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Abstract

Finite volume release gravity currents of large density contrasts on steep slopes are simulated

numerically using a dynamic mesh adaptation technique. This technique allows to treat large

Reynolds numbers and large density differences but it is (presently) restricted to two dimen-

sions. Comparison of numerical results with experiments in the Boussinesq limit shows that

these simulations capture the essential dynamics. Large density contrast simulations are then

presented, allowing to analyse the behaviour of dense clouds on steep slopes. It is shown that

large density clouds accelerate over much larger distances and that their spatial growth in height

decreases substantially. The maximum velocity inside the cloud, relative to the front velocity,

decreases from about a factor of 2 in the Boussinesq limit to about 1.3 when the density ratio is

20. Non-Boussinesq clouds are found to consist of a relatively dense layer near the bottom and

a dilute layer above.

1. Introduction

Gravity driven flows on slopes are frequently encountered in nature. Examples are dust storms,

katabatic winds, turbidity current in the ocean, pyroclastic flows and powder-snow avalanches

(see Turner, 1973; Simpson, 1997). In the latter examples the density difference is due to the ex-

tra weight of suspended solid particles and density variations can be large. Often, these currents

are not permanent and consist of a head followed by a quasi steady current. The importance of

the layer behind the head depends on the inflow conditions of which two limiting cases are either

a continuous source or a finite volume release of heavy fluid. Laboratory experiments of gravity

currents on inclined boundaries with emphasis on the head were conducted by Britter and Lin-

den (1980). Beghin et al. (1981) and Maxworthy and Nokes (2007) investigated finite volume

release clouds on slopes. These laboratory experiments were done for Boussinesq conditions

and there are virtually no experimental results available for non-Boussinesq currents or clouds.

Only non-Boussinesq lock-exchange flows were studied experimentally by Gröbelbauer et al.

(1993) and recently by Lowe et al. (2005). Étienne et al. (2005) performed numerical simula-

tions, using a dynamic mesh adaptation technique, of very large density ratio exchange flows in-

cluding the experimental conditions (density ratio of 20) of Gröbelbauer et al. Non-Boussinesq

numerical simulations of lock-exchange flows of lower density ratios (< 5), corresponding to

the experiments of Lowe et al., were conducted by Birman et al. (2005). The simulations by

Étienne et al. showed a Reynolds number dependency of the front velocity when Re was below

a certain value. The non-uniform mesh, with dynamic grid adaptation, used in these simulations

allowed reaching large enough Reynolds numbers. No direct numerical simulations of unsteady
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Figure 1: Front velocity, height and length of the cloud. Area h0ℓ0 is 1, ℓ0/h0 is 3.

gravity flows on inclined boundaries seem to exist, other than the ones in Boussinesq conditions

by Étienne et al. (2004, 2006). Of particular interest, for avalanches and pyroclastic flows espe-

cially, are the head of gravity current and the finite volume release cloud structure. Rastello and

Hopfinger (2004) proposed a model allowing extrapolating laboratory experiments obtained for

Boussinesq clouds to non-Boussinesq conditions. This model indicates that the spatial growth

in height of the cloud is substantially reduced when the density difference is large and that in-

side the cloud, near the bottom, the velocity with respect to the front velocity decreases. It was

assumed that the growth in length is independent of density difference. Observations of powder-

snow avalanches (see Rastello and Hopfinger) qualitatively support this model and conjectures.

In order to make progress in the understanding of the cloud structure and evolution, Direct

Numerical Simulations (DNS) or Large Eddy Simulations (LES) are useful.

In Section 2, the governing equations and flow conditions are presented. Section 3 contains re-

sults for Boussinesq clouds and in Section 4 the effects of large density contrasts are outlined.

2. Flow conditions and governing equations

2.1. Flow conditions and behaviour

The flow configuration considered in this paper is sketched in figure 1. A closed, rectangular

domain Ω = (−ℓ0, L0) × (0, H0) is taken in the plane (x, z), the z-axis is at an angle θ = 32◦

with respect to the vertical direction. The domain is initially filled with a fluid of density ρℓ,
the ambient fluid, except for the region (−ℓ0, 0)× (0, h0), which is filled with a fluid of density

ρd > ρℓ, miscible with the ambient fluid. Both fluids are at rest. At time t = 0, the boundary

between the two fluids is removed and the gravitational acceleration sets the dense fluid into

motion, forming a cloud which flows down the sloping boundary z = 0. A shear layer develops

at the top interface of this cloud and the ambient fluid, and the two fluids are mixed by turbulent

mixing and ultimately by diffusion.

