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Abstract
LIG, CNRS

Université Grenoble Alpes

Automatic Speech Recognition for less-studied languages:
Exploring Machine Learning perspectives for electroglottographic signals

by Minh-Châu NGUYÊN

Studying and preserving under-resourced and endangered languages, for which few resources are avail-
able, is an arduous endeavour, which involves tremendously time-consuming tasks. In addition, for
best results down the line (when the datasets are exploited for a variety of purposes), consistency in
annotation work is highly desirable, but not easy to ensure in a manual workflow. High hopes are placed
in innovative uses of speech recognition tools to facilitate and accelerate linguistic tasks.

Automatic Speech Recognition (ASR) is making remarkable progress thanks to the advent of deep neural
networks (DNNs). A breakthrough is now possible: machine learning tools have improved to a point
where they can effectively help to perform linguistic annotation tasks such as automatic transcription
of audio recordings, automatic glossing of texts, and automatic word discovery. However, beyond
that, there exists a considerable space for computer-assisted exploration and analysis of phonetic and
phonological properties of languages. In this context, we attempt to explore the applicability of a neural
network for phonetic/phonological analysis of an audio and electroglottographic corpus that has been
previously processed manually. The objective of this work is to test the capabilities of neural networks
to learn and reproduce specific strategies and principles for the estimation and manual verification of
two phonetic parameters, namely fundamental frequency and glottal open quotient, which are acoustic
correlates of pitch and phonation type (both of which constitute relevant dimensions of linguistic tone in
the target language). In order to evaluate this learning process, a comparison of automatic and manual
results is carried out.

This pilot study uses a recently collected and manually analyzed corpus1 of the Kim Thuong dialect of
Muong, a Vietic language that has a phonetically complex tonal in which one tone involves a lapse into
creaky voice (M.-C. Nguyen, 2021). The acoustic and electroglottographic signals were recorded simul-
taneously. The manual annotation was based on the acoustic signal. The measurement of fundamental
frequency and glottal open quotient was based on peak detection on the derivative of electroglotto-
graphic signal (also known as the DEGG signal) using the semi-automatic Peakdet script running on
Matlab. Data from twenty speakers with twelve minimal sets plus three minimal pairs recorded within
a carrier sentence amount to a total of five hours of recordings (an average of 18 minutes per speaker).

The results point to the presence of confounders, which (paradoxically) include the use of a carrier
sentence: placing the target items in the same phonetic context stabilizes their tonal realizations, but
the artificial neural network is biased towards easier predictions. But analysis of the results has benefits
for being more explicit on the goals of analysis of electroglottographic signals, offering pointers for
further work.

Keywords: language documentation, unwritten language, natural language processing, machine learn-
ing, neural networks, phonation types, creaky voice

1The corpus is available from the Pangloss Collection at https://pangloss.cnrs.fr/corpus/Mường under a Creative
Commons license (CC BY-NC-SA 3.0 fr).
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Chapter 1

Introduction

1.1 Context: “Computational Language Documentation by 2025”

The work reported here was carried out within the framework of the research project entitled “Computa-
tional Language Documentation by 2025” (hereafter, the CLD2025 project). The main objective of the
CLD2025 project is to facilitate the urgent task of documenting endangered languages by leveraging the
potential of computational methods. To recapitulate the core argument of the project application: until
a decade ago, attempts at using Automatic Speech Recognition for low-resource languages (including
newly documented languages) yielded modest results: there were interesting developments, but practical
usefulness remained limited, and deployment as part of language workers’ workflows still appeared as a
prospect for the future (Besacier et al., 2014; Do, Michaud, and Castelli, 2014). A breakthrough is now
possible: machine learning tools (such as artificial neural networks and Bayesian models) have improved
to a point where they can effectively help to perform linguistic annotation tasks such as automatic tran-
scription of audio recordings, automatic glossing of texts, and automatic word discovery (Thieberger,
2017; Michaud, Adams, Cohn, et al., 2018; Anastasopoulos et al., 2020). Significant achievements
in this space include Partanen, Hämäläinen, and Klooster (2020), Prud’hommeaux et al. (2021), Liu,
Spence, and Prud’hommeaux (2022), Macaire et al. (2022), and Rodríguez and Cox (2023).

The CLD 2025 project, “Computational Language Documentation by 2025”, is organized in six work
packages. The present task contributes to the second work package: “Semi-automatic tonal models”,
which aims at designing workflows involving automatic speech recognition tools to supersede purely
manual workflows. In other words, the ultimate goal here is to contribute to the implementation of
processing chains for the documentation of low-resource languages, which integrate automatic speech
recognition tools.

Beyond the staple tasks of Natural Language Processing, there exists a considerable space for computer-
assisted exploration and analysis of phonetic and phonological properties of languages. New strands of
interdisciplinary research include linguistic reflections based on error analysis: reflecting on unexpected
output from NLP tools, which offer a fresh perspective on the data (see e.g. Michaud, Adams, Cox,
et al. 2020). Another strand consists in using machine-learning-assisted analysis of signals to obtain
phonetic parameters to explore the phonetic and phonological characteristics of a language or dialect.
The present work therefore aims to contribute to these new and challenging approaches.

9
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1.2 Goals

A first-level goal of the present investigation is to automate the extraction of the glottal open quotient
from electroglottographic recordings (some details on this technique will be provided in section 1.3).
That is a time-consuming annotation task which requires a certain degree of expertise. Based on my
experience of linguistic fieldwork, I concur with the observation that computer-assisted work is highly
desirable over fully manual workflows. In this respect, the annotation of electroglottographic signals
is similar to standard tasks in Natural Language Processing, such as speech recognition, translation,
and glossing. Manual annotation and semi-automatic analysis of electroglottographic signals using the
PeakDet tool (as described in M.-C. Nguyen 2021, pp. 99–110) took me roughly 15 months to carry
out for the data of 20 speakers. The recording duration for each speaker’s data is just about 15 minutes,
and the corpus has a simple structure: the 66 target syllables were embedded inside a carrier sentence
(details are provided in Chapter 2 below). Performing the same work on a corpus of spontaneous speech
would be even more complex and tedious in view of the well-documented variability of spontaneous
speech. Moreover, workflows based on manual decisions are not technically reproducible, raising thorny
epistemological issues. It would clearly not be desirable for electroglottographic analysis to become a
craft proudly performed by a guild of experts on the rather vague basis of personal experience. Such a
situation would be reminiscent of the problem with Cardinal Vowels, for which the ultimate reference
was personal instruction from Daniel Jones... and notable variation is found from one generation of
students to the next, defeating the purpose of this set of reference vowels (Vaissière, 2011).

Conversely, under the hypothesis (which, as we shall see below, was clearly over-optimistic) that a model
could be trained to replicate the task of analysis of the electroglottographic signal, then the entire set
of available (open-access) electroglottographic recordings on a range of typologically diverse languages
could be processed in a consistent and reproducible manner, opening new avenues for the cross-linguistic
study of phonation types in human speech, in full-reproducibility mode – a highly desirable development
for the field of speech sciences (Kobrock et al., 2023).

My contribution consisted in: (i) preparing and managing linguistic data for statistical processing and
for a pilot study on the application of a neural network for the estimation of the glottal open quotient;
(ii) writing this technical report as a reference for linguists (non-computer scientists) in approaching
and applying machine learning tools to data processing and archiving.

The work was carried out at LIG (Laboratoire d’Informatique de Grenoble, UMR 5217), under the joint
supervision of a linguist, Solange Rossato, and a computer scientist, Maximin Coavoux (in collaboration
with Alexis Michaud, from LACITO, UMR 7107).

