
HAL Id: hal-04081399
https://hal.science/hal-04081399

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modal Specifications for Composition of Agent
Behaviors

Hikmat Farhat, Guillaume Feuillade

To cite this version:
Hikmat Farhat, Guillaume Feuillade. Modal Specifications for Composition of Agent Behaviors. 6th
International Conference on Agents and Artificial Intelligence (ICAART 2014), Mar 2014, Anger,
France. pp.437-444, �10.5220/0004817804370444�. �hal-04081399�

https://hal.science/hal-04081399
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12881

To link to this article : DOI :10.5220/0004817804370444
URL : http://dx.doi.org/10.5220/0004817804370444

To cite this version : Farhat, Hikmat and Feuillade, Guillaume Modal
Specifications for Composition of Agent Behaviors. (2014) In:
International Conference on Agents and Artificial Intelligence -
ICAART 2014, 6 March 2014 - 8 March 2014 (Anger, France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12881/
http://oatao.univ-toulouse.fr/12881/
http://dx.doi.org/10.5220/0004817804370444
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Modal Specifications for Composition of Agent Behaviors

Hikmat Farhat1, Guillaume Feuillade2

1Notre Dame University-Louaize, Lebanon
2IRIT, Universite Paul Sabatier, Toulouse, France

hikmat.farhat@acm.org, guillaume.feuillade@irit.fr

Keywords: Automated planning, behavior composition

Abstract: The goal of the behavior composition problem is to build a complex target behavior using several agent be-

haviors. We propose two extensions to the framework where agent behaviors are modeled by finite transition

system and where the composition is done by coordinating the actions of the agents. The first extension is

done by making the composition indirect: instead of choosing the actions of the agent, the composition is

done by a controller issuing sets of instructions at each step. This allows to model problems where the agents

behaviors are not fully controllable. The second extension is the use of modal specifications as a goal for

the composition. These specifications express (infinite) sets of acceptable behaviors. We give an algorithm to

solve the extended composition problem and we show that these two extensions retain the important properties

of the initial framework and that the synthesis algorithm keep the same complexity.

1 INTRODUCTION

The behavior composition problem is the prob-

lem of realizing a given target behavior by putting to-

gether, in the right way, behaviors that in themselves

would not suffice to achieve the target. Behaviors

are an abstraction of sequences of actions made by

agents. They are suitable to describe any situation

where one is interested in the scheduling : for coordi-

nation of physical agents, for agent being components

of some bigger agent or for online agents such a ser-

vices. When it is not the case that one unique agent

can achieve a goal behavior alone, then there is a need

for a composition of several agents in order to build

the desired behavior.

There are many different techniques for building a

composition. This paper focuses on a approach based

on synthesizing a special component, akin to a con-

troller that plays the role of a mediator between the

composition and any other system or user. To this ex-

tent, the problem is a synthesis problem, which is in

essence different from verification problems like the

ones solved by (Lomuscio et al., 2009). Another fo-

cus of the present work is to keep a polynomial com-

plexity while having a framework and specifications

expressive enough for modeling real problems.

This paper extends the work presented in (De Gi-

acomo et al., 2013) which considers a model where

agents behaviors are described by finite transition sys-

tems. This model is referred to in the litterature as the

“Roman Model” (Hull, 2005). In their framework,

the composition is obtained by the synthesis of some

super-agent that has a perfect knowledge about the

other agents and that decides at each step what ac-

tion of the agents must be enabled or disabled. This

super-agent act as a controller from the control the-

ory of (Ramadge and Wonham, 1989). Despite hav-

ing perfect knowledge and being able to control every

action of the agents, some uncertainty remains about

the outcome of the actions because the agents actions

may be nondeterministic. This means that the con-

troller must take into account every possible outcome

for any of the actions it enables.

The work presented in this paper is intended to

provide more flexibility with a more general frame-

work while also adding a class of specifications able

to express a set of constraints over the goal behavior

instead of a rigid single target behavior. In the frame-

work we propose, the controller does not choose the

agent actions but instead gives a set of instruction to

the agent community. The agents then execute actions

tied to the given instructions. This makes the control

over the actions of the agent more indirect and offers

the possibility to model composition problems where

the agent making the composition does not control ev-

ery move of the other agents.

