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SUMMARY:  

Size exclusion chromatography (SEC) separates complex branched polymers by 

hydrodynamic volume, rather than by molecular weight or branching characteristics. 

Equations relating the response of different types of detectors are derived including band 

broadening, by defining a distribution function N'(M,Vh), the number of chains with 

molecular weight M and hydrodynamic volume Vh. While the true molecular weight 

distribution of complex polymers cannot be determined by SEC whatever detector is used, the 

formalism enables multiple detection SEC data to be processed to both analyze the polymer 

sample and reveal mechanistic information about the polymer synthesis. The formalism also 
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shows how the true weight- and number-average molecular weight, wM  and nM , can be 

obtained from correct processing of the hydrodynamic volume distributions. 

 

Introduction  

 Size Exclusion Chromatography (SEC) is a major technique for analyzing synthetic 

and natural polymers.[1,2] Benoit[3,4] and others[5-7] have provided evidence that SEC 

separation occurs by the product of [η] × M, where [η] is the intrinsic viscosity and M the 

molecular weight (MW), and not according to MW only. Zimm and others demonstrated that 

the presence of long-chain branches significantly changes the hydrodynamic volume at a 

given MW.[8,9] While for linear polymers there exists a one-to-one relation between MW and 

the elution time, neglecting band broadening (the conventional calibration curve), this is not 

the case for complex branched polymers: a sample wherein all chains have the same 

hydrodynamic volume may contain a distribution of molecular weights.[5,10-12] Complex 

branched polymers not only have a distribution of MWs but also a distribution of chain 

branch lengths and topologies. They are different from regular branched polymers, like 

regular stars or combs. Complex branched polymers are present in several important families 

of polymers: (i) dendritic polymers, both biopolymers (e.g. amylopectin[13,14]) and synthetic 

polymers[15] (ii) statistically (or randomly) branched polymers[9] such as polyethylene, 

poly(vinyl acetate) and polyacrylates (some biopolymers like amylose having a similar 

structure containing a few long-chain branches[16]). 

Many of the fundamentals needed for processing SEC data for complex branched polymers 
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have been given by Hamielec and co-workers.[5,10-12] The objectives of the present paper are to 

extend the work of Hamielec and others as follows: 

(a) to define distribution functions which provide the basis for interpretation of SEC and 

similar data for complex branched polymers; these distribution functions are a 

generalization of the familiar number and mass distributions for the MW of linear 

polymers; 

(b) to show how SEC data for both linear and branched polymers using a range of 

different types of online detectors (refractometer, viscometry, light scattering etc.) 

can be expressed in a single formalism which incorporates current and potential 

future modes of detection;  

(c) to show how this formalism enables band broadening to be taken into account for 

distributions from any mode of detection, thus enabling new knowledge to be 

obtained from the detailed shape of these distributions[17-21] (rather than just averages 

such as wM  and nM , which are usually not strongly affected by band broadening in 

contemporary SEC devices[22]), and 

(d) to present details of how true average molecular weights, nM  and wM , can be 

obtained. For complex branched polymers, the true molecular weight distribution 

(MWD) cannot be obtained; thus the averages obtained from these molecular weight 
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distributions are not true values, while they are however calculated this way by many 

(including some commercial SEC software). True hydrodynamic volume 

distributions will be defined and can be obtained using the methods given here, 

leading in turn to the calculation of the true values of nM  and wM . 

While the details given here are for data from SEC, the expressions derived here are equally 

applicable to data for linear and branched polymers using other separation techniques, 

particularly other chromatographic techniques, for example ion chromatography,[23,24] field 

flow fractionation[25,26] and capillary gel electrophoresis.[27] 

For complex branched polymers assuming no band broadening, universal calibration is valid 

using the product [η]w × nM ,[5,10-12,28] (as proved also below using the new formalism), where 

[η]w is the weight-average intrinsic viscosity and nM  the number-average molecular weight 

of the distribution of chains eluting at one elution time tel (or equivalently elution volume); 

this Vh-dependent nM  will be denoted nM (Vh) in the case of the separation of complex 

branched polymers assuming no band broadening. Similarly, light-scattering detectors yield 

wM (Vh)[5,11]. Other types of detectors will yield different types of average response (e.g. 

NMR[29] and online osmometry[30] which give nM (Vh)). As well known but often 

unappreciated, the true molecular weight distribution cannot be obtained for complex 

branched polymers using SEC, even using multiple detection.[2,5]  

An important question to ask in the characterization of complex branched polymers is just 

what sort of information is desired and for what purpose. (a) Frequently, useful information 
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comes from the molecular weight averages, such as nM  and wM .[31,32] However, there is also 

useful information in detailed distribution functions, as exemplified for linear polymers in the 

elucidation of the mechanisms of conventional[17,20] and controlled[21] free radical 

polymerization and starch biosynthesis[18]. More detailed distribution functions for complex 

branched polymers also have the potential to yield information on the synthetic processes 

involved in the formation of the target polymer. (b) Another use for appropriate SEC data is 

simply characterization to provide a means of differentiating polymer samples. For complex 

branched polymers, hydrodynamic volume distributions provide an interesting tool for 

comparative studies. (c) A third use is to utilize such data as a basis for structure-property 

relations. 

For linear polymers, SEC data can be expressed entirely in terms of the number molecular 

weight distribution N(M) (or equivalently the mass distribution W(M) or the SEC distribution 

w(logM)[17,33]). N(M) (sometimes also noted P(M)[17]) is the number distribution of chains 

with molar mass M; the normalization of this and all other distributions is arbitrary. The other 

distributions are defined by: 

 W(M) = M N(M) (1) 

 w(logM) = M2 N(M) (2) 

Two of the issues considered here are (1) how the true nM  and wM  can be obtained from 

appropriate SEC data for complex branched polymers, and (2) what is the appropriate form of 

the distribution function corresponding to N(M) for complex branched polymers. With regard 

to the former, we generalize the SEC expressions presented by Hamielec et al.[5] for obtaining 

nM  and wM  for complex branched polymers. 

We now develop the new formalism, first for the case of linear polymers and then for 
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branched ones. Account is taken of the variety of different detectors in current and potential 

use: those which are sensitive to the number of polymer chains eluting at a given elution time 

(such as UV or fluorescent detection where each chain bears a single fluorophore), to their 

mass (refractive index detector, UV when sensitive to the monomer unit), to a product of mass 

and a size-related parameter (viscometric detection, online osmometry[30], light scattering), to 

their molar mass (NMR for oligomers[29]) and to their composition or tacticity (NMR[29,34]). 

