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Abstract

We prove discrete versions of the first and second Weber inequalities on N(curl) ∩N(div[)-
like hybrid spaces spanned by polynomials attached to the faces and to the cells of a polyhedral
mesh. The proven hybrid Weber inequalities are optimal in the sense that (i) they are formulated
in terms of N(curl)- and N(div[)-like hybrid semi-norms designed so as to embed optimally
(polynomially) consistent face penalty terms, and (ii) they are valid for face polynomials in
the smallest possible stability-compatible spaces. Our results are valid on domains with general,
possibly non-trivial topology. In a second part we also prove, within a general topological setting,
related discrete Maxwell compactness properties.

Keywords: Weber inequalities; Maxwell compactness; Hybrid polynomial spaces; Polyhedral
meshes; de Rham cohomology; Topology; Maxwell’s equations.
AMS Subject Classification 2020: 65N12, 14F40, 35Q60.

1 Introduction

LetΩ be a domain in R3, i.e. a bounded and connected Lipschitz open set of R3. Our main motivation
in this work comes from the study of time-harmonic Maxwell’s equations. We are interested in PDE
models, posed in Ω, for which the main (vector) unknown u lies in a subspace ^★(Ω) of the space

^ (Ω) := N(curl;Ω) ∩ N(div[;Ω),

where [ is a physical parameter (possibly varying inside Ω) and div[ := div([ ·). In practice, the
unknown u is the (vector) complex amplitude of a time-harmonic electromagnetic field, which may
either be the electric field e (then [ is the electric permittivity Y), or the magnetic field h (then [
is the magnetic permeability `), or some vector potential a (then [ ≡ 1 if one adopts the Coulomb
gauge). Vector fields in ^★(Ω) bear, almost everywhere on the boundary of Ω, either zero tangential
or zero [-weighted normal trace. When zero tangential trace is imposed on the whole boundary of
Ω, we let ^★(Ω) =: ^3 (Ω), and we refer to this case as fully tangential. In the same vein, when zero
[-weighted normal trace is imposed on the whole boundary of Ω, we let ^★(Ω) =: ^= (Ω), and we
refer to this case as fully normal. All other cases are referred to as mixed.
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It is nowadays well-understood that the well-posedness of variational problems set in ^★(Ω) is
topology-depending, and directly relates to the (co)homology of the underlying de Rham complex.
For standard (i.e. either fully tangential, or fully normal) boundary conditions, the homology of
the de Rham complex has been extensively studied in the literature, and the homology spaces,
spanned by harmonic vector fields, have been fully characterized [29, 21, 1, 30]. Based on the latter
characterizations, topologically general Poincaré-type inequalities, the so-called Weber inequalities,
can be established. These inequalities are named after Christian Weber, in relation to his seminal
contributions to the topic [42]. The first Weber inequality corresponds to the fully tangential case of
vector fields in ^3 (Ω), whereas the second corresponds to the fully normal case (of vector fields in
^= (Ω)). Whenever Ω has trivial topology (think of a contractible domain), letting ‖·‖0 indifferently
denote the {!2(Ω), R2(Ω)}-norm, the first and second Weber inequalities read:

‖v‖0 ≤ �[,★
(
‖ div([v)‖0 + ‖ curl v‖0

)
∀v ∈ ^★(Ω), (1)

for a real number �[,★ > 0 only depending on Ω, [, and on the boundary conditions type. Weber
inequalities are closely related to the compact embedding of ^★(Ω) into R2(Ω), also known in the
literature under the name ofMaxwell compactness property (see e.g. [6]). Weber inequalities must not
be confused with Gaffney inequalities, which are related to the continuous embedding of ^★(Ω) into
N1(Ω), only valid for smooth [ and smooth or convex domains (see [1, Sect. 2.3] for further details).
On general Lipschitz domains Ω, even under the additional assumption that Ω is a polyhedron, one
can solely prove that ^★(Ω) is continuously embedded (i) into N

1
2+B (Ω) for some B > 0 if [ is

globally smooth (cf. [19] and [1, Prop. 3.7]), or (ii) into NB (Ω) (still for some B > 0) if [ is piecewise
smooth (see [20, 9]). When departing from standard boundary conditions, the (co)homology of the
de Rham complex can be more complicated. For mixed boundary conditions, the characterization of
the homology spaces has been investigated in [28], NB (Ω)-regularity for piecewise smooth [ proven
in [32], and Maxwell compactness in [31].

Let us briefly comment at this point on the terminology. We endow ^ (Ω) with its standard norm
‖v‖2^ :=

(
‖v‖20 + ‖ curl v‖20

)
+

(
‖v‖20 + ‖ div([v)‖20

)
. From an historical perspective, what Weber

actually proved in [42] (based on a preliminary work by Weck [43]) are not exactly inequalities of
the form (1), but rather Maxwell compactness properties in (^★(Ω), ‖·‖^ ). Whereas the ‖·‖^ -norm
embeds an R2(Ω)-norm control on the function, at the opposite, remark that such a control is absent
from the right-hand side of (1). To prove Poincaré-type inequalities of the form (1) from Maxwell
compactness, we know (by Peetre–Tartar’s lemma) that it is sufficient to identify, for some Banach
space Y, an injective bounded linear mappingA : (^★(Ω), ‖·‖^ ) → (Y, ‖·‖Y) such that

‖v‖^ ≤ �1
(
‖A(v)‖Y + ‖v‖0

)
∀v ∈ ^★(Ω).

It then follows that
‖v‖0 ≤ ‖v‖^ ≤ �2‖A(v)‖Y ∀v ∈ ^★(Ω).

For instance, when Ω has trivial topology, the mapping

A : ^★(Ω) → Y := !2(Ω) × R2(Ω); v ↦→
(
div([v), curl v

)
satisfies all the required properties, whence the inequality (1). Within a general topological setting,
identifying A crucially requires a precise characterization of the (co)homology spaces of the de
Rham complex. Such a characterization has not been provided by Weber in his seminal work, but by
different authors later on (cf. e.g. [29, 21, 1, 30]). In this respect, naming Poincaré-type inequalities
of the form (1) “Weber inequalities” is imperfect. However, considering that Weber was the first key
player in their discovery, and following [4], we will adopt this terminology throughout this article.
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The focus in this work is on (arbitrary-order) skeletal methods over polyhedral partitions. Contrary
to plain vanilla Discontinuous Galerkin (DG) methods, skeletal methods attach unknowns to the mesh
skeleton, thus allowing for the static condensation of (potential) cell unknowns (cf. [34] for further
insight). In what follows, for X(Ω) a given functional space on Ω, we will term X(Ω)-conforming
any skeletal method attaching unknowns to the boundary of the cells so as to mimic the “continuity”
properties of the underlying continuous space X(Ω). For instance, in the lowest-order case, �1(Ω)-
conforming methods attach unknowns to the mesh vertices so as to emulate (full) continuity of traces,
whereas N(curl;Ω)-conforming methods attach unknowns to the mesh edges so as to reproduce
tangential continuity of (vector) traces. As opposed, we will term non-conforming any other kind of
skeletal method. In the polyhedral context, this dichotomy is particularly convenient to discriminate
between the approaches, for which, anyhow at the end, only fully discontinuous polynomial proxies
are computable. We exclusively focus in this work on non-conforming (skeletal) methods, often
referred to in the literature as hybrid methods. Hybrid methods only attach unknowns to the faces
and to the cells of the mesh. Examples of such approaches include the Hybridizable Discontinuous
Galerkin (HDG) [18], the Weak Galerkin (WG) [41], the Hybrid High-Order (HHO) [24, 25], or
the non-conforming Virtual Element (nc-VE) [5] methods. All these technologies share tight links,
as first observed in [17]. At the opposite side of the skeletal spectrum lie conforming polyhedral
methods, whose salient examples include the conforming Virtual Element (c-VE) [7] or the Discrete
De Rham (DDR) [23] approaches, between which strong connections also exist.

In this work, we aim at deriving, within a general topological setting, discrete functional analysis
tools for hybrid approximations of div-curl systems over polyhedral mesh families. To our knowledge,
hybrid methods have only been studied yet within a trivial topological setting. In the HDG and WG
contexts, these contributions respectively include [40, 14, 13] (cf. also [26]) and [37]. In the HHO
context, a discrete (first)Weber inequality was proven in [12] forN(curl)-like hybrid spaces satisfying
a discrete divergence-free constraint in trivial domains, and leveraged to perform the analysis of HHO
approximations of first- and second-order magnetostatics models. In this paper, building on [12], we
prove discrete versions of the first and second Weber inequalities on generic N(curl) ∩N(div[)-like
hybrid spaces, which are valid for domains with general, possibly non-trivial topology. We also
establish the related discrete Maxwell compactness properties. The results are valid for complex-
valued fields and piecewise constant (over the polyhedral partition), real-valued, isotropic parameters
[. The results seamlessly extend to the case of complex-valued, Hermitian anisotropic parameters.
The hybrid Weber inequalities we prove are optimal in the following sense:

(i) they are formulated in terms of N(curl)- and N(div[)-like hybrid semi-norms designed so as
to embed optimally (polynomially) consistent face penalty terms;

(ii) they are valid for face polynomials in the smallest possible stability-compatible spaces.

The first property above guarantees that the corresponding stabilization Hermitian forms, of the so-
called Lehrenfeld–Schöberl type [33] (cf. also [16] for further insight), shall provide superconvergence
when used within hybrid numerical schemes (cf. [14, 12]). The second property, in turn, allows for
substantial savings when considering the approximation of first-order systems, for which discrete
differential operators need not be reconstructed (cf. [12, Sect. 3.1]). More generally, our work paves
the way to the analysis of hybrid polyhedral approximations of general div-curl systems on domains
with arbitrary topology, including non-linear (Hilbertian) problems as they may arise e.g. in the
modeling of ferromagnetic materials.

Let us finally relate our work to the so-called compatible approaches. In the Finite Element
(FE) context over matching tetrahedral partitions, Nédélec elements [38, 39] can be used to define
discrete (polynomial) de Rham complexes [10, 36]. Through the prism of Whitney forms [44] and,
more broadly, of the Finite Element Exterior Calculus (FEEC) [3, 2], the notion of discrete de Rham
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complex can be extended from the framework of vector calculus to the one of exterior calculus over
differential forms. The corresponding numerical methods then lie in an analytical setting which is
referred to as compatible. In a compatible FE setting, Poincaré-type inequalities are straightforward
consequences of the (co)homological properties of the underlying polynomial de Rham complex. In
the polyhedral context, following the DDR approach [23, 8], discrete de Rham complexes can also
be written and analyzed, but at the price of some complications. These complications include the use
of discrete (reconstructed) differential operators over algebraic spaces of discrete unknowns, and the
tedious tracking in the analysis of mesh-dependent quantities. Notice that all the above-mentioned
compatible approaches are related to conforming (FE or polyhedral) methods. For non-conforming
methods, the only contributions we are aware of towards the developement of a compatible analytical
setting are [35, 15] (based on seminal ideas from [11]), in which the convenient notion of discrete
distributional differential form is introduced. The framework considered in [35, 15] is the one of
DG spaces over matching simplicial meshes. The subject thus still seems largely open for extending
such ideas to hybrid spaces over polyhedral partitions. We believe our work may constitute, in the
language of vector calculus, a first step in this direction.

The rest of the article is organized as follows. In Section 2, after introducing both the topological
and functional frameworks, we state and prove, based on ad hoc Helmholtz–Hodge decompositions,
the continuous first and second Weber inequalities in N(curl;Ω) ∩N(div[;Ω), as well as the related
Maxwell compactness properties. In Section 3we introduce the discrete setting, and define the notions
of polyhedral mesh family, face and cell polynomial decompositions, and N(curl) ∩ N(div[)-like
hybrid spaces. Section 4 is dedicated to the statements and proofs of the first and second hybrid
Weber inequalities. The related discrete Maxwell compactness properties are, in turn, established in
Section 5. Finally, Appendix A collects a connected technical result.

2 Preliminaries

2.1 Topological framework

Let Ω be a domain in R3, i.e. a bounded and connected (strongly) Lipschitz open set of R3. We let
Γ := mΩ denote the boundary of Ω. By the Rademacher theorem, one can define almost everywhere
on Γ a unit vector field n normal to Γ, which we further assume to point outward from Ω. We recall
that the Betti numbers V0, V1 and V2 of Ω respectively denote the number of (maximally) connected
components of Ω (here, V0 = 1), the number of tunnels crossing through Ω (V1 ∈ N), and the number
of voids enclosed in Ω (V2 ∈ N). For instance, for Ω simply-connected, V1 = 0. In the same manner,
when the boundary Γ of Ω is connected, V2 = 0. In the following, when both V1 and V2 are equal to
zero, we say that Ω has trivial topology.

When V1 > 0, we make the following classical assumption: there exist V1 non-intersecting,
orientable, two-dimensional manifolds Σ1, . . . ,ΣV1 with boundary, called cutting surfaces, satisfying
mΣ8 ⊂ Γ for all 8 ∈ {1, . . . , V1}, such that the open set Ω̂ := Ω \ ∪8∈{1,...,V1 }Σ8 is not crossed by any
tunnel (its first Betti number is then zero). Remark that mΩ̂ = Γ ∪ ∪8∈{1,...,V1 }Σ8 . We will assume in
what follows that Ω̂ is connected (which is generally the case starting from a connected domain Ω),
and that the cutting surfaces are sufficiently regular so that the set Ω̂ is pseudo-Lipschitz (cf. e.g. [4,
Def. 3.2.2]). Since the cutting surfaces Σ8 are orientable, one can then define almost everywhere on
Σ8 , for any 8 ∈ {1, . . . , V1}, a unit vector field nΣ8 normal to Σ8 , whose orientation is arbitrary but
prescribed once and for all.

