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Abstract

Simulation-based engineering has been a major protagonist of the technology of the
last century. However, models based on well established physics fail sometimes to
describe the observed reality. They often exhibit noticeable differences between
physics-based model predictions and measurements. This difference is due to several
reasons: practical (uncertainty and variability of the parameters involved in the models)
and epistemic (the models themselves are in many cases a crude approximation of a
rich reality). On the other side, approaching the reality from experimental data
represents a valuable approach because of its generality. However, this approach
embraces many difficulties: model and experimental variability; the need of a large
number of measurements to accurately represent rich solutions (extremely nonlinear or
fluctuating), the associate cost and technical difficulties to perform them; and finally,
the difficulty to explain and certify, both constituting key aspects in most engineering
applications. This work overviews some of the most remarkable progress in the field in
recent years.

Keywords: Data-driven learning, Physics-informed learning, Physics-augmented
learning, Machine learning, Artificial intelligence

Introduction
Engineering sciences have acquired a provedmaturity in what concerns tomodeling, sim-
ulation and experiments, the three so-called pillars of engineering. These have enabled an
unprecedented technological development in almost every technology domain: space,
transport and mobility, energy, machinery, civil and industrial infrastructures, smart
industry, smart cities and nation, among others.
Existing models are a heritage of centuries of fruitful science. Once calibrated and

validated, they exhibit both accuracy and robustness, even in the presence of uncertainty.
Models developed under the impulsion of experimental techniques enable the access to
the smallest scales, with increasing accuracy and efficiency, for observing, measuring and
interacting with the deepest details of the surrounding reality.
Models also benefit from the unprecedented advances in appliedmathematics and com-

puter science. Thus, a fast and accurate solution of complex mathematical models was
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possible, even when components, structures and systems exhibit extremely large uncer-
tainty and complex couplings. Thus, the design (under multi-disciplinary optimality con-
strains), the diagnosis, the prognosis and predictive engineering are nowadays part of the
everyday engineering practice—the engineer’s mission!.
The twenty-first century started with revisited challenges: the dream or need of man-

aging systems of increasing size and complexity, that involve the finest scales, exhibit
uncertainty, variability and fluctuating behaviors. But new objectives also exist, such as
the need of developing digital twins of the physical entities. These twins should be able to
emulate their behavior and, consequently, enable an efficient dialog between the user or
the controller and the digital twin, instead of making that dialog with the real entity.
A digital twin (DT) aims at representing the reality in a complete, concise, accurate and

efficient way. It is more than a continuously calibrated physics-based model (something
that is achieved through adequate data assimilation) and also much more than a simple
transfer function, that relates specific inputs with specific outputs. Even if they are very
precise and operate very fast, they fail to be general enough to address any query. DT
comprise three main functionalities: (i) an accurate model, able to replicate or emulate
the reality with the required level of fidelity; (ii) a digital platform for processing that
model and making predictions from it at the required feedback rate; and (iii) data with
multiplemissions: calibratingphysics-basedmodels, learningdata-driven-models,making
diagnosis, validating predictions, ...
Advances in sensing for data acquisition, data transfer, data storage, data analytics, ...

have facilitated and boosted the irruption of DT in almost all the scientific and techno-
logical domains [24,40,67,123]. Now, we must conciliate accuracy with velocity, make it
fast and well—the engineer’s dream!
In this context, we should address a first question:

• What are the limits or difficulties we are confronted to in the current engineering
practice?

with a natural second one:

• which framework is needed, such that it is able to conciliate explainability and
understanding (the foundations of knowledge), efficiency and pragmatism, needs and
resources?

for finally

• identifying the available methodologies,

and

• illustrating their use in the domain of materials and structures, fluids and flows,
processing and multi-physics coupling, complex systems and systems of systems.

Coming back to the first question, it can be noticed that several models exhibit a limited
fidelity with respect to the reality that they are expected to represent. This is due to
different reasons of practical and/or epistemic nature. In fact, reality seems to be much
richer that our approach to it, our conceptualization of the physics. To enrich it, thus
enhancing their predictability capabilities, further research works are needed. Some of
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them will run for many years to reach the targeted accuracy. This is the way how science
and technology advanced during the past centuries.
Nothing seems to be really new from the fundamental point of view at present. Maybe

only the fact that our society, to which scientists and engineers belong, becomesmore and
more impatient, and queries are expected to be responded instantaneously. An insatiable
impatience seems to be the only novelty with respect to the process of transforming
observations into knowledge accomplished during centuries of successful science and
technology.
From now on, three main challenging scenarios are addressed:

• Improving the efficiency of optimal design procedures by enabling fast, accurate
and a complete exploration of the design space—that is, the space spanned by the
design parameters—by improving existing techniques and proposing new advanced
methodologies.

• Diagnosis works quite well based solely on data analysis. As soon as data, as described
later, is classified so as to construct a sort of catalog or dictionary of faults, pat-
tern recognition will be enough for performing online diagnosis. The prescription of
corrective actions, needed for accurate prognosis, is also discussed later.

• Finally, models exist and are accurate enough. However, they are difficult to manipu-
late with the prescribed accuracy, under stringent real-time constraints. Very often,
model order reduction (MOR) techniques do not suffice or are too complex to imple-
ment. To improve performance models thus are degraded (coarsened). In that case,
the risk becomes that of making wrong predictions very fast. Efficient technologies
are then needed to ensure fast an accurate predictions.

The transition between the twentieth and twenty-first centuries was accompanied of a
hatching of technologies able to address the just referred challenges, conciliating efficiency
and accuracy:

• First, the solution of state-of-the-art physics-based models has been accelerated so as
to accomplish real-time response by using advanced MOR techniques. These tech-
niques neither reduce nor modify the model itself, they simply reduce the complexity
of its solution by employingmore adapted approximations of the unknown fields [23].

