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Abstract

This work deals with the assessment of optimal working condition of a mesh
nebulizer on-demand droplet generation. The purpose of this paper is to
introduce a model of vibrating mesh nebulizer to identify optimal working
regime from a mechanical point of view. The influence of geometrical pa-
rameters and mechanical properties of both the piezoelectric component,
vibrating plate and geometry of perforations is investigated and discussed
based on an analytical model of stepped plate. This model is validated by
2D-axisymmetric finite element computations. The main trends identified
by the model are recovered by the simulation and enable to formulate design
rules to maximize the atomization efficiency with respect to a given set of
mechanical and geometrical parameters.
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Highlights1

• Atomization efficiency depends on amount of fluid set in motion above2

the vibrating mesh and volume variation in apertures,3

• Analytical model describes the pumping effect according to the position4

of holes and shape, and distribution over the plate,5

• Design rules are suggested to take advantage of kinematics of both6

vibrating mesh and piezoelectric ring to increase volume variation,7

• Successive finite element validations of theoretical results confirm rele-8

vancy of the model.9

2



Introduction10

Atomizers for on-demand droplet generation are usually classified into11

three main categories : air-jet, ultrasonic, and vibrating mesh nebulizers.12

Air-jet nebulizers (pneumatic nebulizers) atomize the liquid into droplets us-13

ing a compressed gas traveling through a convergent nozzle. In ultrasonic14

nebulizers, high frequency acoustic waves are produced by a piezoelectric15

crystal as an energy source to overcome the capillary stress stabilizing the16

liquid surface and therefore breaking it into microsized droplets [1]. Vi-17

brating mesh nebulizers are themselves divided in two categories. In passive18

devices, the liquid to be atomized is in between a vibrating piezoelectric patch19

and a fixed perforated mesh having identical tapered holes. As the piezo-20

electric crystal is driven by a high-frequency vibration, it pushes the fluid21

through the apertures of the perforated mesh [2]. Active vibrating mesh de-22

vices consist in a piezoelectric ring clamped on the contour of a perforated23

plate, as depicted in Fig. 1. When a voltage is applied to the piezoelectric24

ring, the disc contracts and expands, resulting in a transverse vibration of25

the perforated plate, and therefore pumping the fluid from one face of the26

mesh to the other one, resulting in droplet ejection [3].27

Vibrating mesh nebulizers have several advantages compared to jet neb-28

ulizers including quiet operation, no heating, stability, low weight, fast re-29

sponse and energy efficiency. A decisive advantage is to control the droplet30

size by the ultrasonic frequency unlike jet nebulizers. Such vibrating mesh31

nebulizers utilize a membrane with multiple apertures and are reported to32

provide a more uniform droplet size. The only limitation is that these are33

manufactured through an expensive laser drilling process or micro- electro-34

plating method. Despite the manufacturing costs, vibrating mesh nebulizers35

have been introduced in the 1980s for medical purposes. These devices are36

now used in various fields of application such as medicine, injection engines,37

agriculture, for various purposes such as disinfection, spray drying, atomiza-38

tion of liquids or powders [5, 6].39

Regarding the actuation of vibrating mesh nebulizers, the key component40

is a plate that is perforated with precisely formed (tapered/cylindrical) holes.41

A piezoelectric ring clamped on the contour of the plate is driven by a electric42

excitation so that it vibrations induces downward and upward motion of the43

plate. The mesh deforms into the liquid side, thus pumping and loading the44

liquid inside holes. This deformation on the other side of the liquid reservoir45

ejects droplet through the holes. The specific motion of the apertures of the46
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Figure 1: Constituents of a vibrating mesh nebulizer. Top left: the piezoelectric ring
is actuated to expand and contract and induces local vibrations of the perforated plate
that creates a pumping action. Bottom left: Microscopic view of perforations. There are
approximately 1.000 holes on the perforated mesh. Right: mist resulting from atomization
process. Picture taken from [4]

mesh creates a pumping effect that brings the liquid through the apertures47

so that it is finally atomized into fine droplets. The specific mechanism of48

droplet formation and ejection is not addressed in this paper. It is a complex49

multi-parameter two-phase flow problem and numerous competing theories50

are available in the literature [7, 8].51

The huge interest in controlling accurately the size of these droplets and52

make sure the atomizer consistently generates droplets in a fine range of53

diameters has motivated numerous experimental studies. These concluded54

that the size of the droplet produced depends on the diameter of the holes55

in the mesh and physico-chemical properties of the liquid to be atomized,56

such as density, surface tension, and viscosity. The typical output droplet57

diameter is about 5 µm [9]. This size of particle is associated with deep lung58

penetration and explains the huge amount of experimental studies applied59

to drug delivery.60

However, only a few research are available on the dynamic characteristics61
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and the underlying mechanism of mechanical vibration of the piezo and the62

perforated plate.63

Among the very few works available from the mechanical perspective,64

one may cite [10] who concluded that the second vibration mode of the inner65

mesh provides more stable atomization efficiency and that the nodal line of66

the second mode should be inside the inner radius of the piezoelectric ring.67

Analytical solutions for the deflection of the plate actuated by a piezoelectric68

annular plate is fully documented in terms of efforts and moments in [11] and69

[12] but it resulted in static solutions only with no effect of the perforations.70