1.3 Electroglottography: principles, analysis methods, and prospects
for automation of analysis processes

In this section, we present a short introduction to the collection and analysis of electroglottographic data.
The technical explanations here aim to summarize the underlying principles of electroglottography, and
the ways in which electroglottographic signals can be used in research. This part is crucially important
because the linguist must communicate well with the computer scientist who will take over the data
to train them in the neural network. The more precise and elaborate explanation is provided about the
data and its usefulness to research, the better a computer scientist can understand the targets of the
task and come up with solutions for automation. As an example: among the limitations acknowledged
in Section 3.4, we will discuss an instance of misleading communication on my part that affected the

CC BY-SA 3.0 fr page 10
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outcome of the study.

1.3.1 Principles

The electroglottographic signal provides an estimate of variation in the contact area between the two
vocal folds. Electroglottography (often abbreviated to EGG) was invented by Fabre in the mid-20th
century. The initial report about the invention Fabre (1957) was followed by further studies by the same
author over the following years (Fabre, 1958; Fabre, 1959; Fabre, 1961), initiating strands of research
that are still active to this day.

Electroglottography is a common, widespread technique that enables the investigation
of vocal-fold contact area in phonation in an easy and noninvasive way. A high frequency
modulated current (F = 1 MHz) is sent through the neck of the subject. Between the
electrodes, electrical admittance varies with the vibratory movements of the vocal folds,
increasing as the vocal folds increase in contact. (Henrich et al., 2004, p. 1321)

The EGG signal is a continuous signal, like the audio signal. It can therefore be stored in the same
format as the audio, and displayed with the same tools.

1.3.2 Methods to analyze the electroglottographic signal

In the previous manual/semi-automatic processing, the method chosen for analysis of the electroglot-
tographic signal uses its derivative signal (dEGG). Glottis-closure instants are approximated through
detection of positive peaks in the first derivative of the signal, and glottis-opening instants through
detection of negative peaks in-between the positive peaks.

This method is set out in full by Henrich et al. (2004). Henrich’s paper goes into technical detail
concerning the four main phases of a glottal cycle: (i) closing phase, (ii) closed phase, (iii) opening
phase, and (iv) open phase. Increase in vocal fold contact area is reflected by the closing phase (itself
followed by the closed phase) in the electroglottographic signal, and the moment of fastest increase in
vocal fold contact area corresponds to the glottis-closure instant. Decrease in vocal fold contact area
begins during the closed phase, and continues into the opening phase; the moment of fastest decrease
in vocal fold contact area is the glottis-opening instant.

But the correspondence between these four main phases, on the one hand, and detectable events on the
electroglottographic signal, on the other hand, is not easy to establish. Instead, the electroglottographic
signal corresponding to one glottal cycle can be divided into two portions only, as shown on Figure 1.1.
These two portions are named closed phase and open phase of the vocal-fold vibratory cycle, and defined
as follows: the closed phase extends from a glottis-closure instant to the next glottis-opening instant;
and the rest of the cycle is the open phase (for a more detailed description, see Henrich et al. 2004,
pp. 1321–1322, as well as Childers and Krishnamurthy 1984, Colton and Conture 1990, Orlikoff 1998.)

The derivative of the electroglottographic signal (dEGG) signal typically has a positive peak at glottis
closure and a negative peak at glottis opening. Figure 1.1 illustrates visually a synchronization of
EGG and dEGG signals. In the case of clear signals, one closing peak is clearly visible for each cycle,
corresponding to the peak increase in vocal fold contact area and considered as the beginning of the
glottal closed phase, and one (less salient) opening peak, corresponding to a peak in the decrease in vocal
fold contact area and considered as the beginning of the glottal open phase. These peaks in the dEGG

CC BY-SA 3.0 fr page 11
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Figure 1.1: Example of EGG and dEGG signals with indication of glottis closure and opening. Repro-
duced with permission from the author, Alexis Michaud.

signal serve as the basis for estimating glottal parameters. The most well-known parameter is speech
fundamental frequency (f0). The glottal open quotient is less well-known among linguists, as it cannot
be easily estimated from the audio signal only, but it is used in many linguistic studies of phonation types
and tones: see in particular Michaud (2004b), Brunelle, Nguyên, and K. H. Nguyen (2010), Abramson,
Tiede, and Luangthongkum (2015), Brunelle, Tấn, et al. (2020), and Kirby, Pittayaporn, and Brunelle
(2022). Additionally, the amplitude of the closing peak (Derivative-Electroglottographic Closure Peak
Amplitude, abbreviated as DECPA) can be measured from the dEGG signal (Michaud, 2004a; Kuang
and Keating, 2014); it is not presented and not studied here because the relationship of this parameter
to phonation types is still not well established.

Fundamental frequency (f0, unit: Hz) is the inverse of the glottal period (i.e. the inverse of glottal
cycle duration). Specifically, f0 dEGG is obtained by measuring the duration between two consecutive
glottal closing instants, corresponding to a period (one glottal cycle). The inverse of the duration of
the cycle yields the fundamental frequency of the voice (the formula is simple: F = 1 / T). The values
of f0 have pitch as their perceptual counterpart: low f0 is heard as low pitch, and high f0 as high pitch.

Glottal open quotient (Oq, unit: %). Measurement of Oq dEGG requires measurement of the duration
of the glottal cycle, plus the detection of the glottal opening instant. This allows for computing the
glottis-open interval; the open quotient is the ratio of the open-glottis interval to the entire cycle (the
ratio between open time and fundamental period). This can be stated as the following equation: Oq =
(Open phase) / (Open phase+Closed phase). Oq is a parameter that relates to phonation types: low
Oq demonstrates pressed phonation; medium Oq reflects modal phonation; and high Oq reflects flow
phonation (whispery voice, shading into breathy voice). This relates to the following observation:

There might be a continuum of phonation types, defined in terms of the aperture between
the arytenoid cartilages, ranging from voiceless (furthest apart), through breathy voiced,
to regular, modal voicing, and then on through creaky voice to glottal closure (closest
together). This continuum is depicted schematically in Figure 1.2. (Gordon and Ladefoged,
2001, p. 384)

CC BY-SA 3.0 fr page 12
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A strong motivation for adopting the dEGG method for estimating Oq is comparability across studies.
This method is fairly widely used in phonetic studies of phonation types published since Nathalie Hen-
rich’s methodological article (Michaud, Vu-Ngoc, et al. 2006; Mazaudon and Michaud 2008; Gao 2016,
among others), and also in various other phonetic studies (e.g. Recasens and Mira 2013). The use of
similar algorithms facilitates comparison across studies, and hence across languages as well as across
speakers and across datasets.

Moreover, the dEGG method is grounded in explicit assumptions that relate to physiological observations
in a way which, although not simple and straightforward, is intuitively clear.

1.3.3 Criticism of estimation of the glottal open quotient by electroglottography

Estimation of the glottal open quotient by electroglottography has come under criticism, which it appears
useful to review here.

In a review article entitled “Electroglottography – an update”, Herbst (2020) recapitulates important
caveats about the interpretation of the electroglottographic signal. Some of them are well-known:
“Vocal fold vibration, a complex phenomenon taking place in three spatial dimensions, is mapped onto
a single time-varying value” (Herbst, 2020, p. 4). It needs to be borne in mind that electroglottography
provides a linear insight into phenomena that are not linear, and thus only offers glimpses into complex
phenomena, which ideally need to be addressed through an array of exploratory techniques: a multisensor
platform (Vaissière et al., 2010).