The branching level could also be determined by SEC-NMR, especially in the case of 

hyperbranched polymers, which exhibit a high branching level. Using mass spectrometry as a 

detector, the equations would need to be refined, since mass spectrometry not only detects but 

also separates the sample coming through the detector. A complete separation may thus be 

used for some complex branched polymers coupling to MALDI TOF MS or Electrospray MS 

to SEC. However, MS techniques are biased toward high molecular weight, which thus may 

lead to biased results even when coupled with SEC. The present development of the 

formalism is confined to homopolymers; extension to copolymers may require to consider 

variations in the refractive index increment dn/dc[2]. Using multiple detection SEC, it is 

important to correct for inter-detector delay; this problem is not treated in the present work 

since it is already detailed in the literature[35-37]. 

 All the equations are derived taking band broadening into account, and then simplified 

for the case when band broadening is negligible or corrected. We thus treat four different 

cases depicted in Figure 1: a) linear chains (or regular branched chains) with band broadening, 

b) linear chains without band broadening, c) complex branched chains with band broadening, 

d) complex branched chains without band broadening. 

The reason that it can be necessary to include the possibility of band broadening is the 

following. While band broadening is often considered as minimal in many modern SEC set-
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ups,[22] it has been found to significantly broaden molecular weight distribution in several 

cases.[38,39] It has been shown[40] that this broadening is sufficient to affect the fine details of 

the shape of the molecular weight distribution (or hydrodynamic volume distribution), and 

this detailed shape can be used to provide mechanistic information.[17-21] Moreover, band 

broadening is quite significant as soon as low flowrates have to be used (which is the case for 

high molecular weights or viscous eluents, see e.g. [41]). 

  

New Formalism for the Response of SEC Detectors with Linear Polymers 

While all the results in this section are well known, the new formalism necessary for proper 

interpretation of multiple detection SEC of complex branched polymers can be better 

understood if the distribution/observable relations for linear polymers are incorporated into 

this new formalism which takes band broadening into account.  

The SEC signal Sdet(tel) obtained at elution time tel using a detector of type ‘det’ for a linear 

polymer is given by the Tung convolution equation:[42-44] 

 Sdet(tel) = Adet ∫
∞

0

G(tel,M)  fdet(M) N(M) dM (3) 

where fdet(M) is the ‘detector function’ defined below for chains with MW M, G(tel,M) is the 

band-broadening function (which is independent of the nature of the polymer[45]) and Adet is a 

calibration constant for the particular instrument, eluent and polymer. Detailed derivations 

including all the relevant constants (refractive index increment, calibration constant for each 

detector etc.) are developed in the appendix. All these constants must be included in any 

treatment of SEC data but they are ignored in the main text for sake of clarity. For the special 

case of no band broadening, one has: 
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 G(tel,M) (no band broadening) = δ( el
~t (M) – tel) (4) 

where the Dirac function δ is defined by: 

 g(a) = ∫
+∞

∞−

δ(x – a) g(x) dx (5) 

where g is any mathematically well-behaved function and the function el
~t (M) is the 

‘calibration curve’ relating tel and M.  

In a real system with band broadening, G(tel,M) is the distribution of elution times of a 

perfectly monodisperse distribution in M. 

The function fdet(M) is different for each detector. For a refractometer (which is mass-

sensitive) one has: 

 fDRI(M) = M (6) 

For a number-sensitive detector (either UV or fluorescence with a single fluorophore per 

chain), one has: 

 fNS(M) = 1 (7) 

For molecular-weight sensitive detectors (light scattering, viscometer etc.), one has to 

consider that, at one particular elution time tel, a mixture of different molecular weights elute 

through the detector and this detector can thus only yield a molecular weight average [case a) 

of Figure 1]. The function G(tel,M) is however likely to be the same as the one used for mass-

and number-sensitive detectors, since the band broadening in the detector cells is commonly 

negligible compared to band broadening before the detectors (axial dispersion in the columns 

etc.)[46] Band broadening can also be important after the viscometer, which is therefore always 

located at the end of the detectors line to overcome this problem.  

Expression for the signal of the viscometer 
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While the software provided with a commercial online viscometer often processes the data to 

give an intrinsic viscosity and a molecular weight, this data processing uses the signal from 

two detectors: the viscometer and a concentration detector (e.g., refractometer). We here 

consider these signals separately, which is necessary to obtain the general formulae which, for 

example, can be used to correct band broadening, including for the case of complex branched 

polymers. An online viscometric detector measures a pressure drop between a line containing 

the polymer solution and one containing the pure eluent,[47] and this ratio is proportional to the 

specific viscosity ηsp = (η/η0) – 1, where η is the viscosity of the solution and η0 that of the 

pure eluent. In a sample in an increment of elution time from the SEC separation, one has a 

mixture of species with different MWs. From the Einstein impenetrable sphere result,[48] if a 

component i with mass concentration (mass per unit volume) ci in a solution has a specific 

viscosity i
spη  (that is the specific viscosity of a solution containing only this component at this 

mass fraction), then: 

   ηsp = ∑
i

i
spη   (8)  

Thus at a particular elution time, one has: 

 Svisc(tel) = ( )∫
∞

o

MM dspη    (9) 

where ηsp(M) is the specific viscosity of a sample of chains with molar mass M.  

The intrinsic viscosity [η] of a mixture is given by ηsp/Σci (in the limit of low concentration). 

Furthermore, the mass in an increment G(tel,M) dM is G(tel,M) M N(M) (assuming for the 

moment that N(M) is normalized). Thus the intrinsic viscosity can be expressed as: 

 ηsp(Μ) = [η(Μ)] G(tel,M) M N(M)  (10) 
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where the volume as other constants is omitted. 

The signal of the viscometer can then be expressed as a function of [η(M)], the intrinsic 

viscosity of a chain of molecular weight M (treated as a continuous rather than a discrete 

variable, so that an integral replaces the summation): 

  Svisc(tel) = ∫
∞

0

G(tel,M)  [η(M)] M N(M) dM   (11) 

For the viscometer, the function fvisc (M) is thus: 

 fvisc(M) = [η(M)] M (12) 

fvisc(M) is proportional to the hydrodynamic volume Vh (Equation (14)). G(tel,M) can be 

determined using the concentration-sensitive detector and deconvolution methods. 

Baumgarten et al. have given a comprehensive and critical review of the different methods 

used to correct band broadening.[46] Castro et al. proposed recently a new method using 

capillary electrophoresis to obtain the true (i.e. unbroadened) molecular weight 

distribution;[41] in the latter method, G can be any sufficiently flexible function, e.g. an 

exponentially modified gaussian.  Equation (11) gives the means to correct band broadening 

on the online viscometer signal separately. 