ModelOrderReduction techniques express the solution of a given problem (usually
governed by a PDE) by employing a reduced basis with strong physical or mathemat-
ical content. Sometimes these bases are extracted from some offline solutions of the
problem at hand, as in the Proper Orthogonal Decomposition (POD) or the Reduced
Basis (RB) methods. When operating within the reduced basis approach, the com-
plexity of the solution scales with the size of this basis. It is, in general, much smaller
than the size of the general-purpose approximation basis employed in the Finite Ele-
ment Method (FEM), whose size scales with the number of nodes involved in the
mesh that discretizes the domain in which the problem is defined. Even if the use of
a reduced basis implies a certain loss of generality, it enables impressive computing-
time savings while guaranteeing acceptable accuracy. This is true, in general, as soon
as the problem solution continues to live in the space spanned by the reduced basis.
Themain drawbacks of these techniques are: (i) their limited generalitywhen address-
ing situations far from the ones employed to construct the reduced basis; (ii) the diffi-
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culties of addressing nonlinear problems, that require the use of advanced strategies;
and (iii) their intrusive character with respect to their use in well-experienced and
validated software.
For circumventing, or at least alleviating, the just referred computational issues, an
appealing route consists of constructing the reduced basis at the same time that
the problem is solved, as Proper Generalized Decompositions (PGD) do [20–22].
However, PGD is even more intrusive than POD and RB. Thus, non-intrusive PGD
procedures have been proposed recently that construct the parametric solution of
the problem from a number of high-fidelity solutions. These are obtained offline for
different choices of the model parameters. Among these techniques we can men-
tion the SSL-PGD, that considers hierarchical separated bases for interpolating the
precomputed solutions [9], or its sparse counterpart [58,110].
Once the parametric solution of the problem at hand is available, it can be partic-
ularized online for any choice of the model parameters, enabling simulation, opti-
mization, inverse analysis, uncertainty propagation, simulation-based control, ... all
of them under stringent real-time constraints [23].

• With the democratization of technologies around sensing, metrology, communica-
tion, storage and computation, massive data-acquisition experienced an exponen-
tial increase in many new domains. In other domains like spectrography, tomogra-
phy, thermography, among others, massive data has already been present for many
years. Data were not the real revolution. The real revolution, as just argued, was their
democratization and the colonization of many domains of science and technology.
This happened first where models were inexistent, or where models existed but their
predictions did not fulfill the desired expectations in terms of accuracy or speed of
computation.

• Thus,many initiatives irruptedworldwide, pointing out the opportunities that the use
of machine learning and artificial intelligence could represent [75]. In particular, in
France the collective report entitledAI forHumanity, whosewritingwas leaded by the
2010 Fields Medal awardee Cedric Villani [127], was the starting point, followed with
the four french 3AI initiatives: AI focusing on medicine, mobility, aeronautics and
space, environment, city and nation, human and social sciences, ... Similar activities
saw the light in all the countries around the world, almost simultaneously.

Engineering benefited of that impulse, with different approaches to the employ of
the data:

1. Some applications were essentially or purely based on the employ of data. This
is the case of applications making use on pattern recognition (based on data
classification), widely employed in diagnosis.

2. Dynamic Data Driven Application Systems (DDDAS) represent an intimate dia-
log between models and data, where data is used for keeping the models cali-
brated continuously, whereas the models serve to drive the data collection [27].

3. In the third case, data is used with learning purposes, to be employed to make
predictions or anticipate anomalous behaviors.

In the third item listed above, three levels of learning, depending on the relativeweight
of physics and data, can be distinguished:
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1. The first learning approach considers essentially data, that is assumed to be
constrained by first principles and their associated variational formulations only.
This is the most genuine data-driven learning.

2. In the second learning approach, physics (and more generally, all the existing
knowledge) is assimilated during the learning process, giving rise to the so-called
physics-informed learning, whose popularity is growing very rapidly.

3. In the third approach, more than solely informing the learning process, physics
augments the learning. For example, calibrated physics-based models are
enriched with a data-driven model (eventually physics-informed) for represent-
ing the deviation between the observed reality and the predictions obtained
from the calibrated physics-based model itself. This third framework, a sort of
transfer learning, is called here physics-augmented learning.

The two remaining main protagonists are data themself, as well as the techniques for
quantifying the learned model confidence:

1. What data?; at which scale?; where andwhen?whichmetrics shouldwe consider
for quantifying, expressing and comparing them? how transform the data into
knowledge, or how extract the last from the former?

2. How to verify and validate the learned models?; how to explain and certify?
Engineering remains to be extremely dependent on the confidence to quantity
risks, that must be mastered in the best manner.

As mentioned before repeatedly, because of fundamental or practical reasons the con-
sidered models (when they exist) do not allow to attain the required accuracy or rapid-
ity in their predictions. Thus, techniques based on the use of data (solely, informed or
augmented by the physics) are becoming appealing alternatives for replacing, enriching
or augmenting the existing models. To empower engineering and, therefore, conciliate
accuracy and velocity from the smart use of physics and data, advanced methodologies
focusing on data, learning and verification and validation (V&V) must be used, adapted
or proposed.
The next sections revisit the just referred three topics: (i) data; (ii) learning; and (iii)

V&V.

Methodologies: data
Our staring point is Data, where the upper case “D” is voluntarily used to emphasize the
impressive richness that this word embraces, as discussed in the current section.

Data andmetrics

Data have a double nature: a qualitative essence and a quantitative extension. First, data
exist with respect to a given target, that is, with respect to a given objective. In this sense,
data become goal-oriented. Then, to quantify them, an appropriate metric is needed. We
can visualize such a need by thinking on a ruler to measure the position of an object in
the space, or its dimensions; a balance for measuring its weight; or a thermometer for
measuring its temperature.
The situation becomes more complex when data cannot be directly represented in a

vector space. For example, data representing a manufactured product, could consist of a
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sort of identity card comprising the list of constituents, their percentages, the different
processing parameters and even the name of the employee that produced it. All this
information could be sorted into a list that will define the product’s identity card. Two
different products become represented by two distinct data. The important issue here is
the metric to be used to compute the distance between both products. It seems obvious
that calculating that distance between two products is much more controversial that
computing the Euclidian distance between two points drawn on a paper.
Thus, data cannot exist without ametric for describing andmanipulating them.When it

is not defined a priori, this metric must be learned at the same time that the classification
is carried out. It is the way that most of AI-based classification techniques proceed. These
are considered later.