When V2 > 0, letting Γ0 be the (connected) boundary of the only unbounded component of the
exterior open set R3 \Ω, there exist V2 (maximally) connected components Γ1, . . . , ΓV2 of Γ such that
Γ = ∪ 9∈{0,...,V2 }Γ 9 . When V2 = 0, there holds Γ = Γ0.
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2.2 Functional setting

Let [ : Ω→ R be a given function satisfying, for real numbers 0 < [♭ ≤ [♯ < ∞,

[♭ ≤ [(x) ≤ [♯ for a.e. x ∈ Ω. (2)

We also introduce ^[ := [♯/[♭ ≥ 1 the (global) heterogeneity ratio of the parameter [.
For< ∈ {2, 3}, and for - an<-dimensional, (relatively) open Lipschitz subset ofΩ, we let !2(-)

(respectively, R2(-)) denote the Lebesgue space of C-valued functions (respectively, C<-valued
vector fields) with square-integrable modulus on - . The standard Hermitian inner products (and
norms) in !2(-) and R2(-) are irrespectively denoted by (f, g)- :=

∫
-
f·g (and ‖·‖0,- :=

√
(·, ·)- ,

with the convention that ‖·‖0 := ‖·‖0,Ω). We also define

!2
0(Ω) :=

{
E ∈ !2(Ω) |

∫
Ω

E = 0
}

and R2
0(Ω) :=

{
v ∈ R2(Ω) |

∫
Ω

v = 0
}
,

as well as the space R2
[ (Ω) :=

(
R2(Ω), ([ ·, ·)Ω

)
(remark that the norm ‖[ 1

2 ·‖0 is equivalent, by (2), to
the norm ‖·‖0 in R2(Ω)). For B ∈ N★, we let �B (-) (respectively, NB (-)) denote the Sobolev space
of C-valued functions in !2(-) (respectively, C<-valued vector fields in R2(-)) whose partial weak
derivatives of order up to B have square-integrable modulus on - . The standard norms (and semi-
norms) in �B (-) and NB (-) are irrespectively denoted by ‖·‖B,- (and |·|B,- ), with the convention
that ‖·‖B := ‖·‖B,Ω (and |·|B := |·|B,Ω). We also define �1

0 (Ω) := {E ∈ �1(Ω) | E |Γ = 0}.
Let . be a three-dimensional, open Lipschitz subset of Ω. Classically, we let

N(curl;. ) :=
{
v ∈ R2(. ) | curl v ∈ R2(. )

}
,

N(div[;. ) :=
{
v ∈ R2(. ) | div([v) ∈ !2(. )

}
,

as well as their subspaces

N(curl0;. ) :=
{
v ∈ N(curl;. ) | curl v ≡ 0

}
,

N(div0
[;. ) :=

{
v ∈ N(div[;. ) | div([v) ≡ 0

}
.

The spaces N(curl;. ) and N(div[;. ) are endowed with the following weighted norms:

‖·‖2curl,. := ‖[ 1
2 ·‖20,. + [♯‖curl ·‖20,. , ‖·‖2div,. := ‖[ 1

2 ·‖20,. + [
−1
♭
‖div([ ·)‖20,. ,

with the convention that ‖·‖curl := ‖·‖curl,Ω and ‖·‖div := ‖·‖div,Ω. Let nm. denote the unit outward
normal vector field to m. , defined almost everywhere on m. . For v ∈ N(div[;. ), one can give a
sense to the normal trace of [v on m. , denoted ([v)|m. ·nm. , as an element of �− 1

2 (m. ) (space of
bounded antilinear forms on� 1

2 (m. )). In addition, the mapping v ↦→ ([v)|m. ·nm. is continuous from
N(div[;. ) to �− 1

2 (m. ). Likewise, for v ∈ N(curl;. ), one can give a sense to the rotated tangential
trace of v on m. , denoted v |m.×nm. , as an element of �− 1

2 (m. )3 (space of bounded antilinear forms
on � 1

2 (m. )3), and the mapping v ↦→ v |m.×nm. is continuous from N(curl;. ) to �− 1
2 (m. )3.

Remark 1 (Tangential vector fields). Remark that, with our above choice of notation, R2(m. ) =
!2(m. )2. Define N

1
2 (m. ) := �

1
2 (m. )2 and N−

1
2 (m. ) := �−

1
2 (m. )2. Letting �x denote the tan-

gent hyperplane to m. at point x, and considering 31(x), 32(x) ⊂ �x two (orthonormal) vectors
such that

(
31(x), 32(x), nm. (x)

)
forms a right-handed orthonormal basis of R3, one can identify

(v |m.×nm. ) (x) with the vector of C2 of its local coordinates in the basis
(
31(x), 32(x)

)
of �x . With

a slight abuse of notation, one can then write that v |m.×nm. ∈ N−
1
2 (m. ). We will extensively make

use of this observation in the sequel.
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In what follows, the (sesquilinear) duality pairings between �− 1
2 (m. ) and � 1

2 (m. ) on the one side,
and betweenN−

1
2 (m. ) andN 1

2 (m. ) on the other side, are irrespectively denoted by 〈·, ·〉m. . Whenever
v ∈ N1(. ) ⊂ N(curl;. ) ∩ N(div;. ) with N(div;. ) := N(div1;. ), for almost every x ∈ m. ,

v |m. (x) = (v |m. ·nm. ) (x)nm. (x) + nm. (x)×(v |m.×nm. ) (x).

In this case, v |m. ·nm. ∈ !2(m. ) and v |m.×nm. ∈ R2(m. ).
We finally introduce the following subspaces of N(curl;Ω) and N(div[;Ω):

N0(curl;Ω) :=
{
v ∈ N(curl;Ω) | v |Γ×n ≡ 0

}
and N0(curl0;Ω) := N0(curl;Ω) ∩ N(curl0;Ω), as well as

N0(div[;Ω) :=
{
v ∈ N(div[;Ω) | ([v)|Γ·n ≡ 0

}
and N0(div0

[;Ω) := N0(div[;Ω) ∩ N(div0
[;Ω).

Assume that the first Betti number V1 of Ω is positive. Then, for E ∈ !2(Ω̂) (resp. v ∈ R2(Ω̂)),
we denote by Ě (resp. v̌) its continuation to !2(Ω) (resp. R2(Ω)). Also, for each cutting surface Σ8 of
Ω, 8 ∈ {1, . . . , V1}, we associate the superscript + to the side of Ω̂ (with respect to Σ8) for which nΣ8
is outward, and the superscript − to the side of Ω̂ for which nΣ8 is inward. Let E be some function
defined on Ω̂ and, with obvious notation, let E+|Σ8 and E

−
|Σ8 denote its two traces on Σ8 defined (if need

be, in a weak sense) from both sides of Ω̂. Then, the jump of E on Σ8 is defined by

ÈEÉΣ8 := E+|Σ8 − E
−
|Σ8 . (3)

2.3 Helmholtz–Hodge decompositions

We introduce in this section two Helmholtz–Hodge decompositions for vector fields in R2(Ω).

2.3.1 First Helmholtz–Hodge decomposition

Let us introduce the following space of harmonic vector fields:

N3 (Ω) := N0(curl0;Ω) ∩ N(div0
[;Ω). (4)

By [4, Prop. 3.3.10], the harmonic space N3 (Ω) has dimension V2, and a basis for N3 (Ω) is given by(
gradl 9

)
9∈{1,...,V2 }, where, for 9 ∈ {1, . . . , V2}, l 9 ∈ �1(Ω) is the unique solution to

− div([ gradl 9) = 0 in Ω, (5a)
l 9 = 0 on Γ \ Γ 9 , (5b)
l 9 = 1 on Γ 9 . (5c)

Remark that the l 9’s are real-valued (since l 9 also solves the uniquely solvable Problem (5)), and

ℭ 9′ 9 :=
(
[ gradl 9 , gradl 9′

)
Ω
=

〈
([ gradl 9)|Γ 9′ ·n, 1

〉
Γ 9′
,

which implies that gradl 9 and gradl 9′ are not R2
[ (Ω)-orthogonal in general. The real-valuedmatrix

ℭ ∈ RV2×V2 is called capacitance matrix, and is symmetric positive-definite (cf. [4, Cor. 3.3.8]). For
w ∈ N3 (Ω) writing w = gradl, with l ∈ �1(Ω) such that l :=

∑V2
9=1 U 9l 9 , defining the vectors

"w := (U 9 ∈ C) 9∈{1,...,V2 } and #w := (〈([w)|Γ 9′ ·n, 1〉Γ 9′ ∈ C) 9′∈{1,...,V2 }, there holds

"w = ℭ
−1#w . (6)
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As a consequence, w ≡ 0 if and only if 〈([w)|Γ 9′ ·n, 1〉Γ 9′ = 0 for all 9 ′ ∈ {1, . . . , V2} (in fact, for all
9 ′ ∈ {0, . . . , V2} since w ∈ N(div0

[;Ω)).
Building on [4, Prop. 3.7.1], and using [4, Thm. 3.4.1], we infer the following first R2

[ (Ω)-
orthogonal Helmholtz–Hodge decomposition:

R2(Ω) = grad
(
�1

0 (Ω)
) ⊥[
⊕
[♯

[
curl

(
N1(Ω) ∩ R2

0(Ω)
) ⊥[
⊕ N3 (Ω). (7)

Furthermore, by [4, Thm. 3.4.1], we know that there is �Ω,1 > 0 such that 7 ∈ N1(Ω) ∩ R2
0(Ω)

satisfying curl7 = z can always be chosen so that

‖7‖1 ≤ �Ω,1‖z‖0. (8)

2.3.2 Second Helmholtz–Hodge decomposition

Let us now introduce the following space of harmonic vector fields:

N= (Ω) := N(curl0;Ω) ∩ N0(div0
[;Ω). (9)

By [4, Prop. 3.3.13], the harmonic space N= (Ω) has dimension V1, and a basis for N= (Ω) is given
by

( ˇgrad c8
)
8∈{1,...,V1 }, where, for 8 ∈ {1, . . . , V1}, c8 ∈ �1(Ω̂) ∩ !2

0(Ω̂) is the unique solution (recall
that Ω̂ is assumed to be connected) to

− div([ grad c8) = 0 in Ω̂, (10a)
([ grad c8)·n = 0 on Γ, (10b)

È([ grad c8)·nΣ8′ÉΣ8′ = 0 for all 8′ ∈ {1, . . . , V1}, (10c)
Èc8ÉΣ8′ = X88′ for all 8′ ∈ {1, . . . , V1}. (10d)

We remind the reader that ˇgrad c8 is the continuation to R2(Ω) of grad c8 ∈ R2(Ω̂), and that the
jump operator È·ÉΣ8′ is defined in (3). Notice that the c8’s are real-valued (since c8 also solves the
uniquely solvable Problem (10)) and, following the convention (3),

L8′8 :=
(
[ ˇgrad c8 , ˇgrad c8′

)
Ω
=

(
[ grad c8 , grad c8′

)
Ω̂
=

〈
([ grad c8)|Σ8′ ·nΣ8′ , 1

〉
Σ8′
,

which implies that ˇgrad c8 and ˇgrad c8′ are not R2
[ (Ω)-orthogonal in general. The real-valued matrix

L ∈ RV1×V1 is called inductance matrix, and is symmetric positive-definite (see [4, Cor. 3.3.14]). For
w ∈ N= (Ω) writing w = ˇgrad c, with c ∈ �1(Ω̂) ∩ !2

0(Ω̂) such that c :=
∑V1
8=1 U8c8 , letting this time

"w := (U8 ∈ C)8∈{1,...,V1 } and #w := (〈([w)|Σ8′ ·nΣ8′ , 1〉Σ8′ ∈ C)8′∈{1,...,V1 }, there holds

"w = L
−1#w . (11)

As a consequence, w ≡ 0 if and only if 〈([w)|Σ8′ ·nΣ8′ , 1〉Σ8′ = 0 for all 8′ ∈ {1, . . . , V1}.
Building on [4, Prop. 3.7.3], and using [4, Thm. 3.5.1], we infer the following second R2

[ (Ω)-
orthogonal Helmholtz–Hodge decomposition:

R2(Ω) = grad
(
�1(Ω) ∩ !2

0(Ω)
) ⊥[
⊕
[♯

[
curl

(
N1(Ω) ∩ N0(curl;Ω)

) ⊥[
⊕ N= (Ω). (12)

Furthermore, combining the results of [4, Thm. 3.5.1] and [4, Thm. 3.6.7], we know that there is
�Ω,2 > 0 such that 7 ∈ N1(Ω) ∩ N0(curl;Ω) satisfying curl7 = z can always be chosen so that

‖7‖1 ≤ �Ω,2‖z‖0. (13)
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2.4 Weber inequalities and Maxwell compactness

Recall the definition ^ (Ω) := N(curl;Ω) ∩ N(div[;Ω). Endowed with the (weighted) norm

‖v‖2^ := ‖v‖2div + ‖v‖
2
curl,

^ (Ω) is a Hilbert space. The first and secondWeber inequalities, as well as the related Maxwell com-
pactness properties, are direct consequences of the Helmholtz–Hodge decompositions (7) and (12).

