
HAL Id: hal-04081143
https://hal.science/hal-04081143v1

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive zoom and panning from live Panoramic video
Vamsidhar Reddy Gaddam, Ragnar Langseth, Sigurd Ljødal, Pierre Gurdjos,

Vincent Charvillat, Carsten Griwodz, Pål Halvorsen

To cite this version:
Vamsidhar Reddy Gaddam, Ragnar Langseth, Sigurd Ljødal, Pierre Gurdjos, Vincent Charvillat, et
al.. Interactive zoom and panning from live Panoramic video. Network and Operating System Support
for Digital Audio and Video Workshop - NOSSDAV 2014, Mar 2014, Singapour, Singapore. pp.1-6,
�10.1145/2578260.2578264�. �hal-04081143�

https://hal.science/hal-04081143v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12996

To link to this article : DOI :10.1145/2578260.2578264
URL : http://dx.doi.org/10.1145/2578260.2578264

To cite this version : Gaddam, Vamsidhar Reddy and Langseth,
Ragnar and Ljodal, Sigurd and Gurdjos, Pierre and Charvillat, Vincent
and Griwodz, Carstenand Halvorsen, Pal Interactive zoom and panning
from live Panoramic video. (2014) In: Network and Operating System
Support for Digital Audio and Video Workshop - NOSSDAV 2014, 19
March 2014 - 20 March 2014 (Singapore, Singapore).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12996/
http://oatao.univ-toulouse.fr/12996/
http://dx.doi.org/10.1145/2578260.2578264
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Interactive Zoom and Panning from Live Panoramic Video

Vamsidhar Reddy Gaddam1, Ragnar Langseth1, Sigurd Ljødal1, Pierre Gurdjos2,
Vincent Charvillat2, Carsten Griwodz1, Pål Halvorsen1

1Simula Research Laboratory & University of Oslo, Norway
2Universite de Toulouse, France

1{vamsidhg, ragnarla, sigurdlj, griff, paalh}@ifi.uio.no
2{pgurdjos, vincent.charvillat}@enseeiht.fr

ABSTRACT

Panorama video is becoming increasingly popular, and we
present an end-to-end real-time system to interactively zoom
and pan into high-resolution panoramic videos. Compared
to existing systems using perspective panoramas with crop-
ping, our approach creates a cylindrical panorama. Here, the
perspective is corrected in real-time, and the result is a bet-
ter and more natural zoom. Our experimental results also
indicate that such zoomed virtual views can be generated far
below the frame-rate threshold. Taking into account recent
trends in device development, our approach should be able
to scale to a large number of concurrent users in the near
future.

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

panorama video, zoom, panning, real-time

1. INTRODUCTION
The growing availability of high-speed Internet access has

gone along with a growth in interactive and immersive mul-
timedia applications, and panoramic video is a feature that
is becoming more and more popular in various scenarios for
its ability to increase immersion. We look at it in the context
of arena sports like soccer, which have always provided op-
portunities for innovation in broadcasting. The challenges in
providing interactive experiences in broadcasting to a large
audience span several fields. One such challenge is to pro-
vide a real-time pannable and zoomable virtual camera to
several thousands or even millions of users.

This type of challenges has attracted the attention of sev-
eral researchers [10, 12, 3, 5, 8, 4, 13]. For example, Carr et
al. [5] demonstrated recently a hybrid robotic/virtual cam-
era for event recording. It uses a robotic camera to follow
features and assist a virtual camera. Such a system can
provide a smooth and aesthetic camera, but it is restricted
to one virtual camera per a robotic camera. So, in case
of a multi-user system, all clients receive the same video.
Furthermore, Mavlankar et al. [8] describe a pan-tilt-zoom
streaming system, but the system presented merely crops
from a larger video. For a large space like a soccer stadium,
such a system introduces widely varying quality from one
end to the other end. If the perspective nature is main-
tained (straight lines remain straight) in the panorama, a
large amount of redundant data is transferred on the close
end.
To provide a better perceived quality when zooming and