But Herbst’s criticism cuts deeper. He questions the assumption that underpins the method employed
here: that peaks on the derivative of the EGG signal provide reliable estimates of the timing of glottis-
closure instants. Reviewing recent studies, he considers that they “strongly suggest that positive and
negative dEGG peaks do not necessarily precisely coincide with GCI (i.e. glottis closing instant) and
GOI (i.e. glottis opening instant), a notion that was already put forward by Childers and Lee, who
maintained that the EGG signal may not provide an exact indication for the instant of glottal closure”
(Herbst, 2020, p. 7). As emphasized by Hampala et al. (2016), “any quantitative and statistical data
derived from EGG should be interpreted cautiously, allowing for potential deviations from true VFCA
[Vocal Fold Contact Area]”. The criticism is then extended to the very notions of glottis-closure instant
and glottis-opening instant: “vocal fold contacting and de-contacting (as measured by EGG) actually do
not occur at infinitesimally small instants of time, but extend over a certain interval, particularly under
the influence of anterior-posterior (...) and inferior-superior phase differences of vocal fold vibration”
(Herbst 2020, p. 7; emphasis in original).

From a theoretical point of view, there may be a slight confusion here, as surely no one among users of

Figure 1.2: Continuum of phonation types (Reproduced from Gordon and Ladefoged, 2001, p. 384).
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the method of estimating f0 and Oq by means of peaks on the dEGG signal believes that glottal activity
consists of instantaneous events of glottis closing and opening. The notions of glottis-closure instant and
glottis-opening instant should, as a matter of course, be delivered complete with due precautions and
careful hedging for their proper interpretation, but these precautions do not detract from the usefulness
of these concepts. It should suffice to say once and for all that f0 and Oq as estimated through the
dEGG method should not be confused with the physical parameter that they aim to capture. A good
way to make this distinction consistently consists in embedding a reminder about the estimation method
within the acronym used for the parameter. Therefore, the notations f0 dEGG and Oq dEGG are adopted
throughout the present report to refer to the measured parameters, as distinct from f0 and Oq, the
latter being understood either as abstract and ideal, or as generic labels.

From a practical point of view, a key point here is what is meant by “precisely” when claiming that
dEGG peaks do not coincide “precisely” with glottis-closure instants and glottis-opening instants. The
weak claim that “perhaps the glottal area waveform, if available, would be a more suitable candidate”
than the dEGG signal as a ground truth for glottal events is perfectly safe as a hypothesis, but hardly
helpful for those to whom the glottal area waveform is simply not available. In practice, the difficulty of
obtaining low-noise electroglottographic signals is a much more serious subject of concern to me than
the fully accepted theoretical limitation whereby “the determination of contacting and de-contacting
instants or events is an artificial concept” (Herbst, 2020, p. 10). The fact that glottis-opening instants
as estimated from dEGG signals may be slightly earlier than those obtained by other methods does not
detract from cross-token, cross-speaker and cross-language comparability, and common sense suggests
that those are precious assets.

On topics of terminology, Herbst’s proposals are not particularly straightforward to implement. He uses
‘closed quotient’ (Cq) rather than ‘open quotient’ (Oq), which is not a real difference at all:

Cq = 1 - Oq

He argues that ‘closed quotient’ should be replaced by ‘contact quotient’:

Given that the underlying EGG signal measures relative vocal fold contact area and not
glottal closure, the terminology for that parameter should be limited to “contact quotient”
instead of “closed quotient”. Consequently, the term “open quotient” is also inappropriate,
because EGG does not measure glottal opening. Instead, the term “quasi open quotient”
(QOQ) might be used. (Herbst, 2020, p. 11)

I leave it to more established researchers to decide whether to take the turn towards use of the term
“quasi open quotient” (QOQ). Trying to weigh the advantages, I find them very slight, compared to Oq.
The suggestion to prefix “quasi” to the term “open quotient” strikes me as standing in contradiction
to the statement (made by the author earlier on in the same paragraph) that this parameter “is not
an ersatz closed quotient” (Herbst, 2020, p. 11). Among prefixes, “quasi” sounds like a reasonable
equivalent for description as “ersatz”: an inferior substitute or imitation, used to replace something
that is unavailable and can only be approached, not equated.

Within studies related to electroglottography, “quasi” also brings to mind a proposal to build a “quasi-
glottogram signal” from the EGG signal (Kochanski and Shih, 2003). While I can make no claim to
understanding the maths sustaining the attempt to build a “quasi-glottogram signal”, it is intuitively
clear that the relationship between glottogram and electroglottogram in this proposal (published in the
Journal of the Acoustical Society of America) was a much less straightforward one than that which links
QOQ with Oq. To conclude, it does not seem completely fair or productive to dismiss Oq along with
all other estimations of the glottal open quotient through electroglottography.
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Figure 1.3: Basic procedure of creating an electroglottographic wavegram. Reproduction from (Herbst,
Fitch, and Švec, 2010, p. 3072)

Another technique proposed by Herbst, Fitch, and Švec (2010) for analyzing and displaying EGG and
dEGG signals is named “wavegram”. To construct a wavegram, the consecutive individual glottal cycles
in EGG or dEGG signals are identified and extracted. They are locally normalized in duration and
amplitude, then encoded by color intensity (monochrome color information). And finally, the color-
coded strips, corresponding to glottal cycles, are rotated by 90° counter-clockwise and concatenated
to display the entire voice sample in a single image. Figure 1.3 is reproduced from Herbst, Fitch,
and Švec (2010, p. 3072) for an easier and more visual understanding of this method. According to
the authors, the wavegram technique could provide a potentially powerful method for displaying entire
electroglottographic signals, or parts thereof. Much like in the spectrogram, information on vibratory
behavior developing in time is compacted into one single graph providing insight into changes of vocal
fold dynamics. However, this method is more reliable for quasi-periodic phonation where the detection
of glottal cycles can be easily determined by performing an auto-correlation analysis. The case of non-
periodic phonation, on the other hand, is more complicated to address (to the point that it is doubtful
whether this method can be made to succeed). In the article, this problem was also pointed out and they
proposed an alternative algorithm for glottal cycle detection: “the period should be rather determined
on a cycle-to-cycle basis from direct inspection of the electroglottographic signal and its first derivative
in the time domain”, i.e. falling back on a manual workflow.

The material of the current study involves creaky voice, a case of non-periodic phonation, as the target
phenomenon. It could be interesting in the future to apply and test the wavegram in our data and
compare it to the available results to see to what extent this technique can be applied to non-modal
phonation and if it is a better approach to the EGG signal than the dEGG signal. For now, we retain the
open quotient as the main glottal parameter extracted specifically from the electroglottographic signal.
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Chapter 2

Input: corpus

2.1 The corpus: content (speech materials) and status of the data

The speech materials for this experiment is composed of minimal sets of real words. In total, it
consists of 12 minimal sets1 that contrast for tone in smooth syllables (i.e., open syllables or syllables
ending with a nasal coda) plus 3 minimal pairs that contrast for tone in checked syllables (i.e., syllables
ending with a stop coda). Tables A.1 and A.2 in Appendix A provide full detail about these minimal
sets and pairs.

Method of collection: each target word is required to be spoken four times: twice in isolation and
twice in a carrier sentence.

The carrier sentence is a question including 4 words:

(1) /ja²
2SG

măt⁶
to_know

____
target item

ʈăŋ³/
INTERROG

‘Do you know ____?’

The total corpus (per speaker): Figure 2.1 recapitulates the total corpus of this study. Not only the
target words but also the three frame words of the carrier sentence are annotated and processed. Thus,
for each speaker, we have a total of 660 items, of which 264 items are target syllables and 396 items
are frame syllables. A more detailed list of the amount of materials is given in Table 2.2. In some cases,
the maximum number of items is not reached because some frame words are missing, as speakers tend
to shorten the carrier sentence during a series of repetitions. The most serious case is in the data of
the speaker F10. For some technical reason, we made a pause but mistakenly did not press the record
button to resume, so the last part of the experiment was missed on the first run. In particular, the
minimal set No11 in carrier sentence, the minimal set No12 and all three minimal pairs both in isolation
and in carrier sentence were not recorded. As a consequence, this data lacks 75 items, including 11
target words in isolation and 16 target words in carrier sentence, which leads to the sorely felt absence
of 48 frame words at all three positions (i.e. 16 items for each).

