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Posterior consistency for partially

observed Markov models

Randal Douc ∗ Jimmy Olsson † and François Roueff ‡

Abstract: In this work we establish the posterior consistency for a para-
metrized family of partially observed, fully dominated Markov models. As
a main assumption, we suppose that the prior distribution assigns posi-
tive probability to all neighborhoods of the true parameter, for a distance
induced by the expected Kullback-Leibler divergence between the family
members’ Markov transition densities. This assumption is easily checked
in general. In addition, under some additional, mild assumptions we show
that the posterior consistency is implied by the consistency of the maximum
likelihood estimator. The latter has recently been established also for mod-
els with non-compact state space. The result is then extended to possibly
non-compact parameter spaces and non-stationary observations. Finally,
we check our assumptions on examples including the partially observed
Gaussian linear model with correlated noise and a widely used stochastic
volatility model.

1. Introduction

We consider a very general framework where a bivariate Markov chain (Zn)n∈N

taking on values in some product state space Z = X× Y, i.e., Zn = (Xn, Yn), is
only partially observed through the second component (Yn)n∈N. In this model,
which we refer to as a partially observed Markov model (POMM) ([33] uses the
alternative term pairwise Markov chain), any statistical inference has to be car-
ried through on the basis of the observations (Yn)n∈N only, which is generally
far from straightforward due to the fact that the observation process (Yn)n∈N is,
on the contrary to (Zn)n∈N, generally non-Markovian. Of particular interest are
the hidden Markov models (HMMs) (alternatively termed state-space models in
the case where X is continuous), which constitute a special case of the POMMs
in which the process (Xn)n∈N is itself a Markov chain, referred to as the state
process, and the observations are conditionally independent given the states,
such that the marginal conditional distribution of each observation Yn depends
only on the corresponding state Xn. The use of unobservable states provides
the HMMs with a relatively simple dependence structure which is still generic
enough to handle complex, real-world time series in a large variety of scien-
tific and engineering disciplines (such as financial econometrics [21, 29], speech
recognition [23], biology [7], neurophysiology [15], etc.; see also the monographs
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[28] and [6] for introductive and state of the art treatments of the topic, respec-
tively), and the POMMs can be viewed as a natural extension and generalization
of this model class.

In this paper, we will consider a parameterized family of POMMs with pa-
rameter space Θ, where the latter is assumed to be furnished with some metric.
For each θ ∈ Θ, the dynamics of the model is specified by the transition kernel
Qθ of (Zn)n∈N on X× Y, and we will in this work restrict ourselves to the fully
dominated case where Qθ has a transition density qθ w.r.t. some dominating
measure (all these objects will be defined rigorously in the next section). Each
transition kernel Qθ is assumed to have a unique invariant distribution πθ.

We assume that we have access to a single observation trajectory (Yn)n∈N

sampled from the canonical law P induced by Qθ⋆ and some initial distribution
η⋆ on X × Y, where θ⋆ ∈ Θ is a distinguished parameter interpreted as the
true parameter and η⋆ is generally different from πθ⋆ . In order to estimate θ⋆
via the observations we adopt a Bayesian framework and introduce a possibly
improper prior distribution λ on Θ, reflecting our a priori belief concerning
θ, and compute the conditional—posterior—distribution λ〈Y1:n〉 of θ given the
observations Y1:n = (Y1, . . . , Yn), which is, for measurable A ⊆ Θ and y1:n ∈ Yn,
given by

λ〈y1:n〉(A) =
∫

A
pθ(y1:n)λ(dθ)

∫

Θ pθ(y1:n)λ(dθ)
,

where pθ(y1:n) denotes the density of Y1:n given θ. In this general setting, we
examine the asymptotics of the posterior distribution and identify model con-
ditions under which the posterior consistency

P

(

λ〈Y1:n〉 =⇒
n→∞

δθ⋆

)

= 1, (1)

holds true, where =⇒ denotes weak convergence and δθ⋆ denotes the Dirac mass
located at the true parameter θ⋆. In (1), P denotes the distribution of (Yn)n∈N

corresponding to the true parameter θ⋆; in this sense we adopt, by proving (1),
a frequentist point of view for the asymptotic behavior of the posterior distri-
bution. However, establishing that the influence of the prior is overwhelmed by
the data as the sample size n grows to infinity is of fundamental interest in
Bayesian analysis.

1.1. Previous work

From the frequentist inference point of view, POMMs have been subjected to
extensive research during the last decades. For the important subclass formed by
HMMs with finite state space, the asymptotic consistency of the maximum like-
lihood estimator (MLE) was established by [5, 32] and [26] in the cases of finite
and general observation spaces, respectively, and these results were generalized
gradually to more general HMMs in [10, 13, 18]. The first MLE consistency result
for general HMMs with possibly non-compact state space was obtained in [12],
and [11] extended further this result to misspecified models. For POMMs that
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fall outside the HMM class, [13] established the MLE consistency for autore-
gressive models with Markov regimes by applying strong mixing assumptions
requiring typically the state space of the latent Markov chain to be compact. Re-
cently, [9] established the MLE consistency for general observation-driven time
series with possibly non-compact state space and [14] established the analogous
result for general partially dominated POMMs, covering the observation-driven
models as a special case. The latter work can be viewed as the state of the art
when it concerns MLE analysis for POMMs. The mentioned works demonstrate
a variety of techniques, but share the assumption that the parameter space Θ
is a compact set.

On the other hand, when it concerns Bayesian asymptotic analysis of POMMs,
there are only a handful results of which all treat exclusively HMMs. In the case
of HMMs with a finite state space, [16] provides the posterior consistency (with
rates) for parametric models with an unknown number of states and the recent
paper [36] deals with posterior concentration in the non-parametric case. For
more general HMMs, [8] establishes, along the now classical lines of [25, Theo-
rem 8.3], a Bernstein-von Mises-type result under the assumption that the model
satisfies, first, a law of large numbers for the log-likelihood function, second, a
central limit theorem for the score function and, third, a law of large numbers
for the observed Fisher information. As these asymptotic properties, which are
the cornerstones of the proof of the asymptotic normality of the MLE, can be
established for models satisfying the strong mixing assumption (see [13] and
[6, Chapter 12]), the result holds, in principle, true for HMMs with a compact
state space. A more direct approach to the posterior consistency for HMMs is
taken in [31], where the author works with a large deviation bound for the ob-
servation process; nevertheless, the analysis is driven by very restrictive model
assumptions in terms of strong mixing and additive observation noise.

In conclusion, all available results on posterior concentration for parametric
HMMs rest on very stringent model assumptions, in the sense that the state
space of the unobservation process is assumed to be compact. Needless to say,
this is not the case for many models met in practical applications (such as the
linear Gaussian state-space models). In addition, the mentioned results require,
without exception, also the parameter space to be compact, which is generally
a severe restriction for the Bayesian. Consequently, a general posterior consis-
tency result for parametric POMMs (and, in particular, parametric HMMs) has
hitherto been lacking. In the light of the widespread and ever increasing interest
in Bayesian inference in models of this sort, which is boosted by novel achieve-
ments in computational statistics (especially in the form of particle [20] and
particle Markov chain Monte Carlo methods [1]), this is indeed remarkable, and
the goal of the present paper is to fill this gap.

1.2. Our approach

In this paper, we establish the posterior consistency (1) under very mild as-
sumptions which can be checked for a large class of POMMs used in practice.
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The result is stated in Theorem 3 for general POMMs with positive transition
density (Theorem 1 deals with the case of a compact parameter space) and in
Theorem 2 for HMMs under an alternative set of assumptions requiring, e.g.,
only the emission density to be positive. The starting point of our analysis is
the observation that it is, by the Portmanteau lemma, enough to show that for
all Ap = {θ ∈ Θ : d(θ, θ⋆) ≥ 1/p}, p ∈ N

∗,

lim sup
n→∞

λ〈Y1:n〉(Ap) = 0, P-a.s. (2)

(see Remark 10 for details). Now, by expressing the posterior as

λ〈Y1:n〉(A) =
∫

A
pθ(Y1:n)/pθ⋆(Y1:n)λ(dθ)

∫

Θ pθ(Y1:n)/pθ⋆(Y1:n)λ(dθ)
, (3)

we conclude that (2) will hold if

– all closed sets A not containing θ⋆ are P-remote from θ⋆ in the sense that
the numerator of (3) tends to zero exponentially fast under P;

– for all δ > 0, there exists some subset Θδ of Θ which is charged by the prior,
i.e., λ(Θδ) > 0, and such that for all θ ∈ Θδ, the ratio pθ(Y1:n)/pθ⋆(Y1:n) is,
P-a.s., eventually bounded from below by e−δn. This asymptotic merging
property forces the numerator of (3) to vanish at a faster rate than the
denominator for all P-remote sets A, implying (2).

This machinery, which is adopted from [4] and described generally in Sec-
tion 4.1, does not require the model under consideration to be a POMM; it is
hence of independent interest. As we will see, the situation of a non-compact
parameter space calls for a refined notion of P-remoteness; indeed, by operating
under the assumption that the sequence of posterior distributions is tight, it is
enough to require P-remoteness to hold on a sufficiently large compact subset
of Θ.

The P-remoteness, the asymptotic merging property and the tightness of the
posterior are the fundamental building blocks of our analysis of the posterior
concentration. Interestingly, a key finding of us is that the P-remoteness is closely
related to the MLE consistency; more specifically, in Proposition 9 we establish
that if all sequences of approximate MLEs (see Definition 11) on some compact
subsetK of Θ (with λ(K) < ∞) containing θ⋆ are strongly consistent, then A∩K
is P-remote for all closed sets A not containing θ⋆. As mentioned in the literature
review above, the MLE can, under the assumption that the parameter space is
compact, be proven to be consistent under very mild model assumptions satisfied
for most fully dominated POMMs, and we will hence obtain the remoteness for
free for a large set of models.

When it concerns the asymptotic merging property, we derive the instrumen-
tal bound

lim inf
n→∞

n−1 log
pθ(Y1:n)

pθ⋆(Y1:n)
≥ lim inf

n→∞
n−1 log

p̄θ(Z1:n)

p̄θ⋆(Z1:n)
, (4)
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where p̄θ(z1:n), z1:n ∈ Zn, denotes the density of the complete data Z1:n given
θ (see Lemma 8 for a more general formulation). In the stationary mode, i.e.,
when η⋆ = πθ⋆ , the right hand side of (4) tends, by Birkhoff’s ergodic theorem,
to minus the expectation ∆(θ⋆, θ) of the Kullback-Leibler divergence (KLD)
between Qθ⋆ and Qθ under the stationary distribution. As a consequence, the
asymptotic merging property holds true as long as the prior is information dense
at θ⋆ in the sense that λ({θ ∈ Θ : ∆(θ⋆, θ) ≥ δ}) > 0 for all δ > 0. This condition
can however be checked straightforwardly in general, since ∆(θ⋆, θ) involves a
KLD between perfectly known transition kernels. Without access to the bound
(4), an alternative strategy would have been to study directly the limit of the
left hand side of (4) by, e.g., going to “the infinite past” in the spirit of [13, 11];
however, this approach would require the analysis of an expected KLD between
ergodic limits pθ(Y0 | Y−∞:−1) and pθ⋆(Y0 | Y−∞:−1) (we refer to the mentioned
works for the meaning of these quantities) under the stationary distribution,
which is infeasible in general.

As described above, our technique of handling models with a non-compact
parameter space is based on the assumption that the sequence of posterior
distributions is tight. Recalling that our objective is the establishment of the
gradual concentration of these distributions around the true parameter as n
increases, we may expect this assumption to be mild. Indeed, by operating in
the stationary mode using Kingman’s subadditive theorem, we are able to derive
handy assumptions under which the posterior tightness holds at an exponential
rate (see Theorem 3 and Proposition 18). As far as is known to us, this is the first
result ever in this direction for models of this sort, and we believe that a similar
approach may be used also for extending existing results on MLE consistency
to the setting of a non-compact parameter space.

