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The purpose of this paper is to study how internal resonances can be used to mitigate the vibration of cyclically symmetric systems exhibiting geometrical nonlinear effects. The method of multiple scales is employed to derive specific conditions that allow such energy transfers. This novelty is confirmed through numerical investigations, and an application to decrease the vibration of the system is proposed. A simplified yet realistic blade model with geometrical nonlinearities is considered. It includes pre-twist, pre-bending and warping, and is duplicated to create a full bladed rotor with cyclically symmetric properties. As the model of the whole structure may become large, it is further reduced via the normal form approach. The harmonic balance method is then employed to obtain periodic solutions, localize bifurcation points and then follow bifurcated branches. These numerical solutions are used in complement with the aforementioned theoretical conditions to investigate the energy transfer properties of the mechanical system. Through these simulations, an effective range of amplitude excitation is defined to obtain internal resonances leading to an overall vibration mitigation of the system.

Introduction

Over the years, different processes exploiting effects of nonlinearities have been used to reduce the vibrations of mechanical structures. Adding friction devices [START_REF] Krack | Vibration Prediction of Bladed Disks Coupled by Friction Joints[END_REF] allows to damp the motion of the system but leads to wear which inevitably decreases the efficiency of this method. Nonlinear energy sinks [START_REF] Gendelman | Quasiperiodic energy pumping in coupled oscillators under periodic forcing[END_REF][START_REF] Starosvetsky | Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping[END_REF] consist in attaching a small mass to the main structure (host) with a nonlinear stiffness. The vibration of the host is mitigated as its energy is transferred to the secondary system. The main limitation of this technique is that the exchange occurs for a relatively narrow range of excitation, which is however still more efficient than a linear tuned absorber designed to accommodate a single resonant peak. To remedy this issue, nonlinear tuned vibrations absorbers have been defined [START_REF] Detroux | Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber[END_REF][START_REF] Viguié | Nonlinear vibration absorber coupled to a nonlinear primary system: A tuning methodology[END_REF]. These devices show promising results but are complicated to implement in practise in a complex engineered structure. The main motivation behind the current paper is to use the intrinsic nonlinear features of the structure (i.e without adding external masses) to mitigate its vibrational levels. The focus is made on the use of internal resonances as a possible mean of vibration control.

To decrease their environmental impact, turboengines tend to have larger diameters while maintaining a slender profile. This design leads to more pronounced geometrical nonlinear effects of the fan. Nonlinearities may lead to localization effects [START_REF]Normal Modes and Localization in Nonlinear Systems[END_REF] but also to internal resonances [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]. This latter nonlinear process corresponds to a transfer of energy between different modes. The book of Nayfeh and Mook [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] proposed several approaches to study internal resonances. One popular analytical method is the multiple scales approach.

It consists in seeking the displacement as a function of multiple independent variables. This expansion is performed up to a specific order. It has been employed for systems with geometrical nonlinearities with a second order [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] and a third order expansions [START_REF] Lacarbonara | Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems[END_REF]. Monteil et al. used this approach to study a cascade of interactions [START_REF] Monteil | Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances[END_REF]. Recent work of Gobat et al. focused on an 1:2 internal resonance and quasiperiodic regimes [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS[END_REF]. They also presented experimental evidence of this phenomenon with gyroscopic effects [START_REF] Gobat | Reduced order modelling and experimental validation of a MEMS gyroscope test-structure exhibiting 1:2 internal resonance[END_REF].

In recent work [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF], parameters controlling the appearance of a 1:2 internal resonance (between the second bending mode and the first torsional mode) in a blade with geometrical nonlinearities have been identified. The blade was modeled as a sophisticated beam with important features of large blade design used in turbomachinery manufacturers, such as pre-twist, pre-bending, and warping.

While the investigation of internal resonances is abundant for a single blade or beam, there has been very few researches on this subject for cyclically symmetric structures. Pioneer work was first proposed by Vakakis et al. [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF][START_REF] Vakais | Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems with Cyclic Symmetry[END_REF][START_REF] King | A very complicated structure of resonances in a nonlinear system with cyclic symmetry: Nonlinear forced localization[END_REF] and describes the mode localization in such structures. Computation of multiple solutions has also been considered in [START_REF] Sarrouy | Global and bifurcation analysis of a structure with cyclic symmetry[END_REF][START_REF] Grolet | Free and forced vibration analysis of a nonlinear system with cyclic symmetry: Application to a simplified model[END_REF][START_REF] Grolet | Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and Groebner bases[END_REF]. The paper of Georgiades et al. [START_REF] Georgiades | Modal analysis of a nonlinear periodic structure with cyclic symmetry[END_REF] describes the modal interaction occurring in cyclic systems and shows that energy transfer may occur even if the frequencies of the modes are incommensurable. In [START_REF] Quaegebeur | Energy transfer between nodal diameters of cyclic symmetric structures exhibiting polynomial nonlinearities: Cyclic condition and analysis[END_REF], it was proposed to determine the nonlinear interaction occurring in cyclic systems when specific nodal diameters were excited. The main purpose was to identify a reduced set of interacting nodal diameters, to create a reduced-order model (ROM), and to express the nonlinear forces in the cyclic domain. Such reduction allowed to decrease significantly the computation time and enabled to find some internal resonances. These aforementioned papers show that energy transfer in nonlinear structures with cyclic symmetry is of current interest in the scientific community. However, it feels that the subject remains incomplete: to better control the energy transfer in such structures, one must be able to predict with confidence the configurations for which internal resonances may occur. This issue is tackled in this paper in which analytical derivations are proposed via the multiple scales approach to determine the conditions required to obtain internal resonances in cyclically symmetric systems. In this paper, it is demonstrated as a practical example how the transversal displacement of a cyclic structure can be reduced through an 1:2 internal resonance. The analytical relations are verified numerically by extending the blade design developed in [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF] to a cyclically symmetric system. Due to the large size of the system and the numerical analysis proposed (including stability analysis, branch switching, and bifurcations points tracking), a reduced-order model must be used. The normal form theory [START_REF] Touzé | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures[END_REF][START_REF] Touzé | Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[END_REF] which relies on the Poincare-Dulac's theorem [START_REF] Poincare | Les méthodes nouvelles de la mécanique céleste[END_REF] was chosen as reduction methodology.

The present paper differs from [START_REF] Quaegebeur | Energy transfer between nodal diameters of cyclic symmetric structures exhibiting polynomial nonlinearities: Cyclic condition and analysis[END_REF] because the analysis performed here accounts for all the nodal diameters, whereas a reduction was performed in [START_REF] Quaegebeur | Energy transfer between nodal diameters of cyclic symmetric structures exhibiting polynomial nonlinearities: Cyclic condition and analysis[END_REF]. This allows to predict all possible internal resonances and this could not have been obtained with the approach proposed in [START_REF] Quaegebeur | Energy transfer between nodal diameters of cyclic symmetric structures exhibiting polynomial nonlinearities: Cyclic condition and analysis[END_REF].

Section 2 presents the mechanical model, its reduction and the numerical algorithms employed in the remaining of the paper. The numerical and reduction tools are validated in Section 3 by studying the dynamics of a single sector. Section 4 shows how the multiple scales approach can provide some theoretical conditions to obtain 1:2 internal resonances in cyclically symmetric systems. These theoretical results are then verified numerically in Section 5. Finally, Section 6 complicates the problem further and proposes an application to decrease the energy of the system by exploiting the internal resonance as a passive vibration control.

