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We consider the unique measure of maximal entropy of an automorphism of a compact Kähler manifold with simple action on cohomology. We show that it is exponentially mixing of all orders with respect to Hölder observables. It follows that the Central Limit Theorem (CLT) holds for these observables. In particular, our result applies to all automorphisms of compact Kähler surfaces with positive entropy.

Notation. The pairing •, • is used for the integral of a function with respect to a measure or more generally the value of a current at a test form. By (p, p)-currents we mean currents of bi-degree (p, p). The notations and stand for inequalities up to a multiplicative constant. If R and S are two real currents of the same bi-degree, we write |R| ≤ S when S ± R ≥ 0. Observe that this forces S to be positive.

Given a compact Kähler manifold X of dimension k, for every 0 ≤ q ≤ k we will denote by D q (X) (resp. D 0 q (X)) the real space generated by positive closed (resp. dd c -exact) (q, q)currents on X. For S ∈ D q (X), we will denote by {S} the cohomology class of S in H q,q (X, R).

Introduction

Let (X, ω) be a compact Kähler manifold of dimension k and f a holomorphic automorphism of X. We refer to [START_REF] Bedford | Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences[END_REF][START_REF] Filip | Gaps in the support of canonical currents on projective K3 surfaces[END_REF][START_REF] Mcmullen | Dynamics on K3 surfaces: Salem numbers and Siegel disks[END_REF][START_REF] Mcmullen | Dynamics on blowups of the projective plane[END_REF][START_REF] Oguiso | A remark on Dynamical degrees of automorphisms of compact Hyperkähler manifolds[END_REF][START_REF] Oguiso | Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy[END_REF] for interesting examples of such maps, and to [START_REF] De Thélin | Dynamics of automorphisms on compact Kähler manifolds[END_REF][START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF][START_REF] Dinh | Green currents for holomorphic automorphisms of compact Kähler manifolds[END_REF][START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF] for their general properties, see also [START_REF] Cantat | Dynamique des automorphismes des surfaces K3[END_REF][START_REF] Cantat | Automorphisms of surfaces: Kummer rigidity and measure of maximal entropy[END_REF][START_REF] Dang | Dynamical degrees of automorphisms on abelian varieties[END_REF][START_REF] Filip | Kummer rigidity for K3 surface automorphisms via Ricci-flat metrics[END_REF][START_REF] Guedj | Propriétés ergodiques des applications rationnelles, in Quelques aspects des systèmes dynamiques polynomiaux[END_REF][START_REF] Oguiso | Some aspects of explicit birational geometry inspired by complex dynamics[END_REF]. We denote by f n the iterate of order n of f . For 0 ≤ q ≤ k, the dynamical degree d q is defined as the spectral radius of the pull-back operator acting on the cohomology group H q,q (X, R). We have d 0 = d k = 1 and d q (f n ) = d q (f ) n for all n ∈ N.

By a fundamental result of Khovanskii [START_REF] Khovanskii | The geometry of convex polyhedra and algebraic geometry[END_REF], Teissier [START_REF] Teissier | Du théorème de l'index de Hodge aux inégalités isopérimétriques[END_REF], and Gromov [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF], the sequence q → log d q is concave, see also [START_REF] Dinh | The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds[END_REF]. This implies that there exist integers 0 ≤ p ≤ p ≤ k such that 1 = d 0 < d 1 < . . . < d p = . . . = d p > . . . > d k = 1.

We say that f has simple action on cohomology if p = p and if moreover the action of f * on H p,p (X, R) admits a unique eigenvalue of maximal modulus. Such eigenvalue is then necessarily equal to d p . We denote in this case by δ = δ(f ) the maximum between max q =p d q and the moduli of the other eigenvalues for the action of f * on H p,p (X, R). We call d p the main dynamical degree and δ the auxiliary dynamical degree of f .

From now on, we assume that f has simple action on cohomology. It admits a unique probability measure of maximal entropy µ, which is the intersection of a positive closed (p, p)current T + and a positive closed (k -p, k -p)-current T -(the main Green currents of f ), see [START_REF] Dinh | Green currents for holomorphic automorphisms of compact Kähler manifolds[END_REF][START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF]. Such measure is also called the equilibrium measure of f , and is mixing and hyperbolic. It was shown in [START_REF] Dinh | Exponential mixing for automorphisms on compact Kähler manifolds[END_REF] that such measure is exponentially mixing for Hölder observables, see also [START_REF] Dinh | Decay of correlations for Hénon maps[END_REF][START_REF] Vigny | Exponential decay of correlations for generic birational maps of P k[END_REF][START_REF] Wu | Exponential mixing property for Hénon-Sibony maps of C k[END_REF]. We consider here the following stronger property. Definition 1.1. Let ν be an invariant measure and (E, • E ) a normed space of real functions on X, with • L r (ν)

• E for all 1 ≤ r < ∞. We say that ν is exponentially mixing of all orders for observables in E if for all κ ∈ N * there exist constants C κ > 0 and 0 < θ κ < 1 such that, for all observables g 0 , . . . , g κ ∈ E and integers 0 =:

n 0 ≤ n 1 ≤ • • • ≤ n κ , we have ν, g 0 (g 1 • f n 1 ) . . . (g κ • f nκ ) - κ j=0 ν, g j ≤ C κ • κ j=0 g j E • θ min 0≤j≤κ-1 (n j+1 -n j ) κ
.

The exponential mixing of all orders is one of the strongest ergodic properties for a dynamical system. It implies a number of statistical properties that seem unattainable without such quantitative control, see for instance [START_REF] Björklund | Central Limit Theorems for group actions which are exponentially mixing of all orders[END_REF][START_REF] Dolgopyat | Multiple Borel Cantelli Lemma in dynamics and MultiLog law for recurrence[END_REF]. It is a main open question if this is implied by the exponential mixing of order 1, see for instance [START_REF] Dolgopyat | Exponential mixing implies Bernoulli[END_REF]Question 1.5]. We established in [START_REF] Bianchi | Every complex Hénon maps is exponential mixing of all orders and satisfies the CLT[END_REF] the exponential mixing of all orders for every complex Hénon map. The following is the main result of this paper.