panning into a panorama video and keep redundant data
transfer low, we present a system that uses a cylindrical
panorama as an intermediate representation. The approach
followed by us to create the intermediate representation is
one of the numerous choices available. Then, a virtual view
is generated where the perspective of the delivered video is
corrected before it is presented to the client. The client has
full freedom to pan, tilt and zoom using the system, and the
system supports several algorithms for pixel interpolation.
Furthermore, in order to support a large number of concur-
rent users, we aim for a lightweight system to generate the
views in real-time. Therefore, we have implemented several
versions running on both CPUs and GPUs, and we discuss
the system’s ability to scale to a large number of users –
both to spectators within a stadium as well as users outside.
Furthermore, we generate a virtual view frame in about

10 ms on a GPU, and our system supports real-time in-
teractions. If processed on the server side, we support a
limited number of users per machine. However, taking into
account existing work to transfer panorama video in real-
time [6] and the fact that GPUs are becoming a commodity
also on mobile phones, we work on an adaptation of our sys-
tem that creates the virtual camera on the client side. This
system will trade bandwidth for server processing power by
broadcasting the panorama video to all clients instead of
computing and transmitting a personalized view for each
client.
The rest of our paper is organized as follows: Section 2

briefly describes the example soccer scenario with our real-
world installation. In section 3, we describe our system,
and we present our experiments and evaluation results in

section 4. Section 5 provides some discussions before we
conclude the paper in section 6.

2. EXAMPLE SCENARIO
Our prototype is currently installed at Alfheim, a soccer

stadium in Tromsø, Norway. In this scenario, we use the
panorama video in a sport analysis system [7, 9] where video
events must be generated in real-time. The camera array
is integrated with a player-position sensor system and an
expert annotation system. The integrated system enables
users to search for events, follow one or more players in the
video, and automatically query for video summaries.

Figure 1: Generated panorama video.

The scenario poses an array of challenges. To stitch the
individual cameras into a panorama video (see figure 1), the
camera shutters must be synchronized. This was accom-
plished by building a custom trigger box1. The cameras
must again be synchronized with the sensor system to cor-
rectly identify the corresponding video frames and sensor
records [7]. Furthermore, the high-rate video streams must
be transferred and processed in real-time [11].

Even though the system was originally meant for the coac-
hes, a lot of this functionality is also interesting for outside
users. Our goal is to enable spectators in the stadium and
supporters at home to use a part of the system with indi-
vidual videos. This means that every user must be able to
interact with the system in real-time to generate their own
personal view from a single viewpoint.

Until recently, our virtual views were limited to cropping
and scaling. For a better user experience, we need perspec-
tive correction, and to scale the system up to thousands of
spectators in a stadium, we need a scalable way of generating
and delivering the individual views.

3. SYSTEM OVERVIEW
Our system is divided into a panorama generation part

and a video delivery part, which supports user-controlled
interactive virtual cameras. A sketch of our system is given
in figure 2. In this section, we describe these two parts.

!"#$%&'(

)&%*"++,!-(

./*0,!"+(

*/)#1&"((

./*0,!"+(

23"(45(

*/."&/+(

6#0"&!"#((

7,!'+(

89:"(

(,!#"&*%!!"*#((

!"#$%&'(

&"/7;<."()/!%&/./(-"!"&/<%!(&"/7;<."(3,/7(*/."&/(3,="%(="7,3"&>(

Figure 2: Setup.

1Hardware design and software open sourced at
https://bitbucket.org/mpg_code/micro-trigger-box

3.1 Real-time Panorama Video Capture
As we have earlier described the real-time version of the

panorama video pipeline [11], we only highlight the changes
made to increase the resolution (better and more cameras)
and to distribute the capture and processing.
The capture pipeline (left-most part of figure 2) consists

of several sub-components. First, we have a camera reader

that fetches raw video frames from the (frame-synchronized)
cameras over a point-to-point Ethernet network. Depending
on the chosen output format from the cameras, we have a de-

bayering component interpolating the frames from a Bayer
pattern to full YUV 4:2:2 used later in the pipeline. To move
data to the panorama processing machine, we use a Dolphin

high-speed interconnect component transferring the uncom-
pressed video data from the recording machines to the sin-
gle processing machine. On the processing machine, we first
have a frame synchronizer, which retrieves a full set of syn-
chronized frames from the separate camera streams. It deliv-
ers each set of frames to the panorama stitcher, which gener-
ates cylindrical panorama frames. Finally, we have a video

encoder, which encodes the panorama video in H.264 for
immediate delivery to clients and for storage for on-demand
operations.