Presentation of the model and the numerical tools used for its simulation

In this article, we study a simplified model of a rotor composed of N blades with geometrical nonlinearities. This section first briefly recalls the construction of the realistic blade model which was presented in [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF] before explaining its extension to a cyclic structure. As the size of the model and the number of nonlinear degrees of freedom can get large, a reduced-order model based on the normal form theory [START_REF] Jezequel | Analysis of non-linear dynamical systems by the normal form theory[END_REF][START_REF] Touzé | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures[END_REF] will also be employed.

Nonlinear pre-bent blade model with an initial twist

The simplified nonlinear blade model used is similar to the one derived in [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF], in which the authors combined the work of [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF] and [START_REF] Riziotis | Proceedings of the European Wind Energy Conference and Exhibition[END_REF]. Although only the centerline of the beam is considered, the construction includes all key design features of a blade such as possible pre-bending (defined with the function z e ), a variable twist along the length of the blade (accounted for via a change of coordinates, see Figure 1), and warping of the cross-section. The geometrical nonlinearities are derived from the potential energy of the system. The blade is supposed to be clamped at one end and free at its tip. In [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF], a Rayleigh-Ritz discretization was performed. To facilitate the assembly of the blades and the creation of the cyclically symmetric system that will be used in Section 5, the finite-element method is here employed. Hermitian polynomials [START_REF] Geradin | Mechanical vibrations: theory and application to structural dynamics[END_REF] with eight degrees of freedom per node are used. The degrees of freedom characterize u (displacement along x ), v (displacement along y ), w (displacement along z ), φ (torsion angle along x) and their derivatives along the curvilinear abscissa.

x O y z u(x, t) v(x, t) w(x, t) x' y' z' O' Ω z e (x)
The first three modes of the system are given in Table 1. They are similar to the ones obtained in [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF].

As the natural frequency of the second flexural mode, ω 2 , is close to twice the natural frequency of the first torsional mode, ω 1 , (ω 2 ≈ 2ω 1 ), an 1:2 internal resonance may occur between these two modes [START_REF] Nayfeh | Nonlinear Coupling of Pitch and Roll Modes in Ship Motions[END_REF]. This exchange of energy was studied in [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF]. It was shown that by exciting the second flexural mode with a sufficiently high external force, a bifurcated branch appears and couples the first torsional mode. In our study, the same mode is excited: an harmonic forced with frequency taken in the vicinity of ω 2 is applied at the tip of the blade along the transversal axis.

Frequencies

Associated deformed shapes ω 0 = 71.6 rad s -1 First flexural mode (1F)

ω 1 = 221.2 rad s -1
First torsional mode (1T)

ω 2 = 443.0 rad s -1
Second flexural mode (2F)

Table 1: Natural frequencies of the first three modes of the single blade system.

Extension to cyclically symmetric systems

We now extend this simple blade model to a cyclically symmetric system with N sectors (N blades).

Our model may simulate relatively complex geometry such as the one illustrated in Figure 2a. Each blade 85 is discretized into 5 elements. All the blades are clamped to a rigid disk. Linear stiffnesses attached to the second node of each blade, as represented in Figure 2, are added to model the relative disk flexibility. In order to maintain the possible appearance of internal resonances, the values of the stiffnesses are taken to be small so as not to influence too much the natural frequencies. A similar cyclic structure with coupling stiffnesses was also employed in [START_REF] Grolet | Free and forced vibration analysis of a nonlinear system with cyclic symmetry: Application to a simplified model[END_REF]. However, the blade model is here much more realistic and can also 90 exhibit internal resonances.

(a) Schematic of the cyclic system. For the case of N = 5, Figure 3 illustrates the first natural frequencies calculated for each nodal diameter.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (b) Cyclic system discretization.
We observe that multiple internal resonances can occur. If we were to excite the structure around the second bending mode of the nodal diameter 0 (denoted ND0), then modal interaction between this excited mode and the second bending mode of ND1 and ND2 (i.e 1:1 internal resonances may occur), as well as between the excited mode and the first torsional mode of ND0, ND1, and ND2 (i.e 1:2 internal resonances).

In the next sections, a traveling wave excitation is applied in the transverse direction at the tip of the blades with an engine order equal to m, varying between 0, K where

K = N 2 if N is even or K = N-1 2
otherwise [START_REF] Thomas | Dynamics of rotationally periodic structures[END_REF][START_REF] Mitra | Dynamic modeling and projection-based reduction methods for bladed disks with nonlinear frictional and intermittent contact interfaces[END_REF]. ), denote possible 1:1 internal resonance.

Reduction by the normal form theory

Without reduction, the full structure, discretized by finite elements, contains N dof × N coupled nonlinear unknowns, where N dof , the number of degrees of freedom for a single sector, is already equal to 42 when 5 elements are used per blade. In order to decrease the computation time of the following numerical simulations, a reduced-order model obtained with the normal form theory is used. In this paper, a damped motion of the system is considered, and hence the approach of Touzé and Amabili [START_REF] Touzé | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures[END_REF] is well suited. Their reduction methodology is applied to both a single blade (Section 2.3.1) and the full cyclically symmetric system (Section 2.3.2). This particular choice of reduction methodology was arbitrary and another one could have been applied (such as the modal derivatives [START_REF] Idelsohn | A reduction method for nonlinear structural dynamic analysis[END_REF][START_REF] Slaats | Model reduction tools for nonlinear structural dynamics[END_REF], subspectral manifold [START_REF] Haller | Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction[END_REF], or dual modes [START_REF] Mignolet | A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures[END_REF]). A recent literature review [START_REF] Touzé | Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[END_REF] presents these different methods.

The analytical development is first explained for the single blade system whose equation of motion after discretization can be written as

M ü + C u + Ku + f nl (u) = f ext , (1) 
where M, C, and K are the mass, damping and stiffness matrices. C is here defined as modal damping such that the second flexural mode and the first torsional mode both have a damping of 0.05%. The vector f ext represents the external forces. The model (see Section 2.1) considers geometrical nonlinearities and these are accounted for through the nonlinear forces f nl . For a given degree of freedom p, the nonlinear force is noted f nl,p , and is evaluated (using Einstein summation convention) with

f nl,p = K q,p i j u i u j + K c,p i jk u i u j u k , (2) 
where u i is the displacement of the i-th degree of freedom. The indexes i, j, and k vary within 1, N dof . The terms K q (third order tensor), K c (fourth order tensor) represent the quadratic and cubic nonlinear effects.

The normal form theory is next applied and the main steps of the reduction are recalled.