Experimental investigation of the flow produced under these conditions and for small density

ratio (table 1) were conducted by Beghin et al. (1981); Hermann et al. (1987) and Rastello and

Hopfinger (2004). Two essential results arise from these experiments. Firstly, the force balance

is between the driving buoyancy force and the entrainment of ambient fluid into the cloud. As

ambient fluid is entrained it has to be accelerated, and this momentum transfer results in an

effective drag, which has an effect of a much larger magnitude than ground friction. There

is practically no flow separation, so that the form drag is negligible; the interfacial friction is

included in the entrainment. As a result of entrainment, the cloud grows in height and length,

but its aspect ratio remains similar. Secondly, it was shown that entrainment of ambient fluid
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Ref. Fluids employed Boundary conditions α =
ρd−ρℓ
ρℓ

Re =
ρℓL

√
αgL

η

E1 Brine and fresh water experiment 0.02 1.2 · 104
E2 Brine and fresh water experiment 0.05 2.7 · 104
N3 Numerical simulation No slip 0.02 10

5

N4 Numerical simulation No friction 0.02 10
5

N5 Numerical simulation No friction 0.02 10
4

N6 Numerical simulation No friction 3 10
5

N7 Numerical simulation No friction 9 10
5

N8 Numerical simulation No friction 19 10
5

Table 1: Nomenclature of experiments and numerical simulations. Experiment (E1) is by Beghin et al. (1981) and

experiment (E2) by Rastello and Hopfinger (2004).

is caused by the overturning motion of the large structures of the flow. These structures, which

are similar to Kelvin–Helmholtz billows and appear at the interface between the cloud and am-

bient fluid, are generated by an essentially two-dimensional mechanism. Three-dimensional

turbulent structures of smaller scale are superimposed on the large structure, and it can be ex-

pected that their effect on the flow is of second order. This is the case in lock-exchange flows

(see Härtel et al., 2000; Étienne et al., 2005). The experimental clouds were found to accel-

erate initially with a front velocity Uf ∝ √
xf , where xf is the position of the front along the

slope, and then to decelerate from some point x∗
f , which depends on the density difference and

the slope. Field observations of large density difference gravity currents, notably powder-snow

avalanches, show that the aspect ratio of avalanche length to height is clearly much larger. In

order to highlight the large density difference effect on the flow structure, the conditions in the

numerical simulations are kept the same (same volume of dense fluid and same slope angle);

only the initial density was varied as indicated in table 1.

2.2. Governing equations and numerical technique

We consider the isotermal flow of a binary mixture of fluids of different densities, and equal,

constant dynamic viscosity. For a perfect mixture of two incompressible fluids, of density ρd
(the heavier one) and of density ρℓ (the lighter one), the local density is ρ = ρdΦ + ρℓ(1 − Φ),
where Φ is the local volume fraction of the fluid of density ρd. The density contrast is defined

as α = (ρd − ρℓ)/ρℓ, so that in terms of α, the density is ρ = ρℓ(1 + αΦ). Lengths are non-

dimensionalized by the characteristic length scale L =
√
h0ℓ0, x = x̃/L and velocities by the

terminal velocity U =
√
αgL of a fluid element of density ρd in the ambient fluid of density ρℓ,

u = ũ/U . Times are non-dimensionalized as t = t̃U/L. Momentum and mass conservation of

the cloud and ambient fluid are given by the Navier–Stokes equations,

(1 + αΦ)
Du

Dt
= −∇p +

1

Re
∇ ·

[

λ(Φ)

(

2Du− 2

3
∇ · u I

)]

− 1 + αΦ

α
k (1)

α
DΦ

Dt
+ (1 + αΦ)∇ · u = 0 (2)

where the Reynolds number is defined as Re = ρℓUh/η, λ = µ(Φ)/η and Du = (∇u +
∇u

T)/2. Since the fluids are miscible, we cannot assume Dρ/Dt = 0, but rather that there are

mass diffusion fluxes in the flow governed by Fick’s law (see Étienne et al., 2005). This yields:

DΦ

Dt
+ Φ∇ · u =

1

ReSc
∇2Φ (3)
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Figure 2: Comparison with experiments of simulated front velocity of the cloud. (N4), Re = 10
5 and (N5), Re =

10
4, no-friction boundary conditions; (N3), Re = 10

5, no-slip boundary conditions; (E2), experimental correlation.

