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Abstract

We examine several belief change operations
in the light of Dynamic Logic of Proposi-
tional Assignments DL-PA. We show that we
can encode in a systematic way update op-
erations (such as Winslett’s ‘Possible Mod-
els Approach’) and revision operations (such
as Dalal’s) as particular DL-PA programs.
Every DL-PA formula being equivalent to
a boolean formula, we obtain syntactical
counterparts for all these belief change op-
erations.

Introduction

When a belief base B is modified in order to take into ac-
count a new piece of information A then we want to build a
new belief base B ◦ A. In that enterprise at least two reason-
ing problems are interesting.

• The belief change problem is a function problem: find
a logical formula representing the modified base B ◦ A.

• The belief change consequence problem (called impli-
cation problem in [Eiter and Gottlob, 1992]) is a deci-
sion problem: for a given formula C, decide whether
C is a consequence of B ◦ A, i.e., decide whether the
implication (B ◦ A)→ C is valid.

These problems are omnipresent in computer science, e.g.
in databases, reasoning about actions, planning, logic pro-
gramming, and in semantic web ontologies.

Many belief change operations can be found in the litera-
ture. Among the most prominent are Dalal’s revision oper-
ation [Dalal, 1988], Winslett’s ‘Possible Models Approach’
(PMA) [Winslett, 1988; 1990], Forbus’s update operation
[Forbus, 1989], and Winslett’s Standard Semantics (WSS)
[Winslett, 1995]. We refer to [Herzig and Rifi, 1999] for
a detailed overview and comparison. According to Kat-
suno and Mendelzon’s classical distinction between update
and revision operations, the first three are update opera-
tions, while Dalal’s is a revision operation [Katsuno and
Mendelzon, 1992]. A recent discussion of the distinction be-
tween the two concepts and their relationship can be found
in [Lang, 2007].

Beyond the above concrete belief change operations, there
exist more abstract frameworks. Alchourrón, Gärdenfors
and Makinson (AGM) studied the properties that ‘good’ re-
vision operations should have [Alchourrón, Gärdenfors, and
Makinson, 1985]. Similarly, Katsuno and Mendelzon (KM)
studied the properties ‘good’ update operations should have
[Katsuno and Mendelzon, 1992]. The difference between
revision and update can be illustrated by the example of a
new edition of a dictionary that is advertised as being ‘up-
dated and revised’: revision corrects information that turned
out to be wrong (about a static world), while update takes
into account new usages of words, i.e., the dynamics of the
world.

Dalal’s operation satisfies the AGM postulates for revi-
sion, and Winslett’s and Forbus’s operations satisfy the KM
postulates for update. This is however not enough to char-
acterise these operations: they validate properties beyond
the AGM/KM postulates, such as Parikh’s relevance pos-
tulate that is based on language splitting [Parikh, 1999;
Kourousias and Makinson, 2007]. Only few papers inves-
tigated this issue. Similarly, the related problem of syn-
tactically constructing the new belief base B ◦ A has only
received little attention. Indeed, the above concrete belief
change operations were almost exclusively studied from a
semantical perspective: instead of viewing B ◦ A as a for-
mula, it is viewed as a set of models of classical proposi-
tional logic, alias a set of valuations. Therefore ◦ is not part
of the object language but is in the metalanguage. We call
◦ a metalanguage operation, as opposed to object language
operator, i.e., a logical connective.

If the set of propositional variables P is finite then there
is an easy recipe to construct a formula representing B ◦ A:
describe each valuation v ∈ B ◦ A by the conjunction of

literals Fml(v) =
(

∧

p∈v p
)

∧
(

∧

p∈P\v ¬p
)

and take the dis-

junction of these big conjunctions Fml(v): the set of models
of
∨

v∈B◦A Fml(v) equals B ◦ A, and therefore the former is
the syntactical counterpart of the latter.

Is there a better, syntactic procedure building the new
belief base? The answer is positive for WSS, which is
the simplest update operation: an update procedure based
on variable forgetting is in [Herzig and Rifi, 1999] and its
generalisation to literal forgetting is in [Herzig, Lang, and
Marquis, 2013]. As to the PMA, there is an axiomatisa-
tion in [Herzig, 1996] that can be turned into a decision



procedure for the belief change consequence problem; it
is however based on formulas in disjunctive normal form
and is as such very close to the semantics. Finally, there
are syntactical belief change operations that are based on
the computation of prime implicants and prime implicates
and do not have semantics [Bienvenu, Herzig, and Qi, 2008;
Marchi, Bittencourt, and Perrussel, 2010].

In this paper we propose a powerful yet simple logical
framework for belief change: Dynamic Logic of Proposi-
tional Assignments, abbreviated DL-PA [Herzig et al., 2011;
Balbiani, Herzig, and Troquard, 2013]. DL-PA is a simple
instantiation of Propositional Dynamic Logic PDL [Harel,
1984; Harel, Kozen, and Tiuryn, 2000]: instead of PDL’s
abstract atomic programs, its atomic programs are assign-
ments of propositional variables to either true or false, writ-
ten p←⊤ and p←⊥. Just as in PDL, these atomic programs
can be combined by means of program operators: sequential
and nondeterministic composition, finite iteration, and test.
In the present paper we moreover make use of a program
operator that is less frequently considered in PDL, namely
the converse operator. While DL-PA programs describe the
evolution of the world, DL-PA formulas describe the state of
the world. In particular, formulas of the form

〈

π
〉

ϕ express
that ϕ is true after some possible execution of π, and [π]ϕ
expresses that ϕ is true after every possible execution of π.