On combining the viscometer signal with the refractometer signal without correcting band 

broadening, an average intrinsic viscosity is determined: 

 ( )
( )elDRI

elvisc

tS
tS  =[η(tel)] = 

( )[ ] ( ) ( )

( ) ( )∫

∫
∞

∞

0
el

0
el

d,

d,

MMNMMtG

MMNMMtGMη
 (13) 

This average intrinsic viscosity, [η(tel)], of the mixture of chains eluting at tel, is thus proved 

here to be the mass-weighted average of the intrinsic viscosities of the components eluting at 
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tel, as also stated by Balke and Hamielec et al.[2,5] 

The viscometer can also yield a molecular weight, using a universal calibration curve. The 

universal calibration curve is established by injecting standards of known molecular weight 

and intrinsic viscosity (or known Mark-Houwink-Sakurada parameters in the eluent) to relate 

the product [η] × M to the elution time via a polynomial function. If band broadening is not 

corrected, the signal of the detector at tel corresponds to the response to a mixture of chains 

with different hydrodynamic volumes (Figure 1 a). It is thus necessary to introduce an average 

hydrodynamic volume of the chains eluting at tel. Flory gives the following expression for the 

hydrodynamic volume of a chain of intrinsic viscosity [η(Μ)] and molecular weight M:[49]  

 Vh = γ M [η(Μ)], γ = 
Φ236

1
3
4 π  (14) 

where Φ is the Flory constant. Φ is indeed known to vary with polymer architecture.[28] 

The number-average hydrodynamic volume of the chains eluting at tel is defined as: 

 ( )elnh, tV  = 
( ) ( )

( ) ( )∫

∫
∞

∞

0
el

0
hel

d,

d,

MMNMtG

MMNVMtG
 (15) 

Equation (11), (14) and (15) can be used to express the viscometer signal as follows: 

 Svisc(tel) = ( ) ( ) ( )∫
∞

0
elelnh, d, MMNMtGtV   (16) 

If one uses a refractometer in conjunction with a viscometer, then combining Equation (16) 

with Equation (3) and (6) leads to: 
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 ( )
( )elDRI

elvisc

tS
tS  = ( )elnh, tV  

( ) ( )

( ) ( )∫

∫
∞

∞

0
el

0
el

d,

d,

MMNMMtG

MMNMtG
 (17) 

Combining the signal of a viscometer, a refractometer and using an universal calibration 

curve, one thus determines at each elution time a number-average molecular weight defined 

as:  

 nM (tel) = 
( ) ( )

( ) ( )∫

∫
∞

∞

0
el

0
el

d,

d,

MMNMtG

MMNMMtG
 (18) 

through the following relation: 

 ( )
( )elDRI

elvisc

tS
tS  = ( )

( )eln

elnh,

tM
tV  (19) 

If band broadening is corrected or negligible (Figure 1 b), then the ratio of the signals of the 

viscometer and the refractometer gives simply: 

 ( )
( )el

*
DRI

el
*
visc

tS
tS  = 

M
Vh  (20) 

where S*
det(tel) corresponds to the signal of a detector corrected for band broadening. The true 

molecular weight distributions of linear (or regular branched) homopolymers can thus be 

obtained using universal calibration with an online viscometer and a refractometer if the band 

broadening is corrected or negligible. 

Note that nM (tel) can also be obtained from the ratio of the signal of a mass-sensitive 

detector (Equation (3) and (6)) to that of a number-sensitive detector (Equation (3) and (7)): 
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 ( )
( )elNS

elDRI

tS
tS  = nM (tel) (21) 

or 

 ( )
( )el

*
NS

el
*
DRI

tS
tS = M (22) 

The latter equation has already been used to determine molecular weight, e.g. ref. [50]. 

Expression for the signal of light-scattering detectors 

For a light-scattering (LS) based detector, using the Rayleigh relation[51] and assuming 

the injected concentration to be low enough, the function fLS(M) can be expressed as: 

 fLS(M) = M2 P(θ) (23) 

where P(θ) is the form factor. The signal of the light scattering is: 

 SLS(tel) = ∫
∞

0

G(tel,M) M2 P(θ) N(M) dM (24) 

Equation (24) can be used to correct band broadening on the light-scattering signal. 

The light scattering can yield a molecular weight if one determines the form factor P(θ). If 

band broadening is significant but not corrected (Figure 1 a), then one takes a z-average form 

factor into account: 

 ( )zθP  = 
( ) ( ) ( )

( ) ( )∫

∫
∞

∞

0

2
el

0

2
el

d,

d,

MMNMMtG

MMNMPMtG θ
 (25) 

If the band broadening is not corrected, the signal of the light scattering can be expressed by 

combining Equation (24) and (25): 
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 SLS(tel) = ( )zθP ∫
∞

0

G(tel,M) M2 N(M) dM (26) 

Combining the signals of the light scattering and the refractometer, one obtains: 

 ( )
( )elDRI

elLS

tS
tS  = ( )zθP  

( ) ( )

( ) ( )∫

∫
∞

∞

0
el

0

2
el

d,

d,

MMNMMtG

MMNMMtG
 (27) 

The weight-average molecular weight determined at each elution time is thus defined as:  

 wM (tel) = 
( ) ( )

( ) ( )∫

∫
∞

∞

0
el

0

2
el

d,

d,

MMNMMtG

MMNMMtG
 (28) 

 ( )
( )elDRI

elLS

tS
tS  = ( ) wz MP θ (tel) (29) 

If band broadening is corrected or negligible, the ratio of the signal of the light scattering and 

the refractometer is then no longer a function of average form factors and molecular weights: 

 ( )
( )el

*
DRI

el
*
LS

tS
tS = P(θ) M (30)  

To deduce wM (tel)from the light-scattering signal which is the same as M in the case of 

negligible or corrected band broadening, one needs to know ( )zθP , which is P(θ) without 

band broadening. Three different methods are used. The use of multiple-angle laser light 

scattering (MALLS) makes it possible to extrapolate to θ  = 0 ° where the form factor is 

unity.[52] Low-angle laser light scattering (LALLS) uses an angle small enough to consider 

that the form factor is equal to 1 (there is however a critical molecular weight above which 

P(θ) decreases to values significantly below 1).[53] Triple detection uses the 90° angle, 
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RALLS, and calculates the form factor using relations given by Flory[49,51,54]: 