We remark that Birkhoff’s ergodic theorem and Kingman’s subadditive the-
orem require the observation process to be stationary (i.e. η⋆ = πθ⋆). Neverthe-
less, if for all parameters θ and initial distributions η, the distribution of Y1:∞,
when initialized according to η and evolving according to θ, admits a positive
density w.r.t. the distribution of Y1:∞ under the stationary distribution πθ, one
may prove that any property that holds a.s. under the latter distribution holds
a.s. under the former as well. That such positive densities exist can be estab-
lished for POMMs in general under the assumption that the transition density is
positive (Lemma 12) and for HMMs in particular under the weaker assumption
that the emission density is positive and the hidden chain is geometrically er-
godic (Lemma 14), and we are consequently able to treat also the non-stationary
case. As far as is known to us, this efficient approach to non-stationarity results
has never been taken before.

Finally, we demonstrate the flexibility of our results by checking carefully our
assumptions on a partially observed linear Gaussian Markov model as well as
the widely used stochastic volatility model proposed by [21] (the latter falls into
the framework of HMMs).

To sum up, our contribution is fourfold, since we

– establish the posterior consistency for very general POMMs under mild
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assumptions, which allow the state space of the latent part of the model
to be non-compact and which can be checked for a large number of models
used in practice.

– link, via the concept of P-remoteness, the posterior consistency to the
consistency of the MLE.

– are able to treat also the case of a non-compact parameter space.
– treat efficiently the case of non-stationary observations.

The paper is structured as follows. In Section 2, we introduce the POMM
framework under consideration and state, in Section 2.2, our main results (The-
orems 1–3) and assumptions. In particular, we provide an alternative set of as-
sumptions that are taylor-made for the special case of HMMs. Section 3 treats
the two examples mentioned previously and discusses generally our assumptions
in the light of nonlinear state-space models. In Section 4 we embed the problem
of posterior concentration into the general framework outlined above, serving
as a machinery for the proofs of our main results. The latter proofs are found
in Section 5 and in Section 6 we conclude the paper.

2. Fully dominated partially observed Markov models (fdPOMM)

2.1. Setting

Let (X,X ) and (Y,Y) be general measurable spaces referred to as state space and
observation space, respectively. The product space Z = X × Y is then endowed
with the product σ-field Z = X � Y, and we set Ω = ZN and F = Z�N. Let
further (Zn)n∈N, (Xn)n∈N and (Yn)n∈N denote the canonical processes taking
on values in the spaces (Z,Z), (X,X ) and (Y,Y), respectively, and defined by
Zn(ω) = (xn, yn), Xn(ω) = xn and Yn(ω) = yn, where ω = ((xk, yk))k∈N. Now,
for all n ∈ N

∗, only (Yn)n∈N∗ is observable, and for this reason we refer to the
model as partially observed. Let us define Fn = σ(Y1:n) for all n ∈ N, with
Y1:n = (Y1, . . . , Yn) serving as our general notation for vectors. In addition, let
(Θ, T ) be a measurable space and let {Qθ, θ ∈ Θ} be a collection of Markov
transition kernels on (Z,Z). Denote, for all θ ∈ Θ, by P

θ
η the law of the canonical

Markov chain (Zn)n∈N induced by the Markov transition kernel Qθ and the
initial distribution η. We say that the model is fully dominated if there exist
two σ-finite measures µ and ν on (X,X ) and (Y,Y), respectively, such that for
all θ ∈ Θ and z ∈ Z, the probability measure Qθ(z, ·) is dominated by µ � ν,
and we denote by qθ(z, ·) the corresponding density. We may now introduce the
main class of models studied in this article.

Definition 1 We say that (Yn)n∈N∗ follows a fully dominated partially ob-
served Markov model (fdPOMM) if, for all n ∈ N

∗, under the previous defini-
tions and assumptions, the distribution of Y1:n is given by P

θ
η(Y1:n ∈ ·) for some

θ ∈ Θ and initial distribution η on Z.
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We denote, with a slight abuse of notation, by y1:n 7→ pθ,η(y1:n) the density of
Y1:n with respect to ν�n under Pθ

η, i.e.,

pθ,η(y1:n) :=

∫

qθ(z0, (x1, y1))

n−1
∏

ℓ=1

qθ((xℓ, yℓ), (xℓ+1, yℓ+1)) η(dz0)µ
�n(dx1:n).

Now, let λ be some measure, called the prior distribution, on (Θ, T ). We will
always assume that Θ is endowed with some metric d and that T is taken to be
the corresponding Borel σ-field.

Given observations y1:n ∈ Yn, the posterior distribution associated with the
initial probability distribution η is defined by

λ〈y1:n〉(A) :=
∫

A pθ,η(y1:n)λ(dθ)
∫

Θ
pθ,η(y1:n)λ(dθ)

, for all A ∈ T . (5)

For the numerator and denominator of (5) to be well-defined, we will always
assume that (θ, z, z′) 7→ qθ(z, z

′) is measurable on Θ×Z2. However, at this point
it is not guaranteed that the ratio itself is well-defined (and does not degenerate
into 0/0 or ∞/∞). In fact, we will only be interested in the case where λ〈Y1:n〉
is P-a.s. a probability distribution for n large enough, where P denotes the true
distribution of (Yn)n∈N and is introduced below.

We always assume the following.

(B1) For all θ ∈ Θ, the Markov transition kernel Qθ has a unique stationary distri-
bution πθ.

Under (B1) it is typically assumed that the law of the observations is given
by P = P

θ⋆
πθ⋆

for some distinguished parameter θ⋆ ∈ Θ interpreted as the true

parameter (which is not known a priori). We proceed similarly and set π⋆ = πθ⋆ .
However, in the present paper we will also consider the more general case where
P = P

θ⋆
η⋆

for some possibly unknown initial distribution η⋆ 6= π⋆, and since
the initial distribution η appearing in (5) is designed arbitrarily by the user, we
cannot assume that η = η⋆. See also Remark 13 for further comments concerning
this.

Remark 2 Under (B1), since Qθ is dominated by µ� ν, the stationary proba-
bility measure πθ is also dominated by µ� ν, and by abuse of notation, we still
denote by πθ the associated density.

2.2. Main results

We now state the main results of this contribution, which consist in providing
general sufficient conditions for the posterior consistency

P

(

λ〈Y1:n〉 =⇒
n→∞

δθ⋆

)

= 1,

where =⇒ denotes weak convergence and δθ denotes a Dirac point mass located
at θ. The proof of this result is based on basically two main ingredients. The
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first is to ensure that only parameters θ close to θ⋆ have a large likelihood as the
number n of observations tends to infinity. This is formalized by the following
assumption.

(B2) If K ∈ T is a compact set containing θ⋆, then all K-valued, (Fn)n∈N-adapted

random sequences (θ̂n)n∈N∗ such that for all n ∈ N
∗,

n−1 log pθ̂n,η(Y1:n) ≥ n−1 log pθ⋆,π⋆(Y1:n) + ǫn,

with
lim
n→∞

ǫn = 0, P
θ⋆
π⋆
-a.s.,

converges Pθ⋆
π⋆
-a.s. to θ⋆.

For identifiable models, this assumption follows directly from standard consis-
tency results on the maximum likelihood estimator for ergodic partially observed
Markov chains; see [14] and the references therein. In other words, it does not
require a specific treatment from a Bayesian point of view.

Remark 3 Note that in the case where Θ is compact, (B2) only needs to be
checked for K = Θ.

The second ingredient is to ensure that the prior distribution does not con-
centrate around parameters whose likelihood is too small asymptotically. We
provide below sufficient conditions that are easily checked in two specific situa-
tions.

The fully dominated case. For all θ ∈ Θ we set

∆(θ⋆, θ) := E
θ⋆
π⋆

[KL (Qθ⋆(Z0, ·)‖Qθ(Z0, ·))] ∈ [0,∞], (6)

where for any two probability measures P and Q defined on the same probability
space, KL (P‖Q) denotes the KLD of Q from P defined by

KL (P‖Q) :=

{

∫

log dP
dQ dP, if P ≪ Q,

∞, otherwise.

Theorem 1 Consider a fdPOMM satisfying (B1–2) with a compact parameter
space Θ. Let λ be a finite measure on Θ and η an arbitrary distribution on
(Z,Z). Then the conditions

(B3) for all θ ∈ Θ, qθ(z, z
′) > 0 µ � ν-a.s.,

(B4) for all δ > 0, λ ({θ ∈ Θ : ∆(θ⋆, θ) ≤ δ}) > 0,

imply that for all initial distributions η⋆ on (Z,Z),

P
θ⋆
η⋆

(

λ〈Y1:n〉 =⇒
n→∞

δθ⋆

)

= 1.

The proof of this result can be found in Section 5.2.

imsart-generic ver. 2011/11/15 file: dor2015.tex date: September 17, 2018



R. Douc, J. Olsson and F. Roueff/Posterior consistency for fPOMMs 9

An alternative set of conditions for HMMs. The HMMs can be viewed
as a subclass of the fdPOMMs defined by the following assumption.

(C1) For all θ ∈ Θ, z = (x, y) ∈ Z and z = (x′, y′) ∈ Z,

qθ(z, z
′) = kθ(x, x

′)gθ(x
′, y′),

where kθ and gθ are kernel densities on X× X and X× Y, respectively.

Under (C1) we denote by Kθ the Markov transition kernel on (X,X ) associated
with the transition density kθ. In this subclass of models it may happen that
the positiveness condition (B3) does not hold, but only since kθ vanishes. In
this case, we rely on the following weaker assumption.

(C2) For all θ ∈ Θ and x ∈ X, gθ(x, ·) > 0 ν-a.s.

In this context, we define

∆(θ⋆, θ) :=

∫

KL(gθ⋆(x, ·)‖gθ(x′, ·)) π⋆(dx× Y)πθ(dx
′ × Y) (7)

and consider the following assumption replacing (B4).

(C3) For all δ > 0, λ({θ ∈ Θ : ∆(θ⋆, θ) ≤ δ}) > 0.

Finally, we impose the following condition.

(C4) For all θ ∈ Θ and all initial distributions η on (X,X ), (ηKn
θ )n∈N∗ converges

to the first marginal of πθ in the total variation norm, i.e.,

lim
n→∞

‖ηKn
θ − πθ(· × Y)‖TV = 0.

The kernel notation in (C4) is standard and described in detail in Section A.
We can now state the following result, whose proof can be found in Sec-

tion 5.3.

Theorem 2 Theorem 1 holds still true when (B3–4) are replaced by (C1–4).

Remark 4 It is interesting to note that in the case of i.i.d. observations, which
corresponds to the HMM case (C1) with kθ(x, x

′) arbitrary (say equal to 1 with
µ an arbitrary probability measure) and gθ(x

′, y′) not depending on x′, simply
denoted by gθ(y

′) hereafter, we have

∆(θ⋆, θ) = ∆(θ⋆, θ) = KL (gθ⋆‖gθ) .

Hence (B4) and (C3) boil down to the well known condition of the i.i.d. setting
introduced by [34], see also [19, Eqn. (1)].

Non-compact parameter space. Needless to say, a drawback of Theorems 1
and 2 is that Θ is assumed to be compact. This assumption is standard in the
frequentist setting, e.g., when studying the maximum likelihood estimator, but
can be problematic in the Bayesian setting, where it is often convenient to work
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with priors defined on non-compact spaces for computational reasons. We now
derive some additional conditions dealing with the non-compact case.