Data reduction and intrinsic dimensionality

With physics and its target both defined, an important issue concerns the features to be
considered to infer the desired output. The optimal choice can be stated as follows: no
more than the strictly needed, neither less than the required ones. This is easy to express
but difficult to apply.
Removing useless features can be performed by using different techniques. Some of

them are of a statistical nature (analysis of variance, ...), others are based on the dimen-
sionality of themanifold in which themultidimensional data (assumed to be expressible in
a vector space) is embedded. In the last case, we cite here linear (e.g. Principal Component
Analysis (PCA) [79]) or nonlinear dimensionality reduction. Among them, Locally Linear
Embedding (LLE) [107], kernel Principal Component Analysis (kPCA) [79], local Prin-
cipal Component Analysis (�-PCA), Multidimensional Scaling (MDS) [79], t-distributed
Stochastic Neighbor Embedding (t-SNE) [87], among others.
The just referred strategies are also known as manifold learning techniques. All of them

aim at removing linear and nonlinear correlations and then, approximating the intrinsic
dimension of the data embedding manifold. There is not a universal technique for per-
formingnonlinear dimensionality reduction andcalculating the exact intrinsic dimension-
ality of data. All of them involve a series of hyper-parameters, assumptions, hypotheses
and sometimes technical choices (e.g. the so-called kernel trick in the kPCA). All of them
work well with data expressed in vector spaces. However, different variants or alterna-
tives exist for addressing more complex data, involving categorial features, sometimes
incomplete, enabling the discrimination between useful and useless features [31,32,56].
Autoencoders (AE), a particular form of Neural Network (NN) architecture, represent an
alternative route to nonlinear dimensionality reduction [45,51,113].

Combined features

Sometimes, all the features retained for the explanation of a certain target reveal to be
useful. However, they act in a combinedmanner. Imagine for a while, the velocity, density
and viscosity of a fluid in a flow. These features can bemeasured (different devices exist for
this). However, the flow is solely described from a feature that combines the former three:
the Reynolds number. However, it can not be measured directly, but indirectly obtained
from the three just referred measurable features.
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Discovering and extracting these combined hyper-features could be of great relevance
from the modeling viewpoint, and they are of major relevance when accessing to knowl-
edge. However, its explicit identification is not an easy and direct task. Some techniques
perform the task, but in a black-box sense, as it is the case when using the previously
introduced autoenccoders.

Time series

Time series, representing the system response at equivalent conditions, usually differ if
they are compared from their respective values at each time instant. That is, two time
series, even when they describe the same system in similar conditions, never match per-
fectly. Thus, they differ even if they resemble in a certainmetric that should be learned. For
example, our electrocardiogram measured during two consecutive minutes will exhibit a
resemblance, but certainly both of them are not identical, thus making a perfect match
impossible. A small variation will create a misalignment needing for metrics less sensible
to these effects. The same rationale applies when comparing two profiles of a rough sur-
face, two images of a foam taken in two close locations, ... they exhibit a resemblance even
if they do not match perfectly.
Thus, techniques aiming at aligning data were proposed. In the case of time-series,

Dynamic Time Warping, DTW [94,115] has been successfully applied in many domains.
The theory of optimal transport arose as a response to similar issues [126]. Another alter-
native consists of renouncing to align the data, and focussing on extracting the adequate,
goal-oriented descriptors of these complex data, enabling comparison, clustering, classi-
fication and modeling (from non-linear regressions) [81].
Finally, data transformation can be performed to represent them in amore compact way

in amore appropriate space. This is done, for instance, in the Fourier orwavelet transform,
or the one based on persistence homology, the so-called Topological Data Analysis (TDA)
revisited in the next section.

Data representation

As just discussed, sometimes features are associated with observable and measur-
able quantities. However, these features—very pertinent from the point of view of the
technician—aremuch less pertinent from the point of view of themodeler. It is important
to note that the more features are considered, the higher is the volume of data needed to
accomplish learning tasks.
Sometimes, the complexity of a learned model depends on the chosen observables. For

describing the solar system (aiming at modeling mechanistically its movement), one can
make use of a metric for locating the planets with respect to the Earth (Ptolemy) or the
sun (Kepler) at each time instant. Both are valid (no absolute frame of reference exists),
but the former leads to a much more complex model than the later. Thus, the complexity
of a model strongly and intimately depends on the description chosen for the data.
Certainmodels seem to be complexwhen described in the so-called physical space (usu-

ally the Euclidean space and time). However, with alternative descriptions, data become
sparser and thenmore suitable formodeling purposes. Imagine for a while a periodic sinus
function, whose description needs a certain number of data (dictated by the Shanon and
Nyquist representation theorem). Its description becomes simpler and more compact as
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soon as it is expressed in the Fourier space. Many representation spaces exist (wavelets,
Fourier, DCT, ...) and their choice is part of the whole problem solution. This rationale
represents the foundations of compressed sensing (the interested reader can refer to [60]
and the references therein).
As previously mentioned, the complexity of the learned model depends on the data

description. An adequate manipulation of the data could reduce the nonlinearity of the
learned model (as discussed above in the Ptolemy versus Kepler confrontation). When
looking for higher linearity, sometimes the dimensionality increases, as is the case of
the kPCA. It does not need to make the mapping explicit because the only need when
applying the PCA in the high-dimensional space is having a scalar product. Here, the
Mercer theorem allows us to compute the scalar product in the intermediate space from
the one calculated at the original space by means of the so-called kernel trick [79].
Other valuable transformation lies in the use of Topological Data Analysis (TDA), based

on the persistence homology. It becomes an appealing alternative for describing data with
large topology content [14,98]. This is the case of time series or images of microstructures
(foams, polycrystals, composite materials, ...) [33–35,137]. TDA offers compact and con-
cisemetrics able to discriminate complex data from its intrinsic topology.Other possibility
for addressing such a complex data consists of extracting some valuable statistical descrip-
tors (statistical moments, pair-correlation, covariogram, ... [122]) on which applying usual
learning strategies discussed later [137].
Last but not least, even if most data sets accept a valuable representation in the form

of a list—this is very common in machine learning—there are more appropriate repre-
sentations that take into account neighborhood, invariances, etc. Images are then easily
convoluted and graphs decomposed in segments and vertex on which the learning proce-
dures efficiently apply, as discussed later.