2.4.1 First Weber inequality

Let
^3 (Ω) := N0(curl;Ω) ∩ N(div[;Ω). (14)

As a closed subspace of ^ (Ω) (recall that the rotated tangential trace map is continuous), ^3 (Ω),
endowed with the ‖·‖^ -norm, is a Hilbert space. We state and prove the first Weber inequality.

Proposition 2 (First Weber inequality). There is �, ,1 > 0 only depending on Ω such that, for all
v ∈ ^3 (Ω),

‖[ 1
2 v‖0 ≤ �, ,1

(
[
− 1

2
♭
‖ div([v)‖0 + [

1
2
♯
‖ curl v‖0 + [

− 1
2

♭
^

1
2
[
©­«
V2∑
9=1
|〈([v)|Γ 9 ·n, 1〉Γ 9 |2

ª®¬
1/2 )

. (15)

Proof. The proof of (15) builds on the first Helmholtz–Hodge decomposition (7). Since v ∈ ^3 (Ω) ⊂
R2(Ω), there exist i ∈ �1

0 (Ω), 7 ∈ N1(Ω) ∩ R2
0(Ω), and w ∈ N3 (Ω) (writing w = gradl, with

l ∈ �1(Ω) such that l :=
∑V2
9=1 U 9l 9), such that

v = grad i +
[♯

[
curl7 + w. (16)

From the previous decomposition, there holds

‖[ 1
2 v‖20 = ([v, grad i)Ω + [♯ (v, curl7)Ω + ([v, gradl)Ω.

By integration by parts, since i ∈ �1
0 (Ω), v ∈ N0(curl;Ω), and each l 9 satisfies (5), we infer that

‖[ 1
2 v‖20 = −(div([v), i)Ω + [♯ (curl v,7)Ω − (div([v), l)Ω +

V2∑
9=1
〈([v)|Γ 9 ·n, 1〉Γ 9U 9 .

The triangle and Cauchy–Schwarz inequalities, followed by the Poincaré inequality applied to both
i ∈ �1

0 (Ω) and l ∈ �
1(Ω) (remark that l |Γ0 = 0), and the estimate (8), then yield

‖[ 1
2 v‖20 ≤ �

(
‖ div([v)‖0‖ grad i‖0 + [

1
2
♯
‖ curl v‖0 [

1
2
♯
‖ curl7‖0

+ ‖ div([v)‖0‖ gradl‖0 +
©­«
V2∑
9=1
|〈([v)|Γ 9 ·n, 1〉Γ 9 |2

ª®¬
1/2

|"w |
)
,

where |"w | denotes the Euclidean norm of"w := (U 9 ∈ C) 9∈{1,...,V2 }. Starting from the expression (6)
of "w , and since 〈([w)|Γ 9′ ·n, 1〉Γ 9′ = ([ gradl, gradl 9′)Ω, we infer that

|"w | = |ℭ−1#w | ≤ d(ℭ−1) |#w | ≤ d(ℭ−1) ©­«
V2∑
9′=1
‖[ 1

2 gradl 9′ ‖20
ª®¬

1/2

‖[ 1
2 gradl‖0, (17)
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where d(ℭ−1) > 0 denotes the spectral radius of the symmetric positive-definite (real-valued) matrix
ℭ−1, which is proportional to [−1

♭
. The conclusion then follows from the R2

[ (Ω)-orthogonality of the
decomposition (16), so that ‖[ 1

2 grad i‖0 ≤ ‖[
1
2 v‖0, [♯‖[−

1
2 curl7‖0 ≤ ‖[

1
2 v‖0, and ‖[

1
2 gradl‖0 ≤

‖[ 1
2 v‖0, and from the fact that ‖·‖0 ≤ [

− 1
2

♭
‖[ 1

2 ·‖0 and [
1
2
♯
‖·‖0 ≤ [♯‖[−

1
2 ·‖0. �

The above proof of (15) is constructive. An alternative proof (in the case [ ≡ 1), based on a
contradiction argument, can be found in [4, Thm. 3.4.3]. Another proof (in the case of a symmetric
tensor field [), leveraging the inverse mapping theorem, is available in [4, Thm. 6.1.6 (B = 0)].

Remark 3 (Useful variant). Assume that v ∈ N0(curl;Ω) satisfies

([v, z)Ω = 0 ∀z ∈ grad
(
�1

0 (Ω)
) ⊥[
⊕ N3 (Ω).

Then, following the above proof, one can show that

‖[ 1
2 v‖0 ≤ �Ω,1[

1
2
♯
‖ curl v‖0,

where �Ω,1 > 0 is the multiplicative constant from (8).

The first Weber inequality enables us to define the following norm on ^3 (Ω):

‖v‖2^3
:= [−1

♭
‖ div([v)‖20 + [♯‖ curl v‖20 + [

−1
♭

V2∑
9=1
|〈([v)|Γ 9 ·n, 1〉Γ 9 |2,

which is equivalent to the ‖·‖^ -norm: there is �3 > 0, only depending on Ω, such that

(�3^[)−1‖v‖2^ ≤ ‖v‖
2
^3
≤ �3^[ ‖v‖2^ ∀v ∈ ^3 (Ω).

Endowed with the ‖·‖^3 -norm (more precisely, with the corresponding Hermitian inner product),
^3 (Ω) is a Hilbert space. We are now in position to state and prove Maxwell compactness in ^3 (Ω).
Our proof partly takes inspiration from the one of [4, Thm. 3.4.4] (see also [4, Thm. 7.5.1 (B = 0)] in
the case of a symmetric tensor field [).

Proposition 4 (Maxwell compactness in ^3 (Ω)). Let (v<)<∈N be a sequence of elements of ^3 (Ω)
for which there exists a real number �" > 0 such that [−

1
2

♯
‖v<‖^3 ≤ �" for all < ∈ N. Then, there

exists an element v ∈ ^3 (Ω) such that, along a subsequence as < →∞, v< → v strongly in R2(Ω).

Proof. The proof proceeds in three steps.

Step 1 (Weak convergence): By assumption, ‖v<‖^3 ≤ �"[
1
2
♯
for all < ∈ N. By definition of the

‖·‖^3 -norm, and by the firstWeber inequality (15), this implies that (i) (v<)<∈N and (curl v<)<∈N are
uniformly (in <) bounded in R2(Ω), and (ii) (div([v<))<∈N is uniformly (in <) bounded in !2(Ω).
Using standard (weak compactness and limit regularity) arguments, we then infer the existence of
v ∈ ^3 (Ω) such that, along a subsequence (not relabelled), (i) v< ⇀ v and curl v< ⇀ curl v weakly
in R2(Ω), and (ii) div([v<) ⇀ div([v) weakly in !2(Ω).

Step 2 (Characterization of the limit): For any < ∈ N, since v< ∈ ^3 (Ω) ⊂ R2(Ω), invoking
the first Helmholtz–Hodge decomposition (7), there exist i< ∈ �1

0 (Ω), 7< ∈ N1(Ω) ∩ R2
0(Ω), and

w< ∈ N3 (Ω), such that
v< = grad i< +

[♯

[
curl7< + w<, (18)
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with ‖7<‖1 ≤ �Ω,1‖ curl7<‖0 by (8). Since the sequence (v<)<∈N is uniformly (in <) bounded in
R2(Ω), and the decomposition (18) is R2

[ (Ω)-orthogonal with [ essentially bounded by above and
by below away from zero in Ω, the three sequences (grad i<)<∈N, (curl7<)<∈N, and (w<)<∈N are
also uniformly (in <) bounded in R2(Ω). Given that (w<)<∈N ⊂ N3 (Ω), and that the harmonic
space N3 (Ω) has finite dimension, we directly infer from the Bolzano–Weierstraß theorem the
existence of w ∈ N3 (Ω) such that, up to extraction (not relabelled), w< → w strongly in R2(Ω).
Let us now deal with the two remaining terms of the decomposition. By the Poincaré inequality
applied to i< ∈ �1

0 (Ω), and the estimate ‖7<‖1 ≤ �Ω,1‖ curl7<‖0, there holds that (i) (i<)<∈N is
uniformly bounded in �1(Ω), and (ii) (7<)<∈N is uniformly bounded in N1(Ω). Invoking standard
(weak compactness and limit regularity) arguments, one can infer the existence of i ∈ �1

0 (Ω)
and 7 ∈ N1(Ω) ∩ R2

0(Ω) such that, up to extractions (not relabelled), grad i< ⇀ grad i and
curl7< ⇀ curl7 weakly in R2(Ω). By linearity, we have thus proven that, along a subsequence
(not relabelled), v< ⇀ grad i + [♯

[
curl7 + w weakly in R2(Ω). The uniqueness of the weak limit

then yields that v = grad i + [♯
[

curl7 + w.
Step 3 (Strong convergence): By Rellich’s compactness theorem, it actually holds that, along the

same subsequence (not relabelled) as in Step 2, i< → i strongly in !2(Ω) and 7< → 7 strongly in
R2(Ω). We nowwant to prove the strong convergences of (grad i<)<∈N and (curl7<)<∈N in R2(Ω)
(we remind that we already proved strong convergence for (w<)<∈N). Recalling the expression of
v ∈ ^3 (Ω) we derived in Step 2, since the decomposition (18) is R2

[ (Ω)-orthogonal, we have

‖[ 1
2 (grad i< − grad i)‖20 =

(
[(v< − v), grad(i< − i)

)
Ω
= −

(
div([(v< − v)), i< − i

)
Ω
,

where we have used that i<, i ∈ �1
0 (Ω). By Cauchy–Schwarz inequality, combined with the fact

that ‖ div([v<)‖0 ≤ �"[♯ for all < ∈ N and div([v<) ⇀ div([v) weakly in !2(Ω) (so that
‖ div([v)‖0 ≤ �"[♯), we infer that

‖[ 1
2 (grad i< − grad i)‖20 ≤ 2�"[♯‖i< − i‖0.

Since i< → i strongly in !2(Ω), passing to the limit < →∞ we conclude that grad i< → grad i
strongly in R2(Ω). By the very same arguments, there holds

‖[− 1
2 (curl7< − curl7)‖20 = [

−1
♯

(
v< − v, curl(7< − 7)

)
Ω
= [−1

♯

(
curl(v< − v),7< − 7

)
Ω
,

where we have used that v<, v ∈ N0(curl;Ω). This implies that

‖[− 1
2 (curl7< − curl7)‖20 ≤ 2�"[−1

♯
‖7< − 7‖0,

which eventually yields that curl7< → curl7 strongly in R2(Ω). Thus, along a subsequence (not
relabelled), v< → v strongly in R2(Ω), which concludes the proof. �

2.4.2 Second Weber inequality

Let
^= (Ω) := N(curl;Ω) ∩ N0(div[;Ω). (19)

As a closed subspace of ^ (Ω) (recall that the [-weighted normal trace map is continuous), ^= (Ω),
endowed with the ‖·‖^ -norm, is a Hilbert space. We now state and prove the secondWeber inequality.

Proposition 5 (Second Weber inequality). There is �, ,2 > 0 only depending on Ω such that, for all
v ∈ ^= (Ω),

‖[ 1
2 v‖0 ≤ �, ,2

(
[
− 1

2
♭
‖ div([v)‖0 + [

1
2
♯
‖ curl v‖0 + [

− 1
2

♭
^

1
2
[

(
V1∑
8=1
|〈([v)|Σ8 ·nΣ8 , 1〉Σ8 |2

)1/2 )
. (20)
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Proof. The proof of (20) builds on the second Helmholtz–Hodge decomposition (12). Since v ∈
^= (Ω) ⊂ R2(Ω), there exist i ∈ �1(Ω) ∩ !2

0(Ω), 7 ∈ N1(Ω) ∩ N0(curl;Ω), and w ∈ N= (Ω)
(writing w = ˇgrad c, with c ∈ �1(Ω̂) ∩ !2

0(Ω̂) such that c :=
∑V1
8=1 U8c8), such that

v = grad i +
[♯

[
curl7 + w. (21)

From the previous decomposition, there holds

‖[ 1
2 v‖20 = ([v, grad i)Ω + [♯ (v, curl7)Ω + ([v, grad c)Ω̂.

By integration by parts, since v ∈ N0(div[;Ω), 7 ∈ N0(curl;Ω), and each c8 satisfies (10), we infer

‖[ 1
2 v‖20 = −(div([v), i)Ω + [♯ (curl v,7)Ω − (div([v), c)Ω̂ +

V1∑
8=1
〈([v)|Σ8 ·nΣ8 , 1〉Σ8U8 .