An investigation of the behavior of a piezo ring was suggested by [13] and71

demonstrated the effect of laminate’s thickness, annular radius, and residual72

stresses on the deflection of the inner plate. An analytical model assessing73

the pumping effect caused by the perforated mesh was introduced in [14].74

The cone angle was correlated to the flow resistance coefficient and pressure75

loss calculation, but it was not investigated in the frequency domain. This76

was later verified experimentaly in [15, 16, 17]. Recently, a modal study of77

the piezoelectric ring coupled with the plate was achieved by [18, 19] and was78

correlated to flow rates to demonstrate a better efficiency at the resonance79

frequency, but no investigation of the holes was conducted. More recently, a80

vibration-based model for annular-type bimorph transducers was published81

by [20]. The relationships between the transducer, its boundary conditions,82

and their influence on ultrasonic drying enabled to optimize the dryer design83

based on modal considerations.84

From this critical review, and despite dozens of patents on the topic,85

published data on the design rules of these actuators are quite limited. Thus,86

the main purpose of the present paper is to investigate the features of a87

vibrating mesh nebulizer from the mechanical perspective.88

The structure under study is described in section 1, the underlying89

physics and associated mechanisms. A simple analytical model is firstly de-90

rived in section 2 to evaluate the volume change of fluid that is set in motion91

by the plate and evaluate how it is affected by the plate’s properties. A more92

specific model describing the volume variation in the mesh is then suggested93

in section 3 to investigate the effect of the position, number, shape of the94

holes. This model is extended to that of a stepped plate that takes into95

account the thickness step associated with the ring. Finally, a finite element96

simulation is presented in section 4. It summarizes the governing equations97

related to the coupling between the piezoelectric disc and plate. Frequency98

domain computations aims at compare the trends from the analytical model99
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and suggest possible ways to enhance the analytical models.100

1. Structure geometry and governing equation101

The structure under study is shown in Fig. 2 and consists in a circular steel102

plate coupled with a piezoelectric ring. The circular plate is characterized by103

its radius ro, thickness dp, Young’s modulus Ep, density ρp, Poisson’s ratio104

νp, corrected Young’s modulus E ′p = Ep/(1 − ν2
p). The piezoelectric ring105

is characterized by its inner radius ri, outer radius ro, thickness dr. The106

bonding layer between the piezo ring and the plate is usually less than 10 µm107

and such thickness compared to the plate thickness have a negligible effect108

on the global behavior. The geometric parameters and mechanical properties109

of the plate and ring are detailed in Table 1.110

ri

ro

dr

dp

Piezoelectric ring

Steel plate

A D

B C

rt

rb

Enlargement

around a perforation

z

r

θ

Figure 2: 2-D axisymmetric view of the atomizer : circular plate coupled with piezoelectric
ring. Enlarged view of the perforated mesh and notations used to describe the motion of
the hole

Figure 2 also shows an enlargement of the plate around a perforation. In111

the following, holes might have a conical shape where rt is the top radius and112

rb is the bottom radius. Four points denoted A,B,C,D will be used in the113

following to investigate the kinematics of the perforation.114
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Table 1: Mechanical and geometrical parameters of the circular plate and piezoelectric
disc

Plate Piezoelectric ring
Mass density [kg.m−3] ρp = 7850 ρr = 7500

Young’s Modulus [GPa] Ep = 205 Er = 50
Poisson ratio ν = 0.3 ν = 0.3

Dimensions [mm] dp = 0.1, ri = 2.5 dr = 0.3, ro = 5

Assuming thin plate (dp/2ro � 1), and small deformations, and consid-115

ering that the origin of the frame matches with the center of the plate, the116

transverse displacement w of117

the circular plate is E ′pIp∇4w−Λ′pω
2w = 0 where ∇ is considered in polar118

coordinates (r, θ) with r the radial coordinate and θ the angular coordinate.119

Thus, the complete solution to the fourth-order equation in polar coordi-120

nates is121

w(r, θ) = [EJn(δr) + FIn(δr) +GKn(δr) +HYn(δr)] cos(mθ) (1)

where E,F,G,H are the integration constants to be determined from the122

boundary conditions, δ the wavenumber such as δ = Λpω
2/EI, n is the order123

of the Bessel and modified Bessel functions and m corresponds to the number124

of nodal diameters. In the following, m = 0 since the excitation is uniformly125

distributed along the contour and circumferential modes cannot be excited.126

This modeling will be used for the assessment of the effective mass in127

section 2, and for the investigation of the volume change in a perforation in128

section 3.129

2. Analytical modeling of the volume change above the perforated130

mesh131

This section aims at correlate the variation of fluid above the perforated132

mesh to the modal behavior of the plate. The apparent mass of the plate is133

introduced analytically as a preliminary tool to evaluate working conditions134

of the device based on modal considerations.135
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2.1. Modeling of the effective mass136