Define for all A ∈ T , n ∈ N
∗ and y0:n ∈ Yn+1,

p̂A(y0:n) := sup
(θ,x0)∈A×X

∫ n−1
∏

ℓ=0

qθ(zℓ, zℓ+1)µ
�n(dx1:n) (8)

(with zℓ = (xℓ, yℓ)). Now the following result holds true also for a possibly
non-compact Θ.

Theorem 3 Consider a fdPOMM satisfying (B1) and (B2). Let λ be a Radon
measure on Θ and η an arbitrary distribution on (Z,Z). In addition, suppose
that the following conditions hold true.

(B5) There exist ℓ ∈ N
∗ and a non-decreasing sequence (Cm)m∈N of compact sets

in T such that

lim sup
m→∞

p̂Cc
m
(Y0:ℓ) = 0 P

θ⋆
π⋆
-a.s., (9)

E
θ⋆
π⋆
[log+ p̂Θ(Y0:ℓ)] < ∞. (10)

(B6) There exists n0 ∈ N
∗ such that

∫

λ(dθ) pθ,η(Y1:n0
) < ∞ P

θ⋆
π⋆
-a.s., (11)

E
θ⋆
π⋆
[log pθ⋆,π⋆(Yn0

| Y1:n0−1)] > −∞. (12)

Then (B3–4) or (C1–4) imply that for all initial distributions η⋆ on (Z,Z),

P
θ⋆
η⋆

(

λ〈Y1:n〉 =⇒
n→∞

δθ⋆

)

= 1.

The proof is postponed to Section 5.4. In (12), pθ⋆,π⋆(Yn0
| Y1:n0−1) is, as usual,

defined as the ratio pθ⋆,π⋆(Y1:n0
)/pθ⋆,π⋆(Y1:n0−1), with the convention that the

denominator is unity if n0 = 1. Note that this ratio is always well defined under
(B3) or (C1–2).

Remark 5 It is interesting to observe that, as detailed in Lemma 16, each
condition in (B6) implies the same condition with n0 replaced by any n ∈ N

larger than n0. It is therefore sufficient to check the conditions independently
with two possibly different n0. The fact that (11) holds for all n ≥ n0 is of
particular interest, since it guaranties that both the numerator and denominator
in the definition of the posterior λ〈Y1:n〉 in (5) are finite. On the other hand, by
(B3) or (C1–2) the denominator is positive. Hence, if (11) holds, the posterior
λ〈Y1:n〉 is well defined as a probability distribution for n large enough.
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3. Examples

3.1. Partially observed Gaussian linear Markov model

First, we consider a linear Gaussian fdPOMM defined on Z = R
p × R

q by

Zk+1 = ΦθZk + ǫk+1, (13)

where Φθ is (p+ q)× (p+ q) matrix and (ǫn)n∈N∗ is a sequence of i.i.d. centered
Gaussian vectors with (p+q)×(p+q) covariance matrix Rθ. In the following we
assume that Θ is a compact subset of Rd and that for all θ ∈ Θ, Φθ has spectral
radius strictly less than unity and Rθ is positive definite. Then (Zn)n∈N is a
vector auto-regressive process with transition density

qθ(z0, z1) = (2π)−(p+q)/2(det(Rθ))
−1 exp

(

−1

2
(z1 − Φθz0)

⊺R−1
θ (z1 − Φθz0)

)

,

with (z0, z1) ∈ Z2, satisfying (B1) . This framework includes the widespread
linear Gaussian state-space model

Xk+1 = AθXk + ζk+1,

Yk = BθXk + ξk,
k ∈ N, (14)

corresponding to

Φθ =

[

Aθ 0
BθAθ 0

]

and ǫk =

[

ζk
Bθζk + ξk

]

.

Note that the model (14) is an HMM only if ζk and ξk are uncorrelated for all k,
which is not assumed in the model (13). Assumption (B3) is trivially satisfied.
The expected KLD in (6) is easily computed; indeed, for all θ⋆ = (Φ∗, R∗) and
θ = (Φ, R) in Θ,

∆(θ⋆, θ) =
1

2

[

tr(R−1R∗)− p− q − log det(R−1R∗)

+tr(R−1(Φ− Φ∗)
⊺(Φ− Φ∗)Γ∗)

]

,

where

Γ∗ := E
θ⋆
π⋆

[Z0Z
⊺

0 ] =

∞
∑

k=0

Φk
∗R(Φ⊺

∗)
k.

It follows that θ 7→ ∆(θ⋆, θ) is continuous at θ⋆ (where it always vanishes) and
thus that (B4) is satisfied whenever λ is strictly positive on Θ (i.e., λ(A) > 0
for every non-empty open set A). Theorem 1 hence applies as soon as Assump-
tion (B2) holds true (examples are treated in, e.g., [18] or [12, Section 3.3]).
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3.2. General HMMs

In this section, we consider the case of HMMs, i.e., we assume (C1) . Up to
our knowledge, the following set of assumptions, which are borrowed from [12,
Theorem 1], are the weakest available for obtaining the strong consistency of
the (approximate) MLE for well-specified HMMs.

(D1) For all θ ∈ Θ, the Markov kernel Kθ is aperiodic positive Harris recurrent.

Note that under (C1), this assumption is sufficient for (B1), i.e., the existence
of a unique stationary probability measure for each complete chain kernel Qθ,
θ ∈ Θ.

(D2) E
θ⋆
π⋆
[supx∈X

(log gθ⋆(x, Y0))
+] < ∞, Eθ⋆

π⋆

[∣

∣log
∫

gθ⋆(x, Y0)πθ⋆(dx)
∣

∣

]

< ∞.

(D3) For all θ 6= θ⋆, there are a neighborhood Uθ of θ such that

sup
θ′∈Uθ

sup
(x,x′)∈X2

kθ′(x, x′) < ∞, E
θ⋆
π⋆

[

sup
θ′∈Uθ

sup
x∈X

(log gθ′(x, Y0))
+

]

< ∞

and an integer rθ such that

E
θ⋆
π⋆

[

sup
θ′∈Uθ

(log pθ′,η(Y1:rθ ))
+

]

< ∞.

(D4) For all θ 6= θ⋆ and n ≥ rθ, the function θ
′ 7→ pθ′,η(Y1:n) is upper-semicontinuous

at θ, Pθ⋆
π⋆
-a.s.

(D5) For all θ 6= θ⋆ such that pθ,η(Y1:rθ ) > 0 P
θ⋆
π⋆
-a.s., we have

lim inf
n→∞

P
θ⋆
π⋆
(Y1:n ∈ An) > 0, lim sup

n→∞
n−1 logPθ

η(Y1:n ∈ An) < 0

for some sequence of sets An ∈ Y�(n+1).

As a consequence of Theorems 1 and 2, the only requirement on the prior λ in
the case of general HMMs with a compact parameter space is given by (B4) or
(C3), depending on the positivity assumption on the kernel densities ((B3) or
(C2)).

Theorem 4 Assume (C1) and (D1–5) with a compact parameter space Θ. If
(B3–4) or (C2–3) hold, then, for all initial distributions η⋆ on (Z,Z),

P
θ⋆
η⋆

(

λ〈Y1:n〉 =⇒
n→∞

δθ⋆

)

= 1.

Proof. Assumption (D1) implies (B1) and (C4) (see [30, Theorem 13.0.1]).
Moreover, the strong consistency of the AMLE has been proved in [12, Theorem
1] under (D1–5), showing that (B2) is satisfied. Thus, all the assumptions of
Theorem 1 and Theorem 2 are satisfied and the proof follows. �
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Thus, for HMMs, one may, in order to apply Theorem 4, choose to check
(B3–4) or (C2–3), depending on the model. Consider for example the nonlinear
state-space model on X = R

p,

Xk+1 = Tθ(Xk) + Σθ(Xk)ζk+1, k ∈ N, (15)

where θ is an m-dimensional parameter on a compact space Θ ⊂ R
m, (ζk)k∈N∗ is

an i.i.d. sequence of d-dimensional random vectors with density ρζ with respect
to Lebesgue measure λLeb and Tθ : Rp → R

p and Σθ : Rp → R
p×p are given

(measurable) matrix-valued functions. Conditions on Tθ, σθ, ρθ and gθ to ensure
(D1–5)can be found in [12, Section 3.3]. These conditions are stated in the case
where ρζ is positive over R

d but can be easily adapted to the case where the
support of ρζ is compact. However, in the latter case, (B3) does not hold, and
assuming (C2), we can rely on (C3) as an alternative for (B4). In what follows,
we explain how to deal with πθ appearing in the definition (7) of ∆(θ⋆, θ) using
standard conditions.

Assume that there exist a measurable function V : X → [1,∞) and constants
(C, ρ) ∈ R

∗
+ × (0, 1) such that for all n ∈ N and all (x, x′) ∈ X2,

sup
θ∈Θ

‖Kn
θ (x, ·)−Kn

θ (x
′, ·)‖V ≤ C(V (x) + V (x′))ρn, (16)

where for any signed measure χ on (X,X ), ‖χ‖V := supχf , where the supre-
mum is taken over all measurable functions f : X → R such that |f |V :=
µ − esssupx∈X

[|f(x)|/V (x)] ≤ 1 and χf denotes the integral of f w.r.t. χ (see
Section A for details).

Proposition 5 Assume that (16) holds. Moreover, suppose that

(i) for all θ⋆ ∈ Θ, there exists C⋆ > 0 such that, for µ-a.e. x ∈ X and
µ-a.e. x′ ∈ X, θ 7→ KL(gθ⋆(x, ·)‖gθ(x′, ·)) is continuous at θ⋆ and

sup
θ∈Θ

KL(gθ⋆(x, ·)‖gθ(x′, ·)) ≤ C⋆ V (x)V (x′);

(ii) there exists a constant M < ∞ such that for µ-a.e. x ∈ X, supθ∈ΘKθV (x) ≤
MV (x);

(iii) for µ-a.e. x ∈ X, limθ→θ⋆ ‖Kθ(x, ·)−Kθ⋆(x, ·)‖V = 0.

Then, (C3) is satisfied for all strictly positive prior measures λ on (Θ, T ).

Proof. Let θ⋆ ∈ Θ. It is sufficient to show that the function θ 7→ ∆(θ⋆, θ) is
continuous at θ⋆, where it takes on the value zero. For all θ ∈ Θ, denote by πX

θ

the marginal probability measure on (X,X ) defined by πX
θ (A) = πθ(A× Y) for

all A ∈ X , and let the function φθ : X → R
∗
+ be defined by

φθ(x
′) :=

∫

KL(gθ⋆(x, ·)‖gθ(x′, ·))πX
θ⋆(dx).

We may then write

∆(θ⋆, θ) = [πX
θ φθ − πX

θ⋆φθ] + πX
θ⋆φθ (17)
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(where, as usual, πX
θ φθ denotes the integral of φθ w.r.t. πX

θ ; see Section A). We
proceed stepwise.
Step 1. We first show that πX

θ⋆
V < ∞. Denoting by MV the Banach space

of signed measures µ such that |µ|V < ∞, equipped with the V -norm, we will
actually prove the following more precise assertion.

(iv) For all x ∈ X, Kn
θ (x, ·) converges to πX

θ in MV , uniformly over θ ∈ Θ.

(Hence πX
θ V < ∞ for all θ ∈ Θ.) For all probability measures µ1, µ2 on (X,X ),

all θ ∈ Θ and all f such that |f |V ≤ 1, we have

|µ1K
n
θ f − µ2K

n
θ f | =

∣

∣

∣

∣

∫

µ1(dx)µ2(dx
′) (Kn

θ f(x)−Kn
θ f(x

′))

∣

∣

∣

∣

≤
∫

µ1(dx)µ2(dx
′) ‖Kn

θ (x, ·)−Kn
θ (x

′, ·)‖V .