The models of DL-PA are considerably simpler than
PDL’s Kripke models: valuations of classical propositional
logic are enough. The assignment p←⊤ updates the cur-
rent valuation by p, while the assignment p←⊥ updates it
by ¬p. For example, the program empAnn,CS←⊥ updates
the current valuation by the fact that Ann is not an employee
of the CS department. The other way round, the program
(

empAnn,CS←⊥
)−

undoes that update. Consider the formula

〈

empAnn,CS←⊥
−〉(empAnn,CS ∧ empBob,CS)

It says that possibly, before Ann was fired from the CS de-
partment, both she and Bob were employees there. This
means that it is possible that the belief base empAnn,CS ∧

empBob,CS has been updated by ¬empAnn,CS, resulting in the
current belief base. The current base is therefore nothing but

(empAnn,CS ∧ empBob,CS) ◦ ¬empAnn,CS

This can be generalised: we have

B ◦ p = ||
〈

(p←⊤)−
〉

B||

B ◦ ¬p = ||
〈

(p←⊥)−
〉

B||

for every propositional variable p and each of the update op-
erations among PMA, WSS, and Forbus, where the function
||.|| associates to each formula the set of valuations where
it is true. (The corresponding equality for Dalal’s revision
operation is a bit more involved and will be given later.)

The first contribution of the present paper is to go beyond
such updates by literals and to associate to every input for-
mula A a program πA implementing the update by A. Pre-
cisely, these programs πA depend on the belief change oper-
ation under concern, and WSS, PMA and Forbus’s operation
will be implemented by different programs πwss

A
, πforbus

A
, and

π
pma

A
. For instance, we will show that the WSS update by the

disjunction p∨q is captured by the program

πwss
p∨q =

(

p←⊤∪p←⊥
)

;
(

q←⊤∪ q←⊥
)

; p∨q?

which is equivalent to

(p←⊤; q←⊤) ∪ (p←⊤; q←⊥) ∪ (p←⊥; q←⊤).

We establish that being in a state where B was updated by A
is the same as being in a state where B was true before the
update program πA was executed. Formally, we prove that

B ◦ A = ||
〈

(πA)−
〉

B||

for each of the belief change operations ◦ and associated
family of programs πA that we consider: WSS, PMA, For-
bus, and Dalal.1

It is shown in [Herzig et al., 2011; Balbiani, Herzig, and
Troquard, 2013] that every DL-PA formula can be reduced to
an equivalent propositional formula. It is shown in the latter
paper that the reduction can be extended to the converse op-
erator. We thereby obtain a syntactical representation of the
modified belief base in terms of a boolean formula. This is
the second contribution of our paper.

In the next two sections we settle some notations and in-
troduce DL-PA. In the remaining sections we embed sev-
eral belief change semantics into DL-PA: Winslett’s WSS,
Winslett’s PMA, and Forbus’s update operation, and finally
Dalal’s belief revision operation.

Background: propositional logic

Here are some notations and conventions for propositional
logic, as well as the definitions of symmetric difference and
Hamming distance between propositional valuations.

A valuation associates a truth value to each propositional
variable in the countable set P = {p, q, . . .}. We identify
valuations with subsets of P and use v, v1, v2, etc. to denote
them. The set of all valuations is V = 2P. Sometimes we
write v(p) = 1 when p ∈ v and v(p) = 0 when p < v.

The symmetric difference between two valuations v1 and
v2 is the set of all those p such that v1(p) , v2(p). Formally,
it is defined as

v1−̇v2 = (v1 \ v2) ∪ (v2 \ v1)

For example, {p, q}−̇{q, r, s} = {p, r, s}.
The Hamming distance between v1 and v2 is is the number

of all those p such that v1(p) , v2(p). Formally, it is defined
to be card(v1−̇v2), i.e., the cardinality of the symmetric dif-
ference between v1 and v2. For example, the Hamming dis-
tance between {p, q} and {q, r, s} is card({p, r, s}) = 3. Note
that the Hamming distance might be infinite: for instance,
card(∅−̇P) = ∞.

Boolean formulas (also called propositional formulas) are
built from propositional variables by means of the standard
boolean connectives. We will in particular make use of the
exclusive disjunction, denoted by ⊕. Boolean formulas are

1In the case of Dalal’s revision operation, the program actually
also depends on the base B. This is as it should be, because AGM
revision operations involve checking whether A∧B is satisfiable.



denoted by A, B, C, etc. Contrasting with that, modal formu-
las—to be defined in the next section—will be denoted by ϕ,
ψ, etc. For a given boolean formula A, the set of variables oc-
curring in A is denoted by PA. For example, Pp∨¬q = {p, q}.

A given valuation determines the truth value of each
boolean formula. An A-valuation is a valuation where the
boolean formula A is true.

Dynamic Logic of Propositional Assignments

In this section we define syntax and semantics of Dynamic
Logic of Propositional Assignments DL-PA and state de-
cidability and complexity results. Based on earlier work
by Tiomkin and Makowski and by van Eijck [Tiomkin and
Makowsky, 1985; van Eijck, 2000], star-free DL-PA was
studied in [Herzig et al., 2011] and full DL-PA in [Balbiani,
Herzig, and Troquard, 2013].

Language The language of DL-PA is defined by the fol-
lowing grammar:

ϕ F p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ |
〈

π
〉

ϕ

π F p←⊤ | p←⊥ | π; π | π ∪ π | π∗ | π− | ϕ?

where p ranges over P. So the atomic programs of the lan-
guage of DL-PA are of the form p←⊤ and p←⊥. The opera-
tors of sequential composition (“;”), nondeterministic com-
position (“∪”), finite iteration (“(.)∗”, the so-called Kleene
star), and test (“(.)?”) are familiar from PDL. The opera-
tor “(.)−” is the converse operator. The star-free fragment
of DL-PA is the subset of the language made up of formulas
without the Kleene star “(.)∗”.

The set of variables occurring in ϕ is denoted by Pϕ, just as
for boolean formulas. The length of a formula ϕ, denoted by
|ϕ|, is the number of symbols used to write down ϕ, without
“〈”, “〉”, and parentheses. For example, |

〈

q←⊤
〉

(q ∨ r)| =
3+3 = 6. The length of a program π, denoted by |π|, is
defined in the same way. For example, |p←⊥; p?| = 6. We
have card(Pϕ) ≤ |ϕ| for every ϕ.