For a given distribution of transverse displacement on the plate, the137

amount of fluid above the plate is directly related to the effective mass of the138

vibrating plate, which is, in this case, given by the integral of the deflection139

over the surface of the plate. To avoid any discontinuity during the inte-140

gration step, the perforations are temporarily neglected. The plate model141

introduced in Section 1 degenerates into the description of the dynamic be-142

havior of circular plate clamped its contour and driven by a uniform out-of-143

plane unitary motion. Since the amplitude should remain finite at r = 0, the144

transverse displacement of the plate at any point on its surface is governed145

by w = (EJ0(δr)+FI0(δr))cos(mθ), where m = 0. The boundary conditions146

are w(r = ri) = 1 and drw(r = ri) = 0, and Fig. 3 shows the modal shapes147

that could possibly be excited according to these boundary conditions.148
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Figure 3: Modal shape of the circular plate clamped all around with dynamic displacement
on its outer radius

The effective mass of the vibrating plate, which is, given by the inte-149

gral of the deflection over the surface of the plate is expressed in cylindrical150
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coordinates is151

φω =
1

S

∫ l

0

w rdr =
4

δri

I1(δri)J1(δri)

I1(δri)J0(δri) + I0(δri)J1(δri)
(2)

The roots of152

J0(δri)I1(δri) + I0(δri)J1(δri) = 0 (3)

are δri ≈ 3.19; 6.30; 9.43; 12.57; 15.71, and enable to calculate the circular153

plate eigen frequencies as ωpi =
(
δri
ri

)2√E′
pIp

Λp
154

This quantity is frequency dependent and exhibits singularities associated155

with eigenmodes of the clamped plate. Further comments are made in the156

next subsection, dedicated to the study of this quantity according to some157

key design parameters that are flexural rigidity, thickness, and surfacic mass.158

2.2. Parametric study159

This subsection provides a parametric study over three relevant quantities160

associated with the plate, namely, its flexural rigidity E ′pIp, thickness dp, and161

surfacic mass Λp. The effective mass will be compared to that obtained from162

the set of parameters in Table 1, as a function of the normalized frequency163

f̃ = f/f1, where f1 is the first eigenfrequency of the plate.164

The effect of the variation of flexural rigidity is depicted in Fig. 4. The165

effective mass term is plotted for a plate whose flexural rigidity EI ′ varies166

from ±20% from the flexural rigidity E ′pIp of the initial setup. This change167

gives rise to a frequency shift of ±10% of the first eigenfrequency.168

The effect of the variation of plate’s thickness dp is depicted in Fig. 5.169

The effective mass term is plotted for a plate whose thickness d′p increases170

up to 5% thicker as the initial setup. This change gives rise to a frequency171

shift of +10% of the first eigenfrequency.172

The effect of the variation of surfacic mass Λ′p is depicted in Fig. 6. The173

effective mass term is plotted for a plate whose surfacic mass Λ′p varies from174

±20% from the surfacic mass Λp of the initial setup. This change gives rise175

respectively to a frequency shift of −11% to +8% of the first eigenfrequency.176

177

2.3. Concluding remarks178

This first modeling based on the effective mass of the plate illustrates179

the idea that the amount of fluid that is set into motion above the plate is180

directly related to its effective mass. This is introduced as a first parameter181
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Figure 4: Effective mass of the clamped circular plate versus frequency with increasing
flexural rigidity (from light to dark blue) and reference configuration (∗)

for the optimal design of the nebulizer.182

The next section focuses on the study of shape and distribution of hole over183

the plate to maximize this pumping effect.184

3. Modeling of the volume change in the perforated mesh185

This section is dedicated to another key factor, which is the volume change186

occurring in apertures of the mesh. As the plate is driven by an harmonic187

motion, it bends and the over one period of excitation, the volume change188

in one hole is cyclic. Indeed, when the volume of the aperture increases, the189

pressure decreases, that makes the liquid flowing from upstream the mesh to190

inside the aperture. While the volume of the aperture decreases, the pressure191

in it increases and pushes the amount of fluid downstream the mesh. This192

volume change in the apertures contributes to the pumping effect and results193

in the ejection of the droplet.194
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Figure 5: Effective mass of the clamped circular plate versus frequency with increasing d
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3.1. Analytical modeling of the volume change in one single perforation195