(a) Numerical simulation (N4) (b) Experiment (E2)

Figure 3: General aspect of (a), the excess density distribution Φ in numerical simulations, and (b), density-

marking dye in experiments by Rastello and Hopfinger (2004).

where the Schmidt number is defined as Sc = η/ρℓD, with D a reference diffusivity. Initial

conditions consist of given distribution of ρ, here the dam-break set-up shown in figure 1, the

velocity being set to zero everywhere. No inflow or outflow accross the boundaries of the flow

domain has been considered, thus boundary conditions are always ∇Φ · n = 0, with either no-

slip boundary conditions (u |∂Ω = 0) or zero wall friction (u·n = 0 and σ·n−[(σ·n)·n]n = 0,

where n is the wall normal and σ = 2Du− 2

3
∇ · u I). The Lagrange–Galerkin algorithm pro-

posed by Étienne and Saramito (2005) for system (1–3) is used with a quadratic finite element

(see Hood and Taylor, 1973) for the velocity and volume fraction. The mesh adaptation is an it-

erative process: for each timestep, a first guess of the solution is calculated on a uniform coarse

mesh, and is used to generate a new mesh on which a better approximation of the solution can

be calculated. We iterate this procedure 4 times, the final mesh has refinement ratios of order

103 between the coarsest triangle size and the finest one.

A list of conditions for which numerical simulations were conducted is given in Table 1. The

aspect ratio of the released volume is ℓ0/h0 = 3 in all the simulations presented here. Other

initial aspect ratios as well as a linearly stratified initial fluid volume have been tested but were

found to affect the results over a short time only.

3. Comparison of simulations with laboratory experiments in the Boussinesq limit

Boussinesq conditions correspond to the case of α ≪ 1, equations (1,2) thus reduce to:

Du

Dt
= −∇p′ +

1

Re
∇ · (2λ(Φ)Du)− Φk, (4)

∇ · u = 0, (5)
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Figure 5: Influence of the Reynolds number and of the density contrast α on the mass center velocity UMC (a,b)

and spatial growth of the height (c). Numerical simulations with α = 0.02 (N4,N5), α = 3 (N6), α = 9 (N7)

and α = 19 (N8). (a), with the velocity non-dimensionalized by
√
αgL versus front position xf , and (b), with

the velocity normalized by its maximum value U+

MC versus mass center position xMC normalized by x+

MC . (c),

Heavy lines, numerical results; light lines, model by Rastello and Hopfinger (2004).

4. Numerical results for large density ratios

Clouds of higher density, with α = 3, 9 and 19, respectively, and Re = 105, are simulated for

the same initial conditions and boundary conditions as in the Boussinesq case using constant

dynamic viscosity λ(Φ) = 1. The change of structure due to large density contrast as compared

with Boussinesq conditions is clearly seen in figure 4. The cloud is much more elongated and

presents a clear stratification in density with a dense layer near the bottom and a dilute layer

above. The head of the current is not as clearly defined. The length of the dashed rectangle

in figure 4(b) indicates the length in the x direction over which the density integrated in the z
direction is significantly larger than a certain value.

The velocity of the mass center within the indicated rectangle is shown in figure 5. As expected,

higher inertia implies a longer running distance before the maximum velocity is reached. There

is, however, similarity in the acceleration phase, while the deceleration one is not similar (figure

5(b)). In figure 5(c) the height of the cloud is plotted versus front position for different density

contrasts. There is clearly a substantial decrease of the spatial growth in height when the density

ratio is large. The straight lines represent, respectively the experimentally determined growth

rate (E2) for α ≪ 1 and the extrapolation to non-Boussinesq clouds proposed by Rastello and

Hopfinger (2004), given by ∂hNB/∂t = ∂hB/∂t (1 + 1/
√
α + 1)/2. The model predicts qual-

itatively the decrease of the spatial growth in height when the density ratio is large. However,

for α = 3 for instance, the simulations indicate practically no effect of density ratio on the spa-

tial growth rate. The length of the cloud head increases considerably with increasing α. This

increase is due to the density stratification causing the collapse of the large structures at the rear

of the cloud and, hence, a loss of buoyancy to the rear, forming a current rather than a cloud.

This is the reason for the more rapid decrease in cloud velocity in the far field.

An important aspect is that the increase of α modifies the distribution of the density in the cloud,

with a dense layer near the bottom, visible in the density profiles shown in figure 6. This dense

layer is about four times the average density of the cloud. Such a density distribution causes the

mass center of the cloud to move closer to the bottom. Figure 6 shows that the velocity near the

bottom behind the front is Ub ≃ 1.3Uf , which is considerably less than in a Boussinesq cloud.

This value corresponds closely to the value of Ub ≃ 1.23Uf predicted by the Bernoulli model

proposed by Rastello and Hopfinger (2004).
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Figure 4: Aspect of simulated clouds for a Boussineq cloud (a), α = 0.02, case (N4); and (b) for α = 19, case

(N8): gray-level map of Φ in function of x and z. - - -, initial area of the release and – –, calculated height and

length of the cloud.

where p′ is the pressure p minus the hydrostatic pressure. Most of the laboratory experiments

are in this limit (e.g., Simpson, 1997; Beghin et al., 1981; Rastello and Hopfinger, 2004), these

experiments are used to validate our numerical simulations, and especially the restriction of the

simulations to two dimensions. The density ratio is α = 0.02, slope is 32◦, the reference length

L = 11.4 cm and velocity U = 15.0 cm s−1. These conditions are close to those in experiments

by Rastello and Hopfinger (2004), where the fluids where brine and fresh water. The reference

Reynolds number is 2.7 × 104 (α = 0.05). In order to investigate the influence of
4

Reynold
5

s

number on the global features of the flow, calculations were performed with Re = 10 and 10 .