We abbreviate the logical connectives ∧,→,↔, and ⊕ in
the usual way. Moreover, [π]ϕ abbreviates ¬

〈

π
〉

¬ϕ. Several
program abbreviations are familiar from PDL. First, skip ab-
breviates ⊤? (“nothing happens”). Second, the conditional
“if ϕ then π1 else π2” is expressed by (ϕ?; π1) ∪ (¬ϕ?; π2).
Third, the loop “while ϕ do π” is expressed by (ϕ?; π)∗;¬ϕ?.
Let us moreover recursively define the n-th iteration of π and
the iteration up to n of π, for n ≥ 0:

πn =

{

skip if n = 0

π; πn−1 if n ≥ 1

π≤n =

{

skip if n = 0
(

skip∪π
)

; π≤n−1 if n ≥ 1

Finally, we introduce assignments of literals to variables by
means of the following two abbreviations:

p←q = if q then p←⊤ else p←⊥

= (q?; p←⊤) ∪ (¬q?; p←⊥)

p←¬q = if q then p←⊥ else p←⊤

= (q?; p←⊥) ∪ (¬q?; p←⊤)

||p|| = {v : p ∈ v}

||⊤|| = V = 2P

||⊥|| = ∅

||¬ϕ|| = 2P \ ||ϕ||

||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ||

||
〈

π
〉

ϕ|| =
{

v : there is v1 s.t. (v, v1) ∈ ||π|| and v1 ∈ ||ϕ||
}

||p←⊤|| = {(v1, v2) : v2 = v1 ∪ {p}} xxxxxx

||p←⊥|| = {(v1, v2) : v2 = v1 \ {p}}

||π; π′|| = ||π|| ◦ ||π′||

||π ∪ π′|| = ||π|| ∪ ||π′||

||π∗|| =
⋃

k∈N0

(||π||)k

||π−|| = ||π||−1

||ϕ?|| = {(v, v) : v ∈ ||ϕ||}

Table 1: Interpretation of the DL-PA connectives.

The former assigns to p the truth value of q, while the latter
assigns to p the truth value of ¬q. In particular, the program
p←¬p flips the truth value of p. Note that the abbreviations
p←q and p←¬q have constant length (namely 14).

Semantics DL-PA programs are interpreted by means of a
(unique) relation between valuations. The atomic programs
p←⊤ and p←⊥ update valuations in the obvious way, and
complex programs are interpreted just as in PDL by mutual
recursion. Table 1 gives the interpretation of the DL-PA con-
nectives.

Two formulas ϕ1 and ϕ2 are formula equivalent if ||ϕ1|| =

||ϕ2||. Two programs π1 and π2 are program equivalent if
||π1|| = ||π2||. For example, skip; π is program equivalent to
π, and skip ∪ p←¬p is program equivalent to p←⊤∪p←⊥.
We write π1 ≡ π2 when π1 and π2 are progam equivalent.

Proposition 1 (Proposition 10 in [Balbiani, Herzig, and
Troquard, 2013]). The following program equivalences are
DL-PA valid:

p?; p←⊤ ≡ p?

¬p?; p←⊥ ≡ ¬p?

p←τ; p←⊤ ≡ p←⊤

p←τ; p←⊥ ≡ p←⊥

p←τ; q←⊤ ≡ q←⊤; p←τ if p , q

p←τ; q←⊥ ≡ q←⊥; p←τ if p , q

where τ is a placeholder for either true or false.

An expression is a formula or a program. When we say
that two expressions are equivalent we mean program equiv-
alence if we are talking about programs, and formula equiv-
alence otherwise. Equivalence is preserved under replace-
ment of a sub-expression by an equivalent expression [Bal-
biani, Herzig, and Troquard, 2013, Proposition 7].



A formula ϕ is DL-PA valid if it is formula equivalent
to ⊤, i.e., if ||ϕ|| = 2P. It is DL-PA satisfiable if it is not
formula equivalent to ⊥, i.e., if ||ϕ|| , ∅. For example, the
formulas

〈

p←⊥
〉

⊤ and
〈

p←⊤
〉

ϕ↔ ¬
〈

p←⊤
〉

¬ϕ are DL-PA
valid. Other examples of DL-PA validities are

〈

p←⊤
〉

p and
〈

p←⊥
〉

¬p. The valid schemas ϕ → [π]
〈

π−
〉

ϕ and ϕ →

[π−]
〈

π
〉

ϕ are inherited from converse PDL; they are called
the conversion axioms. Moreover, ϕ → [π]ϕ is valid if and
only if

〈

π−
〉

ϕ → ϕ is valid. The two senses of the “if and
only if” correspond to the two so-called conversion rules.

Observe that if p does not occur in ϕ then both ϕ →
〈

p←⊤
〉

ϕ and ϕ→
〈

p←⊥
〉

ϕ are valid. This is due to the fol-
lowing semantical property that is instrumental in the proof
of several results in the rest of the paper.

Proposition 2. Suppose Pϕ ∩ P = ∅, i.e., none of the vari-
ables in P occurs in ϕ. Then v ∪ P ∈ ||ϕ|| iff v \ P ∈ ||ϕ||.

Reduction to propositional logic In PDL, all program op-
erators but the Kleene star can be eliminated. In contrast, all
program operators can be eliminated in DL-PA. We describe
this in detail now.

The first step is to eliminate the converse operator. Table
2 lists the program equivalences by means of which we can
eliminate the converse operator with only linear increase in
program length.2

Proposition 3. For every program π there is an equivalent
π′ such that no converse operator occurs in π′ and such that
the length of π′ is linear in the length of π.

For example, the converse of assignments of literals to
variables are reduced as follows:

p←q− ≡

{

skip if q = p

p↔q?; (p←⊤∪p←⊥) otherwise

p←¬q− ≡

{

p←¬p if q = p

p⊕q?; (p←⊤∪p←⊥) otherwise

The second step is to eliminate the Kleene star.

Proposition 4 (Theorem 1 of [Balbiani, Herzig, and Tro-
quard, 2013]). For every converse-free π there is an equiva-
lent π′ such that no Kleene star occurs in π′.

The resulting formula is in star-free PDL, for which
it is known that all the program operators can be elimi-

2This simplifies the original proof of [Balbiani, Herzig, and
Troquard, 2013, Section VII.B], which instead of directly stating
a reduction axiom for the Kleene star rather relies on its prelimi-
nary elimination.