This section provides an insight on the modeling of the volume change196

in the apertures based on a plate model. It introduces the calculations for197

one single apertures, then generalizes it to multiple apertures. This model is198

built in such a way that it enables to assess i) the influence of the shape of199

the aperture (whose initial cross section is either rectangular or trapezoidal)200

and ii) the influence of the position of the hole on the change of volume in201

it.202

The flatness of the plate, defined as the ratio dp/2ri � 1 suggests that203

the thin plate assumption is valid, and that its transverse motion will be204

adequately described by the Kirchhoff formulation.205

The motion of a wall of a perforation is illustrated in Fig. 7206

Figure 2 shows the cross section of the plate with one single aperture207

whose centroid abscissa is located at xM . In the following, the volume change208

of the aperture is calculated from the volume change of the truncated cone209

change of area of the trapezoid formed by points A, B, C, D. Assuming210
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Kirchhoff hypothesis, plane sections perpendicular to the neutral axis be-211

fore deformation remain plane and perpendicular to the neutral axis after212

deformation, deformations are small, and the plate is made of linear elastic213

material.214

The plate is considered to be aligned along the r− axis, and its center215

matches with origin of the coordinates. Its deflection is described by a func-216

tion w(r) which governs the transverse displacement of the neutral fiber, as217

(1). For any point p of coordinates X = (rp, zp) before deformation, its218

coordinates after deformation are X ′ = (rp − zp sinφ,w + zp cosφ), where219

φ denotes the rotation of the cross-section, expressed as φ = dw/dr. It220

is outlined that each point moves according to a transverse and a longitu-221

dinal component, and according to the small deformation assumption, the222

displacement function may be simplified as X ′′ = X ′ −X = (−zpφ,w).223

This approach enables to calculate the displacement and rotation of each224

point considered to deduce the in-plane and transverse component of their225

respective motion. This will be done in the case of a cylindrical and conical226
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Figure 7: Notations associated with bending kinematics of the plate cross-section, before
(dotted line) and after deformation (solid line) (a), and discretization of the variable cross-
section perforation (b).

perforation, whose centroid abscissa is located either xM = 0.2ri and xM =227

0.4ri. These four cases illustrate the effect of shape of the perforation, and228

the influence of its position. These are presented an compared with finite229

element computation in the next next section.230

3.2. Finite element validation231

A 2D- axisymmetric model of the circular plate is implemented using the232

solid mechanics module. The material is considered as isotropic and pre-233

scribed harmonic displacement is specified on the outer edge to mimic the234

deflection imposed by the piezo. Although this is a simplified modeling, it is235

enough to understand the kinematics of the perforation rather than describ-236

ing the nature of the coupling between the piezo ring and the plate. The237

complete mesh resulted in 100 domain elements and 110 boundary elements.238

Running the frequency study from 0 to 1 Mhz with a frequency step of 2239

kHz resulted in a computation time of approximately 30s for 1010 degrees of240

freedom.241

242

From the mechanical properties and geometric parameters of the circular243

plate presented in Table 1, the analytical in-plane and transverse compo-244

nents of point A are successfully compared to a finite element computation,245

as shown is Fig. 8. The frequencies at which there the direction of motion246

changes correspond to the eigenfrequencies of the plate. This effect is per-247

fectly recovered for two positions.248

Additional variables describing the dynamic behavior are also introduced249

to describe the surface change of the trapezoid formed by ABCD. Denoting250
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Figure 8: In-plane and out-of-plane components of the motion of point A, analytical (−)
and finite element comparison (+), cylindrical perforation located at (a) xM = 0.2ri, and
(b) xM = 0.4ri

rt∗ the dynamic top radius of the hole, and rb∗ the dynamic bottom radius251

of the hole, these quantities are compared to a finite element computation252

and normalized by the static radii rt and rb respectively, as shown in Fig. 9.253

Again, significant changes of variation of these parameters occur at each254

eigenfrequency, and well recovered in frequency and amplitude.255
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Figure 9: Relative length variation of dynamic bottom radius r∗b/rb and top radius r∗t /rt,
analytical (−), finite element comparison (+), cylindrical perforation located at (a) xM =
0.2ri, and (b) xM = 0.4ri

