3 b[i], Mb[i] = minimize(f[i],h,g,X,l,opt) B[i], MB[i] = maximize(f[i],
h,g,X,l,opt) end from which we deduce the bounding box shown in Figure 6-left. These moment relaxations are of order = 3. Only to find b[3], we needed a higher order relaxation and we considered = 4. In order to find out if the order of relaxation is sufficient, we check whether u 2 1 + u 2 2 + u 2 3 + u 2 4 is close enough to one at the solutions. In our numerical experiments to compute the minimum b [START_REF] De Klerk | Aspects of semidefinite programming: interior point algorithms and selected applications[END_REF] of the z-coordinate, with the relaxation order = 3, we find 4 approximate minimizers with the following norm for u:

The relaxation at order = 4 gives a good enough approximation of the minimizers and of the minimum of z.

Enclosing ellipsoid of robot workspace

The minimal enclosing ellipsoid for all positions of point C from the above section can now be found by the same technique as in Section 4.2. The points ξ(x) in (8) will now be replaced by the point C, as a function of u 1 , u 2 , u 3 , u 4 , x, y, z as in problem (20). Figure 6-left presents a comparison of the bounding box and the minimal ellipsoid for the center point of the moving platform. The order of relaxation for computing the minimal ellipsoid is = 4 in this example.

Trajectories of a parallel robot

In this section, we analyse the trajectory of the point C attached to the platform B, first when the first interval constraint is satisfied and the other five lengths have a fixed value in their length interval; secondly when the first two interval constraints are satisfied and the other four lengths have a fixed value.

Case 1: Five fixed values

In this case, the trajectory of the point C is the curve consisting of the possible positions of the C in the space. To obtain different positions of the platform under these constraints, we minimize and maximize C 1 , so we will have an interval for extreme positions corresponding to the first coordinate. This means that we need to solve the problem (20) with objective ± C 1 and the additional constraints

δ i = δ 0 i , i = 2, . . . , 6
f = 1 , (21)
g = δ 1 -m 2 1 , M 2 1 -δ 1 , h = C 1 -µ k , k = 1, . . . , m , δ i -δ 0 i , i = 2, . . . , 6 , u 2 -1 .
The minimizers of these problems yield the displacements (R,T) and the positions of C in the space. The same computation is repeated for the other coordinates C 2 , C 3 to get a better sampling of the trajectory.

Case 2: Four fixed values

We compute positions of C attached to the platform when the first two interval constraints are satisfied and the other four lengths have a fixed value. This traces out a surface of the positions of the point C. The problem is analogous to Case 1; only,we need to compute the interval for extreme positions corresponding to the first and second coordinates. Thus, we need to solve problem (1) with

f = ± C k , k = 1, 2 , (22)
g = δ i -m 2 i , M 2 i -δ i , i = 1, 2 , h = δ i -δ 0 i , i = 3, . . . , 6 , u 2 -1 .
If we consider µ and γ to be values in the intervals obtained for the coordinates C 1 and C 2 , respectively, the final feasibility problem to solve should satisfy all the previous constraints and the additional constraints C 1 = µ, C 2 = γ. The final problem to solve is problem (1) with

f = 1 , (23)
g = δ i -m 2 i , M 2 i -δ i , i = 1, 2 , h = C 1 -µ, C 2 -γ, u 2 -1 , δ i -δ 0 i , i = 2, . . . , 6 .
As a result, we will have a set of points approximating a surface. We obtain these points by changing the constraints, choosing different values for C 1 and C 2 and solving the corresponding optimization problem.

Figure 7 shows the computational result of solving problem (1) to find the trajectories of a Stewart platform for these two cases. The order of relaxation for these problems is = 3.

Conclusion

We have demonstrated how techniques of polynomial optimization can be used in the important area of geometric modeling. We focused on practical examples such as finding the bounding box or minimum enclosing ellipsoid for parametric surfaces or for a workspace of parallel robots. The limitations of our approach are typical for polynomial optimization, in particular, reliability of the numerical solutions of the resulting SDP problems and, sometimes, the necessity for higher order relaxations resulting in very large SDPs. The latter is, however, not too restrictive, given the small dimensions of the respective polynomial optimization problems. We thus believe that this technique will find further use, in particular, in robotics.

 corresponding to the blue domain on the adjacent figure. The objective function is f = x, corresponding to the vertical red line.

 z, γ, X,Y ; λ, Ξ, Θ) and, using[START_REF] Parrilo | Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization[END_REF], we get sup Z,z,γ L(Z, z, γ, X,Y ; λ, Ξ, Θ) = log det(Z)

Fig. 2 :

 2 Fig. 2: Closest points and intersection point for bicubic parametric surfaces.

Fig. 3 :

 3 Fig. 3: Closest points, intersection point and minimal enclosing ellipsoid for bicubic parametric surfaces.

Fig. 4 :

 4 Fig. 4: Parallel robots with a fixed platform (red platform), moving platform (blue platform) and extensible arms (yellow arms).

 ...); T0 = Xi0[5:7] > B0 = [R0*a + T0 for a in B0pre]

>

 C = sum(b for b in B0)/length(B0) > X0 = [0.6,0.4,1] In addition, the upper bound and lower bound on the lengths are > D0 = norm.(B0-A0) > ub = D0 .+ 2.5 > lb = D0 .-2.5

>

 Sol = [] > for i in 1:length(w) if abs(w[i]) > 0.1 push!(Sol,Xi[:,i]) end end > R_new = Rotation(Sol[1][1:4]...) > T_new = Sol[1][5:7] and the new platform will be > B_new = [R_new *a + T_new for a in B0]

Fig. 5 :

 5 Fig. 5: The new position of the platform is shown in violet such that the middle of the blue platform is at a given point in the space (the green point).

Fig. 6 :

 6 Fig. 6: On the left, we show a comparison of minimal enclosing ellipsoid and bounding box. The initial position and extreme position of the platform minimizing y is presented in the right.

,

 in which δ 0 = (d 0) 2 = B 0 -A 0 . Next, we sample the interval between these extreme values at intermediate values µ k , k = 1, . . . , m and solve feasibility problems with an additional equality constraint C 1 -µ k = 0 for k = 1, . . . , m. This minimization is done by solving problem (1) with

Fig. 7 :

 7 Fig. 7: On the left, the trajectory of the center of the platform with 5 arm lengths fixed is shown. The trajectory of the center of the platform with 4 arm lengths fixed is shown in the right.

https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl

https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl

https://github.com/MOSEK/Mosek.jl

https://github.com/chriscoey/Hypatia.jl

Acknowledgement. This work has been supported by European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions, grant agreement 813211 (POEMA). The Julia package MomentTools.jl and Matlab package Loraine used in this chapter have been developed in the context of the POEMA project.