Figure 2 shows that two-dimensional simulations with no slip boundary conditions are inap-

propriate for simulating these flows. This may be due to too large velocity gradients near the

boundary in two-dimensional simulations. On the other hand, the front velocity with slip con-

dition simulations is in a good agreement with experiments when Re = 105. The general aspect

of the cloud, shown in figure 3, is similar in numerical simulations and laboratory experiments,

dominated by large structures of Kelvin–Helmholtz type. In particular, the height and length of

the simulated cloud compare well with experimental laws of Beghin et al. (1981),

hB = [(3.6 θ + 40) · 10−3] (xf + x0), ℓB = [(4.4 θ + 260) · 10−3] (xf + x0), (E1)

which were obtained in the far-field regime (xf & 10), and also the correlation proposed by

Rastello and Hopfinger (2004) for the near-field regime (xf ∈ [4; 14]):

hB = [(3.6 θ + 13) · 10−3] (xf + x0). (E2)

The common x0 origin results from a self-similarity assumption; a value x0 = 3 was taken

throughout in the figures. The growth of the laboratory cloud is reproduced well by simula-

tions, supporting the hypothesis that the growth is mainly due to the large structures in the shear

layer, which are generated by a two-dimensional mechanism. The local large fluctuations in

height and length variations are also found in experiments.

When the cloud mass center velocity reaches its maximum, the velocity near the bottom Ub

reaches values of Ub ≃ 2.4Uf at a distance of approximately twice the cloud height behind the

front. The density near the bottom is still equal to the initial density, Φ = 1. At larger xf , the

density near the bottom decreases but the velocity ratio remains Ub/Uf ≃ 2 in agreement with

experiments (see Hopfinger and Tochon-Danguy, 1977; Britter and Linden, 1980).
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Figure 6: Density and velocity distribution in a high density cloud (N8) as its front reaches xf = x∗

f/2. The front

velocity is Uf ≃ 0.71, UMC ≃ 0.59. Profiles are taken at xf − 2h (b1) and xf − h (b2).

It is of interest to examine the Richardson number at collapse of the large eddy structures. This

Richardson number is RiE = ρb−ρℓ
ρℓ

g h̃E

Ũ2
E

cos θ, where ρb is the density near the bottom. Substi-

tution of h̃E = hEL and ŨE = UE

√
αgL, gives:

RiE =
ρb − ρℓ
ρd − ρℓ

h̃E

Ũ2

E

cos θ. (8)

In the non-Boussinesq current it is seen from figure 6 that ρb ≃ ρd, hE ≃ 0.75 and UE ≃
Ub ≃ 1.3Uf ≃ 1.2. This gives with θ = 32◦ a value RiE ≃ 0.44. A stratified shear layer stops

growing when the Richardson number is larger than 0.3 when defined with the vorticity layer

thickness. It is somewhat larger when defined with the visual thickness. The estimated value

of RiE is, therefore, consistent with the observed collapse of the cloud and its change-over to

a current. In a Boussinesq cloud the eddy velocity UE ≃ Ub ≃ 2Uf . For conditions of figure

4(a), hE ≃ 1.5, ρb − ρℓ/ρd − ρℓ ≃ 0.5 and UE ≃ 2, giving RiE ≃ 0.16.

5. Conclusions

It has been shown that the two-dimensional numerical simulations of non-Boussinesq gravity

currents, using dynamic mesh adaptation, capture the essential flow structure and hence the

flow dynamics; the force balance is between the gravitational driving force and the drag due to

entrainment of ambient fluid. Bottom friction is negligible when the slope angle is large. How-

ever, 2D simulations seem to overestimate bottom friction and it has been necessary to impose

slip boundary conditions. The numerical simulations have been validated by experiments in the

Boussinesq limit. Good agreement with experiments is obtained when the Reynolds number

in the simulations is sufficiently large, here of order 105. Large density difference clouds are

shown to be much more elongated, due to a reduced spatial growth in height and the collapse

of the large structures. The maximum velocity inside the cloud, relative to the front velocity,

decreases from a factor of about 2 in the Boussinesq limit to about 1.3 when the density ratio is

of order 20. The density variation is substantially modified with a large density layer near the

bottom and a fairly dilute layer above.
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