We can note that in the case of a perforation in the middle of the plate256

(xM = 0), if the plate is subjected to an harmonic excitation, the upper and257
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lower faces of the hole increase and decrease in an opposite way to each other,258

so that r∗t increases while r∗b decreases and inversely during the second phase259

of the cycle.260

Finally, the surface change ∆S of the trapezoid is frequency dependent261

and exhibit significant variations around the eigenmodes of the plate. For the262

sake of clarity, we introduce the normalized dynamic surface change ∆S =263

S∗/S0, where S∗ is the frequency dependent surface change and S0 is the264

initial cross-section area of the perforation. This quantity is compared to the265

direct integration from the finite element model and illustrated in Fig. 10 for266

a cylindrical perforation, and in Fig. 11 for a conical perforation.267
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Figure 10: Relative surface variation ∆S, analytical (−), finite element comparison (+),
cylindrical perforation located at (a) xM = 0.2ri, and (b) xM = 0.4ri

Although the calculation for the cylindrical perforation is straightforward268

and exact, the one for a conical is approximated. In this approach, the total269

height of the perforation is divided into n slices each of constant height270

∆h = dp/n, and of variable width depending on the altitude of the layerz =271

∆h(i− 1) where i is the layer label (i = 1, 2, . . . , n), as shown in Fig. 7. The272

total surface change is thus obtained by summation as S∗ =
∑

n Sn(z). In273

the following, n is chosen as 10.274

Very good consistency is reached for both cylindrical and conical perfo-275

ration versus finite element. From the previous developments, the area is276

calculated assuming an isocele trapezoid, meaning that the two legs have the277

same length, and that it is symmetric with respect to the axis passing through278

points Mt and Mb. In this way the volume of the cone is easily calculated279

by revolving this surface around the symmetry axis. In case of a cylindrical280
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Figure 11: Relative surface variation ∆S, analytical (−), finite element comparison (+),
conical perforation located at (a) xM = 0.2ri, and (b) xM = 0.4ri

perforation, the upward and downward bending of the plate causes the ini-281

tial rectangle to deform as a trapezoid with straight edges. However, when282

considering a conical perforation, the bending causes the initial trapezoid to283

deform in a asymmetric shape whose area cannot be calculated under the284

isocele trapezoid assumption. This loss of precision is compensated by the285

step of integration over several layers.286

In addition to these comments, the complex deformation experienced by287

the trapezoid when the plate bends is illustrated in Fig. 12288

The volume change in one single perforation is finally deduced from the289

quantities presented above, and illustrated for a cylindrical perforation, and a290

conical perforation. The normalized dynamic volume change ∆V = V ∗/V0,291

where V ∗ is the frequency dependent volume change, and V0 is the initial292

volume of the perforation. This dynamic volume change is illustrated in293

Fig. 13 in the case of one single cylindrical perforation compared to a conical294

one, either located at xM = 0.2ri, and xM = 0.4ri. For the two positions, it is295

clearly seen that the conical and cylindrical shape offer very similar variation296

of volume. This is demonstrated in terms of amplitude of the volume change,297

as well as on the frequency range. Actually, the the volume change of the298

perforation is located mainly around the eigenfrequencies of the plate.299
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Figure 12: Displacement field associated to the edges of the conical perforation located at
xM = 0.4ri at 0.32 MHz (left) and 0.97 MHz (right)
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Figure 13: Relative volume variation ∆V in a single perforation located at xM = 0.2ri (a)
xM = 0.4ri (b), conical (−) and cylindrical perforation (−−)
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3.3. Effect of the position of a single hole on volume variation300

For this investigation, the x-coordinate of the center line xM of the per-301

foration is moved from xM = 0 to xM = 0.6ri. The normalized volume302

variation calculated from the analytical model is shown for a cylindrical hole303

in Fig. 14 and for a conical hole in Fig. 15.304
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Figure 14: Analytical normalized volume variation ∆V of one single cylindrical perforation
versus frequency, for different positions

It is observed in Fig. 14 that the volume variation associated with the305

different modes exhibit changes of behavior resulting from the combination306

of in-plane an out-of plane displacements of the initial trapezoid. Looking307

at Fig. 3 helps in commenting these trends. Regarding the first mode, for308

which the transverse amplitude of vibration decreases while moving away309

from the middle, the volume variation also decreases. The same comment310

can be formulated for the second mode, which suggest that the maximum of311

volume change diminishes far away from the middle. However, the volume312

change around the third mode shows that similar volume changes appear for313

xM = 0.06ri and xM = 0.036ri. This could be partially assumed from the314

analysis of Fig. 3, and it is confirmed with this model, that takes into account315

the dynamic deformation of the hole.316
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Despite the more complex kinematic of the perforation, the same com-317

ments apply in the case of a conical hole, for which the volume variation is318

illustrated in Fig. 15.
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Figure 15: Normalized volume variation ∆V of the conical perforation versus frequency