The extension of the notion of target behavior is

done using the modal specifications of (Feuillade and

Pinchinat, 2007). A goal for the composition, ex-

pressed with modal specifications, is a set of accept-

able behaviors. These behaviors are expressed by a

language that states when an action is mandatory and

when it is optional. These specifications also come

with some nice properties such as being easy to de-

sign and modular.

We show in this paper that these two extensions

have no negative impact on the complexity of the

problem and we provide the synthesis algorithm. We

also show that the possibility of building a structure

capturing all the controllers still exist in our work as

well as the existence of a most permissive controller.

In section 2 the framework is presented and fol-

lowed by a discussion about the expressivity of the

framework and the advantages it offers. In section 3,

we present the results for the existence of a solution

to the composition problem and the notion of control-

lability. Section 4 is dedicated to the synthesis of con-

trollers. Finally we conclude in section 5.

2 FRAMEWORK

2.1 Behaviors

In this section we define two notions of behavior. First

we define a generic notion of behavior based on fi-

nite state transition systems. Next we introduce the

behavior model used for describing the agents. This

latter model adds preconditions to the actions of the

first behavior model. These preconditions represent

the instructions that are given to the agent and trigger

a corresponding action or even a choice between a set

of actions.

We start by fixing a finite set of actions Act and

a finite set of instruction Ins that we use all along the

paper.

Generic behaviors are defined as transition sys-

tems labeled by the actions of Act. That is: a behavior

B is a tuple
〈

B,b0
,δB

〉

where B is a set of states, b0

is the initial state and δB ⊆ B×Act×B is a transition

relation. We say that a behavior is finite when its set

of states is finite.

We represent agents by their possible behaviors.

In this paper agents are represented by transition sys-

tems labeled by a pair of one instruction and one ac-

tion. That is: an agent A is a tuple
〈

A,a0
,δA

〉

where

A is a finite set of states, a0 is the initial state and

δA ⊆ A× (Ins∪{ε})×Act×A is the transition rela-

tion.

For behaviors, we write b
σ
−→ b′ for (b,σ,b′) ∈ δB

and for agents, we write a
i|σ
−→ a′ for (a, i,σ,a′) ∈ δA

a1 a2

a3

a0

pat1 pat2

m | go2

m | go1

back1 back2

c | readyi1 | go1 i2 | go2

Figure 1: Drone behavior

and a
σ
−→ a′ for (a,ε,σ,a′) ∈ δA.

Intuitively, a
i|σ
−→ a′ means that, upon receiving the

instruction i in state a, agent A will perform action σ
and enter state a′. The instruction i is the precondition

of the action σ. The meaning of the special symbol

ε is that no precondition is required for the agent to

perform the action. Thus a
σ
−→ a′ means that the agent

A , in state a, will perform the action σ spontaneously

and enter state a′.

Note that when a
i|σ
−→ a′ and a

i|σ′

−−→ a′′ then the

agent may choose between the two actions σ and σ′

upon recieving i. This can also be the case that the

agent can execute the same action nondeterministi-

caly.

Example 1. Consider a flying drone whose behavior

is depicted on Figure 1. This drone can patrol two dif-

ferent areas named α1 and α2 to watch for fire starts.

At any time, it may need maintenance in which case

it has to go back to its base to undergo the necessary

operations such as refueling for example.

The drone starts in state a0 where it is ready at the

base waiting for instructions. If given the instruction

i1, the drone will move to the area α1 represented by

state a1 using action go1 and if given the instruction

i2, the drone will move to the area α2 represented by

state a2 using action go2. In either a1 or a2, the drone

will patrol the area by itself using the action pat1 or

pat2. It may also go back to the base for maintenance

using action back1 or back2 and entering state a3.

Upon receiving the instruction c, it will output the ac-

tion ready when the maintenance is over and return to

the initial state a0. When in α1 or α2, it can be given

the instruction m to change area.