We might as well apply de Giacomo’s general elimination
technique[de Giacomo, 1996]. It is however more complicated
than ours. He proceeds by first applying the four last reduction
axioms of Table 2 to the original formula ϕ0 in order to push down
the converse operator. For the resulting formula ϕ1, a theory Γϕ1

is
built that is made up of instances of the conversion axioms for all
symbols occurring in ϕ and that are prefixed by a master modality
relative to the symbols of ϕ. Finally, it is proved that the original
ϕ0 is a theorem if and only if Γ |= ϕ′

1
, where ϕ′

1
is obtained from ϕ1

by considering the converse of atomic programs as new program
names (so ϕ′

1
is without converse operators). Overall, this is less

direct and not as simple as the present reduction axioms.

p←⊤− ≡ p?; (skip ∪ p←⊥)

≡ p? ∪ (p?; p←⊥)

p←⊥− ≡ ¬p?; (skip ∪ p←⊤)

≡ ¬p? ∪ (¬p?; p←⊤)

(π1; π2)− ≡ π−2 ; π−1

(π1 ∪ π2)− ≡ π−1 ∪ π
−
2

(π∗)− ≡
(

π−
)∗

(ϕ?)− ≡ ϕ?

Table 2: Reduction axioms for the converse operator.

nated. Once this has been done, modal operators only con-
tain atomic programs. Such modal operators are both se-
rial and deterministic and therefore distribute over negation
and disjunction:

〈

p←⊥
〉

¬ϕ is equivalent to ¬
〈

p←⊥
〉

ϕ, and
〈

p←⊥
〉

(ϕ1∨ϕ2) is equivalent to
〈

p←⊥
〉

ϕ1∨
〈

p←⊥
〉

ϕ2. They
can finally be eliminated when they face a propositional vari-
able, according to the following formula equivalences:

〈

p←⊤
〉

q↔

{

⊤ if q = p

q otherwise

〈

p←⊥
〉

q↔

{

⊥ if q = p

q otherwise

For example,
〈

p←⊥
〉

p ∨
〈

p←⊥
〉

¬r is equivalent to ⊥ ∨ ¬r.

Together, these three steps make up a complete set of re-
duction axioms: for every formula there is an equivalent
boolean formula.

Complexity In this paper we only need complexity results
for star-free DL-PA. The complexity of both model checking
and satisfiability checking for the converse-free and star-free
fragment of the language of DL-PA is shown to be PSPACE
complete in [Herzig et al., 2011]. By Proposition 3 these re-
sults transfer to star-free DL-PA with the converse operator.

Some useful DL-PA programs Table 3 collects some
DL-PA programs that are going to be convenient in our en-
terprise. In that table, P is the set of variables {p1, . . . , pn},
and P′ is the set of variables p′

k
such that pk is in P and p′

k
is fresh: we suppose that p′

k
does not occur in P (or rather,

in the formula under consideration). In order to alleviate no-
tation we drop set parentheses and write flip1(p) instead of

flip1({p}), etc. Note that the length of each program of Table
3 is linear in the cardinality of the set P.

The first two programs of Table 3 change the truth values

of some of the variables in the set P. The program flip1(P)
flips some nondeterministically chosen variable of P. So the

iteration flip1(P)
n

does this n times and flip1(P)
≤n

does this



flip1(P) = p1←¬p1 ∪ · · · ∪ pn←¬pn

flip≥0(P) = (p1←⊤∪ p1←⊥); · · · ; (pn←⊤∪ pn←⊥)

store(P) = p′1←p1; · · · ; p′n←pn

restore1(P) = (p1⊕p′1?; p1←p′1) ∪ · · · ∪ (pn⊕p′n?; pn←p′n)

restore≥0(P) =
(

skip ∪ p1←p′1
)

; · · · ;
(

skip ∪ pn←p′n
)

Table 3: Some useful DL-PA programs, where P =

{p1, . . . , pn}. For n = 0 all programs are supposed to equal
skip. In store(P), restore1(P), and restore≥0(P), the p′

i
are

supposed to be fresh.

at most n times. For example, we have

flip1(p)
1
= p←¬p; skip

≡ p←¬p

flip1(p)
≤1
= (skip ∪ p←¬p); skip

≡ p←⊤∪p←⊥

= flip≥0(p)

The program flip≥0(P) nondeterministically changes the
truth value of some of the variables in P. It is program

equivalent to flip1(P)
≤n

while being shorter.3 It actually im-
plements the operation of forgetting the values of the vari-
ables in P [Lang, Liberatore, and Marquis, 2003]. Note

that flip≥0(Pϕ);ϕ? relates any valuation v to all ϕ-valuations
where the variables outside ϕ have the same truth values.

The last three programs of Table 3 store or restore some of
the values of the variables of P. The program store(P) stores
the truth value of each variable pk of P by means of a fresh
variable p′

k
. When the truth values of pk and p′

k
differ then

we say that pk is marked; else we say that pk is unmarked.
The program restore1(P) restores one of the marked vari-
ables pk of P: after it, some pk has the truth value of p′

k
.

Finally, restore≥0(P) restores zero or more marked variables
of P.

Proposition 5. The following hold:

1. (v1, v2) ∈ ||flip1(p)|| iff card(v1−̇v2) = 1.

2. (v1, v2) ∈ ||flip1(P)
≤n
|| iff card(v1−̇v2) ≤ n.

3. (v1, v2) ∈ ||flip≥0(P)|| iff v1−̇v2 ⊆ P.

4. (v1, v2) ∈ ||store(P)|| iff v2 = (v1\P
′)∪{p′ : p ∈ v1∩P}.

5. (v1, v2) ∈ ||restore1(P)|| iff there is pk ∈ P such that
v1−̇v2 = {pk} and v1(pk) , v1(p′

k
).

6. (v1, v2) ∈ ||restore≥0(P)|| iff there is S ⊆ P such that
v1−̇v2 = S and v1(pk) , v1(p′

k
) for every pk ∈ S .