1In 12 minimal sets, there are 8 complete minimal sets and 4 near minimal sets.
“Pairs that show segments in nearly identical environments, such as azure/assure or author/either, are

called near-minimal pairs. They help to establish contrasts where no minimal pairs can be found.” (Dobro-
volsky and Katamba, 1996).
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Figure 2.1: Calculation of the total corpus

Figure 2.2: A brief summary view of the corpus

The actual status of the data of each speaker is summarized in Table A.3. There are a total of 26
participants, 28 data files (F1 and M12 performed the experiment 2 times), twenty of which have been
processed.

2.2 Note on some irregularities in the corpus

Some asymmetrical points of the data There were some asymmetry defects from the data related
to factors not accounted for in data collection, annotation, and pre-processing.

The most notable asymmetry in the data is the large difference in number between the sets for smooth
tones and the pairs for checked tones. We have 12 minimal sets of smooth tones but only 3 minimal
pairs of checked tones. Therefore, the target samples of the checked tones are four times less than those
of the smooth tones. This is due to the fact that when designing the data collection, I did not consider
the balance of the data between tones. I only considered syllables that were already found in the system
of smooth tones, and then combined them with a final stop. This is unnecessary and limits the checked
pairs that could be found. There are a few minimal pairs that were found but were omitted during the
recording process due to inaccuracies in meaning or loanwords from Vietnamese. A detailed report on
this topic is found in my Ph.D. dissertation at the end of the table of minimal pairs (M.-C. Nguyen,
2021, p. 67).

The second asymmetry is that the total number of items processed is not identical in the data of twenty
speakers. As previously mentioned in Section 2.1, the data for each speaker normally contains a total
of 660 items. However, due to a technical problems during the recording session and the tendency to
shorten the carrier sentence during a series of repetitions in some cases, there are therefore a few words
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missing from the data of 3 among the 20 speakers. The actual status of the data of each speaker is
summarized in Table A.3. There are a total of 26 participants, 28 data files (F1 and M12 perform
the experiment 2 times) of which 20 have been processed. Among the 20 data files that have been
processed, 17/20 files have full size of 660 items, 2/20 files (the data of F13 and M14) have missing
items from frame words, and 1/20 (the data of F10) file have missing items from both frame words and
target words.

One of the data chunks that has the full size of 660 items but that nonetheless calls for special attention
is that contributed by speaker F20. An issue with these data is that the ratio of excluded Oq values
stands at 83%, which is especially high and makes it an outlier. The average of this ratio for the other
speakers is 18%, with the highest ratio being 36.3% (for F9) and the lowest ratio being 4.7% (for M9).
The reason for suppression of Oq values in speakers is often due to unclear opening peaks when the voice
breaks into creaky voice. But this is not the case for F20. Not only the syllables carrying Tone 4 but
all other tones have the same situation with imprecise opening peaks, making it impossible to measure
Oq values. The consistent behavior of these peaks throughout the experiment until the last minimal
set over the syllable /ku/ (which was performed twice separately) provides evidence which makes me
believe that this is related to a physiological phenomenon, rather than artifacts. This interesting case
would be worth studying further and should be kept an eye on for this present study when we use the
Oq values from the semi-manual process for machine learning process and also to evaluate the result
later.

During the pre-processing to prepare data for this experiment and run it using machine learning methods,
two unusual points have been detected from the previous manual processing.

Error on data of F3: The first unusual point was noticed during the process of preparing data by
extracting MFCC frames. In the result of the speaker F3 from manual processing, there were some
cases (11 cases, exactly) where the last annotated cycles of a syllable were outside its time interval.

In order to understand precisely this problem, we must first get to know the process explained later in
the section 3.1. In short, for running the machine learning models, the required data are the EGG signal
and the results from the manual processing which are stored in a three-dimension matrix in Matlab
files. The necessary information extracted from Matlab matrices are stored in Excel files, including: the
identifier and time intervals of each item (syllable), the starting and ending time of each glottal cycle
detected within the syllable, and the corresponding values of f0 dEGG and Oq dEGG if measurable.

Logically, the sum of the duration of all detected glottal cycles inside a syllabe would be exactly the
duration of that syllable. Therefore, the error was detected when, in some items, the last periods are
out of range of the syllable duration. Thanks to automatic processing, such error can be easily detected.

This occurred only in the data from speaker F3 and there were 11 items, which are not consecutive,
that had this error. Considering all these erroneous items, I found a pattern in which the spurious length
of the erroneous items is duplicated from the item that follows immediately after them. For example,
item with UID 0431 is one of the erroneous items. The incorrect length in the result is 41 glottal cycles,
which is the correct lenght of the next item, which has UID 0432. By checking the autosave of each
individual item, I figured out that the real length of item 0431 is 31 cycles instead of 41 cycles. The
length is copied from item 3042, but the values of the extra 10 cycles at the end of the item 0431 are
not the same as the ones at item 0432. This part is patched from somewhere else and actually does
not correspond to any part in the data.

The solution for this error is that I can simply cut off the extra spurious cycles of 11 erroneous items.
It was easy to check the erroneous part since the starting time of this part is not consecutive to the
correct part.
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I could not explain how this happened during the semi-manual processing. But by referring to the
manual processing log, I can guess that this error occurred due to the fact that the data from F3 being
annotated and processed twice because of some mistakes made during the first processing. And in the
second time of processing, I did not start from the beginning, but from the token where I made the
mistake for the first time. The part from the beginning to this token was resumed from the previous
processing.

This shows a side benefit of computational tools, which is that it can help detect manual processing
errors, which are difficult to check manually in a systematic way.

2.3 Manual workflow

In order to be better prepared and to have a better understanding of what the neural network has to
learn automatically, this part tries to briefly recap the procedure of manual processing that produced
the data which will be used down the line as a basis for tests with machine-learning tools.

In order to study the tone system of the target language, two phonetic parameters, fundamental fre-
quency (f0 dEGG) and glottal open quotient (Oq dEGG), were estimated from the derivative of the EGG
signal, DEGG (Henrich et al., 2004), using PeakDet, a script available from the COVAREP repository
Degottex et al., 2014. (An implementation in Praat is also available: Kirby, 2020.) PeakDet is
designed for semi-automatic measurement: the results for each token are verified visually.

2.3.1 General process

Figure 2.3 shows the basic procedure that was applied to the data set of twenty speakers to obtain
results.

For the most part, the initial input materials for this process are audio files obtained from the minimal
set experiment. They are first segmented and annotated (using the Sound Forge software) to obtain
the annotated EGG file in mono-channel format and the Regions List indicating the time codes for each
token, together with its unique identifier (UID). These are the two inputs required by PeakDet, a
semi-automatic tool for estimating f0 dEGG and Oq dEGG from the EGG signals. This meticulous (and
time-consuming) verification process is summarized in the algorithm shown as Figure 2.4.

2.3.2 Fundamental frequency measurement

In this study, the f0 is estimated from the derivative of the electroglottographic signal in the EGG signal,
hence we call it f0 dEGG. To measure f0, the period is determined by detecting two successive closing
peaks, the duration between two consecutive glottal closing instants corresponds to a fundamental
period; its inverse gives the fundamental frequency of the voice. In the majority of cases, the closing
peak is unique and precise in each glottal period to obtain the f0 dEGG. Figure 1.1 shows the ideal
example of well-defined closing peaks. However, in a few cases, imprecise multi-closing peaks linked
to a physiological phenomenon could be encountered. Figure 2.5 shows examples of double-closing
peaks and jagged-shaped multi-closing peaks. In these cases, PeakDet is automatically set to use the
barycentre method (see Section 2.3.3).
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Figure 2.3: Basic procedure of data processing.