First step

First are computed the eigenvectors (i.e. linear normal modes) Φ of the underlying linear conservative autonomous system of Equation [START_REF] Krack | Vibration Prediction of Bladed Disks Coupled by Friction Joints[END_REF]. By substituting u = Φq and projecting the system on Φ , the following modal equation is obtained for all the modes p ∈ 0, N dof -11 qp + 2ξ p ω p qp + ω 2 p q p + g p i j q i q j + h p i jk q i q j q k = f ext,p ,

where ω p and ξ p denote the linear natural frequency and damping of the p-th mode. The indexes i, j, and k vary between 0, N dof -1 . The terms g p i j and h p i jk are components of the projection of the tensors K q and K c on the p-th mode. The scalar f ext,p is the projection of the external forces on the p-th mode. The system (3) is then written under a set of first order differential equations:

   qp = y p ẏp + 2ξ p ω p y p + ω 2
p q p + g p i j q i q j + h p i jk q i q j q k = f ext,p

Second step

Next, a quadratic nonlinear change of variable is applied. For each mode, the initial unknowns (q, y) are defined with respect to the new unknowns (r, s) such that: q p = r p + a p i j r i r j + b p i j s i s j + c p i j r i s j (5a) y p = s p + α p i j r i r j + β p i j s i s j + γ p i j r i s j (5b)

Third step

The third step consists in evaluating the coefficients a p i j , b p i j , c p i j , α p i j , β p i j , and γ p i j of [START_REF] Viguié | Nonlinear vibration absorber coupled to a nonlinear primary system: A tuning methodology[END_REF].For this matter, the values of q p and y p and their time derivative are first substituted in (4) by their new definition [START_REF] Viguié | Nonlinear vibration absorber coupled to a nonlinear primary system: A tuning methodology[END_REF]. Equations containing quadratic terms in r and s, such as for instance r i r j , ṙi r j , s i s j , ṡi s j , etc are obtained. The terms ṙp , and ṡp are then replaced by their first order expansion

ṙp = s p + O r 2 p , s 2 p (6a) ṡp = -2ξ p ω p s p -ω 2 p r p + O r 2 p , s 2 p . (6b) 
In the obtained system, the monomials of each order are gathered and their coefficients must be equal to 0.

This allows to evaluate the coefficients a p i j , b p i j , c p i j , α p i j , β p i j , and γ p i j . Full details on the equations and the solution can be found in [START_REF] Touzé | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures[END_REF]. In the current development, a quadratic change of variables (see Equation ( 5)) was performed, whereas a cubic change of variables was used in [START_REF] Touzé | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures[END_REF]. The coefficients a p i j , b p i j , c p i j , α p i j , β p i j , and γ p i j obtained are inversely proportional to the quantities (±ω p ± ω i ± ω j ) and are thus undefined when

±ω p ± ω i ± ω j ≈ 0. (7) 
In Section 2.1, we developed a model such that 2ω 1 ≈ ω 2 . Therefore, for specific values of i, j, and p, Equation ( 7) is satisfied and the associated coefficients a p i j , b p i j , c p i j , α p i j , β p i j , and γ p i j will be undefined. In this case, these coefficients are then arbitrary set to 0 (as it was similarly done in [START_REF] Touzé | A normal form approach for nonlinear normal modes[END_REF][START_REF] Opreni | Model order reduction based on direct normal form: application to large finite element MEMS structures featuring internal resonance[END_REF]).

Fourth step 120

Once the coefficients are obtained, the fourth and final step consists in, once again, substituting [START_REF] Viguié | Nonlinear vibration absorber coupled to a nonlinear primary system: A tuning methodology[END_REF] into (4) and rewriting the system of equations into a second order differential system of equations. The reduction is performed at this point in which only some modes p are kept. Let define by N mode the set of modes kept and by N mode,red its size (N mode,red ≤ N dof ). The equation becomes rp

+ 2ξ p ω p ṙp + ω 2 p r p + G p i j r i r j + A p i jk r i r j r k + B p i jk r i ṙ j ṙk +C p i jk r i r j ṙk = f ext,p , p ∈ N mode , (8) 
where the indexes i, j, k take all the values in N mode . The third and forth order tensor coefficients of Equation ( 8) are given by:

A p i jk = h p i jk + g p iq + g p qi a q jk (9a) B p i jk = g p iq + g p qi b q jk (9b) C p i jk = g p iq + g p qi c q jk (9c) G p i j =      g p i j
if (p, i, j) satisfies ( 7)

0 otherwise. ( 9d 
)
Notice that, in ( 9), the Einstein summation convention is used for the index q which varies in 0, N dof -1 .

The choice of the modes, N mode , along with the order of approximation used in the change of coordinates (see Equation ( 5)) define the invariant manifold on which the solution is computed [START_REF] Shaw | Normal Modes for Non-Linear Vibratory Systems[END_REF][START_REF] Touzé | A normal form approach for nonlinear normal modes[END_REF]. If a mode is not retained in the reduction, then no interaction can occur with this mode. For the test case under consideration (see Section 2.1 and 2.2), interaction is expected to occur between the first torsional mode and the second flexural mode. As a consequence, only the modes whose frequency is contained within the range 180 rad s -1 , 460 radian/s are kept (see Table 1 for the numerical values of ω 1 and ω 2 ).

For the single sector system, only two modes are kept (i.e N mode = {1, 2}, N mode,red = 2, and i, j, and k can take the value {1, 2}), and the system to solve becomes:

   r1 + 2ξ 1 ω 1 ṙ1 + ω 2 1 r 1 + αr 1 r 2 + A 1 i jk r i r j r k + B 1 i jk r i ṙ j ṙk +C 1 i jk r i r j ṙk = 0 r2 + 2ξ 2 ω 2 ṙ2 + ω 2 2 r 2 + β r 1 r 1 + A 2 i jk r i r j r k + B 2 i jk r i ṙ j ṙk +C 2 i jk r i r j ṙk = f ext,2 (10) 
where

α = G 1 12 + G 1 21 , β = G 2 11 .
The mode 2 (second bending mode) is directly excited. Due to the nonlinear change of variables and the relation between the natural frequencies given in Equation ( 7), the quadratic terms in [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS[END_REF] are limited here to r 1 r 2 and r 2 1 . However, the tensors of fourth order couple all the modes kept in the reduction, i.e. all possible cubic combinations between r 1 , r 2 and their time derivatives exist in [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS[END_REF]. The Einstein notation is maintained for these terms.

The normal form enables to reduce the system from N dof (equal to 42 for the single sector) to N mode,red (reduced to 2 for the single sector) unknowns. The main limitation of the normal form theory is that, for large finite elements models, the tensors K q and K c are very big and can not be numerically stored. Their projection on the linear eigenvectors Φ may also be impossible in practice. To solve this issue, Vizzaccaro et al. [START_REF] Vizzaccaro | Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures[END_REF] proposed the direct normal form approach (DNF). In our situation, the model contains few nodes and the number of sectors is kept low. Therefore, the normal form theory, presented in this Section, is applied.

However for larger structures and for a larger number of sectors (greater than five or six), the DNF may be better suited.

Cyclic systems

For a cyclic system, the main derivations are the same. However, some specificities need to be clarified for the first and fourth steps and these are explained next.

First step: computation of the eigenvectors

The eigenmodes of a cyclically symmetric system can be classified per nodal diameter (m ∈ 0, K ).

Two kinds of modes exist: the non-degenerated modes (m = 0: all sectors move in unison, and m = N 2 : the sectors have an alternating motion); and the degenerated modes. For degenerated modes, the natural frequencies of the system have a multiplicity of two, and two eigenvectors corresponding to traveling waves in opposite direction describe the deformed shape of the structure. The number of modes in the first step

(see Equation (3)) is equal to N × N dof .

Fourth step: final system of equations

In the last step (see Equation ( 8)), there are N × N mode,red unknowns to solve. The cyclic coordinates are noted r m,p , where m ∈ 0, K is the nodal diameter and p ∈ {1, 2} is the p-th mode of the m-th nodal diameter. If m is degenerated then r m,p it is complex and is associated to its complex conjugate with r N-m,p = rm,p .