Thus, (16) provides a constant C > 0 such that

‖µ1K
n
θ − µ2K

n
θ ‖V ≤ C(µ1V + µ2V )ρn.

Taking µ1 = δx and µ2 = Kθ(x, ·) and combining with (ii), we get that

∞
∑

n=0

sup
θ∈Θ

‖Kn
θ (x, ·)−Kn+1

θ (x, ·)‖V ≤ C(1 +M)

1− ρ
V (x),

and since MV is complete, we obtain that Kn
θ (x, ·) converges uniformly in MV

over Θ. Denoting by π̃θ this limit, we are only required to show that π̃θ = πX
θ

in order to establish (iv). Now, since all bounded functions have finite V -norm,
for all A ∈ X ,

π̃θ(A) = lim
n→∞

Kn
θ1A(x) = lim

n→∞
Kn+1

θ 1A(x) = π̃θKθ(A),

so that π̃θ is an invariant probability measure for Kθ. It is thus π
X
θ as a conse-

quence of (B1).
Step 2. Next, we show that limθ→θ⋆ π

X
θ⋆
φθ = 0. Assumption (i), πX

θ⋆
V < ∞

and the dominated convergence theorem give immediately that θ 7→ φθ(x) is
continuous at θ⋆, for µ-a.e. x. Moreover, supθ∈Θ |φθ|V < ∞. Consequently, using
again the dominated convergence theorem, the last term on the right hand side
of (17) converges to πX

θ⋆
φθ⋆ = 0 as θ tends to θ⋆.

Step 3. Finally, we consider the term between brackets in (17) and show that
it converges to zero as θ → θ⋆. Since we just showed that supθ∈Θ |φθ|V < ∞, it
suffices to show that πX

θ converges to πX
θ⋆

in MV . By (iv), this boils down to
proving that for all n ∈ N

∗, Kn
θ (x, ·) converges to Kn

θ⋆
(x, ·) in MV . This can be

done by induction on n. The base case n = 1 corresponds to (iii). The induction
follows easily from the following decomposition, valid for all f : X → R such
that |f |V ≤ 1:

∣

∣Kn+1
θ (x, f)−Kn+1

θ⋆
(x, f)

∣

∣

≤
∣

∣Kn
θ (x,Kθf)−Kn

θ⋆(x,Kθf)
∣

∣+
∣

∣Kn
θ⋆(x,Kθf −Kθ⋆f)

∣

∣

≤ ‖Kn
θ −Kn

θ⋆‖V sup
θ∈Θ

‖Kθ‖V + ‖Kn
θ⋆‖V ‖Kθ −Kθ⋆‖V .
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By observing that (ii) implies supθ∈Θ ‖Kn
θ ‖V < ∞ for all n ∈ N

∗, we may con-
clude the proof. �

3.3. Stochastic volatility models

Consider the stochastic volatility model

Xk+1 = ϕXk + σζk+1,

Yk = β exp(Xk/2)ǫk,
k ∈ N, (18)

where (ζk)k∈N∗ and (ǫk)k∈N are independent sequences of i.i.d. Gaussian random
vectors in R

2 with zero mean and identity covariance matrix; see [21]. A general
description of stochastic volatility models as HMMs is provided in [17]. In this
case, X = Y = R. If the parameter vector θ = (β, σ, ϕ) belongs to a compact
parameter space, we may apply the theory developed in the previous section.
However, in this example, θ is assumed to belong to the non-compact parameter
space

Θ := {(β, σ, ϕ) : β ≥ β−, σ ≥ σ−, |ϕ| ≤ ϕ+},
where β− > 0, σ− > 0 and ϕ+ ∈ (0, 1). Denote by θ⋆ = (β⋆, σ⋆, ϕ⋆) the true
value of the parameter. In this model,

kθ(x, x
′) =

1√
2πσ2

exp

{

− (x′ − ϕx)2

2σ2

}

,

gθ(x, y) =
1

√

2πβ2
exp

{

−x

2
− y2

2β2
e−x

}

.

(19)

Assumption (B1) is clearly satisfied with

πθ(B) =

∫

1

2π

√

1− ϕ2

σ2
exp

(

− (1− ϕ2)x2

2σ2
− u2

2

)

1B(x, βe
x/2u) du dx. (20)

Assumption (B2) follows from [12, Section 3.3] and Assumption (B3) is imme-
diate. Moreover, straightforward algebra yields

∆(θ⋆, θ) = log
σβ

σ⋆β⋆
+

1

2
E
θ⋆
π⋆

[

X2
1

] (

σ−2 − σ−2
⋆

)

+ E
θ⋆
π⋆

[X0X1]

(

φ⋆

σ2
⋆

− φ

σ2

)

+
1

2
E
θ⋆
π⋆

[

X2
0

]

(

φ2

σ2
− φ2

⋆

σ2
⋆

)

+
1

2
E
θ⋆
π⋆

[

Y 2
1 e

−X1
] (

β−2 − β−2
⋆

)

.

Note that Eθ⋆
π⋆
[ea|X0|] and E

θ⋆
π⋆
[|Y0|a] are finite for all a > 0. Hence by the Cauchy-

Schwarz inequality all the expectations appearing in the previous display are
finite and we conclude that, for all θ⋆ ∈ Θ, θ 7→ ∆(θ⋆, θ) is a continuous function.
Thus, (B4) holds for all priors being strictly positive (possibly unnormalized)
measures λ on (Θ, T ). Since Θ is non-compact, the posterior consistency needs
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to be established via Theorem 3. To this end, it only remains to check (B5)
and (B6).

We check (B5) with ℓ = 2. Write, for all A ∈ T and y0:2 ∈ R
3,

p̂A(y0:2) = sup
(θ,x0)∈A×R

Dθ,x0
(y0:2), (21)

with

Dθ,x0
(y0:2) :=

∫∫

kθ(x0, x1)gθ(x1, y1)kθ(x1, x2)gθ(x2, y2) dx1 dx2.

We will use the following bounds obtained by straightforward algebra: for all
θ ∈ Θ,

sup
x∈R

gθ(x, y) =
1

|y|
√
2πe

,

∫

gθ(x, y) dx =
1

|y| , gθ(x, y) ≤
e−x/2

β
√
2π

(22)

and

sup
(x,x′)∈R2

kθ(x, x
′) =

1√
2πσ2

. (23)

Then, using (22) and (23),

Dθ,x0
(y0:2) ≤ sup

(x0,x1)∈R2

kθ(x0, x1)

∫

gθ(x1, y1)

∫

kθ(x1, x2) dx2 dx1 sup
x2∈R

gθ(x2, y2)

≤ 1

|y1||y2|
√
2πσ2

√
2πe

. (24)

Moreover, using the definitions of gθ(x1, y1), kθ(x1, x2) and the bound on gθ(x2, y2)
given in (22), we get, by standard calculations,

Dθ,x0
(y0:2) ≤

(
∫

kθ(x0, x1) dx1

)

sup
x1∈R

(

gθ(x1, y1)

∫

kθ(x1, x2)gθ(x2, y2) dx2

)

≤ sup
x1∈R

(

1
√

2πβ2
exp

{

−x1

2
− y21

2β2
e−x1

}

× 1√
2πσ2

1
√

2πβ2

∫

exp

{

− (x2 − ϕx1)
2

2σ2
− x2

2

}

dx2

)

= sup
x1∈R

(

1
√

2πβ2
exp

{

−x1

2
− y21

2β2
e−x1

}

1
√

2πβ2
exp

{

−1

2
ϕx1 +

σ2

8

}

)

= sup
x1∈R

(

1

2πβ2
exp

{

−x1

2
(1 + ϕ)− y21

2β2
e−x1 +

σ2

8

})

=
e

σ2

8

2πβ1−ϕ

[

(1 + ϕ)e−1

y21

]

1+ϕ
2

. (25)

imsart-generic ver. 2011/11/15 file: dor2015.tex date: September 17, 2018



R. Douc, J. Olsson and F. Roueff/Posterior consistency for fPOMMs 17

We then set Cm = {θ ∈ Θ : σ2 ≤ logm, β ≤ em}, so that

Cc
m ⊂ {θ ∈ Θ : σ2 > logm} ∪ {θ ∈ Θ : σ2 ≤ logm, β > em}.

Combining this inclusion with (21), (24) and (25) yields

lim sup
m→∞

p̂Cc
m
(Y0:2) = 0 P

θ⋆
π⋆
-a.s.,

implying that (9) is satisfied with ℓ = 2. Now, by (24), for all y0:2 ∈ R
3,

log+ p̂Θ(y0:2) = sup
(θ,x0)∈Θ×R

log+ Dθ,x0
(y0:2)

≤ 1

2
log+(4π2σ2e) + log+ |y1|+ log+ |y2|,

and using (20), this implies that (10) is satisfied with ℓ = 2. Thus, we may
conclude that (B5) holds.

Condition (11) in (B6) holds if λ is a probability measure on (Θ, T ). Alter-
natively, one may, e.g., use (24) and (25) to obtain that for all y1:2 ∈ R

2,

pθ,η(y1:2) ≤
(

1

|y1||y2|
√
2πσ2

√
2πe

)

∧
(

e
σ2

8

2πβ1−ϕ

[

(1 + ϕ)e−1

y21

]

1+ϕ
2

)

.

Condition (11) in (B6) is then implied by less restrictive condition

∫

σ−1 ∧ (eσ
2/8/β1−ϕ+)λ(dθ) < ∞.

We now prove that (12) in Assumption (B6) holds true with n0 = 1. By
Jensen’s inequality and (19),

E
θ⋆
π⋆
[log pθ⋆,π⋆(Y1)] = E

θ⋆
π⋆

[

log

∫∫

π⋆(dx0) kθ⋆(x0, x1)gθ⋆(x1, Y1)

]

≥ E
θ⋆
π⋆

[
∫∫

π⋆(dx0) kθ⋆(x0, x1) log gθ⋆(x1, Y1)

]

= −1

2
log(2πβ2

⋆)−
E
θ⋆
π⋆
[X1]

2
− E

θ⋆
π⋆
[Y 2

1 e
−X1 ]

2β2
⋆

> −∞,

where we used again that Eθ⋆
π⋆
[ea|X0|] and E

θ⋆
π⋆
[|Y0|a] are both finite for all a > 0.

Finally, Theorem 3 applies, establishing the posterior consistency for the model
(18), e.g., for all strictly positive probability measures λ on Θ and all initial
distributions η⋆ on (Z,Z),

P
θ⋆
η⋆

(

λ〈Y1:n〉 =⇒
n→∞

δθ⋆

)

= 1.
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4. A general approach to posterior consistency

It turns out to be convenient to embed the problem of posterior consistency
for fdPOMMs into a more general setting. This widened perspective allows a
number of universal steps to be identified, by which the posterior consistency
can be established in general. Importantly, this machinery is not at all specific
to the framework of fdPOMMs and is thus of independent interest.

4.1. General setting

Let (Ω,F , (Fn)n∈N,P) be a filtered probability space. If for all n ∈ N, νn is a
σ-finite measure on (Ω,Fn) and the restriction P|Fn of P to Fn is absolutely
continuous with respect to νn, then we say that (Ω,F , (Fn)n∈N, (νn)n∈N,P) is a
progressively dominated filtered probability space.

Moreover, let {pθ,n, θ ∈ Θ} be a collection of probability densities with re-
spect to νn. Let p

∗
n denote the Radon-Nikodym derivative

p∗n :=
dP|Fn

dνn
.