319

3.4. Effect of the distribution of holes on average volume variation320

Introducing the average volume variation ∆Vm brings a new indication321

about the volume variation provided by several perforations. Two distribu-322

tions are considered ; 9 perforations between 0 and ri/2, and 17 perforations323

between 0 and ri. The spacing is regular and the distance between the mid324

axis of two neighbouring perforations is chosen as 3rb to avoid overlapping.325

The comparison of the average volume variation provided by these two distri-326

butions is shown in Fig. 16, for conical and cylindrical perforations. Again,327

the shape of the perforation doesn’t affect the volume variation. Also, the328

comparison suggests that the most favorable configuration is to have perfo-329

rations in the center of the plate rather than over the entire surface. This is330

predictable since the low frequency modes having their maximum of deflec-331

tion in the center of the plate are most likely to contribute to the kinematics332

rather than the high frequency mode having multiple nodal lines.333
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Figure 16: Average volume variation ∆Vm in perforations distributed as 0 ≤ xM ≤ 0.5ri
(a), and 0 ≤ xM ≤ ri (b), conical (−) and cylindrical perforation (−−)

3.5. Volume variation experienced by perforation on stepped circular plate334

In this section, the investigation introduced in section 3 is extended to a335

stepped plate. This is done within the assumption of thin plate and small336

deformation. The circular plate with piezoelectric ring attached on it is337

modeled as a stepped plate whose cross section is represented in Fig. 2. Two338

regions are considered: first is associated with the internal plate 0 < r < ri339

whose surfacic mass is Λ1 and flexural rigidity is EI1, second is associated340

with the ring ri < r < ro, whose surfacic mass is Λ2 and flexural rigidity341

is EI2. According to the solution form given in section 1, the transverse342

displacement w1 in region 1 should remain finite in r = 0 so it is written343

w1(r) = E1Jn(δ1r) + F1In(δ1r) (4)

whereas for region 2 associated with the ring, the full form must be con-344

sidered, so the transverse displacement w2 is written345

w2(r) = E2Jn(δ2r) + F2In(δ2r) +G2Kn(δ2r) +H2Yn(δ2r) (5)

where E1, F1, E2, F2, G2, H2 are the integration constants to be deter-346

mined from the boundary conditions, δ1 the wavenumber in region 1 such347

as δ1 = Λ1ω
2/EI1, δ2 the wavenumber in region 2 such as δ2 = Λ2ω

2/EI2.348

Four boundary conditions are stated at r = ri and given by the continu-349

ity of displacement w1(ri) = w2(ri), rotation drw1(ri) = drw1(ri), bending350

moment in radial direction M1(ri) = M2(ri), and transverse shearing force351
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Q1(ri) = Q2(ri), respectively calculated as M = −EI(d2
rw + ν/r drw) and352

Q = EIdr(d
2
rw+1/r drw) . Two additional boundary condition on the outer353

radius must also be specified.354

In the following, region 1 has Λ1 = Λp and EI1 = EIp, and region 2 has
equivalent properties associated with both plate and ring, that are introduced
in the surfacic mass as

Λ2 = dp(ρpdp + ρrdr)/(dp + dr)

as well as in the flexural rigidity as

EI2 = EIp(1 + tγ3 + 3(1 + γ)2tγ/1 + tγ)

with t = Er/Ep and γ = dr/dp. Note that for a given thickness, the flexural355

rigidity of the plate is much higher than that of the ring, so the ring is in-356

troduced as an additional layer on the plate.357

358

The consistency of this approach is verified by considering a clamped359

boundary condition with static deflection on the outer radius (w2(ro) =360

1, drw2(ro) = 0), and by plotting the frequency response between two points361

located at 0.3ri and 0.9ro, for two different geometries : dr = 0.1 mm and362

dr = 0.3 mm. The analytical result is compared with the finite element363

computation in Fig. 17. Although the first case shows excellent agreement364

over the whole frequency range, the second case exhibits a validity limit365

around 0.5 MHz after which the resonance frequencies are overestimated.366

These high frequency discrepancies are understood since i) the thin plate367

assumption is considered valid as long as the flatness of the plate satisfies368

ε = (ro − ri)/dr � 0.1, that is ε = 0.04 for dr = 0.1 mm, and ε = 0.12 if369

dr = 0.3 mm, and ii) the continuity conditions at r = ri stated above become370

questionable when γ = 3, which corresponds to a step with a thickness ratio371

1:4.372

The two-dimensional frequency responses are given in Fig. 18, as the373

amplitude of transverse displacement at different locations along r, and ver-374

sus frequency. It is seen that increasing the thickness of the ring stiffens375

the whole structure, resulting in a different distribution of eigenfrequencies.376