For a cyclically symmetric system, Equation ( 10) is simply expanded on (K + 1) nodal diameters and can be written

   rm,1 + 2ξ m,1 ω m,1 ṙm,1 + ω 2
diameters. In the current paper, the reduced system (12) keeps the whole nodal diameter basis in order to recover all possible 1:2 internal resonances. However, the result of [START_REF] Quaegebeur | Energy transfer between nodal diameters of cyclic symmetric structures exhibiting polynomial nonlinearities: Cyclic condition and analysis[END_REF] on the prediction of possible modal interaction is still employed. It stipulates that, in the quadratic nonlinear forces, two nodal diameters i and j can interact through the term r i r j and excite the m-th nodal diameter if and only if

i + j ≡ m mod N (13) 
If the indexes i and j do not satisfy relation [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF], then the terms α m i j and β m i j are found to be equal to 0. A similar relation can be obtained for the cubic nonlinear forces. Equation [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] expresses the frequency condition for the possible existence of a 1:2 internal resonance.

Equation [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF] gives the required nodal diameter condition in the case of cyclically symmetric systems. 160 Equations ( 10) (for the single sector) and ( 12) (for the cyclic system) govern the dynamics of reduced-size models and will be solved with the numerical algorithms presented in the following section.

Numerical algorithms

Due to the periodic nature of the excitation of the system (see Equation ( 1)), the stationary solution is assumed to be also periodic. The Harmonic Balance Method (HBM) [START_REF] Krack | Theory of harmonic balance[END_REF] is employed to solve the system [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS[END_REF] or [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF]. The displacement is sought after as:

r = c 0 + 1 2 N h ∑ k=1 c k e ikωt + ck e -ikωt , (14) 
where (c k ) k∈ 0,N h are the unknown harmonic coefficients, N h is the harmonic order, and • denotes the complex conjugate. The form ( 14) is substituted into [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS[END_REF] or [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF] and the nonlinear algebraic system of equations obtained after balancing the different harmonics is solved with a Newton-Raphson algorithm.

To increase its rapidity, the jacobian of the system of equations is computed analytically. Moreover as needed in specific numerical tools cited below, the hessian of the system is also computed analytically.

The derivations of the jacobian and hessian of the nonlinear forces are presented in the Appendix A. In the following sections, the HBM is applied with N h = 11, which is sufficient to ensure convergence. The harmonic external excitation is applied on the second harmonic,

f ext (t) = f a cos (2ωt) , (15) 
where f a is a scalar value. In the numerical analysis, its value will be varied in the range [0 N, 50 N]. ω is taken around the natural linear frequency of the first torsional mode (ω ≈ ω 1 ). As a consequence, the system is directly excited around the second bending mode. The excitation is shifted to 2ω to recover properly the 1:2 internal resonance. In the absence of internal resonance, it is expected that the system shows a high 2ω component (motion on the second bending mode). However, if an 1:2 internal resonance occurs, the first torsional mode will respond on the first harmonic coefficient.

In the numerical applications, the results are presented in terms of physical coordinates. To obtain these quantities, the unknowns r are found by solving [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS[END_REF] or [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF], are then substituted in (5) (or equivalent), and are finally projected on the linear eigenvectors Φ.

In this paper, the HBM is coupled with a pseudo-arc length path continuation [START_REF] Peeters | Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques[END_REF] and thus only a single branch is obtained by default. However, several solutions may exist at the same excitation frequency due to the nonlinear feature of the mechanical system. The methodology developed in [START_REF] Xie | Bifurcation tracking by Harmonic Balance Method for performance tuning of nonlinear dynamical systems[END_REF] is here applied to detect and follow branch points and Neimark-Sacker points. Other methods such as the one explained in [START_REF] Detroux | The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems[END_REF] could have been considered. A branch switching algorithm is also applied to follow new branches of periodic solutions emerging from previously obtained branch points. Its theory comes from Seydel [START_REF] Seydel | Practical Bifurcation and Stability Analysis, 3rd Edition[END_REF] and Kuznetsov [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF]. Details on the algorithm used can be found in Section 3.2 of [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF]. Quasi-periodic solutions originating from the Neimark-Sacker bifurcation points are not computed in this paper. Specific algorithms, such as the one proposed by Fontanela et al. [START_REF] Fontanela | Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods[END_REF] could have been employed for such analysis. The numerical solutions obtained may be stable or unstable. Only stable solutions are of interest in our study as they can be observed in practical applications. To determine the stability, the Floquet theory [START_REF] Floquet | Sur les équations différentielles linéaires à coefficients périodiques[END_REF] (or see Section 3.2 in [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF]) is applied.

The practical purpose of this paper is to explain how intrinsic nonlinear effects can be used to lower the maximal stable transversal displacement. Internal resonances are at the source of bifurcated branches with stable or unstable parts and a good prediction of all of these nonlinear effects is crucial.

The dynamics of a single sector is numerically studied next. Cyclically symmetric systems will be studied both analytically (see Section 4) and numerically (see Section 5) later.

Validation and analysis on a single sector

In this section, the reduced model of a single blade presented in Section 2.3.1 is studied with the numerical algorithms presented in Section 2.4. The last simulation of this section investigates the influence of the excitation amplitude on the possible energy transfer between modes via an internal resonance.

Analysis of the dynamic behaviour

In this section, we first verify the accuracy of the normal form theory and analyze the reduced-order model at high excitation amplitude (taken here as equal to 50 N). Figure 4 The Figure 4 shows the HBM solution of the reduced-order model (in blue) as well as the full model (in red). Numerical time integrations (black crosses) performed on the reduced-order model are also illustrated.

They confirm the accuracy of the HBM on all stable branches. For an initialization on the unstable parts, the temporal integration converges toward a stable branch at the same excitation frequency (however it requires a longer time to reach this solution). Overall the results between the reduced model and the full model are very satisfactory. To increase the accuracy of the reduction, we would suggest applying the normal form theory with an higher order (see Equation ( 5)). Within the scope of this paper, the results are precise enough and allow to decrease the computation time from several days (taken for the reference solution with the computation of Floquet stability) to a couple of minutes with the reduced-order model2 .

In Figure 4, a main branch as well as two bifurcated branches can be observed. To characterize the solutions and exhibit the phenomena of internal resonance, the full temporal integration corresponding to 210 the point of calculation at normalized frequency 1.995 (which corresponds to an excitation frequency of 441.0 rad s -1 ) is presented in Figure 5. For this point of calculation, the initialization was taken equal to the unstable solution point of the HBM (on its main branch). As shown in Figure 5a, after 50 s of computation, the system changes its dynamic: the amplitude of the transversal displacement decreases, and the value the torsion angle increases. Through the spectrogram (see Figure 5b), it can be observed that, initially,
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the frequency of the solution is at 2ω. After 50 s, it becomes half the frequency of excitation. This simulation confirms the appearance of an 1:2 internal resonance: in the permanent regime, the torsional mode predominates the dynamics of the system whereas the flexural mode was directly excited. In Figure 4, we observe that only some parts of the main branch are stable. The stability of this main branch is dictated by the appearance of the different bifurcated branches [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF]. The purpose of the next 220 section is to tune the excitation level such that the peak of the main branch becomes unstable, leading to a much lower value of stable transversal displacement.

For a system excited with a lower amplitude, the effect of the nonlinearities are smaller and thus the invariant manifold defined through the normal form theory should be more accurate. As a consequence, the following results calculated with an excitation amplitudes lower than 50 N are also expected to be accurate. 

Optimization of the transversal displacement

In this section, the system dynamics is analyzed for an excitation amplitude varying in the range [0 N, 50 N].

The purpose is to determine the range of excitation amplitude for which the internal resonance decreases the level of transversal displacement.

To this effect, the maximal stable transversal displacement (over the frequency range and over all 230 branches) is recorded for each excitation level. The value used as reference corresponds to the maximal transversal displacement of the main branch. Both values are normalized with the excitation amplitude.