The idea behind this agent model is that when

given instructions, agent will develop some possibly

infinite behavior. Note that the agents may be

nondeterministic and that there is no constraint on

the relation between instruction and actions: an in-

struction given to an agent in a given state may result

in different actions or may trigger a nondeterministic

action.

When several agents operate together, forming an

agent community, they are modeled as a single bigger

agent. Formally, the community of the agents A1 =
〈

A1,a
0
1,δA1

〉

, . . . ,An =
〈

An,a
0
n,δAn

〉

is represented by

the agent A =
〈

A,a0
,δA

〉

which is the asynchronous

composition of the agents. That is:

• its set of state A is A1 × . . .×An

• its initial state a0 is (a0
1, . . . ,a

0
n)

• its transition relation δA satisfies

((a1, . . . ,an), i,σ,(a
′
1, . . . ,a

′
n)) ∈ δA if there

exists k ∈ {1, . . . ,n} such that (ak, i,σ,a
′
k) ∈ δAk

and for all l 6= k, a′l = al .

2.2 Modal specifications

The goal of agent composition is often given as

a target behavior (Sardina, 2007; Balbiani et al.,

2008). We propose in this paper to extend it to a

set of possible target behaviors using modal specifi-

cations for this purpose. Modal specifications have

been introduced to model objectives for control prob-

lems (Feuillade and Pinchinat, 2007). The definition

we use here is the following :

Definition 1 (Modal specification). A modal specifi-

cation is a tuple S =
〈

S,s0
,May,Must

〉

where

• S is a set of states,

• s0 is the initial state,

• May⊆ S×Act×S a deterministic transition func-

tion of allowed transitions,

• Must ⊆ May a deterministic transition function of

necessary transitions

We say that a behavior B =
〈

B,b0
,δB

〉

satisfies

a modal specification S = 〈S,s0,May,Must〉 if there

exists a satisfaction relation ρ ⊆ (B,S) with (b0
,s0) ∈

ρ and for all (b,s) ∈ ρ and σ ∈ Act we have:

(i) (s,σ,s′) ∈ Must implies ∃b′ ∈ B with b
σ
−→ b′ and

(b′,s′) ∈ ρ,

(ii) b
σ
−→ b′ implies ∃s′ ∈ S with (s,σ,s′) ∈ May and

(b′,s′) ∈ ρ.

The definition we use here is the one for the modal

automaton and is different from the original definition

of modal specification. However, both definitions

have been proved to be equivalent in (Feuillade and

Pinchinat, 2007). Remark that in order to simplify

the algorithms of the paper, we require that the

two transition relations of modal specification are

deterministic. This is done without loss of generality,

the usual determinization of automaton being easy to

generalize to modal specifications.

Regarding the expressivity of modal specifica-

tions, we show that they are able to express the two

usual composition objectives : simulation and bisim-

ulation.

Let B be a behavior and S = 〈S,s0,May,Must〉 be

a modal specification. When May = Must, one can

verify that B satisfies S if and only if B is bisimilar to

the behavior BS =
〈

S,s0
,Must

〉

. This is consequence

of the fact that the satisfaction relation ρ has to be a

bisimulation.

For a modal specification S to specify that a

behavior is similar to a target behavior T =
〈

T, t0
,δt

〉

it suffices that S =
〈

T ∪{⊤}, t0
,May,Must

〉

where

⊤ is a special state, Must = δt and May is made into a

complete function. That is for any t ∈ T and σ ∈ Act,

if (t,σ, t ′) ∈ δt for some t ′, then (t,σ, t ′) ∈ May and

if there is no such t ′, then (t,σ,⊤) ∈ May and finally

(⊤,σ,⊤) ∈ May. The idea for this definition is that

⊤ act as a sink for any transition not in T and allows

the behavior to include freely any transition. As a

consequence, only the Must part of the specification

is relevant, practically meaning that condition (ii)

of the definition of satisfaction by a behavior B is

trivial. In the end, the satisfaction relation ρ is a

simulation between T and B.