In Section 5, it is shown how the fdPOMMs can be cast into this general setting;
see also Appendix B for a treatment of the more simple i.i.d. case.

We now introduce the prior and posterior distributions, denoted by λ and
λn, respectively, in this general setting. Let λ be a non-zero σ-finite measure on
(Θ, T ). Then, for all A ∈ T , the posterior “probability” λn(A) with prior λ is
defined by

λn(A) :=

∫

A
λ(dθ) pθ,n

∫

Θ λ(dθ) pθ,n
(26)

whenever this ratio is well-defined. In what follows, we will always assume that
(θ, ω) 7→ pθ,n(ω) is measurable from (Θ × Ω, T � Fn) to (R+,B(R+)), which
implies that the numerator and denominator are (non-negative) Fn-measurable
random variables.

We now introduce the main assumption on the model. It says that there are
“sufficiently many” θ for which the likelihood ratio pθ,n/p

∗
n is not decreasing

exponentially fast under P.

(A1) For all δ > 0, there exists Θδ ∈ T such that λ(Θδ) > 0 and for all θ ∈ Θδ,

lim inf
n→∞

n−1 log
pθ,n
p∗n

≥ −δ P-a.s.

We expect the set Θδ in (A1) to contain parameters θ whose corresponding
densities pθ,n are “asymptotically close” to the true ones p∗n. In contrast, the
following definition addresses the case of parameters indexing densities remain-
ing “far away” from the true ones.
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Definition 6 We say that a set A ∈ T is P-remote if and only if

lim sup
n→∞

n−1 log

(
∫

A

pθ,n
p∗n

λ(dθ)

)

< 0 P-a.s.

Moreover, we say that a set A is approximately P-remote if and only if for all
ε > 0 there exists a set Kε ∈ T such that

(i) A ∩Kε is P-remote;
(ii) lim sup

n→∞
λn(K

c
ε) ≤ ε P-a.s.

We will denote by AP the class of all approximately P-remote sets.

Here “remote” refers to the fact that the likelihood ratio averaged over the
parameters within A decreases exponentially fast to zero under P.

Remark 7 Typically, for all ε > 0, Property (ii) in Definition 6 is satisfied for
a well chosen compact set Kε. We refer to this as the uniform P-a.s. tightness
property of the posterior distribution. In this case a set A is approximately
P-remote whenever A ∩K is P-remote for all compact sets K.

Let Pθ,n be the probability on (Ω,Fn) defined by

Pθ,n(B) :=

∫

B

pθ,n dνn, B ∈ Fn.

We have the following characterization of P-remote sets, which is closely related
to [3, Theorem 5(2)], although in a simplified form and without relying on the
asymptotic-merging condition, thanks to the normalization by p∗n.

Proposition 6 The set A ∈ T is P-remote if and only if there exists a sequence
(Bn)n∈N of sets in F such that Bn ∈ Fn for all n ∈ N and

lim sup
n→∞

n−1 log

∫

A

λ(dθ)Pθ,n(Bn) < 0, (27)

P

(

lim inf
n→∞

Bn

)

= 1. (28)

Proof. See Appendix C.1. �

Following the approach of [4] we have the following general result, which
extends the i.i.d. framework used in that reference.

Theorem 7 Assume that (A1) holds. Then all approximately P-remote sets
A ∈ AP satisfy

lim
n→∞

λn(A) = 0 P-a.s., (29)

where λn(A) is defined by (26).

Proof. See Section 4.3. �
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Remark 8 It may happen that the ratio that defines λn(A) in (26) is not well-
defined. However, in (29) it should be understood that λn(A) is well-defined,
P-a.s., for n large enough (otherwise the limit would not be defined).

Remark 9 Note that λn is, P-a.s., a well-defined (posterior) probability on
(Θ, T ) if

P

(

0 <

∫

λ(dθ)pθ,n < ∞
)

= 1. (30)

There are simple although restrictive sufficient conditions to ensure (30). For
instance, note that when the prior is proper, i.e., when λ is a finite measure,
then

∫

Θ λ(dθ)pθ,n < ∞, νn-almost everywhere and thus P-a.s. Moreover, if for
all θ ∈ Θ, pθ,n > 0 P-a.s., then P(

∫

Θ λ(dθ)pθ,n > 0) = 1.

From now on we suppose that (Θ, d) is a metric space, and let T be the Borel
σ-field.

Remark 10 Assume that λn is, P-a.s., a well-defined probability measure on
(Θ, T ) for n large enough. Suppose in addition that there exists θ⋆ ∈ Θ such
that Ap = {θ ∈ Θ : d(θ, θ⋆) ≥ 1/p} is approximately P-remote for all p ∈ N

∗.
Then Theorem 7 implies

P

(

λn =⇒
n→∞

δθ⋆

)

= 1. (31)

This stems from the fact that by the Portmanteau lemma, {λn =⇒n δθ⋆} is im-
plied by {limn λn(Ap) = 0 for all p ∈ N

∗}. Indeed, suppose that the latter event
has occurred and let F be a closed set. If θ⋆ /∈ F then there exists p ∈ N

∗ such
that F ⊂ Ap and lim supn λn(F ) ≤ lim supn λn(Ap) = 0 = δθ⋆(F ). On the other
hand, since we assumed λn to be a probability measure for n large enough, if
θ⋆ ∈ F , lim supn λn(F ) ≤ 1 = δθ⋆(F ).

The following lemma will be useful for checking (A1) with an explicit expres-
sion of Θδ.

Lemma 8 Let (Ω,F , (Fn)n∈N, (νn)n∈N,P) be a progressively dominated filtered
probability space. For all n ∈ N, let pn be a probability density function with

respect to νn. Denote by p∗n the density of P
∗

n = P|Fn
with respect to νn and by

Pn the probability measure having density pn with respect to νn. Suppose that
for all n ∈ N, F̃n is a sub-σ-field of Fn and define by

p̃n :=
d[Pn|F̃n

]

d[νn|F̃n
]

and p̃∗n :=
d[P

∗

n|F̃n
]

d[νn|F̃n
]

(32)

the Radon-Nikodym derivatives of the F̃n-restrictions of Pn and P
∗

n w.r.t. the
F̃n-restriction of νn, respectively. Then it holds that

n−1 log
p̃n
p̃∗n

≥ n−1 log
pn
p∗n

+ ǫn with lim
n→∞

ǫn = 0 P-a.s. (33)
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Proof. Let n ∈ N. The result follows from the identity

p̃n
p̃∗n

= E
∗

n

[

pn
p∗n

∣

∣

∣

∣

F̃n

]

P
∗
n-a.s.; (34)

indeed, since, by (34),

P
∗

n

(

p̃n
p̃∗n

= 0,
pn
p∗n

> 0

)

= 0,

it holds that

P
∗

n

(

pn
p∗n

> n2 p̃n
p̃∗n

)

= P
∗

n

(

pn
p∗n

> n2 p̃n
p̃∗n

,
p̃n
p̃∗n

6= 0

)

.

Hence, using the Markov inequality, we get

P
∗

n

(

pn
p∗n

> n2 p̃n
p̃∗n

)

≤ n−2
E
∗

n

[(

pn
p∗n

/

p̃n
p̃∗n

)

1

{

p̃n
p̃∗n

6= 0

}]

.

By conditioning on F̃n and reapplying (34), we conclude that the expectation

on the right hand side of the previous display is equal to P
∗
n

(

p̃n

p̃∗

n
6= 0
)

≤ 1. We

thus get that

P
∗

n

(

pn
p∗n

> n2 p̃n
p̃∗n

)

≤ n−2.

Since P
∗

n coincides with P on Fn, the Borel-Cantelli lemma gives that

P

(

pn
p∗n

> n2 p̃n
p̃∗n

i.o.

)

= 0.

This implies (33) and concludes the proof. �

4.2. P-remoteness of θ⋆-missing compact sets

Note that Theorem 7 does not rely on the existence of a true parameter θ⋆.
This only appears in Remark 10 where we assume the existence of a parameter
θ⋆ such that closed sets not containing this parameter are approximately P-
remote. In this section we relate the notion of P-remoteness to the consistency
of approximate maximum likelihood estimators. The first step is to relate the
true density p∗n to a true parameter by assuming that p∗n and pθ⋆,n merge with
probability one in the sense of [3, Definition 1], i.e.,

lim
n→∞

1

n
log

pθ⋆,n
p∗n

= 0 P-a.s. (35)

Let A ∈ T be a closed set that does not contain θ⋆. In this section we show
that A ∩ K is P-remote for every compact K ∈ T on which one is able to

imsart-generic ver. 2011/11/15 file: dor2015.tex date: September 17, 2018



R. Douc, J. Olsson and F. Roueff/Posterior consistency for fPOMMs 22

establish the consistency of approximate maximum likelihood estimators. For
most models of interest, this is actually possible for all compact sets K, and
consequently A is approximately P-remote whenever the uniform P-a.s. tightness
property of the posterior distribution holds true (see Remark 7).

Definition 11 Let K ∈ T be compact. We say that (θ̂n)n∈N is a sequence of
approximate maximum likelihood estimators (AMLEs) on K if it is (Fn)n∈N-

adapted and for all n ∈ N, θ̂n ∈ K and

n−1 log pθ̂n,n ≥ n−1 log p∗n + ǫn with lim
n→∞

ǫn = 0 P-a.s.

Proposition 9 Let K ∈ T be compact and suppose that there exists θ⋆ ∈ K
such that (35) holds. Then the two following assertions are equivalent.

(i) All sequences (θ̂n)n∈N of AMLEs on K are strongly consistent.
(ii) For all closed sets A not containing θ⋆,

lim sup
n→∞

sup
θ∈A∩K

1

n
log

pθ,n
p∗n

< 0 P-a.s. (36)

Suppose that one of these assertions holds true and, in addition, that λ(K) < ∞.
Then, for all closed sets A not containing θ⋆, the set A ∩K is P-remote.

Proof. We first show that (i) implies (ii). Suppose that (ii) is false; then there
exists a closed set A not containing θ⋆ such that (36) does not hold. For all n,
let θ̃n ∈ A ∩K be such that

log
pθ̃n,n
p∗n

≥ sup
θ∈A∩K

log
pθ,n
p∗n

− 1.

Since (36) does not hold, there exists, on a set Ω∗ with P(Ω∗) > 0, an increasing
sequence (nk)k∈N such that

lim
k→∞

1

nk
log

pθ̃nk
,nk

p∗nk

≥ 0.

Define the random variables θ̂n by setting, on Ω∗ and if n = nk for some k ∈ N,
θ̂n = θ̃n and θ̂n = θ⋆ otherwise. Then by (35) and the previous display, (θ̂n)n∈N

is a sequence of AMLEs; however, it is not strongly consistent, since θ̂nk
= θ̃nk

∈
A ∩K 6∋ θ⋆ on Ω∗ for all k ∈ N. Hence (i) does not hold.

We now show that (ii) implies (i). Let A a closed set not containing θ⋆, and

let (θ̂n)n∈N be a sequence of AMLEs on K. Then limn→∞ ǫn = 0 P-a.s. with

ǫn ≤ 1

n
log

pθ̂n,n
p∗n

.

We thus have that

θ̂n ∈ A ∩K =⇒ ǫn ≤ sup
θ∈A∩K

1

n
log

pθ,n
p∗n

.
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Now (ii) and the limit limn→∞ ǫn = 0 P-a.s. imply that

ǫn > sup
θ∈A∩K

1

n
log

pθ,n
p∗n

eventually, P-a.s. The previous implication therefore shows that θ̂n ∈ K \ A
eventually, P-a.s. The proof is completed by taking A = {θ ∈ Θ : d(θ, θ⋆) <

1/p}c for any positive integer p, which shows that θ̂n is strongly consistent.
The last assertion of Proposition 9 follows immediately from the bound

log

(
∫

A∩K

pθ,n
p∗n

λ(dθ)

)

≤ logλ(K) + sup
θ∈A∩K

log
pθ,n
p∗n

.