Results are illustrated in Figure 6. In Figure 6, the blue and red curves do not coincide for an excitation amplitude within [3 N, 30 N]. For this range, the maximal displacement of the main branch is unstable due to presence of an internal resonances.
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The energy transfer occurring in the system allow to decrease the transversal displacement level. To better understand this result, the localizations of the bifurcation points for different excitation amplitudes and frequencies are computed using the method proposed in [START_REF] Xie | Bifurcation tracking by Harmonic Balance Method for performance tuning of nonlinear dynamical systems[END_REF]. These are illustrated in Figure 7. Below 3 N, Figure 7 shows that no internal resonance occurs. Between 3 N and 30 N, a single internal resonance appears. Beyond 30 N, four branch points are identified and lead to two branches with internal resonances. Whereas the first internal resonance leads to an unstable solution of the resonant peak of the second bending mode, the second internal resonance gets this peak stable again. Internal resonances may be interesting to exchange energy from the transversal displacement to the torsional displacement but can therefore be useful only for a specific range of excitation. Section 5 intends to provide similar analyses for cyclic systems. The next section first focuses on an analytical method, namely the multiple scale approach, to further understand the conditions of appearance of internal resonances in a cyclically symmetric system.

Analysis with the multiple scales method

In this section, the analytical approach of the multiple scales is employed to provide theoretical conditions to obtain 1:2 internal resonances in a system with cyclic symmetry. Notice that this work could be extended without much difficulties to other internal resonances such as 1:1, or 1:3 internal resonances.

The behaviour of a 1:2 internal resonance on a single beam has been studied extensively, for instance by Nayfeh et al. in [START_REF] Nayfeh | Nonlinear Coupling of Pitch and Roll Modes in Ship Motions[END_REF] to study the 1:2 internal resonance through the multiple scales method. A second order approximation will be used in this paper to study a system with cyclic symmetry, although using an higher older [START_REF] Lacarbonara | Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems[END_REF] could also be possible.

Analytical developments 255

This sections focuses on the cyclic system presented in Section 2.2 and whose equation of motion (after reduction by the normal form approach is given in ( 12)). A single nodal diameter m is harmonically excited at frequency ω, with the force

f ext,m = f A e iωt + f B e -iωt , (16) 
where f A , and f B are scalar values. Let consider that the interaction between the second bending mode of the m-th nodal diameter occurs with the first torsional mode of the n-th nodal diameter (1:2 internal resonance 260 between different diameters). The equation of motion of these two modes are

   rn,1 + 2ξ n,1 ω n,1 ṙn,1 + ω 2 n,1 r n,1 + α n,1 i j r i,1 r j,2 + A n,1 de f r d r e r f + B n,1 de f r d ṙe ṙ f +C n,1 de f r d r e ṙ f = 0 rm,2 + 2ξ m,2 ω m,2 ṙm,2 + ω 2 m,2 r m,2 + β m,2 i j r i,1 r j,1 + A m,2 de f r d r e r f + B m,2 de f r d ṙe ṙ f +C m,2 de f r d r e ṙ f = f ext,m (17) 
where the indexes i, and j may only be equal to m or n. The multiple scale approach defines different time scales T p = ε p t of the problem, where ε is a small dimensionless parameter. Based on Table 1 and Figure 3, the following relationships between the excitation ω and modal frequencies are defined:

ω = ω m,2 + εσ 2 (18a) 2ω n,1 = ω m,2 + εσ 1 , (18b) 
The scalars σ 1 and σ 2 are two detuning parameters. Let also set

f A = ε 2 f a (19a) f B = ε 2 f b (19b) ξ n,1 ω n,1 = ε µ n,1 (19c) 
ξ m,2 ω m,2 = ε µ m,2 . ( 19d 
)
The displacements are sought as

r n,1 = εr n,11 (T 0 , T 1 ) + ε 2 r n,12 (T 0 , T 1 ) (20a) r m,2 = εr m,21 (T 0 , T 1 ) + ε 2 r m,22 (T 0 , T 1 ) (20b) 
Substituting these equations into (17) gives a system of equations for the different orders of ε. The first order

gives    D 2 0 r n,11 + ω 2 n,1 r n,11 = 0 D 2 0 r m,21 + ω 2 m,2 r m,21 = 0 ( 21 
)
where

D p = ∂ ∂ T p .
For the order ε 2 , one has:

   D 2 0 r n,12 + ω 2 n,1 r n,12 = -2D 0 D 1 r n,11 -2µ 1 D 0 r n,11 -α n,1 i j r i,11 r j,21 D 2 0 r m,22 + ω 2 m,2 r m,22 = -2D 0 D 1 r m,21 -2µ 2 D 0 r m,21 -β m,2 i j r i,11 r j,11 + f ext,m (22) 
Solving [START_REF] Touzé | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures[END_REF] gives

r n,11 =      A n (T 1 ) e iω n,1 T 0 + B n (T 1 ) e -iω n,1 T 0 , if n is degenerated A n (T 1 ) e iω n,1 T 0 + c.c, if n is non degenerated . ( 23 
)
A similar solution is obtained for r m,2,1 with the unknowns A m and B m . Four cases are then possible depending of the value of n and m: they either correspond to two degenerated nodal diameters, two nondegenerated ones, or there is one of each. Only the first case is fully treated in the following demonstration,
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but results of all cases are given at the end of this section.

Let consider both nodal diameters degenerated, one must then account for the coupling with their associated complex conjugate terms (see Equation ( 11)) in the nonlinear forces of [START_REF] Touzé | Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[END_REF]. Therefore, the quadratic terms of ( 22) can be developed to α n,1 i j r i,11 r j,21 = α n,1 nm (r n,11 r m,21

) + α n,1 (N-n)m (r N-n,11 r m,21 ) +α n,1 n(N-m) (r n,11 r N-m,21 ) + α n,1 (N-n)(N-m) (r N-n,11 r N-m,21 ) (24) 
and

β m,2 i j r i,11 r i,11 = β n,1 nn (r n,11 r n,11 ) + β n,1 (N-n)n + β n,1 n(N-n) (r N-n,11 r n,11 ) +β n,1 (N-n)(N-m) (r N-n,11 r N-n,11 ) (25) 
Equations ( 24) and ( 25) are substituted in [START_REF] Touzé | Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[END_REF] to derive the following solvability conditions:

               -2iω 1 A n + µ 1 A n -α n,1 nm A m B n + α n,1 (N-n)m A m Ān + α n,1 n(N-m) Bm B n + α n,1 (N-n)(N-m) Bm Ān e -iσ 1 T 1 = -2iω 2 A m + µ 2 A m -β m,2 nn A 2 n + β n,1 (N-n)n + β n,1 n(N-n) A n Bn + β n,1 (N-n)(N-m) B2 n e iσ 1 T 1 + f A e iσ 2 T 1 = 2iω 1 B n + µ 1 B n -α n,1 nm B m A n + α n,1 (N-n)m B m Bn + α n,1 n(N-m) Ām A n + α n,1 (N-n)(N-m) Ām Bn e -iσ 1 T 1 = 2iω 2 B m + µ 2 B m -β m,2 nn B 2 n + β n,1 (N-n)n + β n,1 n(N-n) B n Ān + β n,1 (N-n)(N-m) Ā2 n e iσ 1 T 1 + f B e -iσ 2 T 1 = (26)
This set of equation is nearly identical to the solvability condition obtained when the multiple scale approach is applied on a single sector (see for instance Equation ( 58) in [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF] or Equation ( 9) in [START_REF] Nayfeh | Nonlinear Coupling of Pitch and Roll Modes in Ship Motions[END_REF]). The main difference is that the coefficients α n,1 and β m,2 may be equal to 0 in our situation. This is due to the condition of coupling between nodal diameters [START_REF] Quaegebeur | Energy transfer between nodal diameters of cyclic symmetric structures exhibiting polynomial nonlinearities: Cyclic condition and analysis[END_REF] and recalled in Equation ( 13). In Equation ( 26), the 270 term α n,1 nm A m B n exist if and only if the n-th and m-th nodal diameters can get coupled to excite the n-th nodal diameter. Similarly the term β m,2 nn A 2 n exists if the n-th nodal diameter excites the m-th nodal diameter through a quadratic nonlinearity, and so on. Therefore diameters m and n can get coupled only if