Modal specifications go further than simulation

and bisimulation by allowing to express more con-

straints. One can for example specify that if a given

sequence of action occurs then some actions must oc-

cur afterward. This is particularly useful in the case

of failure of one agent or in cases of uncontrollable

events: when an undesired action is taken by the

agent, one may want the community to take appro-

priate measures in reaction. The following example

emphasizes this expressivity.

Example 2. Consider the modal specification Sd of

Figure 2. In this figure, the transitions of Must are

the solid lines and the transitions of May are both the

solid and dashed lines. This modal specification is

meant to specify the behavior of a community com-

posed of two of the drones represented in Figure 2.

The objective of the community is to maintain one

s6

s5s4s3

s2s1s0

pat1 pat2

pat1

go2

go1

go1go1

pat1 pat2back1

back1

back2

back2

ready

back1

readyready

Figure 2: Drone composition specification Sd

drone patrolling in each of the two area whenever

possible. If one drone must return to the base for

maintenance, the agents must ensure that the remain-

ing drone patrols in the area α1 since it is the most

sensible one. The modeling of these constraints is

done by the specification Sd . The key states of the

specification can be understood as follow :

• state s0 is the initial state. Both drones are ready

and at the base.

• in state s6, there is one drone in each area.

• in state s5, the drone which was in area α1 is back

to base. The other one is still in area α2

• in state s4, one drone is at the base and the other

is in area α1.

The Must transition ensures that when both drone

are available they are sent in both area. It also en-

sures that whenever the drone in area α1 is back to

base, the drone in area α2 is sent to area α1 (tran-

sition (s5,go1,s4)). When a drone is in position, the

Must transition obligates it to patrol the area. The

May transition specify which transitions are forbid-

den: each transition not in May should not happen.

This is the case for example for the transition go2 in

state s6 which would send the drone in area α1 to area

α2.

Another interest of modal specification is their

underlying logical background: in (Feuillade and

Pinchinat, 2007) it is shown that they correspond to a

logic called the conjunctive nu-calculus1. This brings

1The conjunctive nu-calculus is a fragment of the mu-
calculus without disjunction and with only greatest fix-
points

one useful property: one can combine several modal

specifications with an and operator. In practice, this

is done in our setting by merging the initial state of

each modal specification and then applying the deter-

minization algorithm for the May transition. This is

useful for adding simple constraints to a more com-

plex specification. For example the constraint “ev-

ery action α must be followed by an action β” can

be modeled by a two states modal specification and

added to a global specification with the and operator.

The underlying logical setting allows for an im-

plicit declaration of the modal specification. We em-

phasize that this is an important improvement over

bisimulation/simulation based techniques where all

the states and transition of the behavior have to be

given explicitly.

One likely practical use of modal specification is

to express some behavior target the compositon has to

simulate and then add some further constraints using

additional independent specifications.

2.3 Control problem

In our setting, the composition is done by a special

agent. This agent has a perfect knowledge of the cur-

rent state of the other agents and a perfect recall of

the previous events although we will show that this

latter knowledge is not mandatory. Given this knowl-

edge, the agent elects a set of instruction to be given

to the agent community. These instructions are not

given to any particular agent but to the community,

and any agent may respond to the instruction if there

is an available action in its current state whose precon-

dition matches the instruction. The set of instructions

given to the community must be chosen such that the

resulting behavior respects the specification.

We present the agent in charge of the composition

as a controller since one may consider it removes

instructions from the whole set Ins thus restraining

the available behaviors of the community. This

setting is different from the usual control settings

because the controller operates here in an indirect

way by issuing instructions.

We first define the notion of history. Let A =
〈

A,a0
,δA

〉

be an agent community. An history is a

finite sequence of transitions (a0
σ0−→ a1 . . .

σk−1
−−−→ ak)

where

• the history begins with a0 which is a0,

• for all 0 ≤ i ≤ k − 1, ai
i|σi
−−→ ai+1 for some i ∈

Ins∪{ε}.

We use HA for the set of histories for A .

A controller C for the community A is a function

C : HA → 2Ins.