Theorem 1.2. Let f be a holomorphic automorphism of a compact Kähler manifold (X, ω) with simple action on cohomology. Let d p be its main dynamical degree and δ its auxiliary dynamical degree. Then, for every δ < δ < d p and 0 < γ ≤ 2, the equilibrium probability measure µ of f is exponentially mixing of all orders κ ∈ N * for all C γ observables, with θ κ = (d p /δ ) -(γ/2) κ+1 /2 , see Definition 1.1.

In order to prove Theorem 1.2 we rely on delicate estimates coming from pluripotential theory and on the theory of positive closed currents. We partially follow the strategy in [START_REF] Bianchi | Every complex Hénon maps is exponential mixing of all orders and satisfies the CLT[END_REF], but the absence of plurisubharmonic functions on compact Kähler manifolds makes it not possible to employ a key step developed there. Instead, we rely on the theory of super-potentials for positive closed currents, and on quantitative estimates on the convergence of sufficiently regular positive closed currents towards the Green currents. We will give below an overview of our strategy.

As in [START_REF] Bianchi | Every complex Hénon maps is exponential mixing of all orders and satisfies the CLT[END_REF], the following is a consequence of Theorem 1.2 and [START_REF] Björklund | Central Limit Theorems for group actions which are exponentially mixing of all orders[END_REF]. Recall that u satisfies the Central Limit Theorem (CLT) with variance σ 2 ≥ 0 with respect to µ if n -1/2 (S n (u)n µ, u ) → N (0, σ 2 ) in law, where N (0, σ 2 ) denotes the (possibly degenerate, for σ = 0) Gaussian distribution with mean 0 and variance σ 2 , i.e., for any interval I ⊂ R we have

lim n→∞ ν S n (u) -n µ, u √ n ∈ I =    1 when I is of the form I = (-δ, δ) if σ 2 = 0, 1 √ 2πσ 2 I e -t 2 /(2σ 2 ) dt if σ 2 > 0.
Corollary 1.3. Let f be a holomorphic automorphism of a compact Kähler manifold (X, ω) with simple action on cohomology. Then all Hölder observables u : X → R satisfy the Central Limit Theorem with respect to the measure of maximal entropy µ of f with

σ 2 = n∈Z µ, ũ(ũ • f n ) = lim n→∞ 1 n X (ũ + ũ • f + . . . + ũ • f n-1 ) 2 dµ,
where ũ := u -µ, u .

Let now X be a compact Kähler surface and f an automorphism of positive entropy. By [START_REF] Gromov | On the entropy of holomorphic maps[END_REF][START_REF] Yomdin | Volume growth and entropy[END_REF], the topological entropy is equal to log d 1 , see also [START_REF] Dinh | Regularization of currents and entropy[END_REF]. In particular, d 1 is strictly larger than 1. A result by Cantat [START_REF] Cantat | Dynamique des automorphismes des surfaces K3[END_REF] says that all the eigenvalues of the action of f * on H 1,1 (X, R) have modulus 1, except for two eigenvalues d 1 and 1/d 1 , which have multiplicity 1. In particular, every automorphism of positive entropy of a Kähler surface has simple action on cohomology.

Corollary 1.4. Let f be a holomorphic automorphism of positive entropy on a compact Kähler surface X. Then, for every 1 < d < d 1 and 0 < γ ≤ 2, the equilibrium probability measure µ of f is exponentially mixing of all orders κ ∈ N * for all C γ observables, with θ κ = (d ) -(γ/2) κ+1 /2 , see Definition 1.1. Moreover, all Hölder observables satisfy the Central Limit Theorem with respect to the measure of maximal entropy of f . Strategy of the proof of Theorem 1.2. Using the classical theory of interpolation [START_REF] Triebel | Interpolation theory, Function Spaces, Differential Operators[END_REF], it is enough to prove the theorem in the case where γ = 2. Consider the compact Kähler manifold X := X × X. The automorphism F := (f, f -1 ) of X and its inverse have simple action on cohomology, with the largest dynamical degree being that of order k, which is equal to d 2 p . We can define the main Green currents T + and T -for F as

T + := T + ⊗ T -and T -:= T -⊗ T + . They satisfy (F n ) * (T + ) = d 2 p T + and (F n ) * (T -) = d 2 p T -.
Proving the exponential mixing of order κ for the κ + 1 observables g 0 , . . . , g κ can be reduced to proving the estimate

(1.1) | d -n 1 p (F n 1 /2 ) * [∆] -T -, Θ {g j },{n j } | κ j=0 g j C 2 d -min 0≤j≤κ-1 (n j+1 -n j )/2 ,
where [∆] denotes the current of integration on the diagonal ∆ ⊂ X × X, (z, w) the coordinates on X × X, we set

Θ {g j },{n j } := g 0 (w)g 1 (z)(g 2 • f n 2 -n 1 (z)) . . . (g κ • f nκ-n 1 (z))T + ,
and we assumed for simplicity that n 1 is even.

In the case of Hénon maps, we established in [START_REF] Bianchi | Every complex Hénon maps is exponential mixing of all orders and satisfies the CLT[END_REF] the above convergence by proving that Θ {g j },{n j } can be replaced by suitable currents Θ ± with dd c Θ ± ≥ 0, for which the estimate above can be proved thanks to the properties of plurisubharmonic functions. As non-trivial plurisubharmonic functions do not exist on compact Kähler manifolds, that approach cannot work here. Instead, we use more refined estimates on the regularity of the currents involved. We prove that if Θ {g j },{n j } is Hölder continuous in a precise sense (i.e., when seen as a function on the space of positive exact (k, k)-currents, endowed with a suitable metric), then the convergence (1.1) holds. This is done by exploiting the theory of super-potentials for positive closed currents, as developed by Sibony and the second author.