± (m + n) ≡ n mod N (27a) ± (m -n) ≡ n mod N (27b) ± (m + n) ≡ N -n mod N (27c) ± (m -n) ≡ N -n mod N (27d)
Some of these conditions are redundant and this set of condition gets simplified into

m ≡ 0 mod N (28a) (m -2n) ≡ 0 mod N (28b) (m + 2n) ≡ 0 mod N (28c)
As m corresponds to a degenerated nodal diameter, only the last two conditions (28b) and (28c) need to be studied. 

Results and discussion

Table 2 summarizes the different conditions for all the possible combinations of nodal diameter m and n.

If one of these equations is satisfied, then internal resonance may occur between the m-th nodal diameter and the n-th nodal diameter. Table 2 gives the nodal diameters condition for the existence of internal resonance, but the associated frequency of the modes must also be quasi-commensurable (and verify Equation (18b)). Very interesting results can be deduced from the conditions given in Table 2. For instance,

m degenerated m non-degenerated n degenerated (m -2n) ≡ 0 mod N m ≡ 0 mod N (m + 2n) ≡ 0 mod N (m -2n) ≡ 0 mod N (m + 2n) ≡ 0 mod N n non-degenerated (m -2n) ≡ 0 mod N (m -2n) ≡ 0 mod N (m + 2n) ≡ 0 mod N
• if the 0-th nodal diameter is excited (m = 0 is non-degenerated) then internal resonances may occur with any other nodal diameter.

• if m is both degenerated and odd, and if N is even then no internal resonance occur at all.

• if m = N 2 then an internal resonance may occur with n = N 4 if N is divisible by 4.

These analytical results are very interesting to design cyclic symmetric structure. It gives indeed the nodal diameters for which internal resonance may occur and thus provides insight on which energy transfer is possible to guide the vibrational energy of the system. In the following section, numerical simulations will be performed to analyze internal resonances on the cyclic systems so as to verify these analytical results.

These simulations go beyond the analysis of the multiple scales as high excitation will be considered.

A possible extension of this work would be to study cascades of internal resonances as proposed in [START_REF] Monteil | Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances[END_REF].

Numerical analysis for cyclic systems

In Section 3, relevant numerical algorithms were used to analyze the behaviour of a single sector. These algorithms are now applied on the cyclic systems. The analytical results of Section 4.1 provide theoretical conditions for the existence of internal resonance. In this section, those are verified numerically for different numbers of sectors. Similarly to what was performed in Section 3.2, investigations are then made to determine the range of excitation amplitude for which the internal resonances allow to decrease the transversal displacement.

5.1. Detailed analysis of the dynamic behaviour for N = 2, m = 0

As it was performed previously in Section 3.1, the system is first analyzed for a specific excitation level 300 before optimizing the transversal displacement reduction over a range of excitation amplitude. Let consider the cyclic system of Figure 2 with only two sectors (N = 2) excited with an engine order equal to 0, i.e.

vibration is in unison, and an amplitude of 50 N. The transversal displacement and torsion angle at the tip of the first sector obtained with the HBM on the reduced system are illustrated in Figure 8 (the second sector presents identical results and is thus not represented). Figure 8 also shows numerical temporal integrations 305 initiated on the main branch found by the HBM. In Figure 8, one can identify the main branch (numbered 0) as well as five bifurcated branches (numbered from 1 to 5). As N = 2, the solution can be decomposed on the non-degenerated nodal diameters n = 0, and n = 1, whose HBM expansion follow Equation [START_REF] Vakais | Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems with Cyclic Symmetry[END_REF]. Further analyses of these solutions are given in Figure 9 that depicts the modulus of each Fourier coefficient c k,n k∈ 0,2 of the two different nodal diameters n (n = 0 or n = 1) at the peak of each branch illustrated in Figure 8. For better readability, only the first and second harmonics are represented (the other harmonics have negligible values). In Figures 9b (branch 1), and 9e

(branch 4), we observe that the torsional displacement is dominant and that it is expressed mainly by the first harmonic of the 0-th nodal diameter. These branches therefore correspond to 1:2 internal resonances within modes of the 0-th nodal diameter. The other bifurcated branches ( 2 , 3 , and 5 ) correspond to 1:2 internal resonances between the 0-th and 1-st nodal diameters. The multiple scales analysis predicted these interactions (see the last column of Table 2). Although five branches of solutions are observed for the amplitude excitation of 50 N, it is difficult to know, a priori, the level of amplitude needed for these branches to arise. If one focuses on the transversal displacement, the localization of the five branch points (numbered from 1 to 5) are depicted in Figure 10 as a function of both excitation amplitude and frequency. Those were obtained following the algorithm explained in [START_REF] Xie | Bifurcation tracking by Harmonic Balance Method for performance tuning of nonlinear dynamical systems[END_REF]. An additional bifurcated branch (which in our cases corresponds to a new internal resonance phenomenon) appears when the excitation amplitude exceeds the following values: 2.8 N, 14.5 N, 24.7 N, 30.5 N, and 49 N. This kind of analysis would have been complicated to obtain with an analytical approach such as the multiple scales analysis. Therefore, these algorithms provide interesting complementary results
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to Section 4.1 and give further insights on the range of excitation on which the exchange of energy may occur. The overall stability of the system with cyclic symmetry (see Figure 8) is different from the single sector case (see Figure 4). This is due to the additional bifurcated branches and Neimark-Sacker bifurcated points.

Moreover, stable solutions that are not periodic exist on some excitation frequency ranges and are retrieved 330 by the numerical time integration only. These are depicted in Figure 8. When initialized around the stable HBM solution, numerical time integration converges toward this periodic solution. However when initialized on an unstable solution, it converges toward a cluster of points. To analyze these solutions, the displacement and torsion angle calculated by time integration for a specific excitation frequency (shown with the green arrow in Figure 8) are presented in Figure 11 as a function of time: The regime illustrated in Figure 11 is chaotic and this shows that cyclic systems seem to exhibit a more complex behaviour than classical systems without symmetry. Further analyses of this regimes can be found in the Chapter 5 of [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF] or in [START_REF] Touzé | Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates[END_REF] which also handles system with symmetry.

Summary of the results

In this section, the systems built for N ∈ 2, 5 are studied numerically and with the multiple scales approach. For each case, one looks for the possible apparition of an internal resonance between the second bending mode of nodal diameter m (m ∈ 0, K ), mode directly excited by the external force, and the first torsional mode of the nodal diameter n.