Quality and quantity

After proving that data can not be dissociated from the envisaged goal, and that their
quantity is a relative concept that depends on many facts and considerations, to complete
the picture the complexity of the learned model becomes strongly dependent on all the
just referred choices.
Artificial intelligence (AI) is usually associated to big data. However, in engineering sci-

ences; smart (or useful) is preferred to big. Devices for performingmeasurements with the
required volume, accuracy and acquisition rate, are expensive. Performingmeasurements
becomes very often technically complex (this is related to device placement, for instance),
withmany other difficulties related to data transfer (mainly in the case of remote sensing),
data-storage, data-treatment, ... This will force us to have needing big enough computa-
tional infrastructures. It is also important to note that the optimal datum at the optimal
location remains sometimes unattainable, because of technical issues or even because of
security or safety regulations.
It is at that point that the data/knowledge couple becomes a very convenient option.

Until now, we emphasized the fact that data serves to create knowledge, or for enhancing
the existing one. Now, we are pointing out that existing knowledge allows data to become
smarter. For that purpose, imagine for a while that we are interested in knowing the
temperature at Paris on the first of January, 2022. Based on our accumulated experience
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(knowledge or simply common sense) we can place a thermometer at the Sorbonne square
and register the temperature early in the morning, at noon and at mid-night. Thus, one
thermometer and 3 measurements are enough, whereas in absence on any experience or
knowledge, one could be tempted to put hundreds of thermometers at each street and
register the temperature each millisecond, to finally realize that most of this big data are
simply useless. Thus, in engineering applications the choice is obvious: smart instead of
big, even if in many cases (e.g. tomography, thermography, DLV, ...) the smartest data
remains usually extremely big!
The hybrid framework (something which we call physics-augmented learning later on),

looks for a data-driven enrichment of the physics-based model. The nonlinearity is in
general much smaller (most of the nonlinearity is expected to be already explained by the
physics-based model), so that it needs much less data. This is a real added-value of that
hybrid framework.
Another way of reducing the amount of measurements consists of discovering the best

locations and time instants where to perform the measurements. These techniques are
grouped under the name of active learning [116]. In them, the existing or acquired knowl-
edge is employed to drive the data acquisition procedure. Different techniques exist, based
on the pre-existing knowledge (as in transfer learning), statistical sensing (with their foun-
dation in the Bayes’ theorem), some ones inspired from robotics (e.g., SLAM), stochastic
learning or those based on information theory and the associated key concept of entropy
(in the sense of the information theory). All of them aim at measuring the minimum
amount and most relevant data.
When focusing on quality, the main aim is not having deterministic data by removing

most of its noise, or pushing the noise to the lower scales, by significantly improving
the measurement devices with the associated cost. Waiting for making it better, the data
variability can be addressed by using standard or advanced filters, widely employed in
data assimilation (e.g., Kalman and extended Kalman filters), or by taking into account
the data variability within more adapted stochastic learning settings. The data noise is
not the most formidable enemy, the most dangerous is bias. Outliers can be more easily
identified and their impact limited by simply removing them or by using techniques more
robust to their presence (e.g.,the L1 norm).

Grouping and classifying

Data is usually grouped, expecting that a datumbelonging to a group shares some property
with the the rest of the group’s members. If European citizens are grouped by nationality,
as soon as we identify a Spanish citizen we could assume that he speaks Spanish.
The concept is quite simple. However, organizing data in groups in a supervised or

unsupervised manner is much more technical because of the need of using a metric to
compare data or to evaluate data proximity.
Since data clustering (unsupervised) or classification (supervised) entail a learning pro-

cess, in a certain sense, both techniqueswill be described and discussed in the next section.

Data augmentation and completion

When data is not abundant enough, data augmentation techniques can be applied. If some
knowledge exists (reduced basis or data manifold) completing or augmenting data can be
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performed easily. Interpolating data in complex nonlinear manifolds remains to be quite
a technical issue [99]. Data can be augmented by generating extra data by using symmetry
considerations or other kind of physics-based knowledge.
Another valuable black-box approach proceeds by combining a data generator and a

data discriminator, with one trying to betray the other. This is the rationale behind the
so-called Generative Adversarial Networks (GAN) [128], where the data generator allows
augmenting the learning process.

Methodologies: learning
With data and all their just mentioned richness at hand, everything seems ready to learn
models that relate the features with the target. In what follows, we address three learn-
ing modalities, depending on the relative weight of preexisting knowledge (physics) and
data: (i) data-driven learning; (ii) physics-informed learning; and (iii) physics-augmented
learning.

Data-driven learning

Data-driven learning is mainly based on the use of data. Different techniques are revisited
in what follows.

Clustering and classification

Unsupervised clustering proceeds by grouping the data depending on their relative dis-
tance. For that purpose a metric must be available. When considering the k-means tech-
nique [88,89], and once the number of groups is predefined, the datum is grouped in such
a manner that a datum belonging to a certain group, remains closer to the group’s centre
of gravity than to the center of gravity of any other group.
When the ruler does not exist (e.g., the beforementioned identity cards ofmanufactured

products), the distribution of the data in groups must follow a certain criterion. For
example, the class to which it belongs. However, to be useful, the border delimiting the
different groupsmust bedefined, like theborders of thedifferentEuropeancounties.These
borders are the ones separating data in themost robustway, in the sense ofmaximizing the
distance from the data to the borders.With the purpose of obtaining the best classification,
these separators can be linear or nonlinear, like the nonlinear borders of the European
countries. Now that the map of Europe is defined, if one individual is found in Spain, one
could assume (with a certain risk) that he or she speaks Spanish. This is reasonable from
a probabilistic point of view, but there exists a non-zero probability that our individual
is simply a tourist than does not speak a single word in Spanish! Obviously, more safe
classification exists for inferring the spoken language.
Numerous techniques for data classification exist: Code to Vector (C2V) [2], Support