 P(θ) = 
( )
2

1
2

x
xe x −−−

 (31)  

with:  

 x(θ) = 
3
8 Rg 

2

2
sinπ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛θ

λ
n  (32) 

where n is the refractive index of the eluent, λ is the wavelength of the laser and the radius of 

gyration Rg is obtained from: 

 Rg = 216
1 [ ] 31

Φ
⎟
⎠
⎞

⎜
⎝
⎛ ηM  (33) 

In the case of triple detection (θ  = 90°): 

 x(90°) = 
3
4  Rg 

2π
⎟
⎠
⎞

⎜
⎝
⎛
λ
n  (34) 

In the case of triple detection, assuming the form factor P(θ) is equal to 1, an approximate 

molecular weight is calculated using RALLS (Equation (29) and (30)). This approximate MW 

value allows to estimate the radius of gyration Rg (using as well the intrinsic viscosity 

obtained from an online viscometer, Equation (33)) and then a better approximation of P(θ) 

(Equation (31) and  (34)). More and more accurate approximations of the form factor and the 

molecular weight can be calculated through iterations until the values obtained are considered 

constant. If one does not correct for band broadening and if one proceeds through the 

iterations described above, then the numerical value for Rg in Equation (33) is calculated from 

the weight-average molecular weight, wM (tel) (Equation (28)) and the weight-average 

viscosity from the viscometer signal (Equation (13)). If band broadening is not corrected, the 
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iteration process will be based on ill-defined Rg values and it appears thus of particular 

importance to correct all detector signals for band broadening before calculating any 

molecular weight by multiple-detection SEC techniques. 

LALLS, MALLS and triple detection are the light-scattering methods most commonly used to 

determine molecular weight, and combine the light-scattering detector signal together with the 

signal of a concentration-sensitive detector, generally a refractometer. One can theoretically 

also deduce a molecular weight from the MALLS data alone: instead of extrapolation at θ  = 0 

°, one then uses the slope of some relation between the Rayleigh ratio and the angle. The z-

average radius of gyration and z-average molecular weight are then obtained.[52,55]  

Molecular weight distribution  

Taking now the specific case of refractometer detection without band broadening (Figure 1 

b)) when Equation (4) is applicable, substituting this result and Equation (6) into Equation (3), 

and changing variable of integration from M to tel, yields (using Equation (5)) the result 

(derivation detailed in appendix): 

 SDRI
*(tel) = ( )

( ) ( ) elel
~el d~d

tMt
MMt

MNM

=

  (35) 

By definition of w(logM) (Equation (2) 

 w(logM) = ( )
( ) ( ) elel

~el

elDRI ~ddlog
tMt

MtM
tS

=

 (36) 

The simplest case is obtained for a linear calibration curve and no band broadening:  

 ( )Mtel
~  (linear calibration) = a + b lnM (37) 

The SEC distribution is then simply the familiar result: w(logM) =SDRI(tel). 
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Response of SEC Detectors for Complex Branched Polymers 

General equations for detector responses 

For complex branched polymers, even without band broadening, at a given elution time one 

may detect polymer chains having the same Vh, but different M as depicted in Figure 1 

d).[5,10,12] To take this into account, we define N'(M,Vh) as the number distribution of chains 

with molar mass M and hydrodynamic volume Vh; this distribution corresponds to N(M) for 

linear polymers. There is a corresponding definition for the mass distribution W'(M,Vh) = M 

N'(M,Vh). To take band broadening into account, the function G(tel,M) is replaced by 

G'(tel,Vh). G'(tel,Vh) is the distribution of elution times of a perfectly monodisperse 

distribution in Vh. We thus assume in this case that band broadening is not significantly 

affected by the structure of the polymer chain.  The general equation for the signal of a 

detector, replacing Equation (3), is thus:  

 Sdet(tel) = ∫
∞

0

G'(tel,Vh) ( ∫
∞

0

f'det(M,Vh) N'(M,Vh) dM) dVh (38) 

Equation (6) and (7) for number-sensitive detectors (UV, fluorescence detecting end-groups 

etc.), refractometer and light-scattering detectors remain unchanged, except that formally one 

replaces fdet(M) by f'det(M,Vh), because none of the signals from these various detectors have 

a dependence on Vh. 

It is important to be aware that, except where specifically stated, the inclusion of G'(tel,Vh) 

enables signals for all detectors to be corrected explicitly for band broadening. Again it is 

emphasized that while band-broadening corrections for modern SEC devices have little effect 

on averages such as nM ,[22] they are essential to take into account if one wants detailed 
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mechanistic information from the actual shape of the various distribution functions. If one 

knows the broadening function G'(tel,Vh), then a number of procedures have been given[46] for 

numerically inverting the convolution equation, Equation (38). The form of G'(tel,Vh) for a 

given SEC set-up can be obtained using ultra-narrow standards[46] or a new procedure[41] using 

broad standards which is widely applicable. 

One can readily extend the definition of the distribution function N'(M,Vh) to take account of 

detectors which can measure, for example, branching fraction φ (which could be determined 

by NMR as a function of hydrodynamic volume), in which case one would define a 

distribution N'(M,φ,Vh). Similar extensions for composition can also be made (possible dn/dc 

variations have then also to be considered). 

While complex branching prevents from having a unique relation between M and tel, a unique 

relation still exists between Vh and tel as long as universal calibration holds (Figure 1 d)). 

However, band broadening also precludes obtaining a unique relation between Vh and tel 

(Figure 1 c)). 

Expression for the signal of the viscometer 

The viscosity-sensitive detector is more complex. Recall that this detector measures a pressure 

drop ratio, which is proportional to the specific viscosity ηsp. In a sample in an increment of 

elution time from the SEC separation, one has a mixture of species for a complex branched 

polymer, particularly chains with different MWs. From the Einstein impenetrable sphere 

result at a particular elution time, one has: 

 Svisc(tel) = ( ) ( ) h
0

hsphel
0

dd,',' VMVMVtG∫∫
∞∞

η  (39) 

where η'sp(M,Vh) is the specific viscosity of a sample of chains with molar mass M and 
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hydrodynamic volume Vh. The intrinsic viscosity [η] is given by ηsp/Σci (in the limit of low 

concentration). Furthermore, the mass in an increment G'(tel,Vh) dM dVh is G'(tel,Vh) M 

N'(M,Vh) (assuming for the moment that N'(M,Vh) is normalized). Thus the intrinsic viscosity 

can be expressed as: 

 ηsp(Μ,Vh) = [η(Μ)] G(tel,Vh) M N’(M,Vh) (40) 

where the volume as other constants is omitted. 