Tables 3 and4 summarize the results for different N and m. The case N = 0 and m = 2 was already presented in Section 5.1. The numerical results that correspond to other cases are not detailed here for brevity. In these Tables 3 and4, for the multiple scales analysis (MSA), indicates that internal resonances may occur and indicates when no interaction is expected. For the numerical analysis (NA): the lowest value of excitation amplitude for which the internal resonance appears is given; and indicates that no internal resonance is obtained on the studied excitation range. As one can be observed in these Tables 3 and4, there is a perfect correlation between the theoretical results of Section 4.1 and the numerical results: if the multiple scales analysis expects the presence of an internal resonance, it is also simulated numerically. On the other hand, if no internal resonance is predicted analytically, then it is also not observed in the numerical analysis, or at least not with an excitation up to 50 N.

Optimization of the transversal displacement

In this section, the internal resonances are employed to decrease the transversal displacement of the cyclic structure. The maximal stable transversal displacement over the excitation frequency range is recorded as a function of the excitation amplitude. This leads to the prediction of the range of amplitude excitation for which the transfer of energy is efficient.

To have such an energy exchange, the theoretical conditions of Section 4.1 (also summarized in Tables 3 and4) must be verified. Here two cases are considered {N = 2, m = 0}, and {N = 5, m = 1}. The associated results are presented in Figures 12a and12b. In both cases, the presence of an internal resonance allows to decrease the transversal displacement over a wide range of excitation amplitude. These results are similar to the ones illustrated in Figure 6. However, they are not as smooth as the single sector case due to the existence of multiple internal resonances occurring in the systems influencing their stability.

The first "jump" of the normalized displacement amplitude is located for N = 2 and m = 0 at 40 N. It occurs due to the creation of a new bifurcated branch that originates from another already existing bifurcated branch. This phenomenon is illustrated in Figure 13. The stable part observed on the box inset remains stable until two bifurcated branches merge. This is represented in Figure 14 and explains the second jump of Figure 12a occurring at 48 N. The peak of the main branch then gets stable at 49 N due to a new bifurcated branch (see the number 3 circled in Figure 10) leading to the final jump of Figure 12a.

In both cases, the internal resonances are efficient over a large amplitude range and decrease the normalized displacement. It is however difficult to generalize these results. For example, in the case N = 5, m = 2 (not illustrated here), the internal resonance with the first nodal diameter (that is, in this case, the only interaction observed) occurs at 41 N and thus the transfer of energy is not as efficient as cases illustrated in 

Application of global vibration mitigation exploiting internal resonances

Section 4.1 gave some conditions on the nodal diameters to obtain potential internal resonances. The previous section verified these results through numerical simulations. The purpose of this Section is now to exploit these internal resonances to transfer the energy of a mode to another one, that must be more damped, in order to reduce the overall vibrational energy of the system. To model such effect, the damping matrix of the system is modified such that the modal damping of the first torsional mode is increased to

ξ 1 = 0.05% × ζ ( 29 
)
where ζ is a scalar value which will take the value {1, 1.5, 3}. In practice, we could achieve this by coating the structure with a specific material.

As previously demonstrated in Sections 3. Figure 15 shows that the energy inserted in the system via the external excitation on the second mode is properly transferred to the first one and then dissipated through damping. It also shows that as ζ increases, the effective range of excitation amplitude (for which the internal resonance occurs) is getting narrower.

This practical application demonstrated that internal resonances may be used to mitigate the vibration of mechanical systems, and enable to control the vibration level of the structures.

Conclusion

In this work, theoretical conditions on nodal diameters were derived in order to obtain 1:2 internal resonances in cyclic symmetric systems. These conditions were verified numerically by using a simplified yet realistic nonlinear blade model, reduced by the normal form theory, that was later extended to a cyclic system. The second bending mode of the structure was excited and energy transfer toward the first torsional mode was illustrated. The numerical solution of the system with the HBM and branch switching algorithms was shown to be in perfect agreement with the theoretical conditions for the large range of amplitude excitation studied in this paper. Further numerical investigations were conducted to better understand the nonlinear dynamics of the system and to determine the range of amplitude excitation which minimizes the transversal displacement of the system. A short application was also proposed to show that for a set of appropriate parameters, one can decrease the global vibration of the system by exploiting the internal resonance effects.

Although this paper studies the specific 1:2 internal resonance, similar analyses could be performed for any

The derivative of the nonlinear forces in the frequency domain, F nl , with respect to c, are first computed:

∂ F nl ∂ c = ∂ F nl ∂ f nl ∂ f nl ∂ c = D ∂ f nl ∂ r ∂ r ∂ c + ∂ f nl ∂ ṙ ∂ ṙ ∂ c = D ∂ f nl ∂ r D * + ∂ f nl ∂ ṙ ω∇D * . (A.4)
For a discretized instant, and two different modes p and q, one gets f nl,p r q = G p q j + G p jq r j + A p q jk + A p jqk + A p jkq r j r k + B p q jk r i ṙ j ṙk + C p q jk C p jqk + r j ṙk (A.5a) f nl,p ṙq = B p iq j + B p i jq r i ṙ j +C p i jq r j r i r j (A.5b)

Similarly for the derivative with respect to ω, one gets:

∂ F nl ∂ ω = D ∂ f nl ∂ ṙ ∇D * c . (A.6)

B. Computation of the Hessian: second order derivatives

To localize the bifurcation points and to compute the others branches of the systems, it is necessary to evaluate, among other things, the derivatives of ∂ F nl ∂ c φ 1 with respect to c, and ω, where φ 1 is a vector. The other derivatives that need to be computed follow similar derivations and are thus not developed here for brevity.

425

∂ ∂ c ∂ F nl ∂ c φ 1 = ∂ ∂ c D ∂ f nl ∂ r D * φ 1 + D ∂ f nl ∂ ṙ ω∇D * φ 1 = ∂ ∂ c D ∂ f nl ∂ r φ 1t + D ∂ f nl ∂ ṙ φ1t (A.7)
where φ 1t and φ1t represent the temporal displacement and velocity of the frequency vector φ 1 . Additional

derivations give ∂ ∂ c ∂ F nl ∂ c φ 1 = D ∂ ∂ r ∂ f nl ∂ r φ 1t + ∂ f nl ∂ ṙ φ1t D * + D ∂ ∂ ṙ ∂ f nl ∂ r φ 1t + ∂ f nl ∂ ṙ φ1t ω∇D * (A.8)
It then remains to compute the terms ∂ ∂ r

∂ f nl ∂ r φ 1t , ∂ ∂ r ∂ f nl ∂ ṙ φ 1t , ∂ ∂ ṙ ∂ f nl ∂ r φ 1t , and ∂ ∂ ṙ ∂ f nl ∂ ṙ φ 1t .
For a discretized instant, and two modes p and q, one gets: Concerning the derivative with respect to ω: .13) 

∂ ∂ r q ∂ f nl
∂ ∂ ω F nl ∂ c φ 1 = D ∂ ∂ ω ∂ f nl ∂ r φ 1t + ∂ f nl ∂ ṙ ω∇D * φ 1t = D ∂ f nl ∂ ṙ ω∇D * φ 1t +D ∂ ∂ ṙ ∂ f nl ∂ r φ 1,t + ∂ f nl ∂ ṙ φ1,t ∇D * c (A

Figure 1 :

 1 Figure 1: Representation of the pre-bent and twisted blade.

Figure 2 :

 2 Figure 2: Different levels of representation of a cyclically symmetric system.

Figure 3 :

 3 Figure 3: First three natural frequencies of each nodal diameter for N = 5. The full red lines with arrows, [ ], denote potential 1:2 internal resonances. The dashed green lines, ( ), denote possible 1:1 internal resonance.

  represents the transversal displacement and the torsion angle at the tip of the blade as a function of the excitation frequency. Only the bifurcated branches stemming from the main branch are computed and represented. The Figure also represents the Neimark-Sacker points and branch points existing in all computed branches.