The triangle and Cauchy–Schwarz inequalities, followed by the Poincaré–Steklov inequality applied
to both i ∈ �1(Ω) ∩ !2

0(Ω) and c ∈ �
1(Ω̂) ∩ !2

0(Ω̂) (recall that Ω̂ is assumed to be connected), and
the estimate (13), then yield

‖[ 1
2 v‖20 ≤ �

(
‖ div([v)‖0‖ grad i‖0 + [

1
2
♯
‖ curl v‖0 [

1
2
♯
‖ curl7‖0

+ ‖ div([v)‖0‖ ˇgrad c‖0 +
(
V1∑
8=1
|〈([v)|Σ8 ·nΣ8 , 1〉Σ8 |2

)1/2

|"w |
)
,

where |"w | denotes the Euclidean norm of "w := (U8 ∈ C)8∈{1,...,V1 }, and where we also used that
‖ div([v)‖0,Ω̂ = ‖ div([v)‖0 since v ∈ N(div[;Ω), and that ‖ grad c‖0,Ω̂ = ‖ ˇgrad c‖0. Starting
from the expression (11) of "w , and since 〈([w)|Σ8′ ·nΣ8′ , 1〉Σ8′ = ([ ˇgrad c, ˇgrad c8′)Ω, we infer that

|"w | = |L−1#w | ≤ d(L−1) |#w | ≤ d(L−1)
(
V1∑
8′=1
‖[ 1

2 ˇgrad c8′ ‖20

)1/2

‖[ 1
2 ˇgrad c‖0, (22)

where d(L−1) > 0 denotes the spectral radius of the symmetric positive-definite (real-valued) matrix
L−1, which is proportional to [−1

♭
. The conclusion then follows from the R2

[ (Ω)-orthogonality of the
decomposition (21), so that ‖[ 1

2 grad i‖0 ≤ ‖[
1
2 v‖0, [♯‖[−

1
2 curl7‖0 ≤ ‖[

1
2 v‖0, and ‖[

1
2 ˇgrad c‖0 ≤

‖[ 1
2 v‖0, and from the fact that ‖·‖0 ≤ [

− 1
2

♭
‖[ 1

2 ·‖0 and [
1
2
♯
‖·‖0 ≤ [♯‖[−

1
2 ·‖0. �

As for (15), the above proof of (20) is constructive. An alternative proof (in the case [ ≡ 1), based on
a contradiction argument, can be found in [4, Thm. 3.5.3]. Another proof (in the case of a symmetric
tensor field [), leveraging the inverse mapping theorem, is available in [4, Thm. 6.2.5].

Remark 6 (Useful variant). Assume that v ∈ N(curl;Ω) satisfies

([v, z)Ω = 0 ∀z ∈ grad
(
�1(Ω) ∩ !2

0(Ω)
) ⊥[
⊕ N= (Ω).

Then, revisiting the above proof, one can show that

‖[ 1
2 v‖0 ≤ �Ω,2[

1
2
♯
‖ curl v‖0,

where �Ω,2 > 0 is the multiplicative constant from (13).
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The second Weber inequality enables us to define the following norm on ^= (Ω):

‖v‖2^= := [−1
♭
‖ div([v)‖20 + [♯‖ curl v‖20 + [

−1
♭

V1∑
8=1
|〈([v)|Σ8 ·nΣ8 , 1〉Σ8 |2,

which is equivalent to the ‖·‖^ -norm: there is �= > 0, only depending on Ω, such that

(�=^[)−1‖v‖2^ ≤ ‖v‖
2
^=
≤ �=^[ ‖v‖2^ ∀v ∈ ^= (Ω).

Endowed with the ‖·‖^=-norm (more precisely, with the corresponding Hermitian inner product),
^= (Ω) is a Hilbert space. We are now in position to state and prove Maxwell compactness in ^= (Ω).
Our proof partly takes inspiration from the one of [4, Thm. 3.5.4] (see also [4, Thm. 7.5.3] in the case
of a symmetric tensor field [).

Proposition 7 (Maxwell compactness in ^= (Ω)). Let (v<)<∈N be a sequence of elements of ^= (Ω)
for which there exists a real number �" > 0 such that [−

1
2

♯
‖v<‖^= ≤ �" for all < ∈ N. Then, there

exists an element v ∈ ^= (Ω) such that, along a subsequence as < →∞, v< → v strongly in R2(Ω).

Proof. The proof proceeds in three steps.

Step 1 (Weak convergence): By assumption, ‖v<‖^= ≤ �"[
1
2
♯
for all < ∈ N. By definition of the

‖·‖^=-norm, and by the secondWeber inequality (20), this implies that (i) (v<)<∈N and (curl v<)<∈N
are uniformly (in<) bounded in R2(Ω), and (ii) (div([v<))<∈N is uniformly (in<) bounded in !2(Ω).
Using standard (weak compactness and limit regularity) arguments, we then infer the existence of
v ∈ ^= (Ω) such that, along a subsequence (not relabelled), (i) v< ⇀ v and curl v< ⇀ curl v weakly
in R2(Ω), and (ii) div([v<) ⇀ div([v) weakly in !2(Ω).

Step 2 (Characterization of the limit): For any < ∈ N, since v< ∈ ^= (Ω) ⊂ R2(Ω), invoking
the second Helmholtz–Hodge decomposition (12), there exist i< ∈ �1(Ω) ∩ !2

0(Ω), 7< ∈ N
1(Ω) ∩

N0(curl;Ω), and w< ∈ N= (Ω), such that

v< = grad i< +
[♯

[
curl7< + w<, (23)

with ‖7<‖1 ≤ �Ω,2‖ curl7<‖0 by (13). Since the sequence (v<)<∈N is uniformly (in <) bounded
in R2(Ω), and the decomposition (23) is R2

[ (Ω)-orthogonal with [ essentially bounded by above and
by below away from zero in Ω, the three sequences (grad i<)<∈N, (curl7<)<∈N, and (w<)<∈N are
also uniformly (in <) bounded in R2(Ω). Given that (w<)<∈N ⊂ N= (Ω), and that the harmonic
space N= (Ω) has finite dimension, we straightforwardly infer from the Bolzano–Weierstraß theorem
the existence of w ∈ N= (Ω) such that, up to extraction (not relabelled), w< → w strongly in R2(Ω).
Let us now deal with the two remaining terms of the decomposition. By the Poincaré–Steklov
inequality applied to i< ∈ �1(Ω) ∩ !2

0(Ω), and the estimate ‖7<‖1 ≤ �Ω,2‖ curl7<‖0, there holds
that (i) (i<)<∈N is uniformly bounded in �1(Ω), and (ii) (7<)<∈N is uniformly bounded in N1(Ω).
Invoking standard (weak compactness and limit regularity) arguments, one can infer the existence
of i ∈ �1(Ω) ∩ !2

0(Ω) and 7 ∈ N1(Ω) ∩ N0(curl;Ω) such that, up to extractions (not relabelled),
grad i< ⇀ grad i and curl7< ⇀ curl7 weakly in R2(Ω). By linearity, we have thus proven that,
along a subsequence (not relabelled), v< ⇀ grad i+ [♯

[
curl7+w weakly in R2(Ω). The uniqueness

of the weak limit then yields that v = grad i + [♯
[

curl7 + w.
Step 3 (Strong convergence): By Rellich’s compactness theorem, it actually holds that, along the

same subsequence (not relabelled) as in Step 2, i< → i strongly in !2(Ω) and 7< → 7 strongly in
R2(Ω). We nowwant to prove the strong convergences of (grad i<)<∈N and (curl7<)<∈N in R2(Ω)
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(we remind that we already proved strong convergence for (w<)<∈N). Recalling the expression of
v ∈ ^= (Ω) we derived in Step 2, since the decomposition (23) is R2

[ (Ω)-orthogonal, we have

‖[ 1
2 (grad i< − grad i)‖20 =

(
[(v< − v), grad(i< − i)

)
Ω
= −

(
div([(v< − v)), i< − i

)
Ω
,

where we have used that v<, v ∈ N0(div[;Ω). By Cauchy–Schwarz inequality, combined with the
fact that ‖ div([v<)‖0 ≤ �"[♯ for all < ∈ N and div([v<) ⇀ div([v) weakly in !2(Ω) (so that
‖ div([v)‖0 ≤ �"[♯), we infer that

‖[ 1
2 (grad i< − grad i)‖20 ≤ 2�"[♯‖i< − i‖0.

Since i< → i strongly in !2(Ω), passing to the limit < →∞ we conclude that grad i< → grad i
strongly in R2(Ω). By the very same arguments, there holds

‖[− 1
2 (curl7< − curl7)‖20 = [

−1
♯

(
v< − v, curl(7< − 7)

)
Ω
= [−1

♯

(
curl(v< − v),7< − 7

)
Ω
,

where we have used that 7<,7 ∈ N0(curl;Ω). This implies that

‖[− 1
2 (curl7< − curl7)‖20 ≤ 2�"[−1

♯
‖7< − 7‖0,

which eventually yields that curl7< → curl7 strongly in R2(Ω). Thus, along a subsequence (not
relabelled), v< → v strongly in R2(Ω), which concludes the proof. �

3 Discrete setting

From now on, we assume that the domain Ω ⊂ R3 is a (Lipschitz) polyhedron.

3.1 Polyhedral meshes

We consider meshesMℎ := (Tℎ, Fℎ) of Ω ⊂ R3 in the sense of [22, Def. 1.4].
The set Tℎ is a finite collection of disjoint, open Lipschitz polyhedra ) (called mesh cells) such

that Ω =
⋃
) ∈Tℎ ) . The subscript ℎ here refers to the mesh size, defined by ℎ := max) ∈Tℎ ℎ) , where

ℎ) := maxx,y∈) |x − y | denotes the diameter of the mesh cell ) . The set Fℎ is a finite collection of
disjoint, two-dimensional connected subsets of Ω (called mesh faces) such that, for any � ∈ Fℎ, (i) �
is a relatively open Lipschitz polygonal subset of an affine hyperplane, and (ii) either there exist two
distinct mesh cells )+, )− ∈ Tℎ such that � ⊆ m)+ ∩ m)− (� is then an interface), or there exists one
mesh cell ) ∈ Tℎ such that � ⊆ m) ∩ Γ (� is then a boundary face). The set of mesh faces is further
assumed to satisfy

⋃
) ∈Tℎ m) =

⋃
� ∈Fℎ �. For all � ∈ Fℎ, we let ℎ� := maxx,y∈� |x − y | denote the

diameter of the face �. Interfaces are collected in the set F ◦
ℎ
, whereas boundary faces are collected

in the set F m
ℎ
. For all ) ∈ Tℎ, we denote by F) the subset of Fℎ collecting those mesh faces lying

on the boundary of ) , so that m) =
⋃
� ∈F) �. For all ) ∈ Tℎ, consistently with our notation so far,

we let nm) denote the unit vector field, defined almost everywhere on m) , normal to m) and pointing
outward from ) . For all � ∈ F) , we also let n) ,� := nm) |� denote the (constant) unit vector normal
to the hyperplane containing � and pointing outward from ) . Finally, for all � ∈ Fℎ, we define n�
as the unit (constant) vector normal to � such that either n� := n) +,� if � ⊂ m)+ ∩ m)− ∈ F ◦

ℎ
, or

n� := n) ,� (= n |� ) if � ⊂ m) ∩ Γ ∈ F mℎ . For further use, we also let, for all ) ∈ Tℎ and all � ∈ F) ,
Y) ,� ∈ {−1, 1} be such that Y) ,� := n) ,� ·n� .

When V1 > 0, for all 8 ∈ {1, . . . , V1}, we assume that there exists a subset F ◦
ℎ,Σ8

of F ◦
ℎ
such that

Σ8 =
⋃
� ∈F◦

ℎ,Σ8

�, and for which n� = nΣ8 |� for all � ∈ F ◦
ℎ,Σ8

. This ensures that we do associate
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the superscript + to the side of Ω̂ (with respect to Σ8) for which nΣ8 is outward, consistently with our
assumption from Section 2.2. Remark that, since the cutting surfaces are piecewise planar, the set Ω̂
is indeed pseudo-Lipschitz. We also set

F̂ ◦ℎ := F ◦ℎ \
V1⋃
8=1
F ◦ℎ,Σ8 .

When V2 > 0, for all 9 ∈ {0, . . . , V2}, we let F mℎ,Γ 9 denote the subset of F
m
ℎ
such that Γ 9 =

⋃
� ∈Fm

ℎ,Γ 9

�.
At the discrete level, the (real-valued) parameter [ : Ω → [[♭, [♯] introduced in (2) is assumed

to be piecewise constant on the partition Tℎ of the domain Ω, and we let

[♭ ≤ [) := [ |) ≤ [♯ ∀) ∈ Tℎ . (24)

LetH ⊂ (0,∞) be a countable set of mesh sizes having 0 as its unique accumulation point. When
studying asymptotic properties with respect to the mesh size, one has to adopt a measure of regularity
for refined mesh families (Mℎ)ℎ∈H . We classically follow [22, Def. 1.9], in which regularity for
refined mesh families is quantified through a uniform (with respect to ℎ) parameter r ∈ (0, 1), called
mesh regularity parameter. In a nutshell, it is assumed that, for all ℎ ∈ H , there exists a matching
tetrahedral submesh of Mℎ, (i) which is uniformly shape-regular, and (ii) whose elements have a
diameter that is uniformly comparable to the diameter of the cell in Mℎ they belong to. In what
follows, we write 0 . 1 (resp. 0 & 1) in place of 0 ≤ �1 (resp. 0 ≥ �1), if � > 0 only depends
on Ω, on the mesh regularity parameter r, and (if need be) on the underlying polynomial degree, but
is independent of both ℎ and [. In particular, for regular mesh families (Mℎ)ℎ∈H , for all ℎ ∈ H ,
and for all ) ∈ Tℎ, there holds card(F) ) . 1, as well as ℎ) . ℎ� ≤ ℎ) for all � ∈ F) (cf. [22,
Lem. 1.12]). Finally, for - ∈ Tℎ ∪ Fℎ, we let x- ∈ R3 be some point inside - such that - contains
a ball/disk centered at x- of radius ℎ- . A- ≤ ℎ- . The existence of such a point is guaranteed for
regular mesh families.