2.3.3 Glottal open quotient measurement

Whereas f0 dEGG is calculated based on closing peaks, which in the great majority of cases are well-
defined (often with a unique peak), estimating Oq dEGG requires the detection of opening peaks, which
often runs into difficulties due to imprecise peaks: either cases where no peak stands out clearly, or
cases where two or more peaks are present (multiple peaks). The search for opening peaks is even more
difficult in the case of nonmodal phonation, such as when voicing transitions into creaky voice.

This makes user verification of Oq dEGG a delicate business, which is not so similar with verification of
f0 dEGG: it requires more than just a few adjustments for peculiar situations.

PeakDet will ask the verification of Oq dEGG after the verification of f0 dEGG has been completed. At
first, it will process automatically and offer Oq dEGG calculated in four different ways:

1. maxima2 on unsmoothed dEGG signal (displayed as orange squares);

2. maxima on smoothed dEGG signal (displayed as orange stars);

3. barycentre of peak on unsmoothed dEGG signal (displayed as blue squares);

4. barycentre of peak on smoothed dEGG signal (displayed as blue stars)

The methods are divided into two sets:

• Detection of the local minimum on the signal in-between two closure peaks. This method is
applied twice: on the unsmoothed dEGG signal, and on the smoothed dEGG

2Technically, ‘maxima’ here should be referred to as ‘minima’, since the peak is a negative peak.
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Figure 2.4: A schematic representation of data processing with PeakDet.
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(a) Case of double-closing peaks

(b) Case of multi-closing peaks (jagged shape)

Figure 2.5: Examples of imprecise closing peaks. PeakDet uses the method of barycentre automatically
to treat these cases. Data from M14.
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Figure 2.6: Examples of precise and imprecise opening peaks on DEGG signal during the same syllable.
Abscissa: in samples (1 sample = 1/44,100 second).

• Analysis of the shape of opening peaks and calculation of a barycentre of the detected ‘peaks-
within-the-peak’, giving each of the peaks a coefficient proportional to its amplitude. Again, this
method is applied twice: on the unsmoothed dEGG signal, and on the smoothed dEGG.

The manual task in this step requires the researcher to visually examine the dEGG signal to decide which
method is most reliable for detecting negative peaks, which directly affects the calculation of Oq dEGG
values. This is a two-step verification. The first step is to decide which method will be selected as the
most reliable among the four methods, so that the Oq dEGG values calculated from that method will
be stored in the last column (10th column) of the PeakDet results matrix. The second step is to
examine each glottal cycle of the dEGG signal in detail to check which cycles have a precise opening
instant with a clear negative peak, which will be retained as reasonable Oq dEGG values for those cycles.
Otherwise, cycles that do not have a clear negative peak, because they have multiple peaks or no clear
negative peak can be detected (as demonstrated in Figure 2.6), will be removed by setting them to zero
to indicate that the automatically calculated Oq dEGG value for these cycles is inapplicable.

If the decision to retain or remove Oq dEGG values is simply based on whether or not a single precise
opening peak is present in a glottal cycle, it would not be challenging to do it automatically and
would not require much effort to visually verify each glottal cycle of each syllable, which is the most
time-consuming task, and thus the biggest hurdle for the EGG analysis. However, since information
on Oq dEGG is frequently missing due to the absence of a single, clear opening peak during glottal
cycles, it is worth trying to keep the Oq dEGG values nearly clear in the cases where there is more than
one opening peak but visual inspection reveals that one peak really stands out from the others. Two
examples in Figure 2.7 show “good” cases of multiple opening peaks: cases where a prominent peak
can be noticed in almost every cycle, and the distance between peaks inside the same cycle is small.
In cases like this, as a rule I tried to keep as many Oq dEGG values as possible by choosing the most
reasonable method. For example, in the case of Figure 2.7a, I would select the method of barycentre
and keep all the Oq dEGG values because, even though the double-opening peak in cycles 62-64 are clear
(compared to its neighboring cycles) and thus make it difficult to decide which one should be the main
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opening instant, the distance between two peaks is nonetheless close enough that it is safe to take an
intermediate point between them (by barycentre method) as representative of the approximate opening
instant. In the second example in Figure 2.7b, all glottal cycles have triple-opening peaks but the first
peaks are always much more salient than the next two peaks. In that case, I would select the method
of maxima on dEGG signal to catch the first peak at every cycles as the opening instant used in the
calculation of the open quotient.

These two examples illustrate the fact that it is feasible to keep some Oq dEGG values in case of “good”
multi-opening peaks: as long as the main peaks stand out clearly and the distance bettwen them is
small (less than 5% difference between methods of measuring Oq dEGG). In practice, there are many
tricky cases, where the decision of choosing a method and suppressing certain Oq dEGG values is much
more delicate and tough, particularly when there is a transition between “good” peaks and “hopeless”
peaks (Figure 2.7a is a simple example of this). Doing (human) visual verification is not a simply task,
and I am not completely confident that my decisions were fully consistent during the analysis (and even
if I were confident, proving that consistency was present is yet another matter). These observations are
crucial to the investigation reported here, as they make it clear that we are totally aware that estimating
Oq dEGG automatically on the basis of an electroglottographic signal is a challenge for neural networks
to learn.

In view of the information set out so far, we can now move on to the core of the report: investigating to
what extent neural networks can learn from human decisions (as encapsulated in the available corpus)
to carry out Oq estimation from the dEGG signal.
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(a) Case of “good” double-opening peaks to keep with the method of barycentre of peak

(b) Case of “good” triple-opening peaks to keep with the method of maxima on dEGG signal

Figure 2.7: Examples need manual visual verification. Cases where multi-opening peaks appear but are
worth retaining with different methods.
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Chapter 3

Oq dEGG estimation using machine
learning methods

This chapter1 presents a set of experiments whose aim is to select among several estimations of the open
quotient for each cycle of an EGG signal. The basis for selection consists of two inputs of a different
nature: (i) the EGG signal 2 and (ii) the output of PeakDet, consisting in the time codes of each EGG
cycle, 4 candidate values based on the four methods presented in Section 2.3.3, as well as the f0 dEGG of
each cycle also computed by PeakDet. The objective of this section is to describe a neural network
that reproduces the manual annotation pipeline described in Section 2.3, i.e. predicting for each cycle
whether the cycle has a computable Oq dEGG, and if so, what the most appropriate method is (among
the 4 methods).

3.1 Data Description and Preprocessing

The results from manual processing on MATLAB are extracted and stored in excel files (one excel file
for each speaker’s data) which are made available on a Github repository (see: https://github.com/
MinhChauNGUYEN/CLD2025_EGG). Each excel file includes the following information:

• (Column A) The UID (Unique Identifier) of the item.

• (Column B) The beginning time of the syllable/item in the recording (in second)

• (Column C) The end time of the syllable/item in the recording (in second)

• (Column D) The beginning time of each glottal cycle inside the syllable

• (Column E) The end time of each glottal cycle cycle inside the syllable

• (Column F) f0 values

• (Column G) Oq values as automatically calculated by PeaKDet, method: maxima on unsmoothed
signal

1Part of this chapter is adapted from Nguyễn, Coavoux, and Rossato (2022).
2All data sets of 20 speakers are available on the Pangloss Collection (https://pangloss.cnrs.fr/corpus/Mường).