3.1.1 Video Capture

To capture the entire soccer field, we use five Basler in-
dustry vision cameras [2], each of which delivers a maximum
resolution of 2046×1086 pixels at 50 frames per second over
Gigabit Ethernet. We use an 8mm lens [1] with virtually
no image distortion, allowing us to bypass the lossy debar-
reling step of our previous pipeline [11]. To maximize the
panorama resolution, the cameras are rotated by 90° (see fig-
ure 3), giving a vertical field-of-view (fov) of 66°. Further-
more, the cameras are mounted in a circular pattern, i.e.,
pitched, yawed and rolled to look directly through a point
5cm in front of the lenses, in an attempt to reduce parallax
effects. As a result of this, only minor adjustments are re-
quired before the images can be stitched together. The video
capture system also determines the required exposure, which
requires frequent changes due to quickly changing light con-
ditions outdoors. Auto-exposure is performed on the center
camera once every 4 seconds , and the camera reader module
broadcasts the resulting exposure parameters to the other
camera readers.

Figure 3: Mounted camera array

3.1.2 Distributed Processing

The new setup requires many more resources (particularly
bandwidth) per camera, and we therefore had to distribute
capturing as shown in figure 2. To transfer the video streams
to the panorama processing machine, a single gigabit Eth-
ernet network is insufficient. We therefore use Dolphin In-
terconnect cards, which use PCIe as the interconnect pro-
tocol and allow for ultra-low latency Direct Memory Access
(DMA) across several machines. We transfer each frame

with a single DMA transfer at a rate of 19.41 Gbps and a
total latency of 1.26 ms per frame.

3.1.3 Cylindrical Projections

Our new pipeline generates a cylindrical stitched panorama
as shown in figure 1. The idea is to have the cameras in the
center of a virtual cylinder where each source image can be
considered a (cropped) plane that is tangential to the cylin-
der and orthogonal to its camera’s viewing axis. Each pixel
of the cylinder is then computed as the (interpolated) pixel
value of the ray from the camera center through the pixel
intersecting the image plane.

The radius (r) of the cylinder is determined by the width
(Ws) of the source images and its field of view (fov):

r =
Ws

2 ∗ tan(fov
2
)

(1)

The viewing axes of the cameras form a plane L (orthogonal
to the rotation axis of the cylinder). The angle between the
viewing axes of two neighbouring cameras is ≈ 28.3°, with
the 0°angle assigned to the center camera. For brevity, we
say also that the angle α of a camera is the angle α of its
corresponding source image. The unrolled cylinder forms
a Cartesian coordinate system, where (0, 0) corresponds to
the intersection of the center camera’s viewing axis with the
cylinder and the X axis corresponds to the intersection of L
and the cylinder.

Every pixel coordinate (Tx, Ty) on the unrolled cylinder
determines the corresponding horizontal (θ) and vertical (φ)
angles of a ray from the camera center through this coordi-
nate.

θ =
Tx

r
and φ = arctan

(

Ty

r

)

(2)

To determine the pixel(s) in the source image for every
pixel (Tx, Ty), the source image with the closest α value to
θ is selected and α is subtracted, essentially centering the
coordinate system on that camera’s viewing axis. Then, the
point x′, y′, z′ in 3D space where the ray intersects the image
plane is determined by:

z
′ = r and x

′ = tan(θ) ∗ z′ (3)

y
′ = tan(φ) ∗

√

z′2 + x′2 (4)

This relationship is visualized in figure 4.
This algorithm requires each image to be perfectly aligned

and rotated. The camera mount seen in figure 3 provides a

Figure 4: Creating panorama pixels from a captured image

good alignment, but there are small deviations that must be
corrected. A small per-camera vertical correction is easily
applied with no additional complexity. For each source im-
age, a standard rotational matrix is created to compensate
for rotation around the camera’s x, y and z axis.
The Cartesian coordinates of the pixels on the cylinder are

multiplied with this rotational matrix, rotating the cylinder
before we project onto it. Then we can find θ and φ based
on the new coordinates:

θ = arctan
(

x

z

)

and φ = arctan

(

y ∗ sin(θ)

x

)

(5)

The computational complexity of equations in 5 is signifi-
cantly greater than that of eq. 2.