The controlled behavior of an agent or community

of agents A by a controller C for the specification S is

the behavior BC
A
=
〈

B,b0
,δB

〉

such that

• B = HA

• b0 is (a0), the empty history

• h
σ
−→ h′ in BC

A
if and only if h′ is h augmented with

the transition ak
σk−→ ak+1 where ak is the last state

of h and

– either ak

σk+1
−−−→ ak+1 is a transition of A

– or there exists i ∈C(h) such that ak
i|σk
−−→ ak+1 in

A

The controlled behavior BC
A

is the unfolding of A

where any transitions with a non-empty precondition

is kept (without the precondition) only if the con-

troller allows it, i.e. when the controller outputs the

corresponding instruction.

Example 3. Let us consider again the example com-

posed of two drones from Figure 1. Let us consider

the controller that is initially issuing all instructions

{i1, i2,m,c}. Two of these instruction are without any

effect, they are m and c, the other two enable the tran-

sition go1 and go2 of each drone. This means that

the controlled behavior has 4 transitions in its initial

state (the empty history) being the two transition for

the two drones.

At some point, if the controller issues the empty set

of instructions while the first drone is in state a1 and

the second is in state a2, there is still 4 uncontrollable

transitions in the corresponding controlled behavior

state, they are pat1,back1,pat2 and back2.

Now we can state the composition problem in our

framework.

Composition Problem. Given an agent community

A and a modal specification S , does there exist a con-

troller C for A such that the behavior BC
A

satisfies S .

In Section 3 we show that the notion of controlla-

bility is the key to solving this problem and we pro-

vide an algorithm to compute controllability. How-

ever, when the answer to this problem is positive one

usually wants the composition to be effectively com-

puted. This is the object of Section 4 where we show

that from the output of the controllability algorithm it

is easy to build a specific controller but also to con-

struct a structure that captures all the controllers and

thus allows to switch from a controller to another dur-

ing the execution.

2.4 Framework discussion

As stated in the introduction, the framework proposed

in this paper extends the one of (De Giacomo et al.,

2013) in two directions: the model for the agents and

their relation with the controller is more general and

the modal specifications offers a better expressivity

for the goals of the composition. The contribution

offered by modal specifications having already been

highlighted, we aim the discussion here toward the

contribution brought by the instruction-based model

of agents.

In the more general version of the Roman model,

the control over the agent is done by the controller

selecting an agent and one action of this agents for

matching one transition of the target behavior. This

means that the controller have a total control over the

actions of the agents except from the fact that some

actions of some agent may be nondeterministic. In

the framework we propose, the Roman model corre-

sponds precisely to the special case where all the ac-

tions are subject to a precondition ; the preconditions

for an action σ in the agent Ak being some instruction

σk. That is, every transition is of the form a
σk|σ
−−→ a′.

Because of space constraints, we do not include

in the framework proposed in this paper the notion of

environment and its effect upon the agents. We ensure

the reader that it can be included without modifying

the synthesis algorithm and the complexity results.

The environment has to be considered as embedded in

the agents in the framework of this paper. In practice,

the environement may be responsible for many oc-

curences of nondeterminism, in particular whenever

an agent has two different possible actions when given

an identical instruction.

The improvements over the Roman model offered

by our framework are: first, the actions without pre-

conditions are uncontrollable. It is reasonable that in

an agent setting, some action cannot be controlled.

Some effects of uncontrollable actions can be simu-

lated by nondeterminism but this is not the case where

some agent may become unresponsive to some in-

struction after an uncontrollable action. However, this

mechanism is particularly useful for embedding the

possible failure of some agent component in the ob-

jective of composition and thus making sure there is a

correct answer for this failure in the solution.

Second, an agent in a specific state and given a

specific instruction may respond with some different

actions. This can be a consequence of the fact that

the agent is an abstraction of the real agent, the fact

that the instruction leave the possibility for the agent

to choose autonomously its response to the instruc-

tion, or the fact that the environement may alter the

available response to the instruction at the given state.

Finally, an instruction may be given to a set of

agents and not to one particular agent. This allows

one to represent systems where the agents are more

autonomous about their organization. This can model

for example a set of elevators in the same building:

when a user calls the elevator, she does not know

which elevator will answer her call.