 Svisc(tel) =  ( ) ( )[ ] ( ) h
0

hhhel
0

dd,',',' VMVMNMVMVtG∫∫
∞∞

η  (41) 

Equation (41) enables one to correct the viscometer signal for band broadening.  

For the viscometer, the function f'visc(M,Vh) is: 

 f'visc(M,Vh) =  [η'(M,Vh)] M (42) 

If one combines the viscometer signal with the refractometer one without correcting for band 

broadening, an average intrinsic viscosity is determined: 

 ( )
( )elDRI

elvisc

tS
tS =[η'(tel)] = 

( )[ ] ( ) ( )

( ) ( ) h
0

hhel
0

h
0

hhelh
0

dd,','

dd,',','

VMVMNMVtG

VMVMNMVtGVM

∫∫

∫∫
∞∞

∞∞

η
  (43) 

This average intrinsic viscosity, [η(tel)], of the mixture of chains eluting at tel, is the mass-

weighted average of the intrinsic viscosities of the components. Note that the dependence 

from average viscosity on tel prevents from comparing [η'(tel)] measured on different SEC set-

ups or even using different columns. 

The viscometer combined with a refractometer can also yield a molecular weight, using a 

universal calibration curve. If band broadening is not corrected, one needs to introduce the 
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number-average hydrodynamic volume of the chains eluting at tel: 

 nh,'V (tel) = 
( ) ( )

( ) ( ) h
0

hhel
0

h
0

hhhel
0

dd,','

dd,','

VMVMNVtG

VMVMNVVtG

∫∫

∫∫
∞∞

∞∞

 (44) 

Equation(38), (41) and (44) can be used to express the viscometer signal as follows: 

 Svisc(tel) = nh,'V (tel) ( ) ( ) h
0

hhel
0

dd,',' VMVMNVtG∫∫
∞∞

  (45) 

If one uses a refractometer in conjunction with the viscometer, then combining Equation (45) 

with Equation (38) and (6) yields: 

 ( )
( )elDRI

elvisc

tS
tS = nh,'V (tel) 

( ) ( )

( ) ( ) h
0

hhel
0

h
0

hhel
0

dd,','

dd,','

VMVMNMVtG

VMVMNVtG

∫∫

∫∫
∞∞

∞∞

 (46) 

Combining the signal of a viscometer, a refractometer and using a universal calibration curve, 

one thus determines at each elution time a number-average molecular weight defined as:  

 n'M (tel) = 
( ) ( )

( ) ( ) h
0

hhel
0

h
0

hhel
0

dd,','

dd,','

VMVMNVtG

VMVMNMVtG

∫∫

∫∫
∞∞

∞∞

 (47) 

through the following relation: 

 ( )
( )elDRI

elvisc

tS
tS  = ( )

( )eln

elnh,

'
'

tM
tV  (48) 

If band broadening is corrected or negligible, then all the chains detected at one elution time 

have the same hydrodynamic volume. This one-to-one relation between hydrodynamic 

volume and elution time makes it possible to express the ratio of the signal of the viscometer 
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and the refractometer as: 

 ( )
( )el

*
DRI

el
*
visc

tS
tS  = 

( )hn

h

VM
V  = [η(Vh)] (49) 

The combination of the signals of the refractometer and the viscometer thus allows the 

determination of a weight-average intrinsic viscosity: 

 [η(Vh)] = 
( )( ) ( )[ ] ( )

( )( ) ( ) h
0

helhel
0

h
0

hhelhel
0

dd,'~δ

dd,','~δ

VMVMNMtVt

VMVMNMVMtVt

∫∫

∫∫
∞∞

∞∞

−

− η
 (50) 

When band broadening is corrected or negligible, combining the signal of a viscometer, a 

refractometer and using an universal calibration curve, one thus determines at each elution 

time a number-average molecular weight defined as: 

 nM (Vh) = 
( )

( )∫

∫
∞

∞

0
h

0
h

d,'

d,'

MVMN

MVMNM
 (51) 

In contrast to n'M (tel) and [η'(tel)] (Equation (47) and (43)), the quantities nM (Vh) and 

[η(Vh)] can be compared even if obtained from different SEC systems, as long as universal 

calibration is valid. 

With complex branched polymers, it is possible to determine the hydrodynamic volume but 

not the true molecular weight distribution using SEC even after correction of band 

broadening. In the case where band broadening has been corrected for, to obtain meaningful 

results, universal calibration has to be applied using an online viscometer to obtain nM (Vh). 

If some Mark-Houwink-Sakurada (MHS) parameters of the complex branched polymer are 
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used to obtain the intrinsic viscosity, the situation is completely different. The use of MHS 

parameters instead of on-line viscometry will yield different values, since it refers to the 

intrinsic viscosity of an equivalent chain, while the online viscometer yields the average 

intrinsic viscosity [η(Vh)]. The MHS relation is an empirical relation that relates a weight-

average intrinsic viscosity to the viscometric-average molecular weight: 

 [η(Vh)]= K ( )αhVM v  (52) 

where K and α are the MHS parameters and vM  is the viscometric-average molecular 

weight.  It is important to note here that vM  is a dimensionless quantity because of its 

empirical nature. By using Equation (52) and (14), the following relationship is obtained: 

 Vh = 
3
4  π 

( ) ( )
Φ6 23

nv hh VMVMK α

   (53) 

Thus, it is not possible to obtain physically meaningful values of molecular weight using 

MHS parameters for complex branched polymers. Note that also MHS parameters vary with 

branching topology and distributions[28] and thus they are very likely to be quite inaccurate for 

complex branched polymers.[56] 

Furthermore, as in the case of linear polymers (Equation (21) and (22)), the ratio of the 

signals of a mass-sensitive and number-sensitive detectors yield the number-average MW: 

 ( )
( )elNS

elDRI

tS
tS  = n'M (tel) (54) 

or 

 ( )
( )el

*
NS

el
*
DRI

tS
tS  = nM (Vh) (55) 
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Expression for the signal of light-scattering detectors 

For a light-scattering based detector, the Rayleigh relation leads to the same expression of 

f'LS(M,Vh) as the function fLS(M) in Equation (23). The signal of a light scattering detector 

can thus be expressed as: 

 SLS(tel) = ∫∫
∞∞

00

G'(tel,M) M2 P(θ) N'(M,Vh) dM dVh (56) 

Equation (56) enable band broadening to be corrected on the light-scattering signal. 