This representation gives a visualization of local maxima of displacement to377

conveniently identify frequency ranges versus displacement distribution.378

From this modeling enriched by the contribution of the ring, the averaged379

volume variation ∆Vm is calculated for the two same distributions of holes as380
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Figure 17: Frequency response of the clamped circular stepped plate dr = 0.1 mm (a),
and dr = 0.3 mm (b), analytical (−), finite element comparison (+)

previously (9 perforations between 0 and ri/2, and 17 perforations between381

0 and ri). It is shown in Fig. 19. The conical case is not represented.382

Again, the comparison suggests that the most favorable configuration is to383

have perforations in the center rather than over the entire surface of the384

internal plate. It is also seen that increasing the thickness of the ring brings385

a significant increase of the volume variation around 0.4 MHz.386

3.6. Concluding remarks387

This section provides a parametric study of some key geometrical param-388

eters of the mesh itself, namely their shape, and their location along the389

radius.390

A simple analytical model describing the volume variation is presented391

and shows excellent agreement with finite element simulation. Investigating392

the dynamic volume variation versus frequency for different position and dif-393

ferent number of perforations shows that the shape of the perforation, either394

cylindrical of conical doesn’t bring an increased volume variation. However395

the geometry nozzle becomes critically important when considering the na-396

ture of the flow downstream the mesh, and has a significant influence on the397

flow regime, discharge coefficient, surface tension, frictional effects and finally398

influences most the droplet formation, breakup, and ejection. Regarding the399

potions of holes over the plate, it is shown that the distribution providing400

the highest averaged volume variation is that of holes in the center of the401

plate rather than on the whole surface.402
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Figure 18: Two-dimensional frequency response of the clamped circular stepped plate
dr = 0.1 mm (a), and dr = 0.3 mm (b) in their respective frequency range of validity

From this preliminary modeling, it appears that this description of the403

volume variation is robust and versatile enough to assess accurately the dy-404

namic volume variation occurring in the mesh.405

4. FEM modeling including piezoelectric component406

This sections presents a finite element model of the nebulizer. The latter407

aims at confirming the trends identified above and suggest possible ways to408

enhance the analytical model.409

4.1. Finite Element model410

A two-dimensional axisymmetric model of the mesh nebulizer was build.411

It consists in one solid domain and one piezoelectric domain, as illustrated in412

Fig. 20. The cylindrical coordinate system is such that the origin coincides413

with the bottom left corner of the domain. The mechanical properties of414

both domains are summarized in Table 1 and Table 2.415

Regarding the coupling and actuation mechanism, the piezoelectric com-416

ponent converts the electrical signal into mechanical energy. This transduc-417

tion relating the electric field, electrical displacement, stresses and strains418

can be written in the stress-charge representation as:419

σ = cE.ε− eT .E (6)

D = e.ε+ εS.E (7)
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Figure 19: Average volume variation ∆Vm in cylindrical perforations distributed as 0 ≤
xM ≤ 0.5ri (a), and 0 ≤ xM ≤ ri (b), internal plate only (−−), stepped plate with
thickness ration γ = 2 (−) and γ = 3 (· · ·)

where σ is the mechanical stress ([N/m2]), ε is the strain ([1]), cE is the420

elasticity matrix ([Pa]) in the form of a rank 4 tensor, e is the coupling matrix421

([C/m2]) in the form of a rank 3 tensor, E is the electric field defined as the422

electric force per unit charge, D is the electrical displacement ([C/m2]), and423

εS is the dielectric matrix ([F/m]) in the form of a rank 2 tensor.424

When the piezoelectric component is subjected to a periodic electric po-425

tential (E = −∇V where V [V ] is the electric potential), it vibrates and426

transmits the energy to the steel plate. In this way writing the plate equa-427

tion coupled to that piezoelectric component yields :428

div(σ) + Fpe
iωt = −ρω2w (8)

div(σ) = ρ
∂2w

∂t2
+ Fp (9)

div(D) = ρv (10)

where ρ is the mass density of the piezoelectric material ([kg/m3]), ω =429

2πf with f the excitation frequency ([Hz]), u is the displacement response430

(u, v, w) ([m]), Fp is the volume force ([N]), ρv is the volume charge density431

([C/m2]).432

As the analysis involves piezoelectric material and linear elastic mate-433

rial, two sets of boundary conditions are specified. Mechanical boundary434

conditions consist of a free edge on the plate circumference, while the other435
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Table 2: Electro-mechanical parameters of the piezoelectric component (PZT-4)