Note that flip1(P)
n

may flip less than exactly n variables:

for example, flip1(P)
2

may flip the same variable twice and in

3The length of flip1(P)
n

and flip1(P)
≤n

is quadratic in n. The
length of the latter would have been cubic had we adopted the

somewhat more natural definition
⋃

k≤n flip1(P)
k
.

Valid(ϕ) =
[

flip≥0(Pϕ)
]

ϕ

Sat(ϕ) =
〈

flip≥0(Pϕ)
〉

ϕ

D(ϕ, P) =
〈

flip≥0(P)
〉

ϕ ∧ ¬
〈

⋃

p∈P

flip≥0(P \ {p})
〉

ϕ

H(ϕ,≥m) =















⊤ if m = 0

¬
〈

flip1(Pϕ)
≤m−1〉

ϕ if m ≥ 1

Table 4: Some useful DL-PA formulas, where ϕ is a formula,
P ⊆ Pϕ is a nonempty set of propositional variables, and
m ≤ card(Pϕ) is a non-negative integer.

that case has the same effect as skip. So (v1, v2) ∈ ||flip1(P)
n
||

does not imply that the Hammming distance between v1 and
v2 is n. But what matters is that in Proposition 8 below (and

Theorem 3 that is based on it), the occurrence of flip1(PA)
m

is preceded by the test H(A,≥m)?, which when successfully
executed guarantee that the Hamming distance is n.

Proposition 6. The following programs are equivalent:

(

flip≥0(P)
)−
≡ flip≥0(P)

(

flip1(P)
n)−
≡ flip1(P)

n

(

flip1(P)
≤n)−

≡ flip1(P)
≤n

Some useful DL-PA formulas Table 4 collects some inter-
esting DL-PA formulas: Valid(ϕ) expresses that the formula
ϕ is valid and Sat(ϕ) expresses that ϕ is satisfiable. The for-

mer is equivalent to
[

flip≥0(Pϕ);ϕ?
]

⊤ and the latter is equiv-

alent to
〈

flip≥0(Pϕ);ϕ?
〉

⊤. The formula D(ϕ, P) is true at a
valuation v exactly when there is a closest ϕ-valuation whose
symmetric difference with v is P. The formula H(ϕ,≥m) is
true at a valuation v exactly when the closest ϕ-valuations in
the sense of the Hamming distance differ in at least m vari-
ables from v. For example:

H(p,≥1) = ¬
〈

flip1(p)
≤0〉

p

= ¬
〈

skip
〉

p

↔ ¬p

H(p∨q,≥1) = ¬
〈

flip1(p, q)
≤0〉

(p∨q)

↔ ¬p ∧ ¬q

H(p∨q,≥2) = ¬
〈

flip1(p, q)
≤1〉

(p∨q)

↔ ¬
〈

skip ∪ p←¬p ∪ q←¬q
〉

(p∨q)

↔ ¬
(

p∨q ∨
〈

p←¬p
〉

(p∨q) ∧
〈

q←¬q
〉

(p∨q)
)

↔ ¬
(

(p∨q) ∨ (¬p∨q) ∨ (p ∨ ¬q)
)

↔⊥

The first two items of the next proposition show that both
validity checking and satisfiability checking can both be re-
duced to model checking.

Proposition 7. Let v a valuation and ϕ a formula.

1. v ∈ ||Valid(ϕ)|| iff ϕ is valid.



2. v ∈ ||Sat(ϕ)|| iff ϕ is satisfiable.

3. v ∈ ||D(ϕ, P)|| iff there is a valuation v1 ∈ ||ϕ|| such that
v−̇v1 = P and there is no valuation v2 ∈ ||ϕ|| such that
v−̇v2 ⊂ P.

4. v ∈ ||H(ϕ,≥m)|| iff there is no valuation v1 ∈ ||ϕ|| such
that card(v−̇v1) < m.

The length of each formula of Table 4 is polynomial in the
length of ϕ. (For Sat(ϕ) it is linear, for D(ϕ, P) and H(ϕ,≥m)
it is quadratic.)

From the above programs we can build a program which
checks whether the Hamming distance to the closest A-
valuation is m.

Proposition 8. Let m ≤ card(PA). Then

(v1, v2) ∈ ||H(A,≥m)?; flip1(PA)
m

; A||

if and only if v2 ∈ ||A||, card(v1−̇v2) = m, and there is no
v′

2
∈ ||A|| such that card(v1−̇v′

2
) < m.

WSS

Winslett’s standard semantics (WSS) [Winslett, 1995] is a
syntax-dependent update operation that is less conservative
than the other operations that we are going to examine, in
the sense that each of the other operations preserves at least
as much information of the original knowledge base as the
WSS.

Semantics of the WSS Let v be a valuation and A be a
propositional formula. The WSS update of v by A is

v ⋄wss A =
{

v1 ∈ ||A|| : v−̇v1 ⊆ PA

}

=
{

v1 ∈ ||A|| : for every p < PA, v(p) = v1(p)
}

So the set v⋄wss A is the set of A-valuations that agree with
v on all the variables that do not occur in A. For example,

∅ ⋄wss p∨q =
{

{p}, {q}, {p, q}
}

The WSS update operation is syntax-dependent: depending
on their language, logically equivalent formulas A1 and A2

may update the same valuation v in different ways.

Let A and B be propositional formulas. The WSS update
of B by A is obtained by collecting the updates of every B-
valuation by A:

B ⋄wss A =
⋃

v∈||B||

v ⋄wss A

The operation ⋄wss therefore takes two propositional formu-
las and returns a set of valuations. For example:

¬p ∧ ¬q ⋄wss p = ||p ∧ ¬q||

¬p ∧ ¬q ⋄wss p∨q = ||p∨q||

¬q ⋄wss p = ||p ∧ ¬q||

¬p ∨ ¬q ⋄wss p = ||p||

Expressing the WSS operation in DL-PA Let us turn to
the problem of expressing WSS updates in DL-PA.

Theorem 1. Let A, B be propositional formulas. Let πwss
A

be the DL-PA program

flip≥0(PA); A?

Then B ⋄wss A = ||
〈

(πwss
A

)−
〉

B||.