The main task becomes to prove the Hölder continuity of the current Θ {g j },{n j } . Observe that the estimate needs to be uniform in the n j 's and in the g j 's (assuming g j C 2 ≤ 1 for all j), in order for the implicit constant in (1.1) not to depend on such parameters. Observe also that this problem does not exist when just proving the mixing of order κ = 1, see [START_REF] Dinh | Exponential mixing for automorphisms on compact Kähler manifolds[END_REF]. This is the main technical point of the current paper.

By means of a general comparison principle for the super-potentials of positive closed currents [START_REF] Dinh | Super-potentials, densities of currents and number of periodic points for holomorphic maps[END_REF], we show that it is enough to find a positive closed current Ξ with a Hölder continuous super-potential and such that |dd c Θ {g j },{n j } | ≤ Ξ for all n j and all g j with g j C 2 ≤ 1.

Finding such Ξ and establishing such an estimate rely on the gap between d p and the auxiliary dynamical degree of f and on Hölder estimates for the action on f * on (p + 1, p + 1)-currents, that we also develop in this paper.
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Super-potentials of currents on compact Kähler manifolds

We fix in this section a k-dimensional compact Kähler manifold X and a Kähler form ω on X. For 0 ≤ q ≤ k, we denote by D q (X) the real space generated by positive closed (q, q)currents on X, and by D 0 q (X) the subspace of D q (X) given by the currents whose cohomology class in H q,q (X, R) vanishes. By the ∂ ∂-lemma, this is the set of currents in D q (X) which are ∂ ∂-exact. Since X is fixed, for simplicity in this section we will drop the dependence on X for these spaces and denote them by D q and D 0 q . We set h q := dim H q,q (X, R) and fix a collection α q = (α q,1 , . . . , α q,hq ) of real smooth (q, q)-forms on X such that the family of cohomology classes {α q,j } is a basis for H q,q (X, R). We also choose a collection of smooth real closed (k -q, k -q)-forms αq = (α q,1 , . . . , αq,hq ) which represent a dual basis of α q in H k-q,k-q (X, R) for the Poincaré duality.

Recall that the mass of a positive closed current S ∈ H q,q (X, R) is defined as S := S, ω k-q and it depends only on the cohomology class {S} of S in H q,q (X, R). The norm • * is defined for S ∈ D q as S * := min{ S : |S| ≤ S }. When S is dd c -exact the norm S * is equivalent to the norm given by min S + , where the minimum is taken over all decompositions S = S + -S -with S ± positive closed. Observe that, for each such decomposition, we have S + = S -as a consequence of the equality

{S + } = {S -}. We say that a subset of D q is * -bounded if it is bounded for • * .
Definition 2.1. We say that a sequence S n ∈ D q * -converges to S ∈ D q if S n → S in the sense of currents, and S n * is bounded by a constant independent of n.

Remark 2.2. The convergence is Definition 2.1 defines a topology on D q , which is not the one given by • * . We can also define a topology on D 0 q with the same definition. By [START_REF] Dinh | Regularization of currents and entropy[END_REF], smooth forms are dense in D q and D 0 q with respect to the topology of Definition 2.1.

For any 0 < l < ∞, denote by • C l the standard C l norm on the space of differential forms. We consider a norm • C -l and a distance dist l on D q defined by

S C -l := sup Φ C l ≤1 | S, Φ | and dist l (S, S ) := S -S C -l ,
where the supremum in the first definition is on smooth (k -q, k -q)-forms Φ on X. Observe that, by interpolation [START_REF] Triebel | Interpolation theory, Function Spaces, Differential Operators[END_REF], for every 0 < l < l < ∞ and m > 0, we have

(2.1) S C -l ≤ S C -l ≤ c l,l ,m S l/l C -l
for all S such that S * ≤ m, for some positive constant c l,l ,m . In particular, the above inequalities imply that

dist l ≤ dist l ≤ c l,l ,m (dist l ) l/l on {S ∈ D p : S * ≤ m/2}.
We now recall the notion of super-potential for currents in D q , see [START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF]. This notion generalizes that of potentials for (1, 1)-positive closed currents on X, which are the quasi-plurisubharmonic functions on X. Super-potentials of a current S ∈ D q that we use here are functions, depending linearly on S, and defined on a subset of

D 0 k-q+1 1 . Take R ∈ D 0 k-q+1 . As {R} = 0, we have R = dd c U R for some (k -q, k -q)-current U R
, that we call a potential of R. By adding to U R a suitable combination of the αq,j 's, one can assume that U R is α q -normalized, i.e., that U R , α q,j = 0 for all 1 ≤ j ≤ h q . The α q -normalized super-potential U S of S is defined as

(2.2) U S (R) := S, U R
whenever the RHS of the above expression is well-defined. This is the case for instance when S is smooth or when R is smooth and we choose U R smooth.

Lemma 2.3. Let S, R, U R be as above and such that either R or S is smooth.

(i) The α q -normalized super-potential U S of S does not depend on the choice of the α qnormalized potential U R ; in particular, it does not depend on the choice of the αq,j 's;

(ii) If {S} = 0, then U S does not depend on the choice of α q .

(iii) If S is a linear combination of the α q,j 's, then the α q -normalized super-potential U S of S vanishes identically on D 0 k-q+1 . Proof. (i) Let U R and U R be two α q -normalized potentials of R. As dd c (U R -U R ) = R -R = 0, by Poincaré duality and the ∂ ∂-lemma the class {U R -U R } ∈ H k-q,k-q (X, R) is well defined and S, U R -U R only depends on the cohomology class of S. Since both U R and U R are α q -normalized, the cup-products of such class with all the classes {α q,j } are equal to 0. As the {α q,j }'s form a basis of H q,q (X, R), it follows that S, U R -U R = 0, as required.

(ii) As {S} = 0, we have S = dd c U S for some (q -1, q -1)-current U S . For any potential V R of R, non necessarily α q -normalized, we have

(2.3) S, V R = dd c U S , V R = U S , dd c V R = U S , R .
In particular, the first term of the above expression does not depend on the choice of V R , as this is the case for the last term. The assertion follows.