3.2 Polynomial spaces

For ℓ ∈ N and < ∈ {2, 3}, we let Pℓ< denote the linear space of <-variate C-valued polynomials of
total degree at most ℓ, with the convention that, for any <, P0

< is identified to C, and P−1
< := {0}.

For any - ∈ Tℎ ∪ Fℎ, we denote by Pℓ (-) the linear space spanned by the restrictions to - of the
polynomials in Pℓ3 . Letting < ∈ {2, 3} be the dimension of - , Pℓ (-) is isomorphic to Pℓ< (cf. [22,
Prop. 1.23]). We let cℓ

-
denote the !2(-)-orthogonal projector ontoPℓ (-). For convenience, we also

let Pℓ (-) := Pℓ (-)< (i.e. for all ) ∈ Tℎ, Pℓ ()) = Pℓ ())3, and for all � ∈ Fℎ, Pℓ (�) = Pℓ (�)2),
and we define 0ℓ

-
as the R2(-)-orthogonal projector onto P

ℓ (-).
For any � ∈ Fℎ, we let �� denote the hyperplane containing �, that we orient according to

the normal n� . For F : � → C, we let grad� F : � → C2 denote the (tangential) gradient of F.
Likewise, for w : � → C2, div� w : � → C denotes the (tangential) divergence of w. We also let
rot�F : � → C2 be such that

rot�F :=
(
grad� F

)⊥
,

where z⊥ is the rotation of angle −c/2 of z in the oriented hyperplane �� . Let us introduce the
following subspaces of Pℓ (�), ℓ ∈ N:

R
ℓ (�) := rot�

(
Pℓ+1(�)

)
, R

c,ℓ (�) := Pℓ−1(�) (x − x� ),

where, for x ∈ �, (x − x� ) ⊂ �� is identified to its two-dimensional tangential counterpart
(cf. Remark 1). The polynomial space R

c,ℓ (�) is the so-called Koszul complement of Rℓ (�). As
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a consequence of the homotopy formula (cf. [2, Thm. 7.1]), the following (non R2(�)-orthogonal)
polynomial decomposition holds true:

P
ℓ (�) = R

ℓ (�) ⊕ R
c,ℓ (�). (25)

Furthermore, by exactness of the (tangential) polynomial de Rham complex, the differential mapping
div� : Rc,ℓ (�) → Pℓ−1(�) is an isomorphism.

For any ) ∈ Tℎ now, we introduce the following subspaces of Pℓ ()), ℓ ∈ N:

G
ℓ ()) := grad

(
Pℓ+1())

)
, G

c,ℓ ()) := P
ℓ−1())×(x − x) ),

R
ℓ ()) := curl

(
P
ℓ+1())

)
, R

c,ℓ ()) := Pℓ−1()) (x − x) ).

The two polynomial spaces Gc,ℓ ()) and R
c,ℓ ()) are the Koszul complements of Gℓ ()) and R

ℓ ()),
respectively. By the homotopy formula (cf. [2, Thm. 7.1]), the two following (non R2())-orthogonal)
polynomial decompositions hold true:

P
ℓ ()) = G

ℓ ()) ⊕ G
c,ℓ ()) = R

ℓ ()) ⊕ R
c,ℓ ()). (26)

By exactness of the polynomial de Rham complex, the differential mappings curl : G
c,ℓ ()) →

R
ℓ−1()) and div : Rc,ℓ ()) → Pℓ−1()) are isomorphisms.

Remark8 (Inverses of cell-wise differentialmappings). By the inversemapping theorem, we know that
the inverse mappings curl−1 := (curl)−1 : Rℓ−1()) → G

c,ℓ ()) and div−1 := (div)−1 : Pℓ−1()) →
R

c,ℓ ()) are bounded. From a quantitative viewpoint, one can show that

‖ curl−1 c‖0,) . ℎ) ‖c‖0,) ∀c ∈ Rℓ−1()), ‖div−13‖0,) . ℎ) ‖3‖0,) ∀3 ∈ Pℓ−1()). (27)

This has been proven for general polyhedral cells by a transport/scaling argument in [23, Lem. 9].
For star-shaped polyhedral cells, it is possible to obtain explicit multiplicative constants (cf. [12,
Lem. 2.2] for curl−1, and Appendix A for div−1).

For all ) ∈ Tℎ and all � ∈ F) , since for E : ) → C we have n�×((grad E)|�×n� ) = grad� (E |� )
(where n�×((grad E)|�×n� ) is identified to its two-dimensional tangential counterpart), there holds

G
ℓ ())|�×n� = R

ℓ (�), (28)

where vectors inGℓ ())|�×n� are identified to their two-dimensional counterparts. In the same vein,
since for v : ) → C3 we have (curl v)|� ·n� = div� (v |�×n� ) (where v |�×n� is identified to its
two-dimensional tangential counterpart), and div�

(
P
ℓ+1(�)

)
= Pℓ (�) (by (25) with ℓ ← ℓ + 1 and

recalling that div� : Rc,ℓ+1(�) → Pℓ (�) is an isomorphism), there holds

R
ℓ ())|� ·n� = Pℓ (�). (29)

For the 3-variate C-valued polynomial space Pℓ , and C3-valued polynomial space Pℓ , we intro-
duce the following broken versions:

Pℓ (Tℎ) :={E ∈ !2(Ω) | E |) ∈ Pℓ ()) ∀) ∈ Tℎ},
P
ℓ (Tℎ) :={v ∈ R2(Ω) | v |) ∈ Pℓ ()) ∀) ∈ Tℎ}.

We classically define on Pℓ (Tℎ) the broken gradient operator gradℎ, and on P
ℓ (Tℎ) the broken

rotational and divergence operators curlℎ and divℎ. We let cℓ
ℎ
(resp. 0ℓ

ℎ
) be the !2(Ω)-orthogonal

(resp. R2(Ω)-orthogonal) projector onto Pℓ (Tℎ) (resp. Pℓ (Tℎ)).
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3.3 N(curl) ∩ N(div[)-like hybrid spaces

Let ℓ ∈ N be a given polynomial degree. We define the following discrete counterpart of the space
^ (Ω) = N(curl;Ω) ∩ N(div[;Ω):

Xℓ
ℎ

:=

vℎ :=
(
(v) )) ∈Tℎ , (v�,3)� ∈Fℎ , ( [[E]�,=)� ∈Fℎ

)
:

v) ∈ Pℓ ()) ∀) ∈ Tℎ
v�,3 ∈ Qℓ (�) ∀� ∈ Fℎ

[[E]�,= ∈ Pℓ (�) ∀� ∈ Fℎ

 , (30)

where the (possibly trimmed) polynomial space Qℓ (�) satisfies

R
ℓ (�) ⊆ Q

ℓ (�) ⊆ P
ℓ (�). (31)

We let 0ℓ
Q,�

denote the R2(�)-orthogonal projector onto Qℓ (�). In (30), v�,3 stands for the rotated
tangential trace unknown, whereas [[E]�,= stands for the [-weighted normal trace unknown.

Given a mesh cell ) ∈ Tℎ, we denote byXℓ
) the restriction ofXℓ

ℎ
to ) , and by

v) :=
(
v) , (v�,3)� ∈F) , ( [[E]�,=)� ∈F)

)
∈ Xℓ

)

the restriction of the generic element vℎ ∈ X
ℓ
ℎ
to the cell ) . For vℎ ∈ X

ℓ
ℎ
, we let vℎ (not underlined)

be the broken polynomial vector field in Pℓ (Tℎ) such that

(vℎ)|) := v) ∀) ∈ Tℎ .

Also, we let $3,ℎ : Xℓ
ℎ
→ R2(Γ) denote the discrete rotated tangential trace operator, and W=,ℎ :

Xℓ
ℎ
→ !2(Γ) be the discrete [-weighted normal trace operator such that, for all vℎ ∈ X

ℓ
ℎ
,

$3,ℎ (vℎ)|� := v�,3 and W=,ℎ (vℎ)|� := [[E]�,= ∀� ∈ F mℎ . (32)

Note that, for almost every x ∈ Γ, $3,ℎ (vℎ) (x) is a vector in C2. The discrete trace operators enable
us to define the following subspaces ofXℓ

ℎ
, which are the discrete counterparts of ^3 (Ω) and ^= (Ω),

respectively defined in (14) and (19):

Xℓ
ℎ,3 :=

{
vℎ ∈ X

ℓ
ℎ | $3,ℎ (vℎ) ≡ 0

}
, Xℓ

ℎ,=
:=

{
vℎ ∈ X

ℓ
ℎ | W=,ℎ (vℎ) ≡ 0

}
. (33)

For any ) ∈ Tℎ, we introduce the following local Hermitian, positive semi-definite, sesquilinear
forms: for all w) ,v) ∈ X

ℓ
) ,

Bcurl,) (w) ,v) ) :=
∑
� ∈F)

ℎ−1
�

( (
0ℓ
Q,�

(
w) |�×n�

)
− w�,3

)
,
(
0ℓ
Q,�

(
v) |�×n�

)
− v�,3

) )
�
,

Bdiv,) (w) ,v) ) :=
∑
� ∈F)

ℎ−1
�

( (
[) w) |� ·n� − [[F]�,=

)
,
(
[) v) |� ·n� − [[E]�,=

) )
�
,

(34)

where w) |�×n� and v) |�×n� are identified to their two-dimensional (tangential) counterparts.
Based on (34), we next define N(curl)- and N(div[)-like hybrid semi-norms: for all vℎ ∈ X

ℓ
ℎ
,

|vℎ |
2
curl,ℎ :=

∑
) ∈Tℎ

(
‖ curl v) ‖20,) + Bcurl,) (v) ,v) )

)
, (35)

and
|vℎ |

2
div,ℎ :=

∑
) ∈Tℎ

(
‖ div([) v) )‖20,) + Bdiv,) (v) ,v) )

)
. (36)
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Finally, we equip the discrete spaceXℓ
ℎ
with the following weighted norm:

‖vℎ ‖
2
^ ,ℎ := ‖[ 1

2 vℎ ‖20 + [
−1
♭
|vℎ |

2
div,ℎ + [♯ |vℎ |

2
curl,ℎ . (37)

Notice in (35) the deliberate presence, within the least-squares face penalty terms of Bcurl,) , of the
tangential face projection 0ℓ

Q,�

(
v) |�×n�

)
. As will be made precise in Lemma 12, this projection

aims at guaranteeing the optimal (polynomial) consistency of the local Hermitian form Bcurl,) , making
of the latter a ready-to-use (optimal) stabilization for hybrid schemes. It is quite crucial to note that
the introduction of this face projection does not jeopardize stability, as is made clear in Lemma 9
below. This latter fact essentially relies on the assumption (31) on the tangential face space. Similar
considerations actually apply to (36) and Bdiv,) but with the difference that, since the normal face
space is chosen to be Pℓ (�) and [ is piecewise constant on Tℎ, then cℓ� ([) v) |� ·n� ) = [) v) |� ·n�
for v) ∈ Pℓ ()). The heuristics behind the choice of face spaces is further motivated in Remark 10.

Lemma 9 (Full control of tangential jumps). For all vℎ ∈ X
ℓ
ℎ
, and all ) ∈ Tℎ, the following holds

true: ( ∑
� ∈F)

ℎ−1
� ‖v) |�×n� − v�,3 ‖20,�

)1/2

. ‖ curl v) ‖0,) + Bcurl,) (v) ,v) )
1/2. (38)

Proof. By Remark 8, notice that
(
v) − curl−1(curl v) )

)
∈ Gℓ ()). Hence, by (28), for any � ∈ F) ,(

v) |�×n� − curl−1(curl v) )|�×n�
)
∈ Rℓ (�).

Since Rℓ (�) ⊆ Q
ℓ (�) owing to (31), we then infer that

v) |�×n� − v�,3 =
(
O − 0ℓ

Q,�

) (
curl−1(curl v) )|�×n�

)
+ 0ℓ

Q,�

(
v) |�×n�

)
− v�,3 .

By the triangle inequality, and the R2(�)-optimality of the orthogonal projector 0ℓ
Q,�

, we get

ℎ
− 1

2
�
‖v) |�×n� − v�,3 ‖0,� ≤ ℎ

− 1
2

�
‖ curl−1(curl v) )|�×n� ‖0,�

+ ℎ−
1
2

�
‖0ℓ

Q,�

(
v) |�×n�

)
− v�,3 ‖0,� ,

which, in turn, by a discrete trace inequality (cf. e.g. [22, Lem. 1.32]) combined to mesh regularity,
the estimate (27) on the local norm of curl−1, and the expression (34) of Bcurl,) , yields (38). �

Remark 10 (Face spaces). For a cell unknown v) in P
ℓ ()), the choice of the tangential face space

Q
ℓ (�) satisfying (31) is driven by the following stability argument. Locally to a mesh cell ) ∈ Tℎ, the

face projection 0ℓ
Q,�

(
v) |�×n�

)
for � ∈ F) must enable to control, via least-squares face penalty,

(at least) the rotated tangential trace of the G
ℓ ())-part of v) (i.e. v) − curl−1(curl v) )). As a

matter of fact, Gℓ ()) is precisely the kernel of the rotational operator in P
ℓ ()). Since, by (28),

G
ℓ ())|�×n� = R

ℓ (�), this motivates the choice of Qℓ (�) such that Rℓ (�) ⊆ Q
ℓ (�) ⊆ P

ℓ (�), the
space Rℓ (�) being the smallest admissible set ensuring stability. If one wants to adapt the argument
to the normal face space, one must now control with a face projection of [) v) |� ·n� (at least) the
normal trace of the Rℓ ())-part of [) v) (i.e. [) v) − div−1(div([) v) ))). As a matter of fact, [) is
a constant, so that [) v) ∈ P

ℓ ()), and R
ℓ ()) is precisely the kernel of the divergence operator in

P
ℓ ()). Since, by (29), Rℓ ())|� ·n� = Pℓ (�), this means that choosing Pℓ (�) as the normal face

space is actually optimal.
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For @ > 2, we define the following global reduction operator: Iℓ
ℎ

: ^ (Ω) ∩ R@ (Ω) → Xℓ
ℎ
is such

that, for all v ∈ ^ (Ω) ∩ R@ (Ω),

Iℓℎ (v) :=
( (
0ℓ) (v |) )

)
) ∈Tℎ ,

(
0ℓ
Q,�
(v |�×n� )

)
� ∈Fℎ ,

(
cℓ� (([v)|� ·n� )

)
� ∈Fℎ

)
, (39)

where v |�×n� is identified to its two-dimensional (tangential) counterpart.