Elasticity Coupling matrix Relative permittivity
CE

11 = 1.53e11; CE
12 = 9.84e10, e31 = −4.73 ε11 = 796.5

CE
13 = 9.31e10; CE

33 = 1.28e11, e33 = 15.25 ε33 = 762.9
CE

44 = 2.38e10; CE
12 = 2.77e10 e15 = 13.09

r= 0

Piezo ring

Steel plate

Electric potential

Ground

Figure 20: 2D axisymmetric finite element model of the perforated coupled with piezo-
electric ring, and associated mesh

surfaces are free. For the electrical boundary conditions, the piezoelectric436

ring was actuated by applying an electric potential V0 = 80V of harmonic437

signal on its upper face, while its bottom face was specified as ground.438

In this study, the piezo is polarized along the +z direction. Both the439

plate and piezo are meshed using triangular elements and resulted in 307440

triangular elements and 1721 degrees of freedom.441

4.2. Frequency domain computations442

In order to confirm the trend identified from the analytical model, that443

suggests to distribute the holes in the middle of the plate rather than over the444

whole surface, a finite element computation is performed to check the average445

displacement amplitude over the two regions : either [0; 0.5ri] and [0; ri]. The446
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result is shown in Fig. 21 and shows that the center region experiences larger447

displacement than the whole surface.448
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Figure 21: Finite element computation of the averaged transverse displacement over the
top surface of the internal plate for two regions : [0; 0.5ri] (−+−) and [0; ri] (−+−)

The frequencies associated with maxima of displacement are clearly iden-449

tified and illustrated in Fig. 22. These are respectively associated with with450

the first mode of the coupled structure, first mode of the internal plate, and451

higher mode for which the ring starts contributing to the dynamic of the over-452

all structure. Although the analytical is illustrated using clamped boundary453

conditions, these kinematics are available through the analytical model.454

The assessment of the volume variation occurring multiple perforations455

would require the full three-dimensional modeling of the structure. The result456

of such a lengthy computation is not of interest in this paper. The specific457

role of the piezoelectric ring is to induce vibrations of the perforated mesh in458

the form of bending moment distributed along the bottom face of the ring.459

This complex boundary condition could be introduced analytically.460
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Figure 22: Modal shapes associated with maximum values of volume change in Fig. 21

Conclusion461

This work suggests a comprehensive study of the mechanical behavior462

of an ultrasonic mesh atomizer consisting of a circular perforated plate sur-463

rounded by a piezoelectric ring. The actuation of the piezoelectric ring in-464

duces vibrations in the perforated plate and the variation in volume within465

each perforation creates a pumping effect which allows fluid to be pulled into466

the holes and then released on the other side as droplets. Therefore this467

pumping appears to be a key aspect in the design and working conditions of468

such devices. The proposed models are based on linear formulations, small469

deformation and thin plate assumptions. Finite element comparisons are sys-470

tematically given to show the gives excellent trends for a relatively moderate471

level of complication.472

The first model is that of a plate whose effective mass density in related to473

the amount of fluid set into motion downstream the plate. Based on modal474

considerations, it is shown that the first an second mode are associated with475

the greatest efficiency. Although the volume change above the perforated476

mesh is one factor affecting the performance of atomization, the change of477

volume in apertures of the mesh is also investigated.478

In this way, a second model is built and focuses on the kinematics of the479

perforations, according to their shape and location along the radius. With-480

out going into the details of a micromechanical description, it is shown that481

the volume variation is closely related to the mode shapes of the plate. Par-482
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ticularly, the volume variation in a single perforation is increased when it is483

located on a maximum of curvature. It is shown that the shape of the per-484

foration, either cylindrical of conical doesn’t bring a significant increase in485

volume variation. However, one should outline that the geometry nozzle has486

significant influence on the flow regime, discharge coefficient, surface tension,487

frictional effects and finally influences most the droplet formation, breakup,488

and ejection, that is not investigated in this paper. It is also shown that489

distributing the holes in the middle of the plate provides a higher average490

volume variation than distributing them over the whole surface. Successive491

finite element comparisons confirm that this description of the volume varia-492

tion is robust and versatile enough to assess accurately the dynamic volume493

variation occurring in the mesh.494

A third model enriches the second model with a stepped plate to mimic the495

piezo ring as an additional mass and flexural rigidity on the contour of the496

plate. This model accurately captures the first modes of vibrations for a ring497

up to four times thicker than the plate, that is a realistic geometry. More498

sophisticated kinematics are then reached and complete the observations of499

the second model. The frequency limits of the models are identified to offer500

finite element validations at each stage of construction. It is emphasized that501

this model gives excellent trends for a relatively moderate complexity.502

A fourth model is finally proposed and relies on finite element frequency do-503

main computation. It illustrates the response of the plate when excited by504

the piezo actuated by electric potential. The kinematics observed are indeed505

those described in the stepped plate model and confirms the relevance of the506

modeling in terms of trends. Formal comparison with analytical model would507

require a better introduction of the coupling between the ring and plate in508

the form of a distributed moment along the radius. This study could be509

supplemented by investigating the contribution of the the piezoelectric ring510

to the overall dynamic of the device, or by optimizing the electromechanical511

properties of the piezo ring to maximise the deflection of the internal plate.512
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