The audio and EGG signal are both freely accessible and downloadable under the CC BY-NC-SA 3.0 license, in the spirit
of the open data movement in phonetic research (Garellek et al., 2020).
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• (Column H) Oq values as automatically calculated by PeaKDet, method: maxima on smoothed
signal

• (Column I) Oq values as automatically calculated by PeaKDet, method: barycentre of peaks on
unsmoothed signal

• (Column J) Oq values as automatically calculated by PeaKDet, method: barycentre of peaks on
smoothed signal

• (Column K) The Oq values that were retained after checking the opening peaks in the DEGG
signal (by the user). The zeros mean that the Oq values at these cycles have been suppressed
due to the imprecise opening peaks.

• (Column L) The result of a Creak Detection algorithm: (0) means no creak, (1) means pressed
voice or single-pulsed creak, (2) means aperiodic creak, and (3) means double-pulsed creak.

Columns B-J will be used as the input to the machine learning system (together with the EGG signal),
whereas column K codes the target we need to predict. We present some statistics about the numbers
of syllables, glottal cycles and distribution of labels in Table 3.1.

Section Train Dev Test Complete Corpus
Number of syllabes 9050 1913 2011 12974
Number of glottal cycles 295753 62350 65727 423830
Label distribution
0 = No Oq dEGG computable 69237 (23.41%) 14583 (23.39%) 14670 (22.32%) 98490 (23.24%)
1 = maxima without smoothing 60527 (20.47%) 13227 (21.21%) 13461 (20.48%) 87215 (20.58%)
2 = maxima with smoothing 137461 (46.48%) 29909 (47.97%) 30386 (46.23%) 197756 (46.66%)
3 = barycentre without smoothing 42603 (14.40%) 7870 (12.62%) 10102 (15.37%) 60575 (14.29%)
4 = barycentre with smoothing 93583 (31.64%) 18775 (30.11%) 21723 (33.05%) 134081 (31.64%)

Table 3.1: Statistics on the corpus. Since several of the 4 methods implemented in PeakDet may
sometimes output the same Oq dEGG values, some cycles may have several correct labels. As a result
the sum of percentages is higher than 100%.

We performed two preprocessing steps, on the wav files in the corpus: (i) segmentation of the signal
in multiple shorter files (10 seconds maximum) so that each file contains one or a small number of
items/syllables, and (ii) resampling to 32,000 Hz.

3.2 Neural Network Architecture

The machine learning system we implemented is a neural network based on a bi-LSTM. It was imple-
mented using the Speechbrain library (Ravanelli et al., 2021). As stated above, its input consists in the
EGG signal, together with additional information for each glottal cycle, namely: time codes (start time
and end time), the f0 dEGG value and the 4 Oq dEGG values computed by PeakDet. The EGG signal
is represented with Mel-frequency Cepstral Coefficients (MFCC) vectors, with a 6 ms window, sliding
every 2 ms (these values are lower than values typically used in speech recognition, in order to take into
account the granularity of the representations we need).

MFCC vectors form a N × F matrix M(0), where N is the number of MFCC frames (i.e. the length of
the signal in milliseconds divided by 2) and F is the number of MFCC features for each frame. This
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matrix is fed to a feedforward neural network:

M(1) = tanh(W(1) · LayerNorm(M(0)) + b(1)),

and contextualized with a bidirectional LSTM:

M(2) = bi-LSTM(M(1)). (3.1)

Then, we represent each glottal cycle c by the concatenation of 3 vectors:

vc = [M(2)
cb

;M(2)
ce ; oc],

where cd and cf are the time codes for the (b)eginning and (e)nd of the cycle, and vc ∈ R5 is a vector
containing the 4 Oq dEGG values and the f0 dEGG of the cycle, as computed by PeakDet. Finally, we
use another feedforward network to compute scores for each label and predict a label:

P = Sigmoid(W(3) · ReLU(W(2) · LayerNorm(vc) + b(2)) + b(3)),

where each P = [P (y0 = 1|c), . . . , P (y4 = 1|c)] gives a probability for each label. An illustration of the
neural network is presented in Figure 3.1.

3.3 Experiments

Training We train the model by maximizing the probabilities of gold labels on the training set, using
the Adam algorithm (Kingma and Ba, 2015). When evaluating the model, we take the highest probability
label as the model’s prediction. The hyperparameters of the model are:

• For MFCCs: window size (6ms), hop size (2ms), context size (2 frames on each side);

• For the network: dimension of hidden layers (128 for feed-forward networks, 128 for each direction
of the bi-LSTM);

• For training: optimization algorithm (Adam), learning rate (0.008 for models that use the signal
as input, 0.001 for the model ablation that does not use the signal), size of batches (8), number
of training epochs.

We calibrated hyperparameters (in particular the learning rate) on the dev set during preliminary ex-
periments. For final experiments, we train the models for 100 epochs and keep the checkpoint that
maximizes accuracy on the dev corpus to evaluate it on the test section.

Experimental settings Our objective is to determine whether the use of the EGG signal improves
the prediction of labels, and contributes additional information compared to PeakDet Oq dEGG and
f0 dEGG values. Moreover, we would like to assess whether the EGG signal provides better information
than the more easily accessible audio signal. To answer these questions, we experiment with several
configurations, namely models with different types of input:

i EGG signal + PeakDet Oq dEGG + PeakDet f0 dEGG: [M(2)
cd ;M(2)

cf ; oc];

ii EGG signal: [M(2)
cd ;M(2)

cf ];
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Traits MFCC

Réseau à propagation 
avant (output)

Bi-LSTM
...

Étiquette

...

Cycle glottique

Concatenation
Peakdet Oq

Figure 3.1: Neural network architecture (centered on a single glottal cycle) In practice, the bi-LSTM
encodes a full syllable.

iii PeakDet Oq dEGG + PeakDet f0 dEGG: [oc];

iv as (i) but replace EGG signal by audio signal;

v as (ii) but replace EGG signal by audio signal.

3.4 Results and discussion

We report results in Table 3.2. We use the following evaluation metrics: 3-class accuracy (0 vs 1-2 vs
3-4), 2-class accuracy and 2-class Fscore (label 0 vs other labels). These metrics are meant to take into
account class imbalance as well as massive overlap between respectively labels 1-2 and labels 3-4. For
comparison, we also present results for a most-frequent-label baseline.

From Table 3.2 we see that the neural network outperforms the baseline, albeit by a small margin,
indicating that some learning has occurred but modestly. Model (ii), with only the EGG signal as input,
has lower results than model (iii), which suggests that the shape of the signal as provided as input is
either insufficient to make a prediction, or underexploited by the model. The best models (i, iv) have
access to both a signal and the additional information (PeakDet Oq dEGG and f0 dEGG). Unexpectedly,
models (i) and (iv) have comparable scores, with a slight advantage for using the audio signal (iv)
instead of the EGG signal (i).

This conclusion is indeed unexpected and not good news for those who, like us, work on the EGG signal,
but it is actually not totally bizarre and unreasonable. If we look back and compare all the available
signals of syllables bearing a creaky tone, in many cases such as item in Figure 3.3 is an example, we
could notice that , in fact, the audio signal with its spectrogramme, already provide the good evidence
for the present of creaky voice, even much more clear visually in compare to EGG signal with the series
of discrete rails along the whole syllable.
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Dev Test
Model Accuracy-3 Accuracy-2 Fscore-2 Accuracy-3 Accuracy-2 Fscore-2
Baseline (most-frequent class) 48.9 76.6 0 46.2 77.7 0
(i) EGG + Oq + f0 63.6 86.1 91.0 58.4 85.8 91.0
(ii) EGG 56.9 80.6 87.7 53.2 78.2 86.1
(iii) Oq + f0 58.7 83.2 89.1 56.9 83.6 89.5
(iv) Audio + Oq + f0 63.4 85.9 91.0 59.4 85.2 90.6
(v) Audio 57.1 78.9 86.6 51.5 79.2 87.3

Table 3.2: Final results on development and test sets (%).

pred ↓ gold→ 0 1 1/2 2 2/3 2/3/4 2/4 3/4 4
0 61.77* 6.9 6.46 9.24 4.11 1.1 1.61 3.27 13.13
1 0 0* 0* 0.01 0 0 0 0 0
2 26.79 89.66 73.2* 72.67* 76.71* 74.88* 79.03* 60.23 50.35
3 0.04 0 0.29 0.22 0* 0.37* 0 0.46* 0.08
4 11.4 3.45 20.05 17.87 19.18 23.66* 19.35* 36.04* 36.44*

Table 3.3: Matrice de confusion (corpus de test) pour le modèle (iv). Les valeurs données sont des
pourcentages calculées sur les étiquettes gold. Les prédictions correctes sont indiquées par *.