Remark 11 (Regularity). Following [27], for [ satisfying (2), the regularity v ∈ ^ (Ω) ∩ R@ (Ω) is
sufficient to give a (weak) meaning to the face polynomial projections in (39). Besides, this regularity
is typically satisfied by the solutions to the Maxwell system with piecewise smooth parameter [ as
in (24). Indeed, functions in ^3 (Ω) or ^= (Ω) with piecewise smooth [ belong to NB (Ω) for some
B > 0 (cf. [20, 32, 9]), i.e. by Sobolev embedding, to R@ (Ω) for some @ > 2.

For all ) ∈ Tℎ, we also introduce the local reduction operator: Iℓ) : N(curl;)) ∩ N(div[;)) ∩
R@ ()) → Xℓ

) is such that, for all v ∈ N(curl;)) ∩ N(div[;)) ∩ R@ ()),

Iℓ) (v) :=
(
0ℓ) (v),

(
0ℓ
Q,�
(v |�×n� )

)
� ∈F) ,

(
cℓ� ([) v |� ·n� )

)
� ∈F)

)
. (40)

The proof of the next lemma is straightforward based on the definitions (34) and (40).

Lemma 12 (Optimal polynomial consistency). Let ) ∈ Tℎ. For all p ∈ Pℓ ()), letting p
)
∈ Xℓ

) be
such that p

)
:= Iℓ) ( p), the following holds true:

• Bcurl,) (p
)
,v) ) = 0 for all v) ∈ X

ℓ
) ;

• Bdiv,) (p
)
,v) ) = 0 for all v) ∈ X

ℓ
) .

The important Lemma 12 above guarantees that the stabilization Hermitian forms (34) shall provide
superconvergence when used within hybrid numerical schemes (cf. [14, 12]). In the literature, this
kind of stabilization is often referred to as of Lehrenfeld–Schöberl type [33] (see also [16]).

4 Hybrid Weber inequalities

Let ℓ ∈ N be a given polynomial degree.

4.1 First Weber inequality

Recall the definitions (33) of the discrete spaceXℓ
ℎ,3 , (35)–(36) of the hybrid semi-norms |·|curl,ℎ and

|·|div,ℎ, and (32) of the discrete [-weighted normal trace operator W=,ℎ.

Theorem 13 (First hybrid Weber inequality). There exists 2, ,1 > 0 independent of ℎ and [ such
that, for all vℎ ∈ X

ℓ
ℎ,3 , one has

‖[ 1
2 vℎ ‖0 ≤ 2, ,1

©­«[−
1
2

♭
|vℎ |div,ℎ + [

1
2
♯
|vℎ |curl,ℎ + [

− 1
2

♭
^

1
2
[

(
V2∑
9=1

�� (W=,ℎ (vℎ), 1)Γ 9 ��2)1/2ª®¬ . (41)

Proof. Since vℎ ∈ P
ℓ (Tℎ) ⊂ R2(Ω), by the first Helmholtz–Hodge decomposition (7), there exist

i ∈ �1
0 (Ω), 7 ∈ N1(Ω) ∩ R2

0(Ω), and w ∈ N3 (Ω) (writing w = gradl, with l ∈ �1(Ω) such that
l :=

∑V2
9=1 U 9l 9), such that

vℎ = grad i +
[♯

[
curl7 + w, (42)
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with ‖7‖1 ≤ �Ω,1‖ curl7‖0 by (8). From the decomposition (42), we directly infer that

‖[ 1
2 vℎ ‖20 = ([vℎ, grad i)Ω + [♯

(
vℎ, curl7

)
Ω
+

(
[vℎ, gradl

)
Ω
=: I1 + [♯I2 + I3. (43)

Let us now estimate the three addends in the right-hand side of (43).
For I1, first remark that ∑

) ∈Tℎ

∑
� ∈F)

Y) ,�
(
[[E]�,=, i |�

)
�
= 0,

as a consequence of the fact that i ∈ �1
0 (Ω) (so that i is single-valued at interfaces and vanishes

on boundary faces) and that, for any � ⊂ m)+ ∩ m)− ∈ F ◦
ℎ
, Y) +,� + Y) −,� = 0. Hence, performing

cell-by-cell integration by parts, we get

I1 =
∑
) ∈Tℎ

(
[) v) , grad i)) =

∑
) ∈Tℎ

(
−

(
div([) v) ), i

)
)
+

∑
� ∈F)

(
[) v) |� ·n) ,� , i |�

)
�

)
=

∑
) ∈Tℎ

−
(
div([) v) ), i

)
)
+

∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
[) v) |� ·n� − [[E]�,=, i |�

)
�
.

Repeated applications of the Cauchy–Schwarz inequality then yield

I1 ≤ |vℎ |div,ℎ

(
‖i‖20 +

∑
) ∈Tℎ

∑
� ∈F)

ℎ� ‖i |� ‖20,�

)1/2

.

Applying a continuous trace inequality (cf. e.g. [22, Lem. 1.31]) combined with mesh regularity,
using the fact that ℎ) ≤ diam(Ω) for all ) ∈ Tℎ, and concluding with the Poincaré inequality applied
to i ∈ �1

0 (Ω), we finally infer that

I1 . |vℎ |div,ℎ ‖ grad i‖0. (44)

Let us now turn to the estimation of I2. In what follows, following Remark 1, all tangential vector
fields are pointwise identified to their counterparts in C2. First, notice that∑

) ∈Tℎ

∑
� ∈F)

Y) ,�
(
v�,3 , n�×(7 |�×n� )

)
�
= 0,

as a consequence of the fact that 7 ∈ N1(Ω) (so that all components of 7 are square-integrable and
single-valued at interfaces), that vℎ ∈ X

ℓ
ℎ,3 (so that v�,3 ≡ 0 for all � ∈ F m

ℎ
), and that, for any

� ⊂ m)+ ∩ m)− ∈ F ◦
ℎ
, Y) +,� + Y) −,� = 0. Hence, performing cell-by-cell integration by parts yields

I2 =
∑
) ∈Tℎ

(
v) , curl7

)
)
=

∑
) ∈Tℎ

( (
curl v) ,7

)
)
+

∑
� ∈F)

(
v) |�×n) ,� , n�×(7 |�×n� )

)
�

)
=

∑
) ∈Tℎ

(
curl v) ,7

)
)
+

∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
v) |�×n� − v�,3 , n�×(7 |�×n� )

)
�
.

By repeated applications of the Cauchy–Schwarz inequality, we then get

I2 ≤
(
‖ curlℎvℎ ‖20 +

∑
) ∈Tℎ

∑
� ∈F)

ℎ−1
� ‖v) |�×n� − v�,3 ‖20,�

)1/2

×
(
‖7‖20 +

∑
) ∈Tℎ

∑
� ∈F)

ℎ� ‖n�×(7 |�×n� )‖20,�

)1/2

. (45)
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Let us focus on the first factor in the right-hand side of (45). By the estimate (38), and the definition (35)
of |·|curl,ℎ, we infer that(

‖ curlℎvℎ ‖20 +
∑
) ∈Tℎ

∑
� ∈F)

ℎ−1
� ‖v) |�×n� − v�,3 ‖20,�

)1/2

. |vℎ |curl,ℎ .

For the second factor in the right-hand side of (45), applying a continuous trace inequality combined
with mesh regularity, using the fact that ℎ) ≤ diam(Ω) for all ) ∈ Tℎ, and concluding with the
estimate ‖7‖1 ≤ �Ω,1‖ curl7‖0, there holds(

‖7‖20 +
∑
) ∈Tℎ

∑
� ∈F)

ℎ� ‖n�×(7 |�×n� )‖20,�

)1/2

. ‖ curl7‖0.

Collecting the different results, we finally infer that

I2 . |vℎ |curl,ℎ ‖ curl7‖0. (46)

We are now left with estimating I3. First, remark that∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
[[E]�,=, l |�

)
�
=

V2∑
9=1

(
W=,ℎ (vℎ), 1

)
Γ 9
U 9 ,

as a consequence of the fact that l ∈ �1(Ω) (so that l is single-valued at interfaces), that l =∑V2
9=1 U 9l 9 withl 9 |Γ 9′ = X 9 9′ for all 9

′ ∈ {0, . . . , V2} (see (5)), and that, for any � ⊂ m)+∩m)− ∈ F ◦ℎ ,
Y) +,� + Y) −,� = 0, whereas for any � ⊂ m) ∩ Γ ∈ F m

ℎ
, Y) ,� = 1. Hence, performing cell-by-cell

integration by parts, we get

I3 =
∑
) ∈Tℎ

(
[) v) , gradl

)
)
=

∑
) ∈Tℎ

(
−
(
div([) v) ), l

)
)
+

∑
� ∈F)

(
[) v) |� ·n) ,� , l |�

)
�

)
=

∑
) ∈Tℎ

−
(
div([) v) ), l

)
)
+

∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
[) v) |� ·n� − [[E]�,=, l |�

)
�

+
V2∑
9=1

(
W=,ℎ (vℎ), 1

)
Γ 9
U 9 .

Repeated applications of the Cauchy–Schwarz inequality then yield

I3 ≤ |vℎ |div,ℎ

(
‖l‖20 +

∑
) ∈Tℎ

∑
� ∈F)

ℎ� ‖l |� ‖20,�

)1/2

+
(
V2∑
9=1

�� (W=,ℎ (vℎ), 1)Γ 9 ��2)1/2

|"w |,

where |"w | denotes the Euclidean norm of"w := (U 9 ∈ C) 9∈{1,...,V2 }. Proceeding as in the continuous
setting to estimate |"w | (cf. (17)), and as for the term I1 to estimate thel-factor (recall thatl |Γ0 = 0),
we finally infer that

I3 . |vℎ |div,ℎ ‖ gradl‖0 + [
− 1

2
♭
^

1
2
[

(
V2∑
9=1

�� (W=,ℎ (vℎ), 1)Γ 9 ��2)1/2

‖[ 1
2 gradl‖0. (47)

By the R2
[ (Ω)-orthogonality of the decomposition (42), there holds ‖ grad i‖0 ≤ [

− 1
2

♭
‖[ 1

2 vℎ ‖0,

‖ curl7‖0 ≤ [
− 1

2
♯
‖[ 1

2 vℎ ‖0, and ‖ gradl‖0 ≤ [
− 1

2
♭
‖[ 1

2 gradl‖0 ≤ [
− 1

2
♭
‖[ 1

2 vℎ ‖0. Plugging the three
estimates (44), (46), and (47) into (43), we eventually obtain (41). �
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Remark14 (Useful variant). Let us introduce the following hybrid counterpart of the spaceN(curl;Ω):

^ℓℎ :=

{
v
ℎ

:=
(
(v) )) ∈Tℎ , (v�,3)� ∈Fℎ

)
:

v) ∈ Pℓ ()) ∀) ∈ Tℎ
v�,3 ∈ Qℓ (�) ∀� ∈ Fℎ

}
, (48)

along with its subspace ^ℓ
ℎ,3 :=

{
v
ℎ
∈ ^ℓ

ℎ
| v�,3 ≡ 0∀� ∈ F m

ℎ

}
(hybrid counterpart ofN0(curl;Ω)).

Following Remark 3, assume that v
ℎ
∈ ^ℓ

ℎ,3 is such that

([vℎ, z)Ω = 0 ∀z ∈ grad
(
�1

0 (Ω)
) ⊥[
⊕ N3 (Ω). (49)

Then, following the proof of Theorem 13, and (seamlessly) restricting the definition (35) of |·|curl,ℎ to
vectors in ^ℓ

ℎ
, one can show that

‖[ 1
2 vℎ ‖0 . [

1
2
♯
|v
ℎ
|curl,ℎ, (50)

which is a complex-valued, variable-[ extension to possibly non-trivial topologies of [12, Thm. 2.1].
We refer the reader to [12] for an example, in the magnetostatics framework on trivial domains, of
how the orthogonality condition (49) may be (possibly approximately) imposed at the discrete level
on general polyhedral mesh families.

4.2 Second Weber inequality

Recall the definitions (33) of the discrete space Xℓ
ℎ,=

, (35)–(36) of the hybrid semi-norms |·|curl,ℎ
and |·|div,ℎ, and (32) of the discrete [-weighted normal trace operator W=,ℎ.