Via the program equivalences for the converse operator of

Proposition 6, it follows that B ⋄wss A = ||
〈

A?; flip≥0(PA)
〉

B||.
For example, consider the input formula A = p. Then

πwss
p = flip≥0(P); p?

= (p←⊤∪p←⊥); p?

≡ (p←⊤; p?) ∪ (p←⊥; p?)

≡ p←⊤

(πwss
p )− ≡ (p←⊤)−

≡ p? ∪ (p?; p←⊥)

For the base B = ¬p∧q and the input A = p we have:
〈

(πwss
A )−

〉

B↔
〈

p?; (p←⊤∪p←⊥)
〉

(¬p∧q)

↔ p ∧
(〈

p←⊤
〉

(¬p∧q) ∨
〈

p←⊥
〉

(¬p∧q)
)

↔ p ∧
(

⊥ ∨ (⊤ ∧ q)
)

↔ p∧q

So the update of ¬p∧q by p is equivalent to p∧q, as ex-
pected.

Observe that the length of πwss
A

is linear in the length of A.

PMA

Winslett’s possible models approach (PMA) operation
[Winslett, 1988; 1990] is the belief update operation that is
most cited and used, e.g. in database theory [Winslett, 1995;
Chomicki and Marcinkowski, 2004], reasoning about ac-
tions and planning [Baral, 1995], logic programming [Slota
and Leite, 2010] and in description logics and the semantic
web [Baader et al., 2005; Liu et al., 2006; 2011].

The PMA is more conservative than the WSS, in the sense
that it preserves more information from the base B. This is
achieved by a principle of minimal change.

Semantics of the PMA operation Let v be a valuation
and A be a propositional formula. The PMA update of v by
a formula A is

v⋄pmaA =
{

v1 ∈ ||A|| : there is no v2 ∈ ||A|| s.t. v−̇v2 ⊂ v−̇v1

}

So the set v⋄pmaA is the set of A-valuations that are closest
to v w.r.t. symmetric difference. For example,

∅⋄pma p∨q =
{

{p}, {q}
}

∅⋄pma(p∧q)∨r =
{

{p, q}, {r}
}

Let A and B be propositional formulas. Just as all the
update operations à la Katsuno-Mendelzon [Katsuno and
Mendelzon, 1992], the PMA update of B by A collects the
updates of each B-valuation by A:

B⋄pmaA =
⋃

v∈||B||

v⋄pmaA



For example:

¬p ∧ ¬q⋄pma p = ||p ∧ ¬q||

¬q⋄pma p = ||p ∧ ¬q||

¬p ∧ ¬q⋄pma p∨q = ||p⊕q||

¬p ∧ ¬q ∧ ¬r⋄pma(p ∧ q) ∨ r = ||(p ∧ q) ⊕ r||

Expressing the PMA operation in DL-PA We now poly-
nomially translate the update problem B⋄pmaA into DL-PA:
we define a family of update programs π

pma

A
whose length is

linear in the length of A.
It is tempting to define π

pma

A
to be the program

while ¬A do flip1(PA), where while is as defined above.
However, it does not have the exact behaviour of ⋄pma. In-
deed, the interpretation of

while ¬
(

(p ∧ q) ∨ r
)

do flip1({p, q, r})
relates the empty valuation to the four valuations {p, q}, {r},
{p, r}, and {q, r}, while we have seen above that the PMA up-
date of the empty valuation only outputs the first two of these
valuations. Actually the above program defines an update
operation with strength between WSS and PMA; it seems
that it has not been considered in the literature up to now.

The exact DL-PA counterpart of the PMA updates is a bit
more involved. The most straightforward way is to define
π

pma

A
to be the program

A? ∪

















¬A?;
⋃

∅⊂P⊆PA

D(A, P)? ; flip≥0(P) ; A?

















where D(A, P) is defined in Table 4. While it does the same
job as ⋄pma, its length is exponential in the length of A due
to the nondeterministic choice in the powerset of PA.

Our polynomial embedding of the PMA involves storing
the values of variables as defined in Table 3.

Theorem 2. Let A, B be propositional formulas. Let PA =

{p1, . . . , pn} be set of variables occurring in A. Let P′
A
=

{p′
1
, . . . , p′n} be such that the p′

k
neither occur in A nor in B.

Let π
pma

A
be the following program:

store(PA); flip≥0(PA); A?;
[

restore1(PA); restore≥0(PA)
]

¬A?;

flip≥0(P′A)

Then B⋄pmaA = ||
〈

(π
pma

A
)−
〉

B|| for every valuation v.

The length of the program π
pma

A
is linear in the length

of A. It starts by saving the truth values of the variables of
A by means of store(PA). It then goes to an A-valuation by

flip≥0(PA); A?. The next step is to check whether all the ways
one can get there are exclusively made up of ¬A-valuations:
an A-valuation is disregarded if another A-valuation can be
attained by fewer changes. Finally the copies p′

k
of the vari-

able pk of A are forgotten by flip≥0(P′
A
). For example,

π
pma
p = p′←p; (p←⊤∪p←⊥); p?;

[

p⊕p′?; p←p′; (skip ∪ p←p′)
]

¬p?; (p′←⊤∪p′←⊥)

≡ p′←p; p←⊤;
[

p⊕p′?; p←p′
]

¬p?; (p′←⊤∪p′←⊥)

≡ p′←p; p←⊤;
[

p⊕p′?
]

¬p′?; (p′←⊤∪p′←⊥)

≡ p′←p; p←⊤; (p′←⊤∪p′←⊥)

≡ p←⊤; (p′←⊤∪p′←⊥)

As p′ is fresh, the ‘net effect’ of the update program π
pma
p

is just p←⊤, as expected. (Observe that while the programs
π

pma
p and p←⊤ are not equivalent; what matters to us is that

the formulas
〈

(π
pma
p )−

〉

B and
〈

p←⊤−
〉

B are so.)
Just as for the other update operators, the converse opera-

tor can be eliminated from π
pma

A
. We do not state it because

we were not able to simplify it further.