3.2 Live Panoramic Zoom and Panning
Using the cylindrical panorama as an intermediate repre-

sentation, our system can generate an arbitrary virtual cam-
era view from the position of the camera array. The user has
the full freedom to pan, tilt and zoom. As shown in figure 5,
the virtual camera view is corrected to a perspective view
very similar to that of a physical camera.

Figure 5: Panorama video with labeled ROI (left) and the
virtual camera generated (right). It can be observed that it
is not a simple crop from the bigger video.

This enables the virtual camera video delivery part shown
on the right in figure 2. It consists of fetching and decoding
the panoramic video file, creating the virtual camera and
handling user input. The implementation uses one thread
for most of the process including decoding the current frame,
moving the data from host to device, creation of the virtual
camera and rendering the texture onto a display. Fetching of
video segment data and user input are handled by different
threads.

3.2.1 Video Handling

For streaming, we use HTTP segment streaming (with
plans for adaptive HTTP streaming). The segments of the
panoramic videos are served by an Apache server along with
a manifest file. The manifest file is used to inform the clients
when the next file is ready for download. The viewer checks
the manifest file periodically and downloads the next seg-
ment when ready.
As soon as the panoramic video segment is transferred,

it is kept ready for processing. This process runs in the
background without blocking either the display thread or the
user input thread. At the moment, the system demands a
large network bandwidth due to the full resolution panorama
video. Nevertheless the panoramic video is compressed using
H.264, saving quite a lot of space.

3.2.2 Virtual Camera

Panning and zooming are performed by a virtual perspec-
tive camera. The cylindrical panoramic texture generated as

�

�

�

�

�

�

Figure 6: The intersection of the ray from the virtual view
with the unit cylinder

described in section 3.1.3 is viewed through a virtual camera
and the output is rendered on the screen.

When we use the virtual camera, the operation is to fetch
the pixels of the image formed on the camera from the cylin-
drical texture. This can be better seen in figure 6.

A pin-hole camera for a point projection from a 3D point
P to image point q can be written in the following manner:

λq = [K|03]

[

R 0
03 1

] [

0T3 −C

0 1

]

P (6)

where R is the general (3× 3) 3D rotation matrix as a func-
tion of θx, θy and θz, the rotation angles around the x, y and
z axes respectively and K is the camera intrinsic matrix
built with focal length(f).

Let p be the current pixel. So we need to find the ray that
passes from the camera center C to the pixel p. The ray can
be represented by:

s = λR
−1

K
−1

p (7)

Then the intersection of this ray with the unit cylinder gives
us the exact position on the cylindrical texture. The inter-
section point can be found as follows:

Tx =

(

Wp

FOV

){

arctan

(

−s(1)

s(3)

)}

+
Wp

2
(8)

Ty =

(

1

2
−

s(2)
√

s(1)2 + s(3)2

)

Hp (9)

where Wp, Hp and FOV are the width, height and the field
of view of the panoramic texture respectively. (Tx, Ty) are
the coordinates on the unrolled cylindrical texture as de-
scribed in section 3.1.3. When these calculations are per-
formed with sub-pixel accuracy, it is not necessary that the
intersection always lands at one pixel. So there is a need
for interpolation from the surrounding pixels. A few ex-
perimental results are presented in the next section in this
respect.

3.2.3 Implementations

A straightforward implementation (CPU) of such a viewer
is to loop through all the pixels in the virtual view and find
the positions where the rays land on the panoramic tex-
ture. The heavy operations include an inverse tangent and
a square root in every pixel calculation. Since the opera-
tions are well suited for parallelization, we have ported the
program to a GPU.