Nevertheless, the negative results obtained here by machine learning do not mean that the phonetic
analysis of the EGG approach should be rejected or discredited but instead it brings us back to the
fundamental issue on the reality of these signals. Ultimately, neither of these signals is fully represen-
tative of what actually happens during speech articulation. They are all linear views of a non-linear
phenomenon. They are therefore not in a mutually contradictory or mutually exclusive relationship, but
can actually support each other in the analysis of complex phonetic characteristics. We chose to collect
and analyze the EGG signal not because we think it is better than the acoustic signal, but in the hope
that it might provide an additional/alternative approach to the unresolved limitations of audio signals
on speech analysis. In this corpus, all the data of EGG signal were recorded and stored simultaneously
with the acoustic signal. This allows us, after taking a big jump from manual processing to end-to-end
processing, to step back and see the possibility of improving the current task, for instance by further
examining the correlation between EGG and acoustic signals on the same parameters to figure out how
they could complement and reinforce each other in the automatic workflow.

Confusion matrix Going into details of the results, we present in The table 3.3 the confusion matrix
of model (iv), which obtained the best results. Each column represents a combination of labels seen
in the baseline data (e.g., column 3/4 represents glottic cycles where PeakDet methods 3 and 4 gave
the correct value.) We observe that labels 1 and 3, which are the least present in the data (and often
give the same result as methods 2 and 4 respectively), are almost never predicted, which shows that
the system does not discriminate between classes 1 and 2 on the one hand and classes 2 and 3 on the
other. The most frequent errors are the difficulty in predicting classes 3, 4 and 0, where the model falls
back on the most frequent class (2). This reflects to some extent what actually happened during the
semi-automatic processing.

As mentioned in Section 2.3.3, among 4 proposed options of Oq dEGG verification on PeakDet, actually
there are only two different methods which is: (i) “maxima” (detection of the local minimum on the
signal in-between two closure peaks) in methods 1 and 2 and (ii) and “barycenter” (analysis of the shape
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of opening peaks and calculation of a barycentre of the detected‘peaks-within-the-peak’, giving each
of the peaks a coefficient proportional to its amplitude.) in methods 3 and 4. Then, each method is
subdivided according to whether it was applied to the unsmoothed dEGG signal (method 1 or 3) or the
smoothed signal (method 2 or 4).

Since the openning peak of a glottic cycle is less clear than the closing peak due to one of the facts that
multiple negative peaks can often be detected during the open phase, methods appying on smoothed
signal are therefore preferable to unsmoothed methods in order to avoid redundant detection of peaks
caused by signal noise. This explain why method 1 and 3 are much less selected than the method 2
and 4. Even in cases where there is a clear opening peak for which all four methods give identical or
quasi-identical Oq dEGG values, I kept selecting the methods on the smooth signal to keep the results
consistent.

The option of barycenter method on unsmoothed dEGG signal (method 3) was barely selected, as it
is the least appropriate in all cases, whether it is a single peak or a multiple peak. Cases like in the
examples 2.7a or 3.2 that involve double-opening peaks or multiple-opening peaks but the distance is
safely closed than thus it is worth keeping some of them with the barycenter method. And the one
applied to the smoothed signal (i.e., method 2) is the most reliable option to eliminate all negative
peaks that are not prominent enough. This explains why method 2 has been the most frequent option,
as it is the safest in most cases, especially for “good” multiple-opening peaks.

On the other hand, the local minimum method on the unsmoothed signal (method 1) was particularly
used in a few cases involving creaky voice. During manual processing, we observed that in most cases,
once creaky voice occurs, it frequently causes irregularities in the glottal cycles. The mess in the EGG
signal and consequently in the dEGG signal in this case does not imply a bad signal due to a recording
artifact, but in fact, it faithfully reflects a messy vocal fold contact area. The loss of periodicity is one
of the main factors that make the analysis of creaky voice in particular and glottalization in general a
real challenge. Every single value is precious for assessing the phonetic characteristics of this non-modal
vocal quality. Therefore, the primary goal in the manual analysis of the data was to try to retain as
much information as possible about the values in the tokens containing the creaky voice, without of
course falling into the “creaky voice lover” bias. This is to say that in this case (where the barycenter
method is hopeless), it makes sense to consier picking either method 1 (minimum in the unsmoothed
signal) or method 2 (minimum in the smoothed signal) to ensure that the most reliable values will be
retained, while undergoing an honest verification. We know that creaky voice is the lowest voice quality
with low f0 and Oq. But the choice of method 1 or 2 was not driven by having the lowest recorded
values, but by having the most reliable values of the creaky portion where each cycle is visually verified
and ensured that there is a prominent negative peak worth saving.

Figure 3.3 provides an example of a syllable bearing a creaky tone (data from speaker F3, syllable /na4/
“archery”) 3. As the principal just mentioned, in this case, since most glottal cycles have multiple
opening peaks along the open phases, two methods of barrycenter are appropriate. The consideration
here will be only the two methods of local minimum peak on the dEGG signal, i.e. method 1 or 2.
Despite the messy glottal cycles, we still can clearly spot that at many cycles a good negative peak
could be found among plenty of minor peaks. In a zoom on cycles 6 to 10, cycles 6 - 7 - 9 clearly have
a precise opening peak, thus should be retained, whereas cycles 8 and 10 also tend to have a major
peak at 2/3 portion of the open phase but much less clear, thus should be eliminated. In general, for
the whole syllable, method 1 often has lower Oq dEGG values than method 2, but in this case I chose
method 2 over method 1 because it gives a correct value more on the cycle 6th with a good opening
peak as verified in the previous step. The analysis and examination was carried out with such a delicate
and meticulous process. It intrigued me how the neural network could learn and perform the same task.

3The data of this example is available here: https://doi.org/10.24397/pangloss-0006761#W90
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Figure 3.2: Oq dEGG verification: case where methods 3 and 4 (barycenter of the peaks on the dEGG
signal) have been considered to be chosen.
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Figure 3.3: Oq dEGG verification (cont.): case where methods 1 and 2 (local minimum on the dEGG
signal) have been considered to be chosen.
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Limitations In retrospect, it becomes clear that the task is too hard to be addressed with an end-to-
end statistical tool, used “off-the-shelf”, as it were. Specifically, we identified two weaknesses in the
design of the experiments we have presented.

First, the data includes both target syllables and frame syllables from carrier sentences. Since carrier
sentences remain stable (quasi identical) across items, the model might be biased towards easier pre-
dictions. For a closer look at this issue, we need to refer to the total number of each component of
the copus, as summarized in Figure 2.2. In the total number of 660 items for each speaker’s data, the
number of processed items is 264 in the target syllables and 396 in the frame syllables. Each target
syllable was repeated twice in isolation and twice in a carrier sentence (2.1). The frame syllables of
the carrier sentence are composed of only three different words that are repeated to carry each of the
132 target syllables, i.e. each frame word will also be repeated 132 times. It is therefore obvious that
this data is highly repetitive and simple. The most diverse part is that the target words also belong to
12 minimal sets and 3 minimal pairs, i.e., within the sets, they are completely or almost exactly the
same in terms of syllables, and differ only in tone. This is apparently not an ideal corpus for training in
automatic machine translation or transcription tasks. Indeed, this corpus was one of the test subjects
for the Persephone tool within the framework of the project of phonemic transcription of low-resource
languages carried out by Wisniewski, Michaud, and Guillaume (2020) and, as anticipated, with only one
hour of training, the results were rather good. In this pilot study exploring the capability of machine
learning perspertives for the analysis of electroglottographic signals, despite the simplicity of the corpus,
we still obtained a negative result. That shows how challenging this task is.