�

4.3. Proof of Theorem 7

We preface the proof of Theorem 7 by the following lemma.

Lemma 10 Under (A1), for all ε > 0,

P

(
∫

λ(dθ)
pθ,n
p∗n

≤ e−εn i.o.

)

= 0. (37)

Remark 12 According to the terminology used in [3, Definition 1], the property
(37) says that

∫

λ(dθ) pθ,n and p∗n merge with probability one.

Proof. Pick ε > 0 and write

eεn
∫

λ(dθ)
pθ,n
p∗n

≥
∫

Θε/2

λ(dθ)Fθ,n,

where Θε/2 is defined in (A1) and for all θ ∈ Θ and n ∈ N
∗,

Fθ,n := exp

(

εn+ log
pθ,n
p∗n

)

.

By assumption, for all θ ∈ Θε/2, lim infn Fθ,n = ∞ P-a.s., and the proof is
completed by establishing that, P-a.s.,

lim inf
n→∞

∫

Θε/2

λ(dθ)Fθ,n = ∞. (38)

To check (38), note that, by Fubini’s theorem,

E

[

∫

Θε/2

λ(dθ)1
{

lim inf
n→∞

Fθ,n < ∞
}

]

=

∫

Θε/2

λ(dθ)P
(

lim inf
n→∞

Fθ,n < ∞
)

= 0.
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Hence, P-a.s.,
∫

Θε/2

λ(dθ)1
{

lim inf
n→∞

Fθ,n < ∞
}

= 0,

and, consequently, by Fatou’s lemma and the fact that λ(Θε/2) > 0,

lim inf
n→∞

∫

Θε/2

λ(dθ)Fθ,n ≥
∫

Θε/2

λ(dθ) lim inf
n→∞

Fθ,n1

{

lim inf
n→∞

Fθ,n = ∞
}

= ∞,

P-a.s., which completes the proof. �

Using the previous lemma, the proof of Theorem 7 is straightforward. Indeed,
let A ∈ T be approximately P-remote; then for all ε > 0 there exists Kε ∈ T
such that P-a.s.,

lim sup
n→∞

λn(A) ≤ lim sup
n→∞

λn(A ∩Kε) + ε.

To treat further the right hand side above, let

α := − lim sup
n→∞

n−1 log

(
∫

A∩Kε

λ(dθ)
pθ,n
p∗n

)

, (39)

which is P-a.s. positive by Definition 6(i), and write

λn(A ∩Kε) =

(

eαn/2
∫

A∩Kε

λ(dθ)
pθ,n
p∗n

)(

eαn/2
∫

λ(dθ)
pθ,n
p∗n

)−1

. (40)

Here, by Lemma 10,

lim sup
n→∞

(

eαn/2
∫

λ(dθ)
pθ,n
p∗n

)−1

≤ 1 P-a.s.,

and applying this bound together with (39) and (40) yields, P-a.s.,

lim sup
n→∞

λn(A ∩Kε) = 0.

Consequently, lim supn λn(A) ≤ ε P-a.s., and as ε was picked arbitrarily we may
conclude the proof.

5. Proof of main results

5.1. Preliminaries

We use the general setting detailed in Section 4.1 for proving the results in Sec-
tion 2.2. In Appendix B, also the i.i.d. case is embedded into the general setting
for completeness. Here the σ-finite measure νn is defined similarly (see (56)),
but in the present case, for a given initial distribution η, we define, for all
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θ ∈ Θ and n ∈ N
∗, pθ,n as the density of Pθ

η|Fn w.r.t. νn, i.e., it satisfies, for all

B = [Y1:n]
−1

(A) ∈ Fn with A ∈ Y�n,

∫

B

pθ,n dνn = P
θ
η(B) = P

θ
η(Y1:n ∈ A). (41)

This density is simply given by

pθ,n = pθ,η(Y1:n).

Remark 13 In Appendix B the true density is among the targeted ones, p∗n =
pθ⋆,n. Although we here assume a true parameter θ⋆ ∈ Θ, we do not suppose
that p∗n = pθ⋆,n. The main reason is that in the case of fdPOMMs, the initial
distribution η in (41) is chosen arbitrarily, often for computational convenience.
More specifically, here pθ⋆,n = pθ⋆,η(Y1:n), where the initial distribution η used
in practice when computing the likelihood is chosen arbitrarily as one generally
different from the true initial distribution. Concerning the latter we will instead
consider p∗n = pθ⋆,π⋆(Y1:n) (i.e. the true initial distribution is the invariant one).

Following this remark, the first thing to check is the merging property (35) with
p∗n = pθ⋆,π⋆(Y1:n) and pθ⋆,n = pθ⋆,η(Y1:n), i.e.,

lim
n→∞

1

n
log

pθ⋆,η(Y1:n)

pθ⋆,π⋆(Y1:n)
= 0 P

θ⋆
π⋆
-a.s. (42)

As we will see below, this condition is implied by the following assumption.

(B7) For all θ ∈ Θ and all initial distributions η, the distribution of Y1:∞ under Pθ
η

admits a positive density with respect to the distribution of Y1:∞ under Pθ
πθ
,

i.e.,

Rθ
η :=

dPθ
η(Y1:∞ ∈ ·)

dPθ
πθ
(Y1:∞ ∈ ·) > 0 P

θ
πθ
-a.s.

We now state a result that will be shown to apply under the various sets of
assumptions in Section 5.2 and Section 5.3

Proposition 11 Consider a fdPOMM satisfying (B1–2) and (B7). Let λ be a
Radon measure on Θ, θ⋆ ∈ Θ and define, for all y1:n ∈ Yn, λ〈y1:n〉 by (5). Let
us consider the following conditions.

(i) For all ǫ > 0, there exists a compact set Kǫ ∈ T such that

lim sup
n→∞

λ〈Y1:n〉(Kc
ǫ ) ≤ ǫ P

θ⋆
π⋆
-a.s.

(ii) Assumption (A1) holds with pθ,n = pθ,η(Y1:n), p∗n = pθ⋆,π⋆(Y1:n) and
P = P

θ⋆
π⋆
.

(iii) For n large enough, we have pθ,η(y1:n) > 0 for ν�n-a.e. y1:n ∈ Yn and
λ-a.e. θ ∈ Θ.
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Then (i) implies

(a) All closed sets A ∈ T that do not contain θ⋆ are approximately P
θ⋆
π⋆
-remote.

and (i)–(iii) imply

(b) For all initial distributions η⋆, λ〈Y1:n〉 =⇒
n→∞

δθ⋆, P
θ⋆
η⋆
-a.s.

Proof. If (42) holds, then, setting P = P
θ⋆
π⋆
, Proposition 9 and (B2) give

immediately that A ∩ K is P-remote for all closed sets A not containing θ⋆.
Hence, in order to establish (a), we only need to check that (B7) implies (42).
For this purpose, assume (B7) and set R∗ := Rθ⋆

η , which then is P-a.s. positive

Then E
θ⋆
π⋆
[R∗] = 1 and

pθ⋆,η(Y1:n)

pθ⋆,π⋆(Y1:n)
= E

θ⋆
π⋆

[R∗ | Y1:n] P-a.s., (43)

from which we conclude that the left hand side converges to R∗ > 0 P-a.s. and
in L1 (see, e.g., [22, Theorem 27.3]). This implies (42) and (a) follows.

We now assume, additionally, (ii) and (iii). Then, by Theorem 7 and Re-
mark 10, it suffices, in order to obtain (31), to check that λn = λ〈Y1:n〉 is,
P-a.s., a well-defined probability for n large enough. By (i) there is a compact
set K such that

∫

Kc λ(dθ) pθ,n < ∞ for n large enough P-a.s., and since λ is a
Radon measure, it also holds that

∫

K
λ(dθ) pθ,n < ∞ νn-almost everywhere and

thus P-a.s. Hence
∫

Θ λ(dθ) pθ,n < ∞ for n large enough, P-a.s. By Remark 9,
it only remains to check that

∫

Θ λ(dθ) pθ,n > 0 P-a.s., which is directly implied
by (iii).

Hence, we get that λ〈Y1:n〉 is a well-defined probability for n large enough
P-a.s. This yields (31), which corresponds to Assertion (b) in the special case
η⋆ = π⋆. Under (B7), this also implies Assertion (b) for all initial distributions
η⋆. �

5.2. Proof of Theorem 1

Before proving Theorem 1, we need two preliminary results. The first is a change
of probability formula (see Lemma 12 below), which will be used for extending
the posterior consistency property to a non-stationary sequence. The second
result allows (A1) to be checked in order to apply Theorem 7 (see Lemma 13
below).

Lemma 12 If a fdPOMM satisfies (B1) and (B3), then it also satisfies (B7).

Proof. Let θ ∈ Θ and η be an initial distribution on (Z,Z). Under P
θ
η,

(Zk)k∈N∗ is a Markov chain with transition kernel Qθ and initial distribution
having the density

z1 7→ η1(z1) =

∫

η(dz) qθ(z, z1)
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with respect to µ�ν. Similarly, under Pθ
πθ
, (Zk)k∈N∗ is a Markov chain with the

same transition kernel Qθ as above but with another initial distribution having
the density

z1 7→ πθ(z1) =

∫

πθ(dz) qθ(z, z1)

with respect to µ � ν.
Under (B3) , these two densities are positive and z1:∞ 7→ η1(z1)/πθ(z1) is

thus the Radon-Nikodym ratio between P
θ
η and P

θ
πθ

restricted to σ(Z1:∞). The
result follows. �

Lemma 13 Consider a fdPOMM satisfying (B1) . Then Assumptions (B3)
and (B4) imply (A1) with pθ,n = pθ,η(Y1:n), p

∗
n = pθ⋆,π⋆(Y1:n), P = P

θ⋆
π⋆

and
Θδ = {θ ∈ Θ : ∆(θ⋆, θ) ≤ δ}.

Proof. Pick δ > 0 and take any θ ∈ Θ such that ∆(θ⋆, θ) ≤ δ. To prove the
result, we need to show that

lim inf
n→∞

n−1 log
pθ,n
p∗n

≥ −δ P-a.s., (44)

where pθ,n = pθ,η(Y1:n) and p∗n = pθ⋆,π⋆(Y1:n). We apply Lemma 8 with Ω = ZN,
F = Z�N, Fn = σ(Z1:n), P = P

θ⋆
π⋆

and νn given (as in (56)) by

νn(B) = (µ � ν)�n(A), B ∈ Fn with B = [Z1:n]
−1(A) and A ∈ Z�n.

Then pn and p∗n are the corresponding densities

pn =

∫

qθ(z0, Z1) η(dz0)
n−1
∏

k=1

qθ(Zk, Zk+1),

and

p∗n = π⋆(Z1)

n−1
∏

k=1

qθ⋆(Zk, Zk+1).

Moreover, set F̃n = σ(Y1:n), so that νn is the restriction of νn to F̃n. In this
case that the densities introduced in (32) are p̃n = pθ,n and p̃∗n = p∗n. Thus,
applying Lemma 8, we get that (44) is implied by

lim inf
n→∞

1

n
log

pn
p∗n

≥ −δ P
θ⋆
π⋆
-a.s. (45)

Now, observe that, Pθ⋆
π⋆
-a.s.,

log
pn
p∗n

= log

∫

qθ(z0, Z1) η(dz0)

π⋆(Z1)
+

n−1
∑

ℓ=1

log
qθ(Zℓ, Zℓ+1)

qθ⋆(Zℓ, Zℓ+1)
.
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Since the transition density qθ is assumed to be positive, the first term is a finite
number and tends to zero when divided by n, Pθ⋆

π⋆
-a.s. Moreover, by (B1), Z is

ergodic under Pθ⋆
π⋆
, and we obtain

lim inf
n→∞

n−1
n−1
∑

ℓ=1

log
qθ(Zℓ, Zℓ+1)

qθ⋆(Zℓ, Zℓ+1)
= −∆(θ⋆, θ) P

θ⋆
π⋆
-a.s.