(iii) By definition, we have U R , α q,j = 0 for all j. As S is a linear combination of the α q,j 's, we have U S (R) = S, U R = 0. The assertion follows.

Remark 2.4. Observe that, on the other hand, the value S, U R and, by consequence, the α q -normalized super-potential U S of S, depend on α q when S is not exact. Definition 2.5. We say that S ∈ D q has a continuous super-potential if U S extends continuously to D 0 k-q+1 , with respect to the topology given by Definition 2.1. We also use the notation U S for the extended super-potential in this case.

Proposition 2.6. Take q, q with q + q ≤ k, S ∈ D q , S ∈ D q , and R ∈ D 0 k-q+1 . (i) If S is smooth, then it has a continuous α q -normalized super-potential for every choice of α q ; (ii) If S has a continuous α q -normalized super-potential, it also has continuous α q -normalized super-potentials for every other normalization α q = (α q,1 , . . . , α q,hq ). (iii) If S belongs to D 0 q and has continuous super-potentials and R is smooth we have

U S (R) = U R (S),
where U R is the super-potential of R (which is also independent of the choice of the normalization); (iv) If S has continuous super-potentials, then the current S ∧S is well defined and depends continuously on S.

In particular, by the third item, for every R ∈ D 0 k-q+1 we can define U R (S) := U S (R).

when S ∈ D 0 q has a continuous super-potential. Proof. (i) This is clear from the definition of the super-potential U S .

(ii) By (i) we can add to S a smooth closed form. This does not change the problem. So, we can assume that {S} = 0. By Lemma 2.3(ii), U S is independent of the normalization. The assertion follows.

(iii) Since R is smooth, the RHS in (2.2) is well defined for every S ∈ D 0 p . As {S} = 0, by Lemma 2.3(ii), U S does not depend on the normalization and (2.3) holds. As the last term of that expression is equal to U R (S), the assertion follows.

(iv) This is a consequence of [START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF]Theorem 3.3.2]. Definition 2.7. Take S ∈ D q . For l > 0, 0 < λ ≤ 1, and M ≥ 0, we say that a super-potential U S of S is (l, λ, M )-Hölder continuous if it is continuous and we have

|U S (R)| ≤ M R λ C -l for every R ∈ D 0 k-q+1 with R * ≤ 1.
Lemma 2.8. Take S ∈ D q and R, R ∈ D 0 k-q+1 with R * ≤ 1 and R * ≤ 1. (i) If S is smooth, then the α q -normalized super-potential U S of S is (2, 1, M )-Hölder continuous with M ≤ c S C 2 for some constant c > 0 independent of S (but possibly depending on α q ). (ii) If S has an (l, λ, M )-Hölder continuous α q -normalized super-potential U S , then

|U S (R) -U S (R )| ≤ 2 1-λ M R -R λ C -l .
In particular, U S can be seen as a Hölder continuous function on {R ∈ D 0 k-q+1 : R * ≤ 1}. (iii) If S has an (l, λ, M )-Hölder continuous α q -normalized super-potential U S , then it also has (l, λ, M )-Hölder continuous α q -normalized super-potentials for every choice of α q and for some M independent of S.

Proof. (i) By Lemma 2.3(iii), we can add to S a combination of the α q,j 's and assume that {S} = 0. By Lemma 2.3(ii), we have U S (R) = U S , R , where U S is a smooth potential of S.

The assertion is now clear.

(ii) As R -R ∈ D 0 k-q+1 and R -R * ≤ 2, the assertion follows from Definition 2.7 applied with (R -R )/2 instead of R.

(iii) As in Proposition 2.6(ii), by (i) we can assume that {S} = 0. The assertion now follows from Lemma 2.3(ii). Proposition 2.9. Take q, q with q + q ≤ k. Let α q , α q , α q+q be as above and take S, T ∈ D q and S ∈ D q with S * ≤ 1, T * ≤ 1, and S * ≤ 1. Assume that the α q -normalized superpotential U S of S is (l, λ, M )-Hölder continuous and that the α q -normalized super-potential U S of S is (l , λ , M )-Hölder continuous.

(i) For every l 1 > 0, U S is (l 1 , λ 1 , M 1 )-Hölder continuous, for some λ 1 and M 1 depending on l, l 1 , λ, M , and α q , but independent of S. (ii) If S, T are positive and T ≤ S, then any α q -normalized super-potential U T of T is (2, λ 1 , M 1 )-Hölder continuous, for some λ 1 and M 1 depending on l, λ, M , and α q , but independent of S and T . (iii) S ∧ S has a (2, λ 1 , M 1 )-Hölder continuous α q+q -normalized super-potential, for some λ 1 and M 1 depending on l, l , λ, λ , M , M , α q , α q , and α q+q , but independent of S and S .

Proof. The first assertion is a consequence of (2.1). The second one is a consequence of [START_REF] Dinh | Super-potentials, densities of currents and number of periodic points for holomorphic maps[END_REF]Theorem 1.1] and the first one. The third assertion is a consequence of [14, Proposition 3.4.2] and the first one.

Dynamical Green currents

We keep in this section the notations of Section 2.

3.1. Convergence towards Green currents. We fix here an automorphism f of X with simple action on cohomology. We let p be such that d p is the largest dynamical degree of f , and let δ be its auxiliary degree. We also fix δ such that δ < δ < d p . By assumption, the eigenspace associated to the eigenvalue d p of the action of f * on H p,p (X, R) is a real line H + . A Green (p, p)-current T + of f is a non-zero positive closed (p, p)-current invariant under d -1 p f * , i.e., satisfying f * (T + ) = d p T + . The cohomology class {T + } generates H + . Lemma 3.1. Let f , d p , T + , α p be as above.