A light scattering detector can yield molecular weight if one determines the form factor. If 

band broadening is not corrected, then one has to take a z-average form factor into account: 

 ( )zθP  = 
( ) ( ) ( )

( ) ( ) h
0

h
2

el
0

h
0

h
2

el
0

dd,','

dd,','

VMVMNMMtG

VMVMNMPMtG

∫∫

∫∫
∞∞

∞∞

θ
 (57) 

If the band broadening is not corrected, the signal of the light scattering can be expressed as: 

 SLS(tel) = ( )zθP  ∫∫
∞∞

00

G'(tel,M) M2 N'(M,Vh) dM dVh (58) 

Combining the signal of a light scattering detector with a refractometer, one obtains: 

 ( )
( )elDRI

elLS

tS
tS  = ( )zθP  

( ) ( )

( ) ( ) h
0

hel
0

h
0

h
2

el
0

dd,','

dd,','

VMVMNMMtG

VMVMNMMtG

∫∫

∫∫
∞∞

∞∞

 (59) 

One thus determines at each elution time a weight-average molecular weight defined as:  
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 w'M (tel) = 
( ) ( )

( ) ( ) h
0

hel
0

h
0

h
2

el
0

dd,','

dd,','

VMVMNMMtG

VMVMNMMtG

∫∫

∫∫
∞∞

∞∞

 (60) 

via the equation: 

 ( )
( )elDRI

elLS

tS
tS = ( )zθP  w'M (tel) (61) 

If band broadening is corrected or negligible, the ratio of the signal of the light scattering and 

the refractometer is then a function of less complex average form factors and molecular 

weights: 

 ( )
( )el

*
DRI

el
*
LS

tS
tS  = ( )zθP  wM (Vh) (62) 

where 

 wM (Vh) = 
( )

( )∫

∫
∞

∞

0
h

0
h

2

d,'

d,'

MVMNM

MVMNM
 (63) 

and  

 ( )zθP = 
( ) ( )

( )∫

∫
∞

∞

0
h

2

0
h

2

d,'

d,'

MVMNM

MVMNMP θ
 (64) 

The expressions stated by Hamielec and co-workers[5,11] are thus proved to give the correct 

results for universal calibration and light scattering of complex branched polymers. The 

rigorous derivation given here explicitly expresses the hydrodynamic volume and form factor 

and makes it possible to correct for band broadening. Assuming no band broadening or 

correcting it, LALLS, MALLS or triple detection can then be applied to obtain wM (Vh).  
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There are no apparent reasons for LALLS not to be valid for complex branched polymers. 

The situation is far more complex for MALLS and triple detection. First, the validity of the 

equations allowing one to calculate or extrapolate P(θ) can be questioned in the case of 

complex branched polymers. For example, the form factor of 6-arm stars or comb polymers 

has a significantly different dependence on Rg compared to linear chains.[57] The scattering of 

light from polymers in solution is essentially the same physical process for complex branched 

polymers as for linear ones. The scattered intensity is related to the polymers’ form factor, in 

effect its average density profile. If we have many different chains present in a sample, we 

will obtain the average form factor, or equivalently the average Rg
2 if we expand the form 

factor about small angles. Equation (31), (32) and (34) are valid for linear and branched 

polymers. However, the validity of the expression of Rg in Equation (33) is questionable for 

complex branched polymers.    

Second, the expression used for P(θ) in triple detection (see Equation (31) to (33) in the case 

of linear chains) uses the molecular weight, M, and the intrinsic viscosity [η] to calculate 

hydrodynamic volume. The product [η] × M has dimensions of volume, and though strictly 

this volume is related to the hydrodynamic radius, it is reasonable for a linear polymer to 

replace it with the radius of  gyration; both almost certainly vary in the same way with degree 

of  polymerization. In the case of the separation of complex branched polymers, the input is 

wM (Vh) and [η(Vh)] if band broadening is corrected or negligible. However, as seen 

previously when dealing with a viscometer signal, the hydrodynamic radius is only obtained 

through the product nM (Vh) × [η(Vh)]. Using wM (Vh), the hydrodynamic radius is 

overestimated and thus P(θ) is underestimated (P(θ) is a monotonic decreasing function of x). 
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The numerical value of wM (Vh) obtained by triple detection may thus be overestimated 

(when the molecular weight is high enough to have P(θ) different from one). As shown 

above, in the most general case of complex branched polymers  and significant band 

broadening, [η] × M = Vh  is replaced by the number-average hydrodynamic volume nh,'V (tel) 

(Equation (44) and (45)). It is essential that this number-average is over the 

polymers physically present in the viscometer, whose molecular weight may vary both due  to 

band broadening and to actual variations in the polymer microstructure.  

We can obtain an estimate of the average size of polymers in a  sample from either light 

scattering (we would obtain ( )
n

2
gR ) or from a viscometer (which would yield nh,'V 1/3). The 

broader the distribution of polymer properties present, the less likely these two estimates are 

to agree, and the less useful is Equation (33). In cases of weak branching (polyethylene, 

polyacrylates, amylose etc.), one might simply allow for a  Flory constant (Φ in Equation 

(33)) specific to branched polymers,  and this may even be all that is necessary for statistical  

branching, since the variation of the Flory constant with statistical branching have been 

measured to be relatively minor.[28] Another new effect is present when we consider the 

variation of nh,V  with degree of polymerization for complex branched polymers. For 

hyperbranched polymers, both  experimental and theoretical evidence point to different 

scaling  behaviors of the number-average hydrodynamic volume.[19,58] The packing of short-

chain branches into the polymer may make volume grow slowly with degree of 

polymerization, so that the intrinsic viscosity shows a maximum. Simulations and mean-field 

theory also predict qualitatively  different variations in nh,'V  at  different sizes, as for example, 

the repulsions between the chains become more important as more are added.[19] Although 
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more work is needed to establish the relations between  branching structure and different 

measures of the size of a hyperbranched polymer, it seems likely that the combination of light 

scattering and viscometry will prove an informative probe of the  structure of hyperbranched 

polymers such as amylopectin. 

Hydrodynamic volume distributions 

In the following, it is considered that band broadening is negligible or has been corrected for. 