Theorem 15 (Second hybrid Weber inequality). There exists 2, ,2 > 0 independent of ℎ and [ such
that, for all vℎ ∈ X

ℓ
ℎ,=

, one has

‖[ 1
2 vℎ ‖0 ≤ 2, ,2

©­«[−
1
2

♭
|vℎ |div,ℎ + [

1
2
♯
|vℎ |curl,ℎ + [

− 1
2

♭
^

1
2
[

(
V1∑
8=1

�� (W=,ℎ (vℎ), 1)Σ8 ��2)1/2ª®¬ . (51)

Proof. Since vℎ ∈ P
ℓ (Tℎ) ⊂ R2(Ω), by the second Helmholtz–Hodge decomposition (12), there

exist i ∈ �1(Ω) ∩ !2
0(Ω), 7 ∈ N1(Ω) ∩ N0(curl;Ω), and w ∈ N= (Ω) (writing w = ˇgrad c, with

c ∈ �1(Ω̂) ∩ !2
0(Ω̂) such that c :=

∑V1
8=1 U8c8), such that

vℎ = grad i +
[♯

[
curl7 + w, (52)

with ‖7‖1 ≤ �Ω,2‖ curl7‖0 by (13). From the decomposition (52), we directly infer that

‖[ 1
2 vℎ ‖20 = ([vℎ, grad i)Ω + [♯

(
vℎ, curl7

)
Ω
+

(
[vℎ, grad c

)
Ω̂
=: I1 + [♯I2 + I3. (53)

Let us now estimate the three addends in the right-hand side of (53).
For I1 and I2, it is straightforward to prove, adapting the arguments advocated in the proof of

Theorem 13, that

I1 + [♯I2 . |vℎ |div,ℎ ‖ grad i‖0 + [♯ |vℎ |curl,ℎ ‖ curl7‖0. (54)

Let us now focus on I3. First, remark that∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
[[E]�,=, (c |) )|�

)
�
=

V1∑
8=1

(
W=,ℎ (vℎ), 1

)
Σ8
U8 ,
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as a consequence of the fact that c ∈ �1(Ω̂) (so that c is single-valued at interfaces � ∈ F̂ ◦
ℎ
),

that c =
∑V1
8=1 U8c8 with Èc8ÉΣ8′ = X88′ for all 8

′ ∈ {1, . . . , V1} (see (10)), that vℎ ∈ X
ℓ
ℎ,=

(so that
[[E]�,= = 0 for all � ∈ F m

ℎ
), and that, for any � ⊂ m)+ ∩ m)− ∈ F ◦

ℎ
, Y) +,� + Y) −,� = 0 with, for

any 8 ∈ {1, . . . , V1}, and any � ⊂ m)+ ∩ m)− ∈ F ◦
ℎ,Σ8

, Y) +,� = 1. Hence, performing cell-by-cell
integration by parts, we get

I3 =
∑
) ∈Tℎ

(
[) v) , grad c)) =

∑
) ∈Tℎ

(
−
(
div([) v) ), c

)
)
+

∑
� ∈F)

(
[) v) |� ·n) ,� , (c |) )|�

)
�

)
=

∑
) ∈Tℎ

−
(
div([) v) ), c

)
)
+

∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
[) v) |� ·n� − [[E]�,=, (c |) )|�

)
�

+
V1∑
8=1

(
W=,ℎ (vℎ), 1

)
Σ8
U8 .

Repeated applications of the Cauchy–Schwarz inequality then yield

I3 ≤ |vℎ |div,ℎ

(
‖c‖20,Ω̂ +

∑
) ∈Tℎ

∑
� ∈F)

ℎ� ‖(c |) )|� ‖20,�

)1/2

+
(
V1∑
8=1

�� (W=,ℎ (vℎ), 1)Σ8 ��2)1/2

|"w |,

where |"w | denotes the Euclidean norm of "w := (U8 ∈ C)8∈{1,...,V1 }. Proceeding as in the continuous
setting (cf. (22)) to estimate |"w |, and applying to the c-factor a continuous trace inequality combined
with mesh regularity (and the fact that ℎ) ≤ diam(Ω) for all ) ∈ Tℎ), along with a Poincaré–Steklov
inequality (recall that c ∈ �1(Ω̂) ∩ !2

0(Ω̂) and that Ω̂ is assumed to be connected), we finally infer

I3 . |vℎ |div,ℎ ‖ ˇgrad c‖0 + [
− 1

2
♭
^

1
2
[

(
V1∑
8=1

�� (W=,ℎ (vℎ), 1)Σ8 ��2)1/2

‖[1/2 ˇgrad c‖0, (55)

where we also used that ‖ grad c‖0,Ω̂ = ‖ ˇgrad c‖0.

By the R2
[ (Ω)-orthogonality of the decomposition (52), there holds ‖ grad i‖0 ≤ [

− 1
2

♭
‖[ 1

2 vℎ ‖0,

‖ curl7‖0 ≤ [
− 1

2
♯
‖[ 1

2 vℎ ‖0, and ‖ ˇgrad c‖0 ≤ [
− 1

2
♭
‖[ 1

2 ˇgrad c‖0 ≤ [
− 1

2
♭
‖[ 1

2 vℎ ‖0. Plugging the two
estimates (54) and (55) into (53), we eventually obtain (51). �

Remark 16 (Useful variant). Recall the definition (48) of the hybrid counterpart ^ℓ
ℎ
of the space

N(curl;Ω). Following Remark 6, assume that v
ℎ
∈ ^ℓ

ℎ
is such that

([vℎ, z)Ω = 0 ∀z ∈ grad
(
�1(Ω) ∩ !2

0(Ω)
) ⊥[
⊕ N= (Ω). (56)

Then, revisiting the proof of Theorem 15, one can show that

‖[ 1
2 vℎ ‖0 . [

1
2
♯
|v
ℎ
|curl,ℎ . (57)

5 Discrete Maxwell compactness

Let ℓ, <, ? ∈ N be three given polynomial degrees.
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5.1 Discrete differential operators

Recall the definitions (30) of the discrete space Xℓ
ℎ
, (34) of the local Hermitian forms Bcurl,) and

Bdiv,) , and (35)–(36) of the hybrid semi-norms |·|curl,ℎ and |·|div,ℎ.
We define the (global) rotational reconstruction operator I<ℎ : Xℓ

ℎ
→ P

<(Tℎ) through its local
restrictions I<) : Xℓ

) → P
<()) to any mesh cell ) ∈ Tℎ: for all v) ∈ X

ℓ
) , I

<
) (v) ) ∈ P

<()) is
the unique solution to(

I<) (v) ), q
)
)
= (v) , curl q)) −

∑
� ∈F)

Y) ,�
(
v�,3 , n�×(q |�×n� )

)
�

∀q ∈ P<()), (58)

where, as now standard, n�×(q |�×n� ) is identified to its two-dimensional (tangential) counterpart.
Performing an integration by parts of the term (v) , curl q)) , and using a discrete trace inequality
along with Lemma 9, it is an easy matter to prove that∑

) ∈Tℎ

(
‖I<) (v) )‖

2
0,) + Bcurl,) (v) ,v) )

)
. |vℎ |

2
curl,ℎ ∀vℎ ∈ X

ℓ
ℎ . (59)

If < ≥ ℓ − 1, and Q
ℓ (�) (already satisfying (31)) also satisfies Pℓ−1(�) ⊂ Q

ℓ (�) for all � ∈ Fℎ,
one can also prove that |vℎ |2curl,ℎ .

∑
) ∈Tℎ

(
‖I<) (v) )‖20,) + Bcurl,) (v) ,v) )

)
.

In the same vein, we define the (global) divergence reconstruction operator � ?

ℎ
: Xℓ

ℎ
→ P ? (Tℎ)

through its local restrictions � ?

)
: Xℓ

) → P ? ()) to any mesh cell ) ∈ Tℎ: for all v) ∈ X
ℓ
) ,

�
?

)
(v) ) ∈ P ? ()) is the unique solution to(

�
?

)
(v) ), @

)
)
= −([) v) , grad @)) +

∑
� ∈F)

Y) ,�
(
[[E]�,=, @ |�

)
�

∀@ ∈ P ? ()). (60)

Performing an integration by parts of the term ([) v) , grad @)) , and using a discrete trace inequality,
it is an easy matter to prove that∑

) ∈Tℎ

(
‖� ?

)
(v) )‖

2
0,) + Bdiv,) (v) ,v) )

)
. |vℎ |

2
div,ℎ ∀vℎ ∈ X

ℓ
ℎ . (61)

If ? ≥ ℓ − 1, one can also prove that |vℎ |2div,ℎ .
∑
) ∈Tℎ

(
‖� ?

)
(v) )‖20,) + Bdiv,) (v) ,v) )

)
.

5.2 Compactness in X ℓ
ℎ,3

Recall the definitions (33) of the discrete spaceXℓ
ℎ,3 , and (35)–(36) of the hybrid semi-norms |·|curl,ℎ

and |·|div,ℎ. Leveraging the first hybrid Weber inequality from Theorem 13, we infer that

‖vℎ ‖
2
^3 ,ℎ

:= [−1
♭
|vℎ |

2
div,ℎ + [♯ |vℎ |

2
curl,ℎ + [

−1
♭

V2∑
9=1

�� (W=,ℎ (vℎ), 1)Γ 9 ��2 (62)

defines a norm on Xℓ
ℎ,3 , which can be proven uniformly (in ℎ) equivalent to the ‖·‖^ ,ℎ-norm (37):

there is 23 > 0, independent of ℎ and [, such that

(23^[)−1‖vℎ ‖
2
^ ,ℎ ≤ ‖vℎ ‖

2
^3 ,ℎ
≤ 23^[ ‖vℎ ‖

2
^ ,ℎ ∀vℎ ∈ X

ℓ
ℎ,3 .

Theorem 17 (Maxwell compactness inXℓ
ℎ,3). Let

(
Mℎ

)
ℎ∈H be a regular mesh family as defined in

Section 3.1. Let (vℎ)ℎ∈H be a sequence of elements of Xℓ
ℎ,3 for which there exists a real number

2" > 0 (independent of ℎ) such that [−
1
2

♯
‖vℎ ‖^3 ,ℎ ≤ 2" for all ℎ ∈ H . Then, there exists an element

v ∈ ^3 (Ω) such that, along a subsequence, as ℎ→ 0,
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(a) vℎ → v strongly in R2(Ω);

(b) I<ℎ (vℎ) ⇀ curl v weakly in R2(Ω);

(c) � ?

ℎ
(vℎ) ⇀ div([v) weakly in !2(Ω);

(d) W=,ℎ (vℎ) ⇀ ([v)|Γ·n weakly in �− 1
2 (Γ).

Proof. As in the continuous case (cf. Proposition 4), the proof proceeds in three steps.

Step 1 (Weak convergence): By assumption, ‖vℎ ‖^3 ,ℎ ≤ 2"[
1
2
♯
for all ℎ ∈ H . By definition (62)

of the ‖·‖^3 ,ℎ-norm, by the boundedness results (59) and (61), and by the first hybrid Weber inequal-
ity (41), this implies that (i) (vℎ)ℎ∈H and

(
I<ℎ (vℎ)

)
ℎ∈H are uniformly bounded in R2(Ω), and (ii)(

�
?

ℎ
(vℎ)

)
ℎ∈H is uniformly bounded in !2(Ω). By weak compactness, we then infer the existence of

v ∈ R2(Ω), c ∈ R2(Ω), and 3 ∈ !2(Ω) such that, along a subsequence (not relabelled), (i) vℎ ⇀ v
and I<ℎ (vℎ) ⇀ c weakly in R2(Ω), and (ii) � ?

ℎ
(vℎ) ⇀ 3 weakly in !2(Ω).

Let us first prove that v ∈ N0(curl;Ω) and that c = curl v. Let z ∈ I∞(Ω). There holds(
I<ℎ (vℎ), z

)
Ω
=

∑
) ∈Tℎ

(
I<) (v) ), 0

<
) (z |) )

)
)

=
∑
) ∈Tℎ

( (
curl v) , 0<) (z |) )

)
)

+
∑
� ∈F)

Y) ,�
(
v) |�×n� − v�,3 , n�×(0<) (z |) )|�×n� )

)
�

)
=

(
curlℎ vℎ, z

)
Ω
+

∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
v) |�×n� − v�,3 , n�×(z |�×n� )

)
�
+ Icurl,ℎ

=
(
vℎ, curl z

)
Ω
+ Icurl,ℎ,

(63)

with Icurl,ℎ given by

Icurl,ℎ :=
(
curlℎ vℎ, 0<ℎ (z) − z

)
Ω

+
∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
v) |�×n� − v�,3 , n�×((0<) (z |) ) − z)|�×n� )

)
�
,

where we have (i) used that I<) (v) ) ∈ P
<()) for all ) ∈ Tℎ in the first line, (ii) applied the defi-

nition (58) ofI<) (v) ) alongwith an integration by parts of the term
(
v) , curl 0<

)
(z |) )

)
)
in the second

line, (iii) added/subtracted
(
curlℎ vℎ, z

)
Ω
and

∑
) ∈Tℎ

∑
� ∈F) Y) ,�

(
v) |�×n�−v�,3 , n�×(z |�×n� )

)
�

in the third line, and (iv) performed cell-by-cell integration by parts of the term
(
curlℎ vℎ, z

)
Ω
and

used that
∑
) ∈Tℎ

∑
� ∈F) Y) ,�

(
v�,3 , n�×(z |�×n� )

)
�
= 0 (since z is single-valued at interfaces and

v�,3 ≡ 0 for all � ∈ F m
ℎ

for vℎ ∈ X
ℓ
ℎ,3) in the fourth line. For the term Icurl,ℎ in the right-hand

side of (63), standard approximation properties for 0<
ℎ
on mesh cells (cf. e.g. [22, Thm. 1.45]) on the

one side, and repeated applications of the triangle and Cauchy–Schwarz inequalities along with the
estimate (38) and approximation properties for 0<

ℎ
on mesh faces on the other side, yield

|Icurl,ℎ | . ℎ<+1 |vℎ |curl,ℎ |z |<+1.