A simple port (GPU1) using CUDA performs the calcu-
lation of the ray intersection and the fetching of the cor-
responding pixel on the GPU. So, in the initial implemen-
tation the videos are decoded on the CPU, the frames are

transferred to the GPU, and calculations and fetching oper-
ations are performed on the GPU. Then the virtual image
is created and transferred to the host for displaying/storing
purposes.
Since it is possible to render OpenGL textures written

by an NVidia CUDA kernel directly from the GPU to the
screen, the current implementation (GPU2) uses that fea-
ture. A texture area is defined in advance and bound to
the screen buffer. When the fetching operations are com-
plete, the output is not transferred to the host, but written
to the bound texture buffer on the GPU. Then this texture
is displayed directly on the screen, saving the transfer over-
head from device to the host. Other optimizations of GPU2
include the use of CUDA texture buffers instead of global
memory on the GPU for the panorama frames to speed up
the fetching operations owing to hardware-accelerated inter-
polation.

3.2.4 Operation

The user can pan, tilt or zoom using the virtual camera.
When the panning operation is performed, θx is modified.
θy is modified when a tilting operation is performed on the
camera. The zoom is realized by modifying the focal length
f of the virtual camera.

4. EXPERIMENTS
To test our prototype, we have performed a number of

experiments during the development of the system. In this
section, we present the results.

4.1 Real-time generation of panorama video
We have earlier shown that we are able to generate pano-

rama video in real-time [11], and we therefore do not focus
our evaluation on this part of the system. However, we have
replaced the four 1K-cameras with five 2K-cameras, i.e., gen-
erating more than the double number of pixels. Neverthe-
less, using the setup in figure 2 distributing the capturing
and processing, we are still able to process the panorama
frames in real-time, i.e., generating a 25 fps video live. In
average, we are able to generate the frames in 34.58 ms on an
Intel i7 CPU, and we are currently working towards deliver-
ing a higher frame rate. In this respect, the only bottleneck
is the processing. To deliver higher rates over the 1 Gbps
Ethernet link, the cameras must use a Bayer representation
which must be converted to YUV on the host, and at higher
frame rates, both the stitcher and x264 encoder may be-
come bottlenecks. We are therefore currently moving the
new pipeline back to the GPU we had in [11], but for our
current 25 fps prototype, the current setup is sufficient for
real-time panorama generation.

4.2 Zooming and panning
After the panorama video has been generated, it is ready

for consumption by local or remote clients. The video must
be retrieved, processed for zooming and panning and pro-
cessed for scaling (interpolation).

4.2.1 Video Download

First, the video must be fetched to the processing machine
of the client. The time taken for downloading is measured
and the results for a few video segments are presented in
figure 7. Each of the segments has a playout duration of

3 seconds and varying file size. The experiments are per-
formed using three different networks: 1) All on the same
machine using localhost; 2) Client and server on the same
local network; and 3) Client is 1.500 km avay from the server
over a wide-area network. Figure 7 shows the average times
taken for 23 files and their sizes in the background to illus-
trate the effect of the sizes. The plot also demonstrates a
horizontal cut-off line which is the limit for smooth playout.

Usually, we run the system over the norwegian research
backbone network (Uninett with 19 hops). We have, how-
ever, also tested it locally. It can be observed that even
when the client and server are separated by a real network,
which is subject to unknown traffic shaping and congestion
on the Tromsø side, the client is still able to perform close
to the smooth playout. Of course, this varies depending on
the bandwidth available to the client. Since the client side
processing is pipelined, only one segment buffer is required
to make this run in real-time – if the segments can be down-
loaded in real-time. By applying adaptive HTTP streaming
(we expect that this is feasible when the GPU port of the
new server pipeline is complete), we will be able to overcome
this bottleneck at the price of reduced quality.

Figure 7: A plot showing various times taken

4.2.2 Comparison of implementations

In section 3.2.3, we described three different implementa-
tions of the computation and rendering of the virtual cam-
era. The average execution time for each of these approaches
is presented in table 1. The experiments were performed on
a machine with an Intel i7-2600 CPU and an Nvidia GeForce
GTX 460 GPU. The time is observed for the same video seg-
ment in all three cases and for a virtual camera with Full HD
resolution (1920× 1080). The time also includes the decod-
ing time of the panorama frame and all transfers between
host and GPU.