True molecular weight distributions cannot be obtained for complex branched polymers, even 

using multiple detection SEC. Raw chromatograms prevent any comparison, since they 

depend on a type of column at a given time. In order to obtain comparable data, one can use 

some arbitrary distributions, e.g. distribution of linear equivalent molecular weight.[59] As 

discussed in the literature[60] but presently rarely implemented, from SEC one can also obtain 

true distributions expressed explicitly in terms of hydrodynamic volume. Using a 

refractometer, one can define the distribution w(logVh) that corresponds to w(logM) in 

Equation (2) and (36) as: 

 w(logVh) = Vh W(Vh) = ( )
( ) ( ) elhel

~helh

el
*
DRI ~ddlog

tVt
VtV

tS

=

  (65) 

The derivation is given in the appendix. The number distribution N(Vh) can be readily shown 

to be obtained from 

 N(Vh) = ( )
( )hn

h

VM
VW   (66) 

 

Thus the number distribution N(Vh) can be obtained with a mass-sensitive detector 

(refractometer), universal calibration and an online viscometer. 
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The value of Vh corresponding to a particular SEC elution time can be obtained through 

Equation (49) establishing the universal calibration curve from monodisperse standards and 

online viscometry. Instead of a viscometer, one can also use the Mark-Houwink-Sakurada 

parameters K and α for the standards (which then have to be linear or regularly branched), the 

hydrodynamic volume in one’s particular SEC set-up at the elution time at which this 

standard elutes can then be found from: 

 Vh = 
3
4  π 

Φ6 23

1+αMK
   (67) 

It is preferable to determine Vh directly using online viscometry without relying on the Mark-

Houwink-Sakurada empirical relation.  

Instead of using online viscometry, the number distribution N(Vh) can also be obtained from a 

number-sensitive detector and universal calibration. Following the same type of calculations 

as the one previously described, the signal of this detector can be expressed as: 

 SNS
*(tel) = ( )

( ) ( ) elhel
~hhel

hh

dlog~d
tVt

VVt
VNV

=

  (68) 

Note that while M N(M) = W(M), Vh N(Vh) does not correspond to W(Vh); as shown in 

Equation (66),  W(Vh) = nM (Vh) N(Vh). 

nM  and wM  for the whole molecular weight distribution of complex branched polymers 

The number hydrodynamic volume distribution for a complex branched polymer is given by: 

 N(Vh) = ∫
∞

0

N'(M,Vh) dM (69) 

with a similar definition for the mass distribution: 
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 W(Vh) = ∫
∞

0

M N'(M,Vh) dM (70) 

It is useful to determine the true average MWs for the whole MW distribution (MWD). The 

expression for nM  for a complex branched polymer is: 

 nM  = 
( )

( ) h
0

h
0

h
0

h
0

dd,'

dd,'

VMVMN

VMVMNM

∫∫

∫∫
∞∞

∞∞

 = 
( )

( ) h
0

h

h
0

h

d

d

VVN

VVW

∫

∫
∞

∞

 (71) 

whence 

 
n

1
M

= 

( )
( )

( ) h
0

h

h
0 hn

h

d

d

VVW

V
VM

VW

∫

∫
∞

∞

  (72) 

which corresponds to the expression quoted by Hamielec.[5]  

While the true MWD, N(M) or W(M), cannot be obtained for a complex branched polymer by 

any size separation technique, it is possible to obtain the true nM  using multiple detection 

SEC and universal calibration: for example, using a refractometer yielding W(Vh) and a 

viscometer yielding nM (Vh). Any mass-sensitive detector could theoretically replace the 

refractometer, also yielding W(Vh); instead of a viscometer, one could use a number-sensitive 

detector, yielding N(Vh) directly ( nM (Vh) is then not used in the calculation). 

The definition of wM in the case of complex branched polymers is: 

 wM  = 
( )

( ) h
0

h
0

h
0

h
2

0

dd,'

dd,'

VMVMNM

VMVMNM

∫∫

∫∫
∞∞

∞∞

  (73) 
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which can be re-written as  

 wM  = 
( ) ( )

( ) h
0

h

h
0

hhw

d

d

VVW

VVWVM

∫

∫
∞

∞

   (74) 

which also corresponds to the expression quoted by Hamielec.[5] The true wM  of the whole 

distribution can thus be obtained by multiple detection SEC using universal calibration (using 

online viscometry or the Mark-Houwink-Sakurada relation) with a refractometer yielding 

W(Vh), plus a light-scattering detector yielding wM (Vh).  

The true nM  and wM  of the whole MWD of a complex branched polymer can thus be 

obtained by multiple detection SEC using the hydrodynamic volume distributions. It is very 

important to emphasize that the data treatment used in many current commercial SEC 

software packages considers that the separation is complete and that at each elution time only 

one MW is detected and measured. The nM  and wM  values are thus calculated by these 

software packages by using some distribution of nM (Vh) and wM (Vh) rather than the actual 

hydrodynamic volume distributions W(Vh) and N(Vh). Some current commercial SEC software 

packages thus yield incorrect nM  and wM  values for complex branched polymers.  

Statistically branched polyacrylates have been analyzed by multiple detection 

SEC[62,63] and all the data treatment presented here have been successfully tested and will be 

presented in a forthcoming publication.[64] The importance of band broadening and complex 

branching in this specific case will be discussed.  

Conclusions 

As is well known, but not universally appreciated, data from size separation detectors such as 
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SEC yield distributions in terms of hydrodynamic volume, rather than in terms of molecular 

weight. A new formalism for expressing observables obtained by SEC or other size separation 

technique of complex branched polymers such as polyacrylates, polyethylene and starch has 

been developed. The new formalism is based on a multi-variable distribution function 

N'(M,Vh) giving the number distribution of polymers with molar mass M and hydrodynamic 

volume Vh (the formalism using this distribution function could be extended to additional 

independent variables such as composition in a copolymer or degree of branching). We also 

make use of the corresponding mass distribution W'(M,Vh) = M N'(M,Vh). The generalized 

convolution equation is derived relating this distribution to the various observables using 

multiple detection SEC, such as online light scattering, viscometry, number-sensitive 

detection and mass-sensitive detection (refractometer etc.). These detectors yield signals as a 

function of elution time which are generically written as Sdet(tel), encapsulated in Equation 

(38). This formalism shows how data from the various detectors can be corrected for band 

broadening, which is important for new techniques[17-21] which enable mechanistic 

information to be deduced from the detailed form of appropriate distributions. The formalism 

shows (e.g. in Equation (65)) how the distributions in terms of hydrodynamic volume can be 

obtained from appropriate data. The formalism also shows how data from appropriate 

detectors can be treated to yield quantities of interest such as the distribution for the 

dependence of number-and weight- average molecular weights on hydrodynamic volume, e.g. 

in Equation (51) and (63). The new formalism is also used to rigorously derive expressions 

whereby the true overall nM  and wM  can be determined from such data (Equation (72) and 

(74)), and these expressions show that some current commercial software for obtaining wM  

and nM  from SEC data will not yield correct results for complex branched polymers.  
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Appendix A. Case of linear polymers  

All the derivations and equations presented in the main text are detailed here including 

all the constants that need to be used and known to process SEC signals.  