If the first limitation comes from the inherent design of the data that cannot be changed because the
starting point of the study is not initially set for an end-to-end approach, the second limitation comes
from the flaw in communication between, on the one hand, the linguists who own and understand the
data and, on the other hand, the scientist who takes over the data for training in the neural network
model. In detail, the manual annotation process makes 2 decisions: (i) a decision on the best PeakDet
method (at the level of the syllable) (ii) a decision about whether to keep or discard the Oq dEGG (a
decision made at the level of glottal cycle). In contrast, our model only makes predictions at the
level of the cycle, thus making the task harder. Aggregating cycle-level predictions into a syllable-level
prediction (e.g. through voting) might lead to better results. This limitation is due to the fact that I
did not communicate well with Maximin to make him fully understand the process of verifying Oq dEGG
using PeakDet. The most effective way to explain this would be to make a demo of what actually
happened during the semi-automatic processing using PeakDet. However, due to a technical problem
(PeakDet was not working properly on my current computer), I was not able to do this demo directly,
and apparently written explanations, even if very specific and detailed, are still not sufficient for data
scientists to receive and understand the data thoroughly. As a consequence, the process of machine
learning (learning patterns of statistical association between data and labels) clearly appears not to
have followed the path that I (somewhat naively) expected, namely: kindly following in my footsteps,
emulating the analytic process that I had adopted.

Such a finding is by no means new: features extracted by end-to-end models should not be expected
to match the features commonly used in ‘manual’ workflows. Thus, Gendrot, Ferragne, and Chanclu
(2022) report that a convolutional neural network that is (moderately) successful at speaker classification
makes use of spectral and temporal features that are not related to classical phonetic measures in any
straightforward way. Such observations open into an exciting mid-term research program: studying
statistical models to see how they encapsulate relevant information, and how this information can shed
light on the languages found in the datasets used at training. No more will be said on this topic
here, though, as studies on explicability of neural models are best based on highly successful models,
whereas the experiments reported here did not yet reach the level of practical usefulness (which would
be technically reflected in low error rates).
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Study of phonation types The multidisciplinary work described here has implications for the phonetic
study of phonation types. Indeed, the set of results obtained here highlights the fact that the process
of assessing the reliability of the open quotient estimate in view of the signal is a non-trivial task. This
provides an opportunity to return to the fundamental question of what the glottic open quotient reflects,
and how it is interpreted. The open quotient is a linear projection of the non-linear phenomena involved
in phonation, and therefore obviously cannot by itself be a sufficient descriptor of the various types of
phonation: whispered voice, pressed voice, cracked voice; among the commonly used references, see in
particular Laver (1980). Specifically in the case of creaky voice, we observe a good correlation between
the presence of creaky voice and the spectral slope information reflected in the spectrogram (a higher
intensity in the upper half of the spectrogram, from 5 to 10 kHz, than in the lower half). By contrast,
the glottal open quotient does not clearly show the same degree of correlation with creaky voice. Thus,
the audio signal can sometimes be a better guide than the open quotient for detecting creaky voice. The
EGG signal contains other information – most obviously the fundamental frequency – which provides
clearer indications than Oq regarding the phonatory type.

Acoustically, it is known that the open quotient is neither the only nor the most important of the glottal
source parameters. The fact that it can be estimated from the EGG signal has undoubtedly led to it
being given particular importance, in comparison, for example, with the speed quotient, which is not
easily accessible for estimation. Thus, the height of the positive peak on the derivative (corresponding
to the moment of glottic closure at the beginning and end of the cycle), DECPA (for Derivative-
Electroglottographic Closure Peak Amplitude: Michaud 2004a), does not constitute a means to estimate
the speed quotient robustly and reliably. Clearly, Oq would benefit from being integrated into machine
learning experiments in which it would be integrated into a larger set of acoustic parameters, in order
to characterize various types of phonation in an objective and complete way.

Perspectives In future work, we consider developing and evaluating regression models that directly
predict Oq dEGG as a continuous variable, instead of predicting it indirectly through a classification task.
Another future direction that we consider investigating consists in the replacement of MFCC features
by available multilingual pretrained acoustic models (Conneau et al., 2020), which have rapidly become
mainstream in speech processing (including applications to fieldwork corpora: Guillaume et al. 2022).
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Appendix A

Detailed information on the speech
material and the total corpus

A.1 Speech material

Tables A.1 and A.2 provide full detail about the minimal sets and pairs. The tables include:

• First column: The numbering of minimal sets (from 1 to 12) and minimal pairs (from 1 to 3).

• Second column: The numbering of target syllables, labeled as “UID” (for “Unique Identifier”)
because this number constitutes the unique identifier of target syllables. This number is used in
the annotation of audio files, and in data processing down the line.

• Third column: The target syllables. These constitute the actual speech material of the recording
session. In other words, the speakers were asked to pronounce these monosyllabic morphemes
(roots).

• Fourth column: The full form of the target words from which monosyllables were extracted, in
cases where the usual form of the word at issue is disyllabic. This point will be elaborated on
below.

• Fifth-sixth-seventh columns: The translations in English, French and Vietnamese, respectively.

This information is important to know in order to be able to retrieve the content of the data later, as
it is encoded as labels in the annotation list.
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A.2 Corpus status

Table A.3: Current status of corpus: 20/28 data files have been annotated with Sound Forge and
processed with Matlab.

N° Speaker Quality of EGG signal Data status Size of .mat file

1 F1 Crackling noise No annotation No analysis
2 F1 Crackling noise No annotation No analysis
3 F3 Good 660/660 items 100×10×660
4 F7 OK 660/660 items 119×10×660
5 F8 Weak EGG No annotation No analysis
6 F9 Good 660/660 items 119×10×660

7 F10 Good

585/660 items
Missing 75 items
- 11 target words
in isolation
- 16 target words
in carrier sentence
- 16 frame words
at 1st position
- 16 frame words
at 3rd position
- 16 frame words
at 4th position

178×10×585

8 F11 Weak EGG No annotation No analysis
9 F12 Good 660/660 items 111×10×660

10 F13 Good
646/660 items
Missing 14 frame words
at 1st position

133×10×646

11 F14 OK but there are
a few flat segments No annotation No analysis

12 F16 Weak EGG No annotation No analysis
13 F17 Good 660/660 items 100×10×660
14 F18 Weak EGG No annotation No analysis
15 F19 Good 660/660 items 100×10×660
16 F20 OK 660/660 items 100×10×660
17 F21 OK 660/660 items 111×10×660
18 M1 Good 660/660 items 100×10×660
19 M5 OK 660/660 items 100×10×660
20 M7 Good 660/660 items 100×10×660
21 M8 OK 660/660 items 100×10×660
22 M9 Good 660/660 items 100×10×660
23 M10 Good 660/660 items 100×10×660
24 M11 Good 660/660 items 100×10×660
25 M12 Signal out of range No annotation No analysis
26 M12 Good 660/660 items 100×10×660
27 M13 Good 660/660 items 100×10×660
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28 M14 OK

656/660 items
Missing 4 frame words:
3 at first position and
1 at 4th position

100×10×656
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