(i) T + is the unique positive closed (p, p)-current in {T + }, and it has a (2, λ, M )-Hölder continuous α p -normalized super-potential for some λ and M . (ii) For every S ∈ D p we have d -n p (f n ) * S → sT + . Here the constant s depends linearly on {S}. More precisely, s is the constant such that that d -n p (f n ) * {S} → s{T + }.

Proof. (i) The first assertion is a consequence of [14, Theorem 4.2.1] and Proposition 2.9(i).

(ii) As f has simple action on cohomology, there exists a constant s such that d -n p (f n ) * {S} → s{T + }. It is clear that the constant s depends linearly on S. When S ≥ 0 the statement follows from (i). The general case follows by linearity.

As the inverse f -1 of any automorphism with simple action on cohomology satisfies the same property, the above also holds for the automorphism f -1 . Since (f -1 ) * = f * , by Poincaré duality, we have d q (f ) = d k-q (f -1 ) for all 0 ≤ q ≤ k. Hence, the main dynamical degree of f -1 is equal to the one of f and is the dynamical degree of order k -p of f -1 . The eigenspace associated to this eigenvalue for the action of andwe have d -n p (f n ) * S → sT -for every S ∈ D k-p , where the constant s depends linearly on {S}.

f * on H k-p,k-p (X, R) is a real line H -. A Green (k -p, k -p)-current T -of f is a non-zero positive closed (k -p, k -p)-current invariant under d -1 p f * , i.e., satisfying f * (T -) = d p T -. The cohomology class {T -} generates H -, T -is the unique positive closed (k -p, k -p)-current in {T -},
Note that the currents T + and T -are unique up to multiplicative constants. We choose T + and T -such that the positive measure T + ∧ T -is of mass 1. This is then the unique measure of maximal entropy of f , see [START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF] for details.

The following result gives a quantitative description of the convergences above, see [START_REF] Dinh | Exponential mixing for automorphisms on compact Kähler manifolds[END_REF]Proposition 3.1]. Note that the independence of the constant c from S is given in [15, Proposition 2.1]. Proposition 3.2. Let f , d p , δ be as above and S be a current in D p with S * ≤ 1. Let s be the constant such that d -n p (f n ) * (S) converge to sT + . Let R be a current in D 0 k-p+1 with R * ≤ 1 and whose α k-p+1 -normalized super-potential U R is (2, λ, 1)-Hölder continuous for some λ > 0. Let U T + and U n be the α p -normalized super-potentials of T + and d -n p (f n ) * (S), respectively. Then

|U n (R) -sU T + (R)| ≤ c(d p /δ ) -n
, where c > 0 is a constant independent of R, S, s, and n.

In particular, we will need the following consequence of the above result, see also Taflin [START_REF] Taflin | Dynamique des endomorphismes holomorphes de l'espace projectif[END_REF]Theorem 3.7.1] for a similar result in the case where p = 1.

Corollary 3.3. Let f , d p , δ be as above and S be a current in D p with S * ≤ 1 and such that d -n p (f n ) * (S) → 0. Let ξ be a (k -p, k -p)-current with dd c ξ * ≤ 1 and such that the superpotential U dd c ξ of dd c ξ (which is independent of the normalization) is (2, λ, 1)-Hölder continuous for some λ > 0. Assume that either S or ξ is smooth. Then

| d -n p (f n ) * (S), ξ | ≤ c(d p /δ ) -n
, where c > 0 is a constant independent of R, S, and n.

Observe that, since either S or ξ is smooth, the pairing in the statement is well defined.

Proof. We first consider the case where S is exact. Recall that, in this case, the super-potential of S is independent of the normalization. As we have {(f n ) * (S)} = (f n ) * {S} = 0, the same is true for the super-potential of (f n ) * (S) for all n ∈ N.

Setting S n := d -n p (f n ) * (S), we then have | S n , ξ | = |U Sn (dd c ξ)|.
By the assumptions on ξ, we can apply Proposition 3.2 with dd c ξ instead of R and s = 0. The assertion in this case follows.

Let us now consider the general case. Observe that d -n p (f n ) * {S} → 0. So, the set of the classes {S} of the currents S ∈ D p with this property is an hyperplane H ⊂ H p,p (X, R), which is a complement of the line generated by {T + } and is invariant under the action of f * . For simplicity, denoting by h the dimension of H p,p (X, R), we let α 1 , . . . , α h-1 be real smooth (p, p)forms such that {α 1 }, . . . , {α h-1 } form a basis for H, and α h be a smooth form in the class of T + . We will consider α-normalized super-potentials of currents in D p , with α = (α 1 , . . . , α h ). We also fix α = (α 1 , . . . , αh ) a dual basis of α. As {S} ∈ H, we have

S = a 1 α 1 + • • • + a h-1 α h-1 + S
for some S ∈ D 0 p and a j ∈ R. By the first part of the proof applied to S , it is enough to prove the statement for S := h-1 j=1 a j α j instead of S. Observe, in particular, that S is smooth and that the α-normalized super-potential U S of S satisfies U S = 0 by Lemma 2.3(iii).

Denote S n := d -n p (f n ) * (S ). We have

S n = h j=1 c n,j α j + dd c V n ,
where the c n,j are defined by {S n } = h j=1 c n,j {α j } and the (p -1, p -1)-current V n is chosen so that V n , αj = 0 for all 1 ≤ j ≤ h. Observe that c n,h = 0 for all n because of the invariance of H. It follows that, for any ξ as in the statement, we have

S n , ξ = h-1 j=1 c n,j α j , ξ + dd c V n , ξ = h-1 j=1 c n,j α j , ξ + U S n (dd c ξ),
where U S n is the α-normalized super-potential of S n . By the assumptions on ξ and Proposition 3.2 applied with dd c ξ instead of R and with s = 0, we have

|U S n (dd c ξ)| (d p /δ ) -n . Hence, it is enough to prove that, for all 1 ≤ j ≤ h -1, we have |c n,j | (d p /δ ) -n .
Let A be the (h -1) × (h -1) matrix representing f * |H with respect to the basis {α j } 1≤j≤h-1 , i.e., whose j-th column is given by the coordinates of f * {α j } with respect to the given basis. Denoting c n := (c n,1 , . . . , c n,h-1 ) t and a := (a 1 , . . . , a h-1 ) t , we see that

c n = d -n p A n a.
As the spectral radius of the action of f * on H is smaller than δ , we see that A n = o(δ n ). It follows that |c n,j | (δ /d p ) -n , as desired. The assertion follows.