Vector Machine (SVM) [26], Decision Trees (DT) [72] or its random forest counterpart
[10],NeuralNetworks andDeepNeuralNetworks (DNN) [45], often convolutional (CNN)
when addressing images [124], or Graph Neural Networks (GNN) [11] when applied on
data structured on graphs.
For enhancing the classification performance, the so-called boosting procedures have

been proposed and are nowadays widely and successfully employed [36,37]. Other tech-
niques at mid-way between the supervised and unsupervised ones are proving their supe-
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riority and then attracting more and more the interest of analysts, in particular the semi-
supervised [140,141] and self-supervised techniques [78]. It is worth highlighting reinforce-
ment learning procedures [66,97,119], that are becoming a major protagonist in AI.
When the target is quantitative and continuous, the resulting models consists of linear

or nonlinear regressions addressed in the next sections.

Linear regression

If, for a while, we consider data (input and output) sorted in vectors, that for the sake of
simplicity but without loss of generality, are assumed to be of the same size, the simplest
model consists of simply looking for the linear application (a constant squared matrix)
that, applied on the input data, results in the associated output data (or its inverse if one
prefers). The rang of the resulting learned matrix depends on the intrinsic dimensionality
of the manifold in which data is embedded. An incremental procedure for constructing
it, inspired of the Dynamic Mode Decomposition (DMD, described later) was proposed
in [105].

Nonlinear regressions

In the nonlinear case different possibilities exist. The simplest ones, based on polynomial
approximations, become inefficient in twomain situations: (i) when the polynomial degree
increases, needed for describing for example non-polynomial nonlinearities; and (ii) when
the number of features (model parameters) increases.
One possibility for addressing themulti-parametric case consists of using separated rep-

resentations. These are at the heart of the so-called Proper Generalized Decomposition,
PGD. That separated representation computes sequentially the approximation involving
each parametric dimension (with the other dimensions frozen within an alternated direc-
tions fixed point algorithm). Thus, all the data is available to solve the problem in each
parametric dimension, enabling the use of rich enough approximation bases. However,
the problem considered globally, becomes under-determined, and in that case the num-
ber of solutions becomes undetermined (infinite). All them describe very accurately the
data used in the regression construction (training data-set), but will provide very poor
predictions (overfitting) outside the training dat-set (the so-called test data-set or at any
other data point).
To avoid overfitting phenomena, different regularizations exist. Some consider adapted

basis and their associated collocation points (for instance hierarchical orthogonal bases
and their associated Gauss-Lobatto nodes in the case of the Sparse Subspace Learning
(SSL) [9]). Others proceed by enriching the approximation sequentially while increment-
ing the polynomial degree [58]; or those making use of sparse regularizations. The so-
called Sparse Identification of Nonlinear Dynamics (SINDy) regression [12] uses very rich
approximation bases (by mixing polynomial with any other function expected contribut-
ing to the target) and then selecting the sparsest combination of the those functions for
explaining the available data. Sparsitywas combinedwith separated representations in our
formerworks to conciliatemulti-parametric settings with richness, small amounts of data,
while circumventing overfitting [110]. In that paper, different regularizations (for instance
Elastic-Net, Ridge, Lasso, ..., that give rise to the so-called rsPGDand s2PGD formulations)
were compared. This is also the case for their combination with an anchored-ANOVA
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formulation [121], employed for recovering the sensibility indicators that the analysis of
variance provides, as well as to better address non-polynomial nonlinearities [73].
Even if the just discussed techniques perform quite well with mild nonlinearities, when

thenonlinearities become intense and stronglynon-polynomial,without anapriori knowl-
edge on its character, these techniques fail to perform correctly in the scarce data limit.
In that case the use of NN, and more particularly Deep Neural Networks (associated with
so-called deep learning) [45] are the most appealing alternatives for addressing intense
and general nonlinear behaviors. The universal approximation theorems, introduced for
approximating functions [96] and then extended for approximating functionals and oper-
ators, explain the gain of popularity of these techniques, see [18,19] respectively. The
gain in efficiency results at the cost of becoming the predictions less explainable and the
necessity of higher volumes of data for performing the learning.
Other than the standard DNN (having several internal layers of neurons of different

widths, both being network hyper-parameters), when the data to be manipulated consists
of images, curves or graphs, CNN or GNN introduced before are preferable.

Dynamical systems

In the context of dynamical systems, one aims at learning the application that allows
computing the state variables at a certain time instant, from the knowledge of the state at
the previous time step. Dynamic Mode Decomposition, DMD, computes a matrix (linear
model) for that purpose, that is, a matrix (themodel) able to updating (in time) the system
state from the current state [111]. The best constant matrix enabling the representation
of all the available data is computed accordingly in general in a least-squares sense. Some
constraints can be added during the learning process in order to ensure the stability of the
resulting time integrator (related to the spectral radius of the matrix that is being learned)
[109].
This rationale can be extended for considering nonlinear models, by assuming locally

linear representations [108], as already employed in model order reduction techniques
involving reduced bases. Othermore general framework concerns the use of theKoopman
operator theory [13,132].
Finally, the use of NN is also a valuable route, where the so-called residual NN (rNN) are

being successfully employed for integrating nonlinear dynamical systems [100]. Nonlinear
Autoregressive Exogenous NN, NARX, allow taking into consideration longer memory
effects [8].

Miscellaneous

To finish this section, we would like to mention two additional learning scenarios. The
first is the one related to the incomplete observation of the system state. The learned
model must take this fact into account.
In computational mechanics, it is usual to perform static or dynamic condensation,

when trying to express the internal (slave) degrees of freedom dependent on the master
ones (here, the ones that are accessible for observation). It is easy to prove that in the
static and linear case, a condensed model, relating input and outputs in the region under
scrutiny can be defined and learned. Actions applying in the hidden region are accessible
from their effects on the observed region. The transient case is a bit more technical, but
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under certain conditions such a condensed model continues to exist [106], and in the
most general case a series of internal variables can be defined and learned. The use of the
so-called recurrent-NN [55] generalizes the just referred rationale and even extend them
to nonlinear settings. Echo state network (ESN) improves recurrent neural networks. ESN
has a non-trainable sparse connected recurrent part (dynamic reservoir) in a hidden layer
whose weights are generated randomly and remain unchanged during the training [135].
The second scenario concerns the case in which different types of data must be inte-

grated into the learning process. Multi-Modal Learning represents a very valuable route
for defining efficient learning frameworks. The so-called Boltzmann machines (inspired
from statistical mechanics) perform well in those settings [117].