Related works also include the framework of (Bal-

biani et al., 2008) where the agents are controlled by

communications. The main difference with this paper

is that in their framework the communications are ac-

tions. This allows to consider asynchronous commu-

nications with the drawback that this causes an expo-

nential blow-up in the composition algorithm because

the communication must be removed for checking the

simulation with the target behavior.

3 CONTROLLABILITY

In this section we present a notion of controllabil-

ity inspired by the similar notion from control theory.

Controllability captures the set of positions in the exe-

cution where the control has a solution and practically

gives an optimal answer to the composition problem.

Given A =
〈

A,a0
,δA

〉

a communicating agent and

S = 〈S,s0,May,Must〉 a modal specification, it is con-

venient to define, for each pair (a,s) of states of A and

S the notion of acceptable instruction as the set of

instructions that only produce transitions that are al-

lowed by the specification. Formally the set of accept-

able instructions is the subset AI(a,s) of Ins such that

for each i ∈ AI(a,s) there is some transition a
i|σ
−→ a′

only if (s,σ,s′) ∈ May for some s′.

3.1 Controllability

Let A =
〈

A,a0
,δA

〉

be a communicating agent and

S = 〈S,s0,May,Must〉 be a modal specification. The

notion of controllability of a state a of A w.r.t a state

s of S captures the fact that there is a solution to the

controller synthesis problem starting in a for satisfy-

ing the specification from state s. Formally the set of

controllable pairs of states in A×S is the largest rela-

tion ρ ∈ A× S with, for all (a,s) ∈ ρ

(i) for all σ∈Act, if a
σ
−→ a′ for some a′ ∈A then there

exists s′ such that (s,σ,s′) ∈ May and (a′,s′) ∈ ρ

(ii) there exists a subset E of AI(a,s) such that

• for all i ∈ E , if a
i|σ
−→ a′ for some a′ ∈ A and

σ∈ Act, then there exists s′ such that (s,σ,s′)∈
May and (a′,s′) ∈ ρ

• for all (s,σ,s′) ∈ Must either a
σ
−→ a′ or there is

c ∈ E such that a
c|σ
−−→ a′

We say that a state a of A is controllable w.r.t the state

s of S if (a,s) ∈ ρ. We say that A is controllable w.r.t

S if (a0
,s0) ∈ ρ.

Note that if one considers only item (i) and forgets

communications, ρ is the biggest simulation between

A and S where S is seen as an agent with May as

transition function.

The following result show that controllability an-

swers the composition problem.

Theorem 1. There exists a controller for A w.r.t the

modal specification S if and only if A is controllable

w.r.t S .

Due to space constraints we do not include the

proof in this paper. The idea is that the ρ relation

that is computed here is the relation for the satisfac-

tion of S and that the sets E are the outputs of some

controller.

3.2 Algorithm for controllability

Our algorithm for computing controllability is very

similar to the one for computing the biggest simula-

tion relation between transition systems. The princi-

ple is to build the controllability relation ρ over A×S

and at the same time for each pair (a,s), to build a

set E(a,s) ⊆ Ins which is the E set of item (ii) in the

definition of controllability.

The algorithm first assigns every element of S×A

to the relation ρ, and assigns the maximal set of

instructions for each such element (which is the set of

acceptable instruction). The next step is the iteration

of a procedure for removing “bad” states until a

fix-point is reached.

Controllability (A ,S)

Init. : ρ = A× S and E(a,s) = AI(a,s)2

Iterate until fix point : foreach

(a,s) ∈ ρ do : remove (a,s) from ρ if

either of these condition is met:

• there exist a
σ
−→ a′ and there is no s′

such that (s,σ,s′) ∈ May and (a′,s′) ∈ ρ

• there exists (s,σ,s′) ∈ Must and there is

no i ∈ E(a,s) ∪ {ε} such that a
i|σ
−→ a′ and

(a′,s′) ∈ ρ.

2Note that the computation of AI is local to pairs of
states.

Note that both items of the algorithm are done lo-

cally. Obviously, the algorithm terminates, and the

bound on the number of iterations is given by the

size of the set A × S. If we consider that A is the

agent community composed by A1, . . .An then the al-

gorithm is exponential in n. If we fix n, then the

algorithm is polynomial in the size of the set A× S.