In our study we will also need the case where q = p + 1. It follows from the definition of d p+1 and the fact that d p+1 < d p that d -n p (f n ) * (S) → 0 as n → ∞ for every S ∈ D p+1 . We will need later a more quantitative version of this convergence, for S with Hölder continuous super-potentials. This is given by the next proposition. Recall that we normalize potentials with respect to a given α p+1 = (α p+1,1 , . . . , α p+1,h p+1 ), where h p+1 is the dimension of H p+1,p+1 (X, R). Proposition 3.4. Let f be as above. Take S ∈ D p+1 with S * ≤ 1.

(i)

d -n p (f n ) * S * → 0 as n → ∞; in particular, d -n p (f n ) * S → 0 as n → ∞. (ii) Assume that S has an (l, λ, M )-Hölder continuous α p+1 -normalized super-potential.
Then there exist λ and M independent of S such that, for every n ≥ 0,

d -n p (f n ) * S has a (2, λ , M )-Hölder continuous α p+1 -normalized super-potential.
Proof. The first assertion is a consequence of the inequality d p+1 < d p and of the fact that, for every > 0, we have (f n ) * (S) * ≤ C(d p+1 + ) n S * , where the constant C is independent of S because the mass of a positive closed current only depends on its cohomology class. It remains to prove the second assertion. By Proposition 2.9(i) we can assume that l = 4. Particular case. We first prove the third assertion assuming that S is exact. Recall that, in this case, the super-potentials U S is independent of the normalization, see Lemma 2.3(ii).

Fix R ∈ D 0 k-p with R * ≤ 1 and set S n := d -n p (f n ) * S.
We need to show that

|U Sn (R)| ≤ M R λ C -4
for some λ and M independent of S and R. The assertion is then a consequence of Proposition 2.9(i).

Fix L ≥ max(2, sup Φ C 4 ≤1 f * Φ C 4 )
where the supremum is on smooth (q -1, q -1)-forms Φ on X. As S and R are both exact, by Lemma 2.3(ii) and the definition of super-potential we have

(3.1) |U Sn (R)| = d -n p U S (f n ) * (R) ≤ M d -n p (f n ) * (R) λ C -4 . By Poincaré duality, d -n p (f n ) * (R) * is bounded independently of n. We also have d -n p (f n ) * (R) C -4 = sup Φ C 4 ≤1 d -n p (f n ) * (R), Φ = sup Φ C 4 ≤1 U d -n p (f n ) * (R) (dd c Φ) θ n
for some 0 < θ < 1, where the last step follows from Corollary 3.3 applied with f -1 , R, and Φ instead of f , S, and ξ. Observe that the assumption on dd c ξ in that corollary is satisfied by dd c Φ by Lemma 2.8(i).

Assume first that n ≥ -(2 log L) -1 log R C -4 . In this case, we have

d -n p (f n ) * (R) C -4 θ n ≤ R 1 2 | log θ| log L C -4
.

Together with (3.1), this implies the assumption.

Assume instead that n ≤ -(2 log L) -1 log R C -4 . Observe that this implies that L n R C -4 ≤ R 1/2 C -4 .
Hence, for all such n, we have

d -n p (f n ) * R C -4 ≤ sup Φ C 4 ≤1 d -n p | R, (f n ) * Φ | ≤ d -n p L n R C -4 ≤ d -n p R 1/2 C -4 ,
which also implies the assertion in this case. The proof in the particular case is complete.

General case. We now consider the general case. By the previous part of the proof, and as H p+1,p+1 (X, R) is finite dimensional, it is enough to prove the assertion for any finite family of smooth forms whose classes generate H p+1,p+1 (X, R). Therefore, it is enough to prove the statement for a fixed smooth form S.

Let 1 ≤ m < dim H p+1,p+1 (X, R) be the minimal integer such that {S}, {f * (S)}, . . . , {(f m ) * (S)} are linearly dependent over R, and define a 0 , . . . , a m-1 by the relation

(3.2) {(f m ) * (S)} = a 0 {S} + • • • + a m-1 {(f m-1 ) * (S)}.
Let E be the subspace of H p+1,p+1 (X, R) spanned by {S}, . . . , {(f m-1 ) * (S)}. Then these m classes form a basis B of E. The action of f * |E with respect to the basis B is represented by the m × m matrix

A E :=        0 0 . . . 0 a 0 1 0 . . . 0 a 1 0 1 . . . 0 a 2 . . . . . . . . . . . . . . . 0 0 . . . 1 a m-1       
.

We denote by B E the transpose of A E . Fix 0 < < d p -d p+1 . By the definition of d p+1 , we have

A n E = B n E (d p+1 + ) n = o(d n p ). It follows from (3.2) that U := (f m ) * (S) - m-1 j=0 a j (f j ) * (S)
is an exact form, i.e., it belongs to D 0 p+1 . Since (f j ) * (S), 0 ≤ j ≤ m -1, and U are smooth, they have (l, λ, N )-Hölder continuous α p+1 -normalized super-potentials for some constant N .

For every n ≥ 1, set

W n :=      (f n ) * (S) (f n+1 ) * (S) . . . (f n+m-1 ) * (S)      and U n :=      0 0 . . . (f n ) * (U )     
, where both W n and U n have m components. As W 1 = B E W 0 + U 0 , we obtain by induction that

d -n p W n = d -n p B n E W 0 + d -n p n-1 j=0 B n-j E U j .
As the first component of W n is equal to (f n ) * (S), we need to consider the α p+1 -normalized super-potential of the first component of the RHS of the above expression.