Physics-informed learning

The learning procedures just considered were based almost exclusively on data. However,
as soon as some knowledge exists, one is tempted to assimilate it in the learning process.
This is at the origin of transfer learning techniques [131]. Knowledge on physics can some-
times be introduced in the NN-based learning process through the adequate definition
of the so-called loss functions, whose minimization allows computing the weights of the
different neuron connections.
Moving forward, one could imagine a regression describing the unknown field, whose

space and time evolution is governed by a partial differential equation, PDE, subjected to
the corresponding initial andboundary conditions. Thus, thePDE residual canbe included
into the loss function, as well as the residual in the fulfillment of the initial and boundary
conditions. The learning process can be efficiently performed because of the possibility
of taking the derivatives of a NN-based regression by using automatic differentiation [6].
This rationale is at the one present in the so-called Physics Informed Neural Networks,
PINN, [102], extended to the discovery of operators in [86]. A self-consistent formulation
was proposed in [129].
Avariant consists of enforcing thermodynamic consistency. In the reversible framework,

a regression is performed to find the particular formof theHamiltonian, whose gradient in
phase space results in the time derivative of the state variables. Thus, from data reporting
the time evolution of the state, the free energy and the conservation operator (Hamilto-
nian) are learned, leading to a symplectic integrator. In the most general irreversible case,
the free energy and the entropy, as well as the conservation and dissipation operators,
are all them learned by subjecting them to some thermodynamic consistency constraints.
These techniques are known as Thermodynamic Informed Neural Networks, TINN, or
Structure Preserving NN, SPNN, with a rich recent literature [7,43,46,49,50,80,90,139].
In some cases the learning problem is formulated from the differential form of the

GENERIC model [43]. However, variational formulations are also available, as the one
of Herglotz (contact geometry) [125] or the one making use of the Onsager variational
formulation that involves the so-called Rayleighian [54].
Thus, the PINN operates by replacing the usual finite element-based functional approx-

imation by a NN-based regression, which is very general, efficient and robust for describ-
ing strongly nonlinear functions, its main advantage. The price to be paid is the necessity
of solving nonlinear optimization problems even when solving a linear PDE. Its ther-
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modynamic variant allows learning potentials (the trickiest issue arises when modeling
thermo-mechanical systems) while incorporating any constraint (symmetries, ...).

Physics-augmented learning and hybrid modeling

Hybrid models consist of two contributions. It is the result of a physics-based model and
the data-driven model, which takes into account the deviation between the measured
physical reality and the physics-based model prediction [3,24,92,108,109]. The main
advantages of the augmented framework is double. First, the possibility of explaining
the (usually) most important part of the resulting hybrid (or augmented) model, the
one concerning the physics-based contribution. Second, with the deviation much less
nonlinear that the observed reality itself (the physics-based model contains an important
part of such nonlinearity), less data suffices for constructing the data-driven model.
The practical implementation of this simple rationale faces to three main challenges:

1. The physics-based model must be calibrated (by assimilating the collected data) and
solved at a feedback rate compatible with the evolution of the physical system, even
faster if we want to anticipate future events. Model Order Reduction techniques—
revisited in the Introduction section—are main protagonists in enabling real-time
physics. These technologies have nowadays acquired at a provedmaturity, and some
of them have been integrated into commercial simulation softwares and computa-
tional platforms. Trying tominimize their intrusiveness, differentminimally invasive
methodologies were proposed. In general, these techniques operate by defining first
a Design of Experiments, DoE, then, by computing a high-fidelity solution at the
different points of that DoE, for, finally, constructing the surrogate (also known as
metamodel or response surface) by using an appropriate regression (whose choice
depends on the amount of available data, that at its turn depends on the cost of each
high-fidelity resolution).

2. The data-driven model describing the difference between the measure and the pre-
diction given by the physics-based model just described, must be created and inter-
rogated in real-time.

3. Data are essential, as already mentioned, for calibrating the physics-based model
and for learning the data-driven one. Both procedures could ask for different kind
of data, collected in different locations and times, and having different natures (for
instance, times series, images, ...) Accurate and fast data-assimilation techniques are
also compulsory, and robust enough for addressing the data variability as previously
discussed.

Methodologies: verification and validation
Making a decision based on a catalog (or dictionary), after recognizing a pattern, needs
and adequate data classification, the construction of a dictionary and its enrichment, and
also techniques for performing efficient searches inside. This process is the main one in
diagnosis. On the other hand, making a prediction of the state of a system (prognosis)
needs to make use of a model (physics-based, data-driven or hybrid).
However, the major issue in both actions, diagnosis and prognosis, concerns the level or

degree of confidence. Inmany domains of engineering, this confidence is muchmore than
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a simple added value. In engineering, most components, structures and systems must be
certified before of being employed to fulfill regulations.
In the case of physics-based models, centuries of science with well stablished and well

experienced models and solution procedures, enabled the requested confidence to ensure
the functioning and the risks of a design or decision. However, when models are learned
from data, and solely from data, many questions come into play: (i) the data considered in
the learning process were the adequate and with the adequate quantity and quality, thus
enabling to extract all the richness present in the physical phenomenon under study?;
(ii) Was the sampling vast enough for covering all the functioning states? This second
question is motivated by the difficulty of data-driven models to extrapolate far from the
data that served to create the model (interpolation is safer than extrapolation).
Other than the previous points concerning the sources, other concern the learning