This complexity is the same as the one for the Roman

Model and matches the lower bound of (Muscholl and

Walukiewicz, 2008).

4 CONTROLLER SYNTHESIS

Since a controller chooses a set of instruc-

tions based upon some history, it is convenient to

introduce a notion of labeled history where the

controller follows the history on the specification

at the same time as on the agents. Formally, given

an agent A =
〈

A,a0
,δA

〉

and a history h ∈ HA with

h = (a0
σ0−→ a1 . . .

σk−1
−−−→ ak), the labeling of h with a

modal specification S = 〈S,s0,May,Must〉 is the his-

tory hS =((a0,s0)
σ0−→ (a1,s1) . . .

σk−1
−−−→ (ak,sk)) where

s0 = s0 and (si,σi,si+1) ∈ May for 0 ≤ i ≤ k− 1.

Remark that such labeling is unique because the

May transition of the specification is deterministic.

From this point on, we define controllers over labeled

history instead of regular histories since there is a one

on one correspondence. We use H
S

A
for the set HA

labeled by S .

We say that a controller is memoryless when it

does only consider the last state of the labeled history

for deciding its set of instruction. Thus a memoryless

controller is a function C : A×X → 2Ins. In practice,

a memoryless controller follows the transitions of A

on S but only keep in memory the last pair of states.

4.1 Most permissive controller

Modal specifications, when used to specify control

objective, have the property to have a biggest solu-

tion in the sense of the inclusion of behaviors. This

property remains true in the composition setting. The

consequence is that, whenever an instance of the com-

position problem has a solution, then amongst all the

controllers, there is one that produces the largest con-

trolled behavior. Consider the following definition.

Definition 2 (Most permissive controller). The most

permissive controller for A and S is the controller

PC : A× S → 2Ins where c ∈ PC(a,s) if and only if

• c ∈ AI(a,s),

• for all a′ ∈ A, s′ ∈ S and σ∈ Act such that a
c|σ
−−→ a′

and (s,σ,s′) ∈ May, a′ is controllable w.r.t s′.

Remark that this controller is memoryless. The

next theorem states that the controller PC is indeed

the most permissive controller in the sense that it is

the one that gives the most instructions at each step.

Theorem 2. Let A =
〈

A,a0
,δA

〉

be a communicating

agent and S = 〈S,s0,May,Must〉 be a modal specifi-

cation. If there exists a controller C for A w.r.t S then

the most permissive controller PC satisfies, for each

labeled history hS ending on the pair of states (a,s),
that C(h)⊆ PC(a,s).

The synthesis of the most permissive controller

is the synthesis of the maximal controllable subset

of A× S. Since the algorithm we provided in previ-

ous section for controllability works as a greatest fix-

point, is computes exactly this maximal controllable

subset. As a consequence, the controller is the set E

given by the algorithm for controllability.

4.2 Controller generator

The concept of controller generator has been intro-

duced in (De Giacomo et al., 2013); the key idea is

to build not a single controller but a structure captur-

ing the set of all controllers which are solutions of the

initial problem. The structure captures all the memo-

ryless controller, but also allows to switch at any time

from one to another thus capturing all the controllers

in a finite way.

Definition 3 (Controller Generator). Let A =
〈

A,a0
,δA

〉

be a communicating agent and S =
〈S,s0,May,Must〉 be a modal specification. The con-

troller generator for A and S is a partial mapping

CG : A×S → 22Ins
defined by : for all a ∈ A and s ∈ S

where a is controllable w.r.t s, CG(a,s) is the set of

subsets C of Ins where

(i) C ⊆ PC(a,s)

(ii) for each σ ∈ Act such that (s,σ,s′) ∈ Must for

some s′, we have

– either ∃a′ ∈ A with a
σ
−→ a′

– or ∃a′ ∈ A,∃i ∈C such that a
i|σ
−→ a′

At each pair (a,s) where a is controllable w.r.t

s, the controller generator associates a set of sets of

instructions. Each of these sets is a correct set of

instructions in the sense that it fulfill the local re-

quirements of the specification and only allow tran-

sitions into some controllable states. Note that the set

CG(a,s) is a lattice whose greatest element is PC(a,s)
but that may not have a least element. The following

theorem ensures that the controller generator captures

all solutions of the composition problem.