Starting from (63), and using that vℎ ⇀ v and I<ℎ (vℎ) ⇀ c weakly in R2(Ω), combined with the
fact that Icurl,ℎ → 0 as ℎ→ 0 (since |vℎ |curl,ℎ ≤ 2" for all ℎ ∈ H and < + 1 ≥ 1), we infer that

(c, z)Ω = (v, curl z)Ω ∀z ∈ I∞(Ω).
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Since the latter relation is, in particular, valid for all z ∈ I∞0 (Ω), we infer that v ∈ N(curl;Ω)
and that c = curl v. Then, integrating by parts the left-hand side of the relation, we get that
〈v |Γ×n, n×(z |Γ×n)〉Γ = 0 for all z ∈ I∞(Ω), which implies that v ∈ N0(curl;Ω).

Let us now prove that v ∈ N(div[;Ω) and that 3 = div([v), along with the weak convergence
result W=,ℎ (vℎ) ⇀ ([v)|Γ·n in �− 1

2 (Γ). Let I ∈ �∞(Ω). Adapting the arguments used in (63) in the
case of the rotational operator to the case of the divergence operator, we infer that(

�
?

ℎ
(vℎ), I

)
Ω
= −

(
[ vℎ, grad I

)
Ω
+

(
W=,ℎ (vℎ), I |Γ

)
Γ
+ Idiv,ℎ, (64)

where Idiv,ℎ is given by

Idiv,ℎ :=
(
divℎ ([vℎ), c?ℎ (I) − I

)
Ω
+

∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
[[E]�,= − [) v) |� ·n� , (c?) (I |) ) − I)|�

)
�
.

Adapting the arguments from the rotational case, it is an easy matter to prove that

|Idiv,ℎ | . ℎ?+1 |vℎ |div,ℎ |I |?+1.

Let us first choose I ∈ �∞0 (Ω). Remark that the boundary term in (64) vanishes. Starting from (64),
and using that vℎ ⇀ v weakly in R2(Ω) and � ?

ℎ
(vℎ) ⇀ 3 weakly in !2(Ω), combined with the fact

that Idiv,ℎ → 0 as ℎ→ 0 (since |vℎ |div,ℎ ≤ 2"[♯ for all ℎ ∈ H and ? + 1 ≥ 1), we infer that

(3, I)Ω = −([ v, grad I)Ω ∀I ∈ �∞0 (Ω).

The latter relation directly implies that v ∈ N(div[;Ω) and that 3 = div([v). Now, passing to the
limit ℎ→ 0 in (64) for a generic I ∈ �∞(Ω), we infer that

lim
ℎ→0

(
W=,ℎ (vℎ), I |Γ

)
Γ
= (div([v), I)Ω + ([ v, grad I)Ω = 〈([v)|Γ·n, I |Γ〉Γ,

which implies that W=,ℎ (vℎ) ⇀ ([v)|Γ·n weakly in �− 1
2 (Γ).

Step 2 (Characterization of the limit): This step is identical to Step 2 from the continuous case
(cf. the proof of Proposition 4), up to the replacement of < ∈ N by ℎ ∈ H (and < → ∞ by
ℎ → 0) and of v< ∈ ^3 (Ω) by vℎ ∈ P

ℓ (Tℎ). For any ℎ ∈ H , by (7), there exist iℎ ∈ �1
0 (Ω),

7ℎ ∈ N1(Ω) ∩ R2
0(Ω), and wℎ ∈ N3 (Ω), such that

vℎ = grad iℎ +
[♯

[
curl7ℎ + wℎ, (65)

with ‖7ℎ ‖1 ≤ �Ω,1‖ curl7ℎ ‖0 by (8). Proceeding as in the continuous case, one can infer the
existence of w ∈ N3 (Ω) such that, up to extraction (not relabelled), wℎ → w strongly in R2(Ω), and
of i ∈ �1

0 (Ω) and7 ∈ N
1(Ω)∩R2

0(Ω) such that, up to extractions (not relabelled), grad iℎ ⇀ grad i
and curl7ℎ ⇀ curl7 weakly in R2(Ω). By linearity, we have thus proven that, along a subsequence
(not relabelled), vℎ ⇀ grad i + [♯

[
curl7 + w weakly in R2(Ω). By uniqueness of the weak limit,

v = grad i + [♯
[

curl7 + w.
Step 3 (Strong convergence): Here again, the arguments are inspired by what is done in Step 3

from the continuous case, but with the important difference that here vℎ ∈ P
ℓ (Tℎ) ⊄ ^3 (Ω). By

Rellich’s compactness theorem, we actually have that, along the same subsequence (not relabelled) as
in Step 2 above, iℎ → i strongly in !2(Ω) and 7ℎ → 7 strongly in R2(Ω). We now want to prove
the strong convergences of (grad iℎ)ℎ∈H and (curl7ℎ)ℎ∈H in R2(Ω) (we remind the reader that we
already proved strong convergence for (wℎ)ℎ∈H).

25



Recalling the expression of v ∈ ^3 (Ω) derived in Step 2, since the decomposition (65) is
R2
[ (Ω)-orthogonal, there holds

‖[ 1
2 (grad iℎ − grad i)‖20 =

(
[(vℎ − v), grad(iℎ − i)

)
Ω

=
∑
) ∈Tℎ

(
−

(
div([) (v) − v)), iℎ − i

)
)

+
∑
� ∈F)

(
[) v) |� ·n) ,� , (iℎ − i)|�

)
�

)
= −

(
divℎ ([(vℎ − v)), iℎ − i

)
Ω

+
∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
[) v) |� ·n� − [[E]�,=, (iℎ − i)|�

)
�
,

where, to pass from the first to the second line, we have performed cell-by-cell integration by parts and
used that

∑
) ∈Tℎ

〈
([v)|m) ·nm) , (iℎ−i)|m)

〉
m)
= 0 (as a consequence of the fact that v ∈ N(div[;Ω)

and that iℎ, i ∈ �1
0 (Ω)) and, to pass from the second to the third line, we have again used the fact that

(iℎ−i) is single-valued at interfaces and vanishes on the boundary of the domain to subtract the zero
contribution

∑
) ∈Tℎ

∑
� ∈F) Y) ,�

(
[[E]�,=, (iℎ − i)|�

)
�
. By Cauchy–Schwarz inequality, combined

with a continuous trace inequality (along with mesh regularity), and the fact that |vℎ |div,ℎ ≤ 2"[♯ for
all ℎ ∈ H and ‖ div([v)‖0 . lim infℎ→0 |vℎ |div,ℎ (by weak convergence of (� ?

ℎ
(vℎ))ℎ∈H to div([v)

in !2(Ω) and the uniform bound (61)), we infer that

‖[ 1
2 (grad iℎ − grad i)‖20 . [♯

(
‖iℎ − i‖0 + ℎ‖ grad iℎ − grad i‖0

)
. (66)

Since ‖ grad iℎ ‖0 ≤ [
− 1

2
♭
‖[ 1

2 vℎ ‖0 (by R2
[ (Ω)-orthogonality of the decomposition (65)), ‖[ 1

2 vℎ ‖0 ≤

2, ,1
√

3^
1
2
[2"[

1
2
♯
(by (41), (62), and ‖vℎ ‖^3 ,ℎ ≤ 2"[

1
2
♯
), and ‖ grad i‖0 ≤ lim infℎ→0 ‖ grad iℎ ‖0

(since grad iℎ ⇀ grad i weakly in R2(Ω)), we infer by the triangle inequality that

‖ grad iℎ − grad i‖0 ≤ 22, ,1
√

3^[2" .

Combining this uniform boundedness result to the fact that iℎ → i strongly in !2(Ω) to pass to the
limit ℎ→ 0 in (66), we conclude that grad iℎ → grad i strongly in R2(Ω).

Adapting the latter arguments, there also holds

[♯‖[−
1
2 (curl7ℎ − curl7)‖20 =

(
vℎ − v, curl(7ℎ − 7)

)
Ω

=
(
curlℎ (vℎ − v),7ℎ − 7

)
Ω

+
∑
) ∈Tℎ

∑
� ∈F)

Y) ,�
(
v) |�×n� − v�,3 , n�×((7ℎ − 7)|�×n� )

)
�
,

where we have used that vℎ ∈ X
ℓ
ℎ,3 , v ∈ N0(curl;Ω), and 7ℎ,7 ∈ N1(Ω). Additionally invok-

ing (38), this implies that

[♯‖[−
1
2 (curl7ℎ − curl7)‖20 .

(
‖7ℎ − 7‖0 + ℎ|7ℎ − 7 |1

)
,

which eventually yields, since |7ℎ − 7 |1 ≤ 2�Ω,12, ,1
√

3^
1
2
[2" (here, we additionally used the

estimate |7ℎ |1 ≤ �Ω,1‖ curl7ℎ ‖0 and the fact that 7ℎ ⇀ 7 weakly in N1(Ω)), and 7ℎ → 7 strongly
in R2(Ω), that curl7ℎ → curl7 strongly in R2(Ω).

Thus, along a subsequence (not relabelled), vℎ → v strongly in R2(Ω), yielding the conclusion.
�

26



5.3 Compactness in X ℓ
ℎ,=

Recall the definitions (33) of the discrete spaceXℓ
ℎ,=

, and (35)–(36) of the hybrid semi-norms |·|curl,ℎ
and |·|div,ℎ. Leveraging the second hybrid Weber inequality from Theorem 15, we infer that

‖vℎ ‖
2
^= ,ℎ

:= [−1
♭
|vℎ |

2
div,ℎ + [♯ |vℎ |

2
curl,ℎ + [

−1
♭

V1∑
8=1

�� (W=,ℎ (vℎ), 1)Σ8 ��2 (67)

defines a norm on Xℓ
ℎ,=

, which can be proven uniformly (in ℎ) equivalent to the ‖·‖^ ,ℎ-norm (37):
there is 2= > 0, independent of ℎ and [, such that

(2=^[)−1‖vℎ ‖
2
^ ,ℎ ≤ ‖vℎ ‖

2
^= ,ℎ

≤ 2=^[ ‖vℎ ‖
2
^ ,ℎ ∀vℎ ∈ X

ℓ
ℎ,=.

Theorem 18 (Maxwell compactness inXℓ
ℎ,=

). Let
(
Mℎ

)
ℎ∈H be a regular mesh family as defined in

Section 3.1. Let (vℎ)ℎ∈H be a sequence of elements of Xℓ
ℎ,=

for which there exists a real number

2" > 0 (independent of ℎ) such that [−
1
2

♯
‖vℎ ‖^= ,ℎ ≤ 2" for all ℎ ∈ H . Then, there exists an

element v ∈ ^= (Ω) such that, along a subsequence, as ℎ→ 0,

(a) vℎ → v strongly in R2(Ω);

(b) I<ℎ (vℎ) ⇀ curl v weakly in R2(Ω);

(c) � ?

ℎ
(vℎ) ⇀ div([v) weakly in !2(Ω);

(d) $3,ℎ (vℎ) ⇀ v |Γ×n weakly in N−
1
2 (Γ).

Proof. The proof proceeds in three steps, as in the continuous case (cf. Proposition 7). For the sake
of brevity, since, up to inverting the roles of the rotational- and divergence-related parts in the proof,
the three steps are essentially identical to those from Theorem 17, we do not detail them. �
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A Continuity modulus of div−1 on star-shaped cells

Lemma 19 (Continuity modulus of div−1). Let ℓ ∈ N. Let ) ∈ Tℎ, and assume that ) is star-shaped
with respect to x) . Then, for all 3 ∈ Pℓ−1()),

‖div−13‖0,) ≤
2
3
ℎ) ‖3‖0,) . (68)

Proof. The mapping div : Rc,ℓ ()) → Pℓ−1()) being an isomorphism, let A ∈ Pℓ−1()) be the unique
solution to

3 = div
(
A (x − x) )

)
.

Using a simple vector calculus identity to expand the right-hand side, there holds

3 = 3A + grad A ·(x − x) ).
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Now, multiplying both sides by A , integrating over ) , and taking the real part, we get

ℜ
(
(3, A))

)
= 3‖A ‖20,) +

1
2
(
grad( |A |2), (x − x) )

)
)

= 3‖A ‖20,) −
3
2
‖A ‖20,) +

1
2
(
|A |2, (x − x) )·nm)

)
m)

≥ 3
2
‖A ‖20,) ,

where we have used an integration by parts formula to pass to the second line, and the fact that )
is star-shaped with respect to x) to conclude. Finally, applying the Cauchy–Schwarz inequality to
(3, A)) , we infer

‖div−13‖0,) = ‖A (x − x) )‖0,) ≤ ℎ) ‖A ‖0,) ≤
2
3
ℎ) ‖3‖0,) ,

which proves (68). �
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