Since we have assumed that ∆(θ⋆, θ) ≤ δ, (45) holds true and the proof is com-
pleted. �

The proof of Theorem 1 is now completed by observing that Lemmas 12
and 13 show that the assumptions of Theorem 1 imply those of Proposition 11.

Note that (i) in Proposition 11 is trivially satisfied when Θ is compact, and
that (iii) directly follows from (B3).

5.3. Proof of Theorem 2

The only modification of the proof consists in observing that Condition (iii) in
Proposition 11 now directly follows from(C1–2)and in showing that the conclu-
sions of Lemma 12 and Lemma 13 hold true under the new set of assumptions.
This is done in Lemma 14 and Lemma 15 below.

Lemma 14 If a fdPOMM satisfies (B1), (C1), (C2) and (C4), then it also
satisfies (B7).

Proof. Let θ ∈ Θ and η be an initial distribution on (Z,Z). Then under
Assumptions (B1), (C1) and (C4) there exists a sequence ((X ′

k, X
′′
k , Yk))k∈N

such that

1. ((X ′
k, Yk))k∈N is distributed according to P

θ
πθ
,

2. ((X ′′
k , Yk))k∈N is distributed according to P

θ
η,

3. there is a P
θ
πθ
-a.s. finite stopping time τ such that X ′

k = X ′′
k for all k > τ .

See [35, Lemma 3.7] and also the end of the proof of Lemma 15 where the same
construction is used. Then, using (C2) and mimicking [35, Lemma 3.7] yields
that the laws of ((X ′

k, Yk))k∈N and ((X ′′
k , Yk))k∈N are equivalent, which in its

turn imply (B7). �

Lemma 15 Consider a fdPOMM with initial distribution η on (Z,Z). Assume
(B1) and (C1) and set P = P

θ⋆
π⋆
. Then (C2–4) imply (A1)with pθ,n = pθ,η(Y1:n),

p∗n = pθ⋆,π⋆(Y1:n), P = P
θ⋆
π⋆

and Θδ =
{

θ ∈ Θ : ∆(θ⋆, θ) ≤ δ
}

.

Proof. Pick δ > 0 and take any θ ∈ Θ such that ∆(θ⋆, θ) ≤ δ. By (C3) it is
sufficient to show that

lim inf
n→∞

n−1 log
pθ,n
p∗n

≥ −δ P-a.s., (46)
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where pθ,n = pθ,η(Y1:n) and p∗n = pθ⋆,π⋆(Y1:n). The idea of the proof is now
similar to that of Lemma 13, but with a completely different augmented set
of variables. Instead of augmenting the data by just the unobserved sequence
(Xk), we now add one more sequence (X ′

k) to the data as follows. Let Z′ =
X2 × Y and Z ′ = X�2

� Y and denote, for all k ∈ N, by Zk = (Xk, Yk) and
Z ′
k = (Xk, X

′
k, Yk) the members of the corresponding canonical sequences. We

define P as the distribution of (Z ′
n)n∈N when (Zn)n∈N is distributed according

to P
θ⋆
π⋆
, (X ′

n)n∈N is the canonical Markov chain with initial distribution η and
kernel Kθ and, moreover, (X ′

n)n∈N and (Zn)n∈N are independent.
We apply Lemma 8 with Ω = Z′N, F = Z ′�N, Fn = σ(Z ′

1:n) and νn given (as
in (56)) by

νn(B) = (µ�2
� ν)�n(A), B ∈ Fn with B = [Z ′

1:n]
−1

(A) and A ∈ Z ′�n.

In this particular setting, p∗n takes the form

p∗n = π⋆(Z1)

∫

Kθ(x
′
0, X

′
1) η(dx

′
0)

n−1
∏

k=1

qθ⋆(Zk, Zk+1)kθ(X
′
k, X

′
k+1).

Now, define Pθ as the distribution of (Z ′
n)n∈N when (Xn)n∈N and (X ′

n)n∈N are
distributed exactly as under P (i.e., two independent Markov chains with kernels
Kθ⋆ and Kθ and initial distributions π⋆ and η, respectively), but, conditionally
on these sequences, (Yn)n∈N has the law of a sequence of independent random
variables such that for all k, Yk has density gθ(X

′
k, ·) with respect to ν. Hence,

((X ′
k, Yk))k∈N is an HMM with parameter θ and initial distribution η. Recall

that we define pn as the density of the distribution Pθ,n, which in its turn is
defined as the restriction of Pθ on Fn. Consequently,

pn = π⋆(X1,Y)

∫

Kθ(x
′
0, X

′
1) η(dx

′
0)

×
(

n−1
∏

k=1

kθ⋆(Xk, Xk+1)kθ(X
′
k, X

′
k+1)gθ(X

′
k, Yk)

)

gθ(X
′
n, Yn),

where π⋆(·,Y) denotes the marginal of the density π⋆ w.r.t. the X component.
It now holds that

pn
p∗n

=

n
∏

k=1

gθ(X
′
k, Yk)

gθ⋆(Xk, Yk)
.

Now, set F̃n = σ(Y1:n); then, defining p̃n and p̃∗n as in (32) yields straightfor-
wardly that p̃n = pθ,n and p̃∗n = p∗n. Hence by Lemma 8, Eqn. (44) follows
from

lim inf
n→∞

n−1 log
pn
p∗n

≥ −δ P-a.s., (47)

whose establishment is the object of the remainder of the proof.
We prove (47) by means of a coupling argument used in [35, Lemma 3.7].

Recall that under P, (Zn)n∈N and (X ′
n)n∈N are independent. Thus, by Condi-

tion(C4), following [27, Theorem III.14.10], we extend P by adding an X-valued
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process (X ′′
n)n∈N to (Z ′

n)n∈N such that (X ′′
n)n∈N is independent of (Zn)n∈N, has

distribution P
θ
πθ

and

τ := min{k ∈ N : X ′′
ℓ = X ′

ℓ for all ℓ ≥ k} < ∞ P-a.s.

Then by (C2) we have, for all n ≥ τ ,

pn
p∗n

=

[

τ
∏

k=1

gθ(X
′
k, Yk)

gθ⋆(Xk, Yk)

τ
∏

k=1

gθ⋆(Xk, Yk)

gθ(X ′′
k , Yk)

]

n
∏

k=1

gθ(X
′′
k , Yk)

gθ⋆(Xk, Yk)
,

where the term within the brackets is positive P-a.s. Now, by Lemma 20,
((Xk, Yk, X

′′
k ))k∈N is a stationary ergodic Markov chain under P. Hence,

lim
n→∞

n−1 log
pn
p∗n

= E

[

log
gθ(X

′′
0 , Y0)

gθ⋆(X0, Y0)

]

P-a.s.,

where E denotes the expectation under P. To conclude, we observe that the lat-
ter expectation is exactly minus ∆(θ⋆, θ) as defined in (7), and thus the choice
of θ at the beginning of this proof gives (47). �

5.4. Proof of Theorem 3

Since Condition (i) in Proposition 11 is trivially satisfied in the case where
Θ is assumed to be compact, the proofs of Theorem 1 and Theorem 2 only
required (B7) and Condition (ii) of Proposition 11 to be checked. The latter
two assumptions are still implied by those of Theorem 3; however, since Θ is
no longer assumed to be compact, it remains to show that Condition (i) in
Proposition 11 still holds under the assumptions of Theorem 3. This will be
done in Proposition 18 below.

We preface this result with two lemmas.

Lemma 16 Consider a fdPOMM satisfying(B1)and let λ be a positive measure
on (Θ, T ). Then each condition in (B6) implies the same condition with n0

replaced by any n ≥ n0.

Proof. Let n > n0. Using that for all y1:n0
∈ Yn0 ,

∫∫

λ(dθ) pθ,η(y1:n) ν
�(n−n0)(dyn0+1:n) =

∫

λ(dθ) pθ,η(y1:n0
), (48)

and that, under Pθ⋆
π⋆
, pθ⋆,π⋆(yn0+1:n | Y1:n0

) = pθ⋆,π⋆(Y1:n0
, yn0+1:n)/pθ⋆,π⋆(Y1:n0

)

is the density, with respect to ν�(n−n0), of the conditional distribution of Yn0+1:n

given Y1:n0
, we get that

E
θ⋆
π⋆

[
∫

λ(dθ) pθ,η(Y1:n)

pθ⋆,π⋆(Yn0+1:n | Y1:n0
)

∣

∣

∣

∣

Y1:n0

]

=

∫

λ(dθ) pθ,η(Y1:n0
).
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Thus, by Lemma 19, if (11) holds, it also holds with n replacing n0.
Now, concerning (12), the comments before [2, Theorem 1] show that, using

that the observations are stationary under Pθ⋆
π⋆
, (Eθ⋆

π⋆
[log pθ⋆,π⋆(Yn+1 | Y1:n)])n∈N∗

is a nondecreasing sequence. Hence if (12) holds, it continues to hold true when
n0 is replaced by any n ≥ n0. �

Lemma 17 Consider a fdPOMM satisfying (B1) and (B5). Then for all δ > 0
there exists a compact K ∈ T such that

lim sup
n→∞

n−1 log p̂Kc(Y0:n) ≤ −δ P
θ⋆
π⋆
-a.s.,

where p̂Kc(Y0:n) is defined in (8).

Proof. We first show that

lim sup
m→∞

E
θ⋆
π⋆
[log p̂Cc

m
(Y0:ℓ)] = −∞. (49)

Set U := log+ p̂Θ(Y0:ℓ) and Um := log p̂Cc
m
(Y0:ℓ). First note that E

θ⋆
π⋆
[Um] is well-

defined since by (10) in (B5), Eθ⋆
π⋆
[U+

m] ≤ E
θ⋆
π⋆
[U ] < ∞. Now, since U −Um ≥ 0,

Fatou’s lemma yields

lim inf
m→∞

E
θ⋆
π⋆
[U − Um] = E

θ⋆
π⋆
[U ]− lim sup

m→∞
E
θ⋆
π⋆
[Um]

≥ E
θ⋆
π⋆

[

lim inf
m→∞

(U − Um)
]

= E
θ⋆
π⋆
[U ]− E

θ⋆
π⋆

[

lim sup
m→∞

Um

]

.

Combining with (9) in (B5) yields

lim sup
m→∞

E
θ⋆
π⋆
[log p̂Cc

m
(Y0:ℓ)] ≤ E

θ⋆
π⋆

[

lim sup
m→∞

log p̂Cc
m
(Y0:ℓ)

]

= −∞,

and (49) is shown. Now, let δ > 0. According to (49), one may pick m ∈ N

sufficiently large such that

ℓ−1
E
θ⋆
π⋆
[log p̂Cc

m
(Y0:ℓ)] ≤ −δ.

Now, set K := Cm and define, for (r, s) ∈ N
2 such that r ≤ s, Wr,s := p̂Kc(Yr:s).

By (10) in (B5), E[log+ W0,ℓ] < ∞ and for all r ≤ s ≤ t,

Wr,t ≤ Wr,sWs,t.