Forbus
Forbus’s update operation [Forbus, 1989] is even more con-
servative than Winslett’s. It is based on minimisation of the
Hamming distance between valuations.

Semantics of Forbus’s operation Forbus’s update of v by
A is defined as:

v⋄forbusA =
{

v1 ∈ ||A|| : there is no v2 ∈ ||A|| such that

card(v−̇v2) < card(v−̇v1)
}

So the set v⋄forbusA is the set of A-valuations that are clos-
est to v w.r.t. the Hamming distance. For example,

∅⋄forbus p∨q =
{

{p}, {q}
}

∅⋄forbus(p ∧ q) ∨ r =
{

{r}
}

The last example illustrates the difference with the PMA up-
date operation.

Let A and B be propositional formulas. Just as WSS and
PMA updates, Forbus’s update of B by A is the pointwise
update of the B-valuations by A:

B⋄forbusA =
⋃

v∈||B||

v⋄forbusA

For example:

¬p ∧ ¬q⋄forbus p∨q = ||p⊕q||

¬p ∧ ¬q ∧ ¬r⋄forbus(p ∧ q) ∨ r = ||¬p ∧ ¬q ∧ r||

Expressing Forbus’s operation in DL-PA We polynomi-
ally transform update problems of the form B⋄forbusA into
DL-PA: we define a family of update programs πforbus

A
whose

length is cubic in the length of A.

Theorem 3. Let A, B be propositional formulas. Let πforbus
A

be the following program:
















⋃

0≤m≤card(PA)

H(A,≥m)?; flip1(PA)
m

















; A?

Then B⋄forbusA = ||
〈

(πforbus
A

)−
〉

B||.

The length of the program πforbus
A

is cubic in the length
of A. It nondeterministically selects an integer m, checks
whether the Hamming distance to A is at least m, flips m
variables, and checks whether A is true. For example:

πforbus
p =

(

(

H(p,≥0)?; flip1(p)
0)
∪
(

H(p,≥1)?; flip1(p)
1))

; p?

≡
(

(⊤?; skip) ∪
(

¬
〈

flip1(p)
≤0〉

p?; p←¬p
)

)

; p?

≡
(

skip ∪
(

¬p?; p←¬p
)

)

; p?

≡ p? ∪
(

¬p?; p←¬p; p?
)

≡ p←⊤



Therefore B⋄forbus p = ||
〈

p←⊤−
〉

B||. Here is another exam-
ple:

πforbus
p∨q ≡

(

H(p∨q,≥0)?; flip1(p, q)
0
; p∨q?

)

∪

(

H(p∨q,≥1)?; flip1(p, q)
1
; p∨q?

)

∪

(

H(p∨q,≥2)?; flip1(p, q)
2
; p∨q?

)

≡
(

⊤?; skip; p∨q?
)

∪
(

¬(p∨q)?; (p←¬p ∪ q←¬q); p∨q?
)

∪

(

⊥?; flip1(p, q)
2
; p∨q?

)

≡ p∨q? ∪
(

¬(p∨q)?; (p←¬p ∪ q←¬q)
)

The identity can be simplified by means of the program
equivalences for the converse operator:

B⋄forbusA = ||
〈

A?;
(

⋃

0≤m≤card(PA)

flip1(PA)
m

; H(A,≥m)?
)

〉

B||.

Dalal
According to Katsuno and Mendelzon’s distinction [Kat-
suno and Mendelzon, 1992], Dalal’s belief change operation
[Dalal, 1988] is not an update operation but rather a revision
operation. We follow the usage in the literature and denote
it by ∗dalal (and not by ⋄dalal).

We are going to capture ∗dalal by a DL-PA program πdalal
A,B

which depends not only on the input A, but also on the base
B. One of the reasons for that is that Dalal’s definition dis-
tinguishes two cases: when B is satisfiable and when it is
unsatisfiable. In the latter case the result of the update by A
is stipulated to be ||A||. This guarantees that the revised base
is satisfiable as soon as the input formula A is so. This how-
ever does not square well with our embedding into DL-PA:
in modal logic, when B is unsatisfiable then

〈

(πdalal
A,B

)−
〉

B is

unsatisfiable, too. We therefore consider a variant where the
revision of an unsatisfiable base is unsatisfiable, too. In the
end of the section we embed Dalal’s original operation.

Semantics of Dalal’s operation Just as Forbus’s update
operation, Dalal’s revision operation is based on minimisa-
tion of the Hamming distance between valuations. However,
as Dalal’s is a revision operator we minimise globally in-
stead of valuation-wise.

Let A and B be propositional formulas. Dalal’s revision
of B by A is defined as:

B∗dalalA =
{

vA ∈ ||A|| : there is vB ∈ ||B|| such that

card(vA−̇vB) ≤ card(v′A−̇v′B)

for all v′A ∈ ||A||, v
′
B ∈ ||B||

}

It follows that when B is unsatisfiable then B∗dalalA is un-
satisfiable. As mentioned above, our definition differs from
Dalal’s original definition in this point.

Here is an example:

¬p∨¬q∗dalal p = ||p∧¬q||

It illustrates that revision operations satisfy the preserva-
tion postulate, which says that when B∧A is satisfiable then
B ∗ A = ||B∧A||. This is the main difference with update op-
erations: WSS, PMA, and Forbus’s operation all agree that
the update of ¬p∨¬q by p should equal ||p||.

Expressing Dalal’s operation in DL-PA We polynomi-
ally transform revision problems of the form B∗dalalA into
DL-PA: we define a family of revision programs πdalal

A,B
whose

length is cubic in the length of A and B.

Theorem 4. Let A, B be propositional formulas. Let πdalal
A,B

be the following program:

flip≥0(PB) ; B? ;
















⋃

0≤m≤card(PA)

[

flip≥0(PB) ; B?
]

H(A,≥m)? ; flip1(PA)
m

















; A?

Then B∗dalalA = ||
〈

(πdalal
A,B

)−
〉

⊤||.

The length of the program πdalal
A,B

is cubic in the sum

of |A| + |B|. It visits all the B-valuations vB via the pro-

gram flip≥0(PB); B?, failing if there is no such valuation.
It then nondeterministically selects an integer m such that
the Hamming distance between the B-valuations and the A-
valuations is at least m, flips m such variables, and checks
whether A is true.