Figure 4 :

 4 Figure 4: Frequency forced response. ( ): reference solution; ( ): ROM solution. Full (dotted) lines represent stable (unstable) solutions. ( ): temporal integration solution. ( ): Neimark-Sacker bifurcation points. ( ): limit and branch points.

  At 1.995 (ω = 220.5 rad s -1 ). Associated spectrogram in logarithm scale.

Figure 5 :

 5 Figure 5: Temporal integration and its close-up for the green arrow of Figure 4.
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Figure 6 :

 6 Figure 6: Normalized maximal transversal amplitude over the excitation range. ( ): maximal stable displacement over all branches; ( ): maximal displacement of the main branch.

3 EFigure 7 :

 37 Figure 7: Tracking of the branching points. ( ): localization of the branch bifurcation points. ( ): frequency forced responses for different excitation amplitudes. Full (respectively dotted) lines represent stable (respectively unstable) parts of the solution. ( ): branch points.
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Figure 8 :

 8 Figure 8: Frequency forced response. ( ): HBM solution. Full (dotted) lines represent stable (unstable) solutions. ( ): temporal integration solution. ( ): Neimark-Sacker bifurcation points. ( ): limit and branch points. [ ]: position of future temporal integration visualization (see Figure 11).

Figure 9 :

 9 Figure 9: Harmonic content of the nodal diameters for the different branches of Figure 8. These values are given at the peak of each bifurcated branch. Blue bars ( ) correspond to the 0-th nodal diameter and red bars ( ) to the first nodal diameter.

3 EFigure 10 :

 310 Figure 10: Tracking of the branch points. ( ): frequency forced response at 50 N excitation amplitude. Full (respectively dotted) lines represent stable (respectively unstable) parts of the solution. Other colored curves represent the branch points localization as a function of excitation frequency and amplitude. ( ): branch points at 50 N .

Figure 11 :

 11 Figure 11: Temporal integration at the green arrow of Figure 8.

4

 4 Excitation level (N) Maximum normalized amplitude (m/N) (a) N = 2, m = 0. Excitation level (N) Maximum normalized amplitude (m/N) (b) N = 5, m = 1.

Figure 12 :

 12 Figure 12: Normalized maximal transversal amplitude over the excitation range. ( ): maximal stable displacement over all branches; ( ): maximal displacement of the main branch.

Figures 12a and 12b

  Figures 12a and 12b.

  Figures 12a and 12b.

Figure 13 :

 13 Figure 13: Frequency forced response for N = 2, m = 0, and 40 N. ( ): ROM solution. Full (dotted) lines represent stable (unstable) solutions. The box inset represents the stable branch leading to the jump of Figure 12a.

Figure 14 :

 14 Figure 14: Frequency forced response for N = 2, m = 0. Illustration of the merge when the excitation amplitude increases. ( ): ROM solution.

  Figure15a(respectively Figure15b).

Figure 15 :

 15 Figure 15: Normalized maximum displacements N = 5, m = 1. ( ): ζ = 1, ( ): ζ = 1.5, and ( ): ζ = 3. Blues curves correspond to maximal displacements of the main branch. Red curves correspond to stable displacements over all branches.

Table 2 :

 2 Conditions to obtain internal resonances for cyclic systems.

Table 3 :

 3 Occurrence of internal resonance for N ∈ {2, 3}.

Table 4 :

 4 Occurrence of internal resonance for N ∈ {4, 5}.

  ∂ f nl,p ∂ ṙi φ 1t,i = B p qik + B p qki ṙk φ 1t,i + C p qki +C p kqi r k φ 1t,i , (A.10)

	∂					
	∂ r q					
	∂ ∂ ṙq	∂ f nl,p ∂ r i	φ 1t,i = B p iqk + B p ikq ṙk φ 1t,i + C p ikq +C p kiq r k φ 1t,i ,	(A.11)
	and					
			∂ ∂ ṙq	∂ f nl,p ∂ ṙi	φ 1t,i = B p kiq + B p kqi ṙk φ 1t,i .	(A.12)
		,p ∂ r i	φ 1t,i		=	A p kiq + A p kqi + A p ikq + A p qki + A p iqk + A p qik r k φ 1t,i	,	(A.9)
						+ C p iqk +C p qik ṙk φ 1t,i

The modes numbering starts at 0 in order for the modes of interest to be numbered 1 and

2, see Table 1.

m,1 r m,1 + α m,1 i j r i,1 r j,2 + A m,1 de f r d r e r f + B m,1 de f r d ṙe ṙf +C m,1 de f r d r e ṙ f = 0, ∀m ∈ 0, K rm,2 + 2ξ m,2 ω m,2 ṙm,2 + ω 2 m,2 r m,2 + β m,2 i j r i,1 r j,1 + A m,2 de f r d r e r f + B m,2 de f r d ṙe ṙ f +C m,2 de f r d r e ṙ f = f ext,m , ∀m ∈ 0, K(12)where α m,p i j = G m,p i j + G m,p ji , and β m,p = G m,p i, j . Notice that this system is similar to[START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS[END_REF]. Indeed, the number of quadratic terms is limited (the tensor G couples only specific modes that are the terms r i,1 r j,2 and r i,1 r j,1 ). The indexes i and j represent the nodal diameter numbers and vary on 0, N -1 (with the property[START_REF] Gobat | Reduced order modelling and experimental validation of a MEMS gyroscope test-structure exhibiting 1:2 internal resonance[END_REF]). The fourth order tensors couple all the modes kept in the reduction and their time derivative, and the indexes d, e, and f may take the value of any nodal diameter for any of the modes kept.In[START_REF] Quaegebeur | Energy transfer between nodal diameters of cyclic symmetric structures exhibiting polynomial nonlinearities: Cyclic condition and analysis[END_REF], a formula was derived analytically to predict the nodal diameters interaction. It was then used to create a reduced-order model by assuming that the vibrational response will be contained only on these

The simulations were run on an Intel(R) Core(TM) i7-7700 @

3.6 GHz computer.
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internal resonances.

Combining this work with [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF] (in which a geometrical parameter controlling the internal resonance was identified) would help design the blades and predict the range of excitation where the displacement is at its lowest. This work is expected to find several applications. For instance, in the field of aeronautics, designers may use or avoid these internal resonances to better design engines.

Appendix A. Computation of the Jacobian of the systems

In order to compute the solution of the systems [START_REF] Palma | Parametric study on internal resonances for a simplified nonlinear blade model[END_REF], and [START_REF] Gobat | Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS[END_REF], it is necessary to provide their jacobian.

The paper of [START_REF] Xie | Bifurcation tracking by Harmonic Balance Method for performance tuning of nonlinear dynamical systems[END_REF] provides all the useful information except for the nonlinear forces. With the model reduced by the normal form theory, the following expression gives the nonlinear force for a control coordinate p f nl,p = G p i j r i r j + A p i jk r i r j r k + B p i jk r i ṙ j ṙk +C p i jk r i r j ṙk .

(A.1)

The system of equations is solved through the HBM, and thus the nonlinear force (A.1) must be computed in the frequency domain. The AFT procedure [START_REF] Cameron | An alternating frequency/time domain method for calculating the steadystate response of nonlinear dynamic systems[END_REF] is used for this matter. To switch from the time domain to the frequency domain, we define the Discrete Fourier Transform, matrix D,

where r is the displacement vector for a discretized period of time (n it instants are computed), and c its