In the case of linear or regular branched polymers, the dependence of the particular detector 

on mass fdet(M) is: 

- for a mass sensitive-detector (refractometer): fDRI(M) = ADRI 
c
n

d
d  M, 

- for a number sensitive-detector (UV or fluorescence detector):  fNS(M) = ANS, 

- for the viscometer: fvisc(M) = Avisc [η] 
injV

M , 

- for a light-scattering based detector  at angle θ:   fLS(M) = ALS M P(θ)
injV

M , 

where Adet is the calibration constant for each detector, dn/dc is the refractive index increment, 

and Vinj is the injection volume. Note that the dn/dc is not a constant in the case of copolymers 
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with a distribution of compositions. 

The refractometer signal is expressed as:  

 SDRI(tel) = ADRI 
c
n

d
d  ∫

∞

0

G(tel,M) M N(M) dM (75) 

In the case of no band broadening, a change in variable from M to tel yields: 

 S*
DRI (tel) = ADRI 

c
n

d
d  ∫

∞

0

δ( el
~t (M)–tel) ( )

( ) MMt
MNM
d~d el

dtel (76) 

or 

 S*
DRI (tel) = ADRI 

c
n

d
d  ∫

∞

0

δ( el
~t (M)–tel) 

( )
( ) MMt

MNM
dlog~d el

2

dtel (77) 

Thus by definition of the Dirac function 

 S*
DRI (tel) = ADRI 

c
n

d
d  

( )
( )

( ) elel
~el

2

dlog~d
tMt

MMt
MNM

=

  (78) 

The molecular weight distribution obtained with a refractometer is thus: 

 w(logM) =M W(M)= M2 N(M) = ( )
( )

( ) elel
~elDRI

el
*
DRI

~ddlog
d
d

tMt
MtM

c
nA

tS

=

 (79) 

 Using the same procedure, a number sensitive detector yields: 

 W(M) = M N(M) = ( )
( ) ( ) elel

~elNS

el
*
NS ~ddlog

tMt
MtMA

tS

=

 (80) 

Similar calculations lead to the expression of the signal of the viscometer and light scattering: 
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 S*
visc(tel) = 

inj

visc

V
A  [ ] ( )

( ) ( ) elel
~el dlog~d

log

tMt
MMt

Mw

=

η     (81) 

 S*
LS(tel) = 

inj

L

V
A S ( ) ( )

( ) ( ) elel
~el dlog~d

log

tMt
MMt

MwP

=

θ   (82) 

where ALS is often noted K: 

 ALS = K  = 
2

A
4

22

d
dπ2

⎟
⎠
⎞

⎜
⎝
⎛

c
n

N
n

λ
 (83) 

The molecular weight can also be determined from the ratio of the signals of a mass-sensitive 

detector to a number-sensitive detector: 

 ( )
( )el

*
NS

el
*
DRI

tS
tS  = M

A
cnA

NS

DRI dd  (84) 

Appendix B. Case of complex branched polymers without band broadening 

In the case of complex branched polymers, the dependence of the particular detector 

on mass and hydrodynamic volume f'det(M,Vh) is not changed for the weight- or number-

sensitive detectors.  

 - for the viscometer:  f'visc(M,Vh) = Avisc [η(Vh)] 
injV

M , 

- for a light-scattering based detector at angle θ:  f'LS(M,Vh) = ALS M P(θ)
injV

M , 

In the case of no band broadening, the refractometer signal is expressed as 

 SDRI
*(tel) = ADRI 

c
n

d
d  ∫

∞

0
∫
∞

0

δ( el
~t (Vh)–tel) M N'(M,Vh) dM dVh (85) 
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Using the definition of the weight hydrodynamic volume distribution (Equation (70)): 

 SDRI
*(tel) = ADRI 

c
n

d
d  ∫

∞

0
∫
∞

0

δ( el
~t (Vh)–tel) W(Vh) dVh (86) 

A change in variable from the hydrodynamic volume Vh to elution time tel results in: 

 SDRI
*(tel) = ADRI 

c
n

d
d  ∫

∞

0

 δ( el
~t (Vh)–tel) W(Vh) ( ) hhel

el

d~d
d
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or 

 SDRI
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c
n

d
d  ∫

∞

0

 δ( el
~t (Vh)–tel) Vh W(Vh) ( ) hhel

el

dlog~d
d
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Using the definition of the Dirac function δ it becomes:  

 SDRI
*(tel) = ADRI 

c
n

d
d  ( )

( ) ( ) elhel
~hhel

hh

dlog~d
tVt

VVt
VWV

=

  (89) 

which can also be expressed as 

 w(logVh) =Vh W(Vh)= Vh nM (Vh) N(Vh)= ( )
( )

( ) elhel
~helhDRI
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*
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~ddlog
d
d

tVt
VtV

c
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 (90) 

Similarly, the signal of the number-sensitive detector can be expressed as: 

 SNS
*(tel) = ANS ( )

( ) ( ) elhel
~hhel

hh

dlog~d
tVt

VVt
VNV

=

  (91) 

The ratio of the signals of the viscometer and the refractometer can thus be expressed as: 

 ( )
( )el

*
DRI

el
*
visc

tS
tS  = 

( )hn

h

injDRI

visc

d
d VM

V

V
c
nA

A
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By a similar derivation, the expression obtained for the signal of a light-scattering detector is  

 ( )
( )el

*
DRI

el
*
LS

tS
tS  = ( ) ( )hwz

injDRI

LS

d
d VMP

V
c
nA

A θ  (93) 

The ratio of the signals of the mass-sensitive and the number-sensitive detectors can be 

expressed as: 

 ( )
( )el

*
NS

el
*
DRI

tS
tS  = ( )hn

NS

DRI dd VM
A

cnA  (94) 
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FIGURE  

 

 

Figure 1: Influence of the band broadening and of the branching on the separation by 

hydrodynamic volume in SEC and on the population of chains present in a detector at the 

elution time tel. The case of linear (or regularly branched) polymer is depicted on the left part 

of the Figure while the case of complex branched polymers is depicted on the right. 
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SEC of complex branched polymers (polyethylene, polyacrylates, starch etc.) cannot 

yield the true molecular weight distributions but can yield hydrodynamic volume 

distributions. The equations relating the response of different detectors are derived, by 

defining a number distribution N'(M,Vh) of chains which have molecular weight M and 

hydrodynamic volume Vh. The true wM  and nM  can be obtained from correct processing of 

the hydrodynamic volume distributions.  

 

 

 

 