process itself: was the chosen learning technique the most adequate? For instance, using
a linear regression for modeling a nonlinear behavior does not seem the best choice.
Moreover, many regression techniques involve a number of hyper-parameters to be finely
tuned, again from the collected data.
Depending on the confidence granted to the learned model, its predictions could be

used in an automatic way (high degree of confidence) or as simple suggestions offered to
the decision-maker (lower level of confidence).
In the context of the simulation-based engineering, one of its key branches concerns

the verification and validation (V&V). The former quantifies the error between the actual
solution and the one produced numerically, and the last quantifies the agreement between
the model solution and the real system behavior itself. In what concerns the verification,
different error indicators and estimators, a priori and a posteriori, have been proposed.
The last are based on the computed solution, and the former on the model properties
(the ones associated to the differential operators and the considered approximations and
discretization). Other than estimating the error, confidence intervals can be also derived
and even more, with certified bounds.
However, verification and validation remain much less developed in what concerns

learned models. There is a large variety of available learning methods, most of them
operating in a black-boxmode, involving a number of hyper-parameters, that without any
a priori knowledge, must be themselves finely tuned from the available data to maximize
the predictive performances. Thus, there are several sources of inaccuracy, among them:
(i) the data, and in particular its alignment with respect to the goal, quantity, quality, ...
(ii) the accuracy of the considered learning technique; (iii) the partition of the available
data into the two data sets, the training data-set and the test data-set; (iv) the position of
the evaluation point with respect to the position of the training data-points.
The response to all these questions seems compulsory for gaining confidence on the

AI outcomes. To move beyond the usual performance indicators, based on the difference
between the predictions and the collected data in both data-sets, the training and the
test, the physics-informed and physics-augmented frameworks offer new possibilities of
enhancing confidence.
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Applications
This section revisits the use of data-driven techniques on different domains: materials and
structures, fluids and flows, processes and couplings, and finally complex systems. For a
more extensive review the interested reader can refer to [29] and the numerous references
therein.

Data-driven materials and structures

In the context of materials, technologies able to access the finest scales of materials to
performobservations andmeasurements, combinedwith the technologies for assimilating
or learning from collected data, have experienced remarkable progresses. They enable to
bridge the different scales in the description of materials. For that purpose, an efficient
dialog between data andmodels, the last being based on the physics, on the data or having
a hybrid nature, has been the key progress [95].
The trickiest issue was and continues to be data themself: what features to consider, how

to represent them, how to represent the different chemical elements, the atomic structure
andbonds, themacromolecules conformationwith their topology and the crystallographic
structure, the dislocations and other localized defects, ... how to assimilate that data into
the models and how to construct data-driven models from them, among many other
questions without a definitive (unique and general) response [1,4,42,103,112,130,134].
At themesoscopic scale, far from the atoms and the finest description of the structure of

thematter, but still far from the scale of thepart, one is interested indescribing the effective
behavior of a representative volume of the considered solid material, and again different
approaches are possible and are being widely considered by the scientific community:

1. The first is almost based on the collected data, complemented with trusted first prin-
ciples (and their associated variational formulations). The collected data is expected
to describe solely the material phenomenological behavior, without the need of
assuming any template or further assumptions, as considered in the seminal work of
Ortiz [69], with many others that followed [15,30,48,70,71,118].

2. A second approach considers the collected data to lie on a manifold embedded into
the higher-dimensional behavior space. The manifold dimensionality depends on
the complexity of the behavior (linear or nonlinear, reversible or history dependent,
...) As soon as the collected data allows to infer the manifold structure, then first
principles are solved with the data-driven behavior manifold [57,59,62,76].

3. A third approach is much more aligned with the physics-informed rationale. The
collected data are used with a number of quite general rules representing, in a quite
general form, the material description, for constructing the so-called constitutive
manifold that intimately embraces data and existing knowledge [74].

4. Other physics-informed approaches, within a thermodynamical setting, proposed a
regressionof the free energy, fromwhich thebehavior result by simpledifferentiation,
and the regression is then tuned with respect to the collected data, while enforcing
during the construction as many conditions as constraints dictated by the existing
knowledge (symmetries, objectivity, among others) [76,77,91,138]. Other physics-
informed approaches were proposed in more complex (dissipative) settings [43,49,
50].
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5. Finally, within the augmented rationale (or hybrid paradigm) the real behavior can
be assumed represented by a first order one (calibrated at best from the available
data) complemented by an enrichment (or correction) filling the gap between the
collected data and the predictions obtained from the chosen and calibrated model
[44], with again some constraints applying during the data-driven enrichmentmodel
construction (e.g., convexity of the yield function [61]).

Other works address multi-scale problems and the use of the so-called Deep Material
Network [38,39,83,84], micro and macrostructural analysis [82], learning constitutive
equations from indirect observations or the plasticity modeling [41,47,52,53,93,133].
Despite of the important progresses recently accomplished, many challenges remain

open and are attracting a lot of interest within the scientific community, among them, the
ones concerning:

• The description and evolution of the so-called internal variables, able to condensate
at the current time all the effects of the past material history. Some proposals exist,
however, [50].

• The material description at the microscopic scale to take into account the subjacent
physics, that can be impacted by a bad (or too poor) choice of the descriptors and
model features. This point is essential to address the inverse problem of finding the
best atomic or microscopic structure for attaining the optimal macroscopic proper-
ties, at the origin of the so-calledmaterials by design.

• At the scale of the structure, a wide topic concern the Structural Health Monitoring,
SHM. The loss of performance can be motivated by some amount of local damage,
expected to be identified from the analysis of experimental data (diagnosis). However,
to give more quantitative predictions on present or future consequences or actions,
a model seems a valuable option. The diagnosis and prognosis [101,120] must be
accompanied of an effective sensing.
For that purpose, physics-augmented learning (the hybridmodeling approach) seems
to be particularly well adapted. We could assume that the real structure can be
expressed from its undamaged counterpart (assumed well modeled) complemented
by a correction that removes from the undamaged model the mechanical perfor-
mances at the location were damage occurs. To locate and quantify that searched
correction, the (local and global) structure equilibrium, as well as the collected data,
suffice for calculating the data-driven physics-informed model correction.