By the above, the currents (f j ) * (S), 0 ≤ j ≤ m -1, have an (l, λ, N )-Hölder continuous α p+1 -normalized super-potential. As

B n E = o(d n p+1
), it follows that the α p+1 -normalized super-potential of every component of d -n p B n E W 0 is (l, λ, M /2)-Hölder continuous, for some M large enough.

In order to prove the assertion, using again that B n-j E = o(d n-j p ), it is enough to show that there exist l , λ , M such that, for every n ≥ 0, U n := d -n p (f n ) * (U ) has a (l , λ , M /2)-Hölder continuous α p+1 -normalized super-potential. As U is exact, this follows from the particular case considered above. This concludes the proof.

3.2.

Further properties of the Green currents. We prove here two lemmas that we will need in the next section in order to apply Proposition 3.2 and Corollary 3.3. As in the previous section, we let f be an automorphism of X with simple action on cohomology, and d p its largest dynamical degree. In particular, the Green current T + has bi-degree (p, p). We also fix a normalization α p+1 := (α p+1,1 , . . . , α p+1,h p+1 ), where h p+1 is the dimension of H p+1,p+1 (X, R). Lemma 3.5. Let f be as above. Let κ ≥ 1 be an integer and g 0 , . . . , g κ : X → R satisfy g j C 2 ≤ 1. Then there is a positive constant c independent of the g j 's such that for all 0 , . . . , κ ≥ 0 we have

dd c (g 0 • f 0 ) . . . (g κ • f κ ) ∧ T + * ≤ c.
Proof. Set gj := g j • f j and notice that i∂g j ∧ ∂g j = (f j ) * (i∂g j ∧ ∂g j ) for all j. We have We deduce from the above inequalities and the invariance of T + that

(3.3) dd c (g 0 • f 0 ) . . . (g κ • f κ ) ∧ T + κ j=0 f j ) * (ω ∧ T + = κ j=0 (f j ) * (ω) ∧ d -j p (f j ) * (T + ) = κ j=0 d -j p (f j ) * ω ∧ T + .
We now use that the (p + 1, p + 1)-current ω ∧ T + is positive and closed. We have

(f j ) * ω ∧ T + = (f j ) * ω ∧ T + , ω k-p-1 = ω ∧ T + , (f j ) * (ω k-p-1 ) ,
where the last form is positive closed. The last pairing only depends on the cohomology classes of ω, T + , and (f j ) * (ω k-p-1 ). Hence, it is bounded by a constant times the mass of (f j ) * (ω k-p-1 ). Since

(f j ) * (ω k-p-1 ) = ω p+1 , (f j ) * (ω k-p-1 ) = (f j ) * (ω p+1 ), ω k-p-1 ,
for all > 0 this number is also equal to (f j ) * (ω p+1 ) (d p+1 + ) n . As d p+1 < d p by assumption, it follows that each term in the last sum in (3.3) is bounded, which implies that the sum is also bounded. The lemma follows.

Lemma 3.6. Let f be as above. Let κ ≥ 1 be an integer and g 0 , . . . , g κ : X → R satisfy g j C 2 ≤ 1. Then there exist constants 0 < λ ≤ 1 and M > 0, independent of the g j 's, such that for all 0 , . . . , κ ≥ 0 the current

dd c (g 0 • f 0 ) . . . (g κ • f κ ) ∧ T + has a (2, λ, M )-Hölder continuous super-potential.
Observe that the current in the statement is exact, hence its super-potential is independent of the normalization.

Proof. We denote the current in the statement by R. It is a real exact (p + 1, p + 1)-current. Recall that, by Proposition 2.9(i), it is enough to show that R has an (l, λ, M )-Hölder continuous super-potential, for some l > 0, 0 < λ ≤ 1, and M > 0 independent of g 0 , . . . , g κ and 0 , . . . , κ . By Proposition 2.9(ii), it is enough to show that there exists a positive closed current V with a (2, λ , M )-Hölder continuous α p+1 -normalized super-potential such that |R| ≤ V . Indeed, this implies that both V + R and V -R are positive, closed, and bounded by 2V . Hence, they have (2, λ , M )-Hölder continuous α p+1 -normalized super-potentials for some constants 0 ≤ λ ≤ 1 and M > 0. It follows that R has a (2, λ , M + M )-Hölder continuous super-potential.

We have already seen in (3.3) that

|dd c g 0 • f 0 ) . . . (g κ • f κ ) ∧ T + | κ j=0 d -j p (f j ) * ω ∧ T + .
In order to prove the assertion, it is then enough to prove that there exist λ and M such that, for every j ≥ 0, the current d -j p (f j ) * ω ∧ T + has a (2, λ , M )-Hölder continuous α p+1normalized super-potential. For j = 0, this follows from Lemma 3.1(i) and Proposition 2.9(iii). Proposition 3.4(ii) implies that that same holds for all j ∈ N. The proof is complete.

Exponential mixing of all orders and Central Limit Theorem

We prove now Theorem 1.2. By interpolation techniques [START_REF] Triebel | Interpolation theory, Function Spaces, Differential Operators[END_REF] as in [9, pp. 262-263], it is enough to prove the statement in the case γ = 2. The statement is clear for κ = 0. By induction, we can assume that the statement holds for up to κ functions and prove it for κ + 1 ≥ 2 functions. In particular, by the induction assumption, we are allowed to add to the g j 's a constant and assume that µ, g j = 0 for all 0 ≤ j ≤ κ. We can also assume that g j C 2 ≤ 1 for all 0 ≤ j ≤ κ. Then, we need to show that µ, g 0 (g 1 • f n 1 ) . . . (g κ • f nκ ) d -min 0≤j≤κ-1 (n j+1 -n j )/2 .

We can also assume that n 1 is even. Indeed, by the invariance of µ, the case where n 1 is odd can be treated similarly by replacing n j with n j -1 for 1 ≤ j ≤ κ and g 0 with g 0 • f -1 .