When the input is a literal then we obtain:

πdalal
p,B = flip≥0(PB); B? ;

(

([

flip≥0(PB); B?
]

H(p,≥0)? ; flip1(p)
0)
∪

([

flip≥0(PB); B?
]

H(p,≥1)? ; flip1(p)
1))

; p?

= flip≥0(PB); B? ;
(

[

flip≥0(PB); B?
]

⊤?; skip ∪

([

flip≥0(PB); B?
]

¬p? ; p←¬p
)

)

; p?

≡ flip≥0(PB); B? ;
(

p? ∪
([

flip≥0(PB); B?
]

¬p? ; p←⊤
)

)

and likewise for B∗dalal¬p. So when B∧ p is consistent then
πdalal

p,B
goes to a B∧ p-valuation, and updates by p otherwise.

The proof of Theorem 4 is in two steps: first we prove
that B∗dalalA = ||

〈

(πdalal
A,B

)−
〉

B||, and then that ||
〈

(πdalal
A,B

)−
〉

B|| =

||
〈

(πdalal
A,B

)−
〉

⊤||. The second step relies on the validity of the

equivalence
〈

B?; flip≥0(PB)
〉

⊤ ↔
〈

B?; flip≥0(PB)
〉

B.
Finally, we note that we can also capture Dalal’s origi-

nal definition where the revision of an unsatisfiable B by A
equals ||A|| (instead of being unsatisfiable as with our defini-
tion). The modified identity which does the job is

B∗dalalA = ||(¬Sat(B) ∧ A) ∨
〈

(πdalal
A,B )−

〉

⊤||

Discussion

Let us come back to the belief change consequence problem.
This is a decision problem, and tight complexity bounds are
known for each of the operations that we have considered:
the belief change consequence problem is

• NP complete for the WSS update operation [Herzig and
Rifi, 1999],

• PNP[O(log(n)] for Dalal’s belief revision operation, i.e.,
polynomial with log(n) calls to an NP oracle [Eiter and
Gottlob, 1992], and



• Π2
p complete for Winslett’s PMA update and Forbus’s

update [Eiter and Gottlob, 1992].

Our embeddings are in the star-free fragment of the language
of DL-PA. We therefore obtain a PSPACE upper bound for
the complexity of deciding whether (B ◦ A)→ C is the case.
So this is clearly suboptimal. However, the nesting of modal
operators in our decision problems B → [πA]C is bounded:
for the WSS, there is a single ∀ quantification and for the
PMA, [πA]C is of the form

[

π1; flip≥0(PA); π2; [π3; restore≥0(PA)]¬A?
]

C

where π1, π2, π3 are deterministic programs, which is equiv-
alent to

[

π1; flip≥0(PA); π2

](〈

π3; restore≥0(PA)
〉

A ∨C
)

The latter makes the ∀-∃-quantification obvious. For For-
bus’s operator, [πA]C is basically of the form

[(
⋃

0≤m≤card(PA)

¬
〈

flip1(PA)
≤m−1〉

A?; flip1(PA)
m)

; A
]

C

which is again a ∀-∃-quantification. The argument for
Dalal’s operation is similar. By Proposition 7, checking the
validity of B → [πA]C can be done by checking whether

v ∈ ||flip≥0(PA)(B → [πA]C)||. The latter can be checked
by an alternating algorithm, and as the alternation-depth is
2 for PMA and Forbus’s update and for Dalal’s revision, we
obtain a Π2

p upper bound for the respective belief change de-
cision problems.

We leave to future work the implementation of decision
procedures for DL-PA and its fragments.

Up to now, complexity characterisations of belief change
operations often resorted to translations from or to QBF (see
e.g. [Eiter and Gottlob, 1992]). Our logic DL-PA is clearly at
least as expressive as QBF: the QBF formula ∃pϕ is equiv-
alent to the DL-PA formula 〈p←⊤∪p←⊥〉ϕ, which is ex-
ploited in [Herzig et al., 2011] to show PSPACE hardness of
satisfiability and model checking. We believe that the richer
language of programs of DL-PA provides a more natural tool
to capture domains involving action and change. The present
paper is part of a research program demonstrating the appli-
cability of DL-PA to problems involving dynamics in finite
domains. In other papers we have embedded several frame-
works: Coalition Logic of Propositional Control and its ex-
tension by delegation programs [van der Hoek, Walther, and
Wooldridge, 2010] in [Herzig et al., 2011], equilibrium logic
underlying ASP and its extension by update operations in
[Fariñas del Cerro, Herzig, and Su, 2013], a simple version
of separation logic in [Herzig, 2013], belief merging opera-
tions in [Herzig, Pozos Parra, and Schwarzentruber, 2014],
and Dung’s argumentation frameworks and their update in
[Doutre, Herzig, and Perrussel, 2014].

Conclusion

We have given polynomial embeddings of several promi-
nent belief change operations into a single framework: Dy-
namic Logic of Propositional Assignments DL-PA. Within
that framework, we have given syntactic counterparts to the

most popular semantically defined belief change operations:
Winslett’s update operations WSS and PMA, Forbus’s oper-
ation operation, and Dalal’s revision operation. The reduc-
tion of the DL-PA formula representing the updated belief
base can be exponentially longer than the original formula;
however, our examples illustrate that sometimes our syntac-
tic representation of the updated belief base can be substan-
tially reduced.

As an aside, we have also defined a new update operation

when discussing the program while ¬A do flip1(PA) as a can-
didate for the update program implementing the PMA. The
corresponding update operation is a bit more conservative
than the WSS and less than the PMA. It seems that it was
not studied in the literature up to now.

Our approach can be extended to cover other concrete be-
lief change operations. For example, the program imple-
menting Satoh’s revision operation [Satoh, 1988] combines
the search of a ‘good starting point’ as performed by the

prefix flip≥0(PB); B? of the revision program πdalal
A,B

with the

copy-based change minimisation of the program π
pma

A
for the

PMA.
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