Approach Average variance
CPU 255.7 35.8
GPU1 13.3 2.6
GPU2 10.1 3.2

Table 1: Execution time per frame (ms).
The unoptimized (no multi-threading or SIMD instruc-

tions) CPU implementation is not fast enough to provide
the full frame rate of 25 fps. A straight-forward GPU im-
plementation reduces the computation time drastically.

4.2.3 Interpolation comparison

Since the panorama is rendered on a cylinder, pixel inter-
polation is required for every virtual camera independent
of zoom or pan setting. Interpolation trades computing

time for smoothness and sharpness, and we tested three ap-
proaches: nearest neighbour, bilinear and bicubic. Figure 8
presents a highly zoomed frame in the three different modes
with the kernel execution time for each of these approaches.
As it can be seen in the figure, bicubic interpolation seems

to provide the best visual quality at the cost of a higher exe-
cution time. However, we pay less than 3.5ms and choose the
higher image quality. Furthermore, CUDA supports an op-
timized linear interpolation on some hardware, which could
be used as an alternative.

(a) Nearest neigh-
bour (2916 us).

(b) Bilinear
(2840 us).

(c) Bicubic
(3242 us).

Figure 8: Execution time for the interpolation algorithms

4.2.4 Size of virtual view

Most of the performance measures provided in this section
are for a Full HD resolution, but the resolution of the virtual
camera varies with the viewing device. Figure 9 therefore
demonstrates the effect of the size on the kernel execution
time of the final generation of the zoomed image (note the
microsecond scale). As can be seen in the plot, the reso-
lution has negligible impact on performance (as the whole
panorama video has to be moved to the GPU anyway).

Figure 9: Execution times for various sizes of virtual camera

5. DISCUSSIONS

5.1 Panoramic stitching
In the current system, panoramic stitching is performed

using a static lookup table. Each pixel in the output pano-
rama is mapped to a pixel in one of the source images. At
runtime, the pixels are merely interpolated, both from the
cylindrical warp and the down-sampled chroma channels in
the YUV 4:2:2 pixel format.
We intend to move this module to GPU, and re-introduce

dynamic seam-finding [11]. The dynamic seam can be de-
termined at runtime, and pixel values dynamically chosen
from one of two lookup tables in the overlapping region of
the source images.

5.2 Scalability
Even though the generation of each frame is fast, the

scalability of the system depends on where the video for
the virtual camera is generated. By running everything
on the sender side, we have the advantage of supporting
light client devices and reducing the bandwidth required of
the client’s access network. This option, however, requires
large amounts of processing power, as well as network band-
width on the server side, i.e., the scalability is limited on
the server side. On the other hand, by transferring the
panorama video to the client device, our servers can eas-
ily support a large number of clients at the cost of client
processing and a distribution infrastructure that can deliver
the panorama stream (broadcast, multicast, caches, proxies,
P2P, ...). Since the current trend is to equip even mobile
phones with powerful CPUs and GPUs, we consider the sec-
ond option most promising. The benefit of this is partic-
ularly visible in our chosen scenario of delivering personal-
ized panning and zooming to the spectators in the stadium,
where broadcast support is feasible, while the limited wire-
less spectrum prevents the delivery of individual streams.

5.3 Ongoing work
Such a system, even though it provides an interactive way

to control the virtual camera, is not practical if the user is
really meant to perform pan and zoom operations manually
during the entire game. So, we are currently working on
providing a virtual camera based on a request from the user.
For example, the user will have the ability to select the main
feature of interest, such as the ball, a specific player or a
group of players. The challenge then is to create an aesthetic
and smooth virtual camera on the client based on meta-
information such as player and ball positions. Naturally,
this must be done on the client in real-time to maintain our
scalability goals.

We are currently experimenting with different approaches
for generating a virtual view that follows a feature point aes-
thetically and smoothly. Our preliminary prototype seems
to follow the ball well2 (note that finding the position of the
ball is out of the scope of this paper).