Since under Pθ⋆
π⋆
, the sequence (Yn)n∈N is stationary and ergodic, the Kingman

subadditive theorem ([24]) applies. Thus, limn→∞ n−1 logW0,n exists P
θ⋆
π⋆
-a.s.

and

lim
n→∞

n−1 logW0,n = inf
n≥ℓ

n−1
E
θ⋆
π⋆

logW0,n ≤ ℓ−1
E
θ⋆
π⋆
[log p̂Kc(Y0:ℓ)] ≤ −δ P

θ⋆
π⋆
-a.s.

The proof is completed. �
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Proposition 18 Consider a fdPOMM satisfying (B1), (B5) and (B6). Assume
(A1) with pθ,n = pθ,η(Y1:n), p

∗
n = pθ⋆,π⋆(Y1:n) and P = P

θ⋆
π⋆
. Then there exists

a compact set K ∈ T such that

lim sup
n→∞

n−1 logλ〈Y1:n〉(Kc) < 0 P
θ⋆
π⋆
-a.s.

Proof. Following [2], let us define, for all n ∈ N
∗,

Vn := pθ⋆,π⋆(Y1:n), Ṽn := E
θ⋆
π⋆
[log(Vn/Vn−1)].

By (12) in (B6), we have Ṽn0
> −∞. As explained in the comments before [2,

Theorem 1], (Ṽn)n∈N∗ is a non-decreasing sequence, and denoting by Ṽ its limit
in (−∞,∞], by [2, Theorem 1], we have

lim
n→∞

n−1 logVn = Ṽ P
θ⋆
π⋆
-a.s. (50)

Pick δ > 0 and ǫ > 0 such that

−δ − Ṽ + ǫ < 0.

According to Lemma 17, there exists a compact set K ∈ T such that

lim sup
n→∞

n−1 log p̂Kc(Y0:n) ≤ −δ P
θ⋆
π⋆
-a.s. (51)

Now, write for all n ∈ N strictly larger than n0,

λ〈Y1:n〉(Kc) ≤
(
∫

Kc

pθ,η(Y1:n0
)λ(dθ)

)

p̂Kc(Yn0:n)

pλ,η(Y1:n)
≤ pλ,η(Y1:n0

)
Un

VnWn
, (52)

where

Un := p̂Kc(Yn0:n), Wn := pλ,η(Y1:n)/pθ⋆,π⋆(Y1:n).

By the first condition in (B6),

lim sup
n→∞

n−1 log pλ,η(Y1:n0
) = 0 P

θ⋆
π⋆
-a.s. (53)

Moreover, according to Lemma 10, (A1) implies

lim inf
n→∞

n−1 logWn ≥ −ǫ P
θ⋆
π⋆
-a.s. (54)

Finally, combining (50), (51), (53), (54) with (52) yields:

lim sup
n→∞

n−1 logλ〈Y1:n〉(Kc) ≤ −δ − Ṽ + ǫ < 0 P
θ⋆
π⋆
-a.s.

�
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6. Conclusion

We have established that the posterior consistency for fdPOMMs is a conse-
quence of the consistency of the AMLE under—what we believe—minimal as-
sumptions that can be checked for a variety of models used in practice. Im-
portantly, our assumptions can be checked for models where the state space of
the latent process is non-compact, which is most often the case in applications
(including, e.g., the linear Gaussian state-space models). Moreover, we allow
also the parameter space to be non-compact, which is essential in the Bayesian
setting (where many prior distributions of fundamental importance have infinite
support), and the prior to be improper. Thus, our results generalize substan-
tially existing results in this direction, which focus exclusively on the special
case of HMMs and require both the state space of the hidden chain and the pa-
rameter space to be compact. Our proofs rely on a machinery revolving around
the general concept of P-remoteness introduced in Section 4, which is naturally
linked to the consistency of the MLE in the frequentist setting. As far as known
to the authors, this link has not been explored before in the literature.

Our analysis relies substantially on the assumption that the model is fully
dominated, which is certainly a restriction. A natural direction for research
is hence the relaxation of this assumption, and incorporating techniques de-
veloped in [14] into the analysis could allow our results to be extended to
observation-driven models (including the GARCH framework). Moreover, as
we do not provide any rate of convergence, supplementing our results with a
Bernstein-von Mises-type theorem would of course be desirable; nevertheless,
establishing such a theorem involves typically, inter alia, a law of large numbers
for the observed Fisher information, which appears to be a real challenge in the
non-compact setting (the proof of a Bernstein-von Mises-type theorem is hence
expected to be at least on the same level of difficulty as the proof of the asymp-
totic normality of the MLE, which is still an open problem in the non-compact
case). Finally, another natural topic for future research is the extension of our
results in the direction of nonparametric Bayesian modeling.

Appendix A: Some kernel notation

Let µ be a signed measure on some measurable space (X,X ). For any |µ|-
integrable function h, we denote by

µh :=

∫

h(x)µ(dx)

the Lebesgue integral of h w.r.t. µ.
In addition, let (Y,Y) be some other measurable space and K some possibly

unnormalized transition kernel K : X × Y → R+. The kernel K induces two
integral operators, one acting on functions and the other on measures. More
specifically, given a measure ν on (X,X ) and a measurable function h on (Y,Y),
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we define the measure

νK : Y ∋ A 7→
∫

K(x,A) ν(dx)

and the function

Kh : X ∋ x 7→
∫

h(y)K(x, dy)

whenever these quantities are well-defined. For the latter, we will, whenever
convenient, use also the alternative notation K(·, h).

Finally, given a third measurable space (Z,Z) and another kernel L : Y×Z →
R+ we define, with K as above, the product kernel

KL : X×Z ∋ (x,B) 7→
∫

L(y,B)K(x, dy),

whenever this is well-defined. When K describes transitions within the same
space (X,X ), its iterates are defined inductively by

K0(x, ·) := δx for all x ∈ X and Kn := Kn−1K for all n ∈ N
∗.

Appendix B: Dominated i.i.d. model

The general setting in 4.1 is a bit unusual in the sense that all densities and
dominating measures are defined directly on the same space Ω (endowed however
with different σ-fields picked among the members of the sequence (Fn)n∈N). The
advantage is to avoid writing all likelihoods as functions of the observations,
yielding more compact expressions and arguments. In order to illustrate better
how this setting can be used in practice, we describe it in the simple i.i.d. case.

Consider the dominated i.i.d. case comprising an n-sample Y1:n = (Y1, . . . , Yn)
of i.i.d. observations taking on values in (Y,Y) and having marginal density qθ⋆ ,
depending on some unknown parameter θ⋆ ∈ Θ, w.r.t. a given σ-finite dominat-
ing measure ν on (Y,Y). In this case, we set (Yn)n∈N∗ as the canonical process
defined on Ω = YN

∗

endowed with F = Y�N
∗

, the σ-field generated by cylinder
sets. Then Fn = σ(Y1:n) and pθ,n = q�n

θ (Y1:n), where q�n
θ denotes the nth self

tensor product of qθ defined on Yn. While q�n
θ is a density w.r.t. the product

measure ν�n, pθ,n is a density with respect to the σ-finite measure νn given by

νn(B) = ν�n(A), B ∈ Fn with B = [Y1:n]
−1

(A) and A ∈ Y�n. (55)

In the i.i.d. case, one assumes that there is a true parameter θ⋆ ∈ Θ and P is
the corresponding distribution of (Yn)n∈N∗ , implying that p∗n = pθ⋆,n.

Note that the Fn → Y�n-mapping defined by B 7→ Y1:n(B) = {Y1:n(ω), ω ∈
B} is bijective and can be seen as the (unique) reciprocal of the preimage map-
ping [Y1:n]

−1 : Y�n → Fn. Hence νn in (55) can be equivalently defined as

νn = ν�n ◦ Y1:n on Fn ⇐⇒ νn ◦ [Y1:n]
−1 = ν�n on Y�n. (56)
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Appendix C: Postponed proof of general results

C.1. Proof of Proposition 6

Let A ∈ T and suppose that Bn ∈ Fn for all n ∈ N and that (27) and (28) hold.
Then there exists ρ > 1 such that

E

(

∞
∑

n=1

ρn
∫

A

λ(dθ)
pθ,n
p∗n

1Bn

)

=

∞
∑

n=1

ρn
∫

A

λ(dθ)Pθ,n(Bn) < ∞.

This implies
∞
∑

n=1

ρn
∫

A

λ(dθ)
pθ,n
p∗n

1Bn < ∞, P-a.s.

Now, the set Ω0 = lim infn→∞ Bn ∈ F of P-probability one in (28) is such that
for all ω ∈ Ω0, {n ∈ N : 1Bn(ω) = 0} is finite. Thus, the series

∑∞
n=1 ρ

n
∫

A λ(dθ) pθ,n/p
∗
n

is convergent P-a.s., establishing that A is P-remote.
Conversely, if A ∈ T is P-remote, then choose ρ > 1 such that

lim sup
n→∞

n−1 log

(
∫

A

λ(dθ)
pθ,n
p∗n

)

≤ − log ρ < 0 P-a.s. (57)

Pick ρ̃ ∈ (1, ρ) and ̺ ∈ (1/ρ̃, 1). Set

Bn :=

{
∫

A

λ(dθ)
pθ,n
p∗n

≤ ̺n
}

.

Then Bn ∈ Fn and, by Tonelli’s theorem,

∫

A

λ(dθ)Pθ,n(Bn) ≤ ̺nP(Bn) ≤ ̺n P-a.s.;

thus, (27) is satisfied. Since ρ̃ < ρ, (57) implies

sup
n∈N

ρ̃n
∫

A

λ(dθ)
pθ,n
p∗n

< ∞ P-a.s.,

so that

P({ω ∈ Ω : ω ∈ Bc
n i.o.}) = P

(

ρ̃n
∫

A

λ(dθ)
pθ,n
p∗n

> (ρ̺̃)n i.o.

)

= 0,

and (28) holds.

Appendix D: Useful lemmas

Lemma 19 Let Z be a [0,∞]-valued variable on (Ω,F ,P) and let G be a sub-
σ-field of F . If E [Z| G] < ∞ P-a.s., then Z < ∞ P-a.s.
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Proof. Let B = {Z = ∞}. Then we have

E [Z| G] ≥ E [Z1B| G] = ∞ on {P(B | G) > 0} .

Hence, if E [Z| G] < ∞ P-a.s., then P(B | G) = 0 P-a.s. and so P(B) = 0. �

Lemma 20 Let Q and Q′ be two Markov kernels on (X,X ) and (X′,X ′), re-
spectively. Let Q̄ the Markov kernel on (X×X′,X �X ′) defined by, for all A ∈ X
and B ∈ X ′,

Q̄((x, x′), A×B) = Q(x,A)Q′(x,B).

Suppose that Q and Q′ are ergodic with stationary distributions π and π′, re-
spectively, in the sense that for all initial distributions η and η′ on (X,X ) and
(X′,X ′), respectively, it holds that

lim
n→∞

‖ηQn − π‖TV = 0 and lim
n→∞

‖η′Q′n − π′‖TV = 0.

Then Q̄ is ergodic with stationary distribution π � π′.

Proof. Let h be a measurable function on X × X′ such that |h| ≤ 1. For all
n ∈ N

∗, we may write, for (x, x′) ∈ X× X′, Q̄nh(x, x′)− (π � π′)h as

∫
(
∫

h(xn, x
′
n)Q

n(x, dxn)−
∫

h(xn, x
′
n)π(dxn)

)

Q′n(x′, dx′
n)

+

∫
(
∫

h(xn, x
′
n)Q

′n(x′, dx′
n)−

∫

h(xn, x
′
n)π

′(dx′
n)

)

π(dxn),

from which we immediately deduce that

lim
n→∞

‖δ(x,x′)Q
′n − π � π′‖TV = 0.

The ergodicity of Q̄ follows. �
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