Consider the automorphism F of the compact Kähler manifold X := X × X given by F (z, w) := (f (z), f -1 (w)). We first show that F -1 = (f -1 , f ) satisfies the assumptions of Proposition 3.2 and Corollary 3.3. Recall that δ is the auxiliary degree of f and that by assumption we have δ < d p .

Lemma 4.1. The automorphisms F and F -1 of X have simple action on cohomology. More precisely, the dynamical degrees of order k of F and F -1 are equal to d p (f ) 2 , they are eigenvalues of multiplicity one of both F * and F * acting on H k,k (X, C), and all the other dynamical degrees of F and F -1 , as well as the other eigenvalues of F * and F * on H k,k (X, C), have modulus smaller than or equal to d p • δ.

Proof. By Künneth formula [START_REF] Voisin | Théorie de Hodge et géomérie algébrique complexe[END_REF]Theorem 11.38], for every 0 ≤ q ≤ k we have a canonical isomorphism H q,q (X × X, C) = s+r=q H s,r (X, C) ⊗ H r,s (X, C).

The operators F * and F * preserve the above decomposition. By [START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF], the spectral radius of f * on H r,s (X, C) is (equal to the spectral radius of f * on H k-r,k-s (X, C) and) smaller than or equal to √ d r d s . The assertion follows from the fact that f and f -1 have simple actions on cohomology and the definitions of p and δ.

In this section, we will denote by T ± the Green currents of f and by T ± the Green currents of F . More precisely, we fix Green currents T ± for f (they are unique up to a multiplicative constant) such that µ = T + ∧ T -and we set Set h := g 1 (g 2 • f n 2 -n 1 ) . . . (g κ • f nκ-n 1 ). Recalling that µ, g 0 = 0 and that g j C 2 ≤ 1, by the induction hypothesis it is enough to show that µ, g 0 (h

• f n 1 ) d -n 1 /2 p .
We denote by (z, w) the coordinates on X = X × X and we set Ψ(z, w) := g 0 (w)h(z).

Lemma 4.2. The following assertions hold: (i) dd c Ψ ∧ T + * ≤ c;

(ii) dd c Ψ ∧ T + has a (2, λ, M )-Hölder continuous super-potential, where c, λ, and M are positive constants depending on κ, but not on the g j 's and the n j 's.

Proof. The two assertions are consequences of Lemmas 3.5 and 3.6 applied to F : X → X, respectively. Here, we use the functions g0 (z, w) := g 0 (w) and gj (z, w) := g j (z) for j ≥ 1, and the integers 0 := 0, 1 := 0, and j := n j+1 -n j for j ≥ 2.

Remark 4.4. The rate of mixing in Theorem 1.2 can be improved by considering F := (f l , f -m ) instead of F , for suitable positive integers l and m, see for instance [START_REF] Dinh | Exponential mixing for automorphisms on compact Kähler manifolds[END_REF]Remark 4.1].

  Since g j C 2 ≤ 1 we have |g j | ≤ 1 and |dd c g j | ω. Then ) * (ω) and an application of Cauchy-Schwarz inequality gives 0≤j =l≤κ i∂g j ∧ ∂g l m =j,l gm κ j=0 i∂g j ∧ ∂g j κ j=0 (f j ) * (ω).

T

  + = T + ⊗ T -and T -= T -⊗ T + , see [18, Section 4.1.8] for the tensor (or cartesian) product of currents. Since f * (T + ) = d p T + and f * (T -) = d p T -, we have F * (T + ) = d 2 p T + and F * (T -) = d 2 p T -.

Super-potentials can be defined on a subset of D k-q+1 , but it is simpler to use D 0 k-q+1 , and we will only need this definition in this paper.

End of the proof of Theorem 1.2. Recall that we are assuming that n 1 is even. By the invariance of µ, we see that µ, g 0 (h

) . We first transform the above integral on X to an integral on X by means of the map F . Namely, using the invariance of T + , we have

Observe, in particular, that the wedge product [∆] ∧ T + is well defined by Proposition 2.6(iv).

Proof. By Lemma 4.1, F -1 has simple action on cohomology and its main dynamical degree is that of order k, which is equal to

Hence, we only need to show that s = 1. We have

On the other hand, by the invariance of T + , for every n ∈ N we also have

The assertion follows.

We will apply the results of Sections 2 and 3 to the automorphism F -1 of X. In order to do this, for simplicity, we let h be the dimension of H k,k (X, R) and we fix a collection α := (α 1 , . . . , α h ) of real smooth (k, k)-forms on X with the property that {α 1 } = {T -} and {α 2 }, . . . , {α h } are a basis for the F * -invariant hyperplane in H k,k (X, R) transversal to the line generated by {T -}. In the following, we only consider α-normalized super-potentials for currents in D k (X). By Lemma 4.2, the current R := dd c Ψ ∧ T + satisfies R * 1 and has a (2, λ, M )-Hölder continuous potential U R , for some 0 < λ ≤ 1 and M > 0 independent of the g j 's and n j 's. By linearity, up to multiplying g 0 by a constant, we can assume that R * ≤ 1 and that U R is (2, λ, 1)-Hölder continuous, for some 0 < λ ≤ 1. Recall that δ < δ < d p . By Lemmas 4.1 and 4.3, we can apply Corollary 3.3 with F -1 , ΨT + , and n 1 /2 instead of f , ξ, and n, and get that, for all smooth S ∈ D k (X) such that d -2n p (F n ) * (S) → 0, we have

Let now S be a regularization of [∆] -T -, with S → [∆]

-T -as → 0 and S * bounded [START_REF] Dinh | Regularization of currents and entropy[END_REF]. We can also add to S a small smooth form so that {S } = {[∆] -T -}. We apply the above inequality with S instead of S and take → 0. It follows from Proposition 2.6(iv) and Lemma 4.2 that (4.2)

Combining (4.1) and (4.2) and using the invariance of T -we obtain that µ, (g 0

To conclude, it is enough to show that T -, ΨT + = 0. As µ, g 0 = 0, we have

The proof is complete.
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