Theorem 3. Let A =
〈

A,a0
,δA

〉

be a communicating

agent and S = 〈S,s0,May,Must〉 be a modal specifi-

cation. If A is controllable w.r.t S then each controller

C satisfies foreach labeled history h ∈ H S
A

ending on

(a,s) that C(hS) ∈ CG(a,s).

The synthesis of the controller generator is done

using the following algorithm:

• synthesize the most permissive controller PC us-

ing the algorithm for controllability

• foreach pair (a,s) ∈ A× S where PC(a,s) is de-

fined, compute the minimal subsets satisfying the

item (ii) of the definition. The lattice CG(a,s) is

the set of elements included in PC(a,s) and in-

cluding any of these minimal subsets.

The complexity of the algorithm is bounded by

the one of the algorithm for controllability multiplied

by 2| Ins |. This remains exponential in the number of

agents and polynomial in number of elements in A×S

if we don’t consider the number of elements in Ins as

a parameter.

5 CONCLUSION

This paper extends the framework of the Roman

Model with the notion of instructions. This indirect

mean of control introduces uncontrollability in sev-

eral different ways into the models. This allows one to

tackle new composition problems where some agent

may not behave exactly as predicted or asked to as

well as problems where the agents are keeping some

autonomy. We have also extended the goal of the

composition from a rigid given behavior into a spec-

ification that can be more lenient than bisimulation

but also more strict than simulation. We believe this

is necessary whenever uncontrollable events are con-

sidered in the model. In fact, when one may request a

behavior to at least include a target behavior like sim-

ulation do, it is suitable to be able to add some bounds

to the behaviors that are not requested but produced

by the mean of a permissive controller or by uncon-

trollable actions. We also stress the fact that a more

lenient specification may allow to obtain more solu-

tions for difficult problems. This is particularly true

for planning under the eventuality of failure.

Both extensions we proposed are free in the sense

that they have a cost neither in complexity nor in the

existence of a controller-generator. We also believe

that the expression of the composition of the prob-

lem in safety games is still possible but this point will

need further investigations. The next natural step is

drop perfect information and introduce some form of

partial observation. The question being: is it possible

to introduce partial observation without getting into

the usual exponential blowup.

REFERENCES

Balbiani, P., Cheikh, F., and Feuillade, G. (2008). Compo-
sition of interactive web services based on controller
synthesis. In International Workshop on Web Service
Composition and Adaptation(WSCA’08), pages 521–
528, Honolulu, USA. IEEE.

De Giacomo, G., Patrizi, F., and Sardina, S. (2013). Auto-
matic behavior composition synthesis. Artificial Intel-
ligence Journal, 196:106–142.

Feuillade, G. and Pinchinat, S. (2007). Modal specifica-
tions for the control theory of discrete event systems.
Discrete Event Dynamic Systems, 17(2):211–232.

Hull, R. (2005). Web services composition: a story of mod-
els, automata, and logics. In Web Services, 2005.
ICWS 2005. Proceedings. 2005 IEEE International
Conference on, pages xxx–xxi vol.1.

Lomuscio, A., Qu, H., and Raimondi, F. (2009). Mcmas:
A model checker for the verification of multi-agent
systems. In Bouajjani, A. and Maler, O., editors, CAV,
volume 5643 of Lecture Notes in Computer Science,
pages 682–688. Springer.

Muscholl, A. and Walukiewicz, I. (2008). A lower bound
on web services composition. In Proceedings of the
international conference on Foundations of Software
Science and Computation Structures (FoSSaCS 07),
pages 274–286. Springer.

Ramadge, P. and Wonham, W. (1989). The control of dis-
crete event systems. Proceedings of the IEEE, 77:81–
98.

Sardina, S. (2007). Automatic synthesis of new behaviors
from a library of available behaviors. In In Proc. of
IJCAI 2007, pages 1866–1871.