• In the case of very large structures, themodel cannot retain all the details. A resolution
level able to represent all the structural details will be numerically untreatable, and
by coarsening its representation (as usually carried out in practice), the effects of the
details are lost. The Grail consists of enriching the model, without increasing its size
or resolution, for accurately representing the collected data. In that case, as themodel
should be enriched everywhere within the hybrid modeling approach, the correction
will become too rich with respect to the usually scarce, available data. When the
structure is subjected to loads living in a certain reduced subspace, the structural
problem can be formulated in a reduced space, and there, the enrichment becomes
local and few data suffice.
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Data-driven fluids and flows

Concerning fluids, we find first the complex rheology associated to the so-called Non-
Newtonian fluids, whose behavior, in general nonlinear, also depends on a series of confor-
mational coordinates (also known as configurational), whose number and time evolution
have to be modeled. Since these fluids are composed of entangled macro-molecules, or
consist of concentrated particle suspensions, the correlation of these finedescriptionswith
the resulting mesoscopic properties, very much resembles the just addressed discussion
about the data-driven description of solid materials.
Fluids, even those with the simplest rheology, linear (Newtonian) fluids, face other

difficulties, such as incompressibility. This is also found in some classes of solid materials
and meta-materials, and the nonlinear advective term at the origin of turbulence. The
main consequences are:

• The need to employ appropriate discretization schemes with respect to the advective
terms and with respect to the mixed formulations (to address the fluid incompress-
ibility or the non-Newtonian rheology).

• The need to describe turbulence throughout all the scales at which its effectsmanifest.
• Themodel change: Stokesmodel (linear and elliptic) at lowReynolds numbers, whose

only difficulty comes from the incompressibility constraint. The Navier–Stokes, NS,
model at higher Reynolds numbers, where the advective effects must be addressed,
and then, after a certain critical Reynolds number, turbulence comes into play. Finally,
the NS model degenerates into the compressible Euler model where discontinu-
ities (shocks) can appear, needing for adequate numerical schemes for capturing and
resolving them.

• The strongly nonlinear couplings in presence of phase change, chemical reactions,
combustion, ...

All these difficulties entail extremely fine discretizations (in space and time), challeng-
ing the most powerful computing platforms. It is for that reason that machine learning
techniques are attracting themore andmore interest, without the aim of being exhaustive:

• To model the complex rheology from the use of any machine learning procedure
(data-driven, physics-informed or physics-augmented), operating more at the fluid
scale than at the one of the flow.

• To discover or tune discretization schemes with the optimal properties (stability and
accuracy).

• To model and describe turbulence. In that sense, a hybrid approach could assume a
first order model and enrich it (from a data-driven correction) to better represent the
experimental findings.

• To enrich coarser representations within the hybrid approach for conciliating accu-
racy and effectiveness.

• To construct (internal or external) flow (aerodynamic or hydrodynamic) surrogates
with respect to anumber of features (geometry, inflowvelocity, ...), and then, including
them in the optimization loop or in any application needing real-time flow evalua-
tions.



Chinesta and Cueto AdvancedModeling and Simulation in Engineering Sciences           (2022) 9:21 Page 19 of 24

Some valuable references covering the topics previously discussed are [5,64,65,85,104,
114,142].

Data-driven processes

Processes transform matter in structures, properties into performance. Processes involve
solids and fluids, structures (e.g., stamping), flows (e.g. injection or extrusion) and all
the physics with the associated couplings. Thus, a process becomes a multi-parametric
transfer function that groups all the parameters characterizing the incomingmateriel with
all the ones that are characteristic of the process itself.
Here, one usually looks for a function that expresses the final, targeted performance

as a function of a number of features. The goal is discovering the best material/process
couple associated with the optimal performances, enabling performance by design. For
that purpose, the different data clustering and classification, and the different data-driven
(informed or not) regressions are being widely employed.
In general, most modeling approaches remain too coarse-grained and lack of generality.

Relating the oven temperature to the time evolution of the temperature of a thermally
treated part can not be generalized to a part with different size or geometry, for example.
To enhance generality, the data features must be enriched or/and the learning process
informed or augmented.
To the just referred difficulties, we should add the ones coming from the multi-

physics coupling: electromagnetic forming, induction or micro-waves based processes,
thermal treatments (heating or tempering), chemical (e.g. reactive resin transfer mould-
ing), mechanical (vibrations, ultrasounds, shoot penning, ...) or the ones coming from the
fact of considering multi-physics performances (thermal, acoustic, damping, ...) Master-
ing all the connections is crucial for inverting the design arrow, enabling materials and
performance by design.
There is an exponential increase in the number of publications reporting that modeling

route, in many technology domains: machining and drilling [17,25,68], additive manu-
facturing [143], reactive extrusion [16,63], induction hardening [28], chemical reactions
[136], among many others.

Data-driven complex systems of systems

Complex systems of systems represent one of the most challenging scenarios. The system
size, entanglements, the variability and uncertainty propagating far from its source, the
presence of emergent behaviors, chaotic dynamics, etc., make it difficult to proceed with
either fully data-driven techniques (not enough data) or physics-based model (too deter-
ministic and unable to cover large systems while keeping the right degree of resolution).
The use of physics-informed and physics-augmented learning
procedures combined with some physics-based model of components or system parts,

and fully data-driven model of the other parts, where no model or knowledge exist, seems
a valuable option for succeeding their modeling.
This framework is expected contributing to enhanced smarts grids, smart cities and

nations, smart industry (including the economic ecosystem), mobility networks, ... that
will constitute without any doubt the next technological revolution.
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Conclusions
In this short review we have revisited the main methodologies available to acquire knowl-
edge fromdata. Theymake use of data almost exclusively, while others incorporate physics
and knowledge in different ways, by informing or by augmenting the learning process.
The threemainprotagonists havebeen revisited: datawith its amazing richness,machine

learning procedures, and the ones enabling to gain confidence on data-driven designs and
decisions.
In the second part of the paper, we have revisited four major application domains, by

referring to some existing works, and highlighting some remaining major challenges.
As Winston Churchill once said in another, very different context: Now this is not the

end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.
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