6. CONCLUSION
In this paper, we have presented a system for real-time

interactive zoom and panning of panorama video used in a
soccer stadium scenario. Based on video streams from five
stationary 2K cameras, processed and stitched into a high-
resolution panorama video, we are able to support any free
view angle from the position of the camera array, i.e., a vir-
tual camera. The unoptimized running prototype is able to
generate one frame of the virtual camera from the panorama
image in less than 10 ms on a commodity computer with a
standard GPU. Thus, it can easily be scaled to support many
concurrent users. If the processing is performed on the client
device, at the cost of transferring the panorama video, any
number of virtual cameras can be supported, i.e., all users
may have their own virtual view.

There are a number of open challenges that are currently
under investigation. We aim for more efficient implemen-
tations to reduce the resource consumption further, and we
investigate more efficient algorithms for following a player
or the ball smoothly.

2See http://www.youtube.com/watch?v=554RjEEtw3o

Acknowledgments

This work has been performed in the context of the iAD cen-
ter for Research-based Innovation (project number 174867)
funded by the Norwegian Research Council. Furthermore,
the authors also acknowledge the support and hardware given
by Dolphin Interconnect Solutions.

7. REFERENCES
[1] Azure-0814m5m.

[2] Basler aca2000-50gc.

[3] Y. Ariki, S. Kubota, and M. Kumano. Automatic
production system of soccer sports video by digital
camera work based on situation recognition. In Proc.

of ISM, pages 851–860, 2006.

[4] P. Carr and R. Hartley. Portable multi-megapixel
camera with real-time recording and playback. In
Proc. of DICTA, pages 74–80, 2009.

[5] P. Carr, M. Mistry, and I. Matthews. Hybrid
robotic/virtual pan-tilt-zom cameras for autonomous
event recording. In Proc. of ACM MM, pages 193–202,
2013.

[6] R. Guntur and W. T. Ooi. On tile assignment for
region-of-interest video streaming in a wireless lan. In
Proc. of NOSSDAV, pages 59–64, 2012.

[7] P. Halvorsen, S. Sægrov, A. Mortensen, D. K.
Kristensen, A. Eichhorn, M. Stenhaug, S. Dahl, H. K.
Stensland, V. R. Gaddam, C. Griwodz, and
D. Johansen. Bagadus: An integrated system for
arena sports analytics – a soccer case study. In Proc.

of ACM MMSys, pages 48–59, Mar. 2013.

[8] A. Mavlankar and B. Girod. Video streaming with
interactive pan/tilt/zoom. In M. Mrak, M. Grgic, and
M. Kunt, editors, High-Quality Visual Experience,
Signals and Communication Technology, pages
431–455. Springer Berlin Heidelberg, 2010.

[9] S. Sægrov, A. Eichhorn, J. Emerslund, H. K.
Stensland, C. Griwodz, D. Johansen, and
P. Halvorsen. Bagadus: An integrated system for
soccer analysis (demo). In Proc. of ICDSC, Oct. 2012.

[10] X. Sun, J. Foote, D. Kimber, and B. Manjunath.
Region of interest extraction and virtual camera
control based on panoramic video capturing. IEEE
Transactions on Multimedia, 7(5):981–990, 2005.

[11] M. Tennøe, E. Helgedagsrud, M. Næss, H. K. Alstad,
H. K. Stensland, V. R. Gaddam, D. Johansen,
C. Griwodz, and P. Halvorsen. Efficient
implementation and processing of a real-time
panorama video pipeline. In Proc. of IEEE ISM, Dec.
2013.

[12] J. Wang, C. Xu, E. Chng, K. Wah, and Q. Tian.
Automatic replay generation for soccer video
broadcasting. In Proc. of ACM MM, pages 32–39,
2004.

[13] M. Wieland, R. Steinmetz, and P. Sander. Remote
camera control in a distributed multimedia system. In
B. Wolfinger, editor, Innovationen bei Rechen- und

Kommunikationssystemen, Informatik aktuell, pages
174–181. Springer Berlin Heidelberg, 1994.

