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ABSTRACT
Recent advances in technologies now allow us to learn almost any-
thing in virtual environments, be it via Internet forums or websites,
telephone apps, video games, and many more. Such technology-
mediated learning can be enhanced with the use of embedded
nudges, i.e., devices in the architecture of choice to encourage
(nudge) the users towards one choice rather than the other without
limiting their freedom of choice. This paper presents an overview
of how nudges can help improve knowledge acquisition, as well as
a two ongoing projects. Ethical issues are also highlighted.
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1 INTRODUCTION
Nudges are a concept established by Thaler and Sunstein [73] and
defined as “any aspect of the choice architecture that alters people’s
behavior in a predictable way without forbidding any options or
significantly changing their economic incentives. To count as a
mere nudge, the intervention must be easy and cheap to avoid”
[73, p. 6]. Nudges thus rely on cognitive biases, i.e., systematic
deviations from rational judgment, to "trick" people into making
the "right" choice.

A digital nudge, as any kind of nudge, is an almost imperceptible
incentive in the design of a digital system to drive behaviour that
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is supposed to improve personal or collective well-being. Sludges
are mostly considered as a particular kind of nudges, which add
friction to the decision-making process. At present, digital nudg-
ing mechanisms use familiar online technologies such as speech
interfaces, chatbots, robots, video-games, etc. These mechanisms
are used in several domains such as health and education.

In the ANR French chair HUMAAINE "Human-Machine Affec-
tive Interaction & Ethics", we are carrying out research to audit and
measure the potential influence of affective systems on humans
and nudging system interactions and relationships in different do-
mains such as education. In Mehenni et al. [63], we presented an
experimental protocol during which children at primary school
interact with a dialog system capable to influence through indirect
suggestions which can affect behavior and decision making. First
results highlighted that the conversational agent and the robot are
more influential in nudging children than a human interlocutor.
In Mehenni et al. [62], we described an automatic user states’ de-
tection experiment based on paralinguistic and linguistic cues for
driving automatic nudging system.

The present paper focuses on the usage of nudges in master
and knowledge transfer using technological devices. The aim of the
paper is to show the extent of current research on nudges in learning
a second language and highlight the questions that research on
nudges in educational technologies has to tackle. What we call
"knowledge transfer" here refers to the operation consisting of
providing information to learners so that this information becomes
knowledge.

We present two experimental protocols designed for nudging
students who learn a second language: One is related to prompted
speech in the ANR project LeCycl and the second one, the French
BPI project EduWinky, uses human-machine interaction with a ro-
bot. LeCycl is a framework to observe how learners acquire knowl-
edge, their behaviors being measured by sensors and utilized to
select how to nudge them. EduWinky aims to test children learning
English during a series of exercises with the support of a robot. This
will allow us to establish how the gamification of learning through
the interaction with a robot dispensing nudges can enhance the
children’s performance and will to keep exercising.

The paper is organized as follows. In Section 2, we provide a
typology of nudges usable in knowledge transfer, along with a
literature review on their efficiency and limitations. In Section 3,
we present our two experimental designs. Finally we conclude in
section 4 by raising awareness on the fact that digital nudge systems
in education highlight some ethical issues.

267

https://orcid.org/0000-0002-6411-5478
https://doi.org/10.1145/3544793.3560379
https://doi.org/10.1145/3544793.3560379
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544793.3560379&domain=pdf&date_stamp=2023-04-24


UbiComp/ISWC ’22 Adjunct, September 11–15, 2022, Cambridge, United Kingdom Hutin, et al.

2 NUDGES IN KNOWLEDGE TRANSFER AND
ACQUISITION

In this section, we provide an extensive overview of the nudges
usable in knowledge transfer by educational platforms, be they
websites, apps or video/audio games. We also provide a detailed
account of their efficiency in knowledge acquisition by the learner
and of their general, technical, and ethical limitations.

Damgaard and Nielsen [26], in their meta-analysis on nudges
in education, list all nudges used in education policies and class-
room operations. They divide nudges into 5 types: "pure" or non-
educational nudges, educational nudges, boost interventions, mo-
tivational nudges, and brief psychological interventions. In the
following, we use the same typology, except we regroup the last
three types under the label "motivational nudges". We present ex-
clusively nudges that apply to educational technologies and show
how they can be implemented.

2.1 "Pure" or non-educational nudges
"Pure" or non-educational nudges can be divided into two classes.

On the one hand, they can work sub-consciously, in which case
they target systematic cognitive biases, such as the default bias, loss-
aversion, etc. through subtle changes to the decision environment.
As such, they invite passive decision making and are thus better
for situations of high cognitive load such as learning [81] but could
be considered as less ethical (review in Weijers et al. [81, p. 895]).
However, although transparency acts as an "ethical filter" [44, p.
247], no research, to the best of our knowledge, has been conducted
on the effect of nudge transparency in education.

We have identified 4 such "discrete" non-educational nudges that
can apply to educational technologies:

• Default nudges consist of using a default setting that is
considered as more efficient for the learner, but can still
be changed if the learner wishes [26]. This nudge takes ad-
vantage of the default bias, i.e., the inherent preference of
human beings to keep things as they are [47]. This nudge
has been shown to be effective in cases of student enrolment
[11, 60], but was never tested for learning in particular. In the
case of educational platform, it could easily be implemented,
as software design and architecture heavily rely on default
settings.

• Framing consists of framing the question or inquiry in a
way that favors the right answer [75]. It has however been
shown to have no significant effect in most of the studies
conducted [2, 36, 54, 55, 59, 61, 77].

• Peer-group manipulation restructures the choice environ-
ment to ease and encourage peer interaction. This may help
improve the sense of social belonging, strengthen or cre-
ate social norms of effort provision, or improve knowledge
transfer through study groups. This type of nudges relies
on social image concerns (and subsequent social pressure).
However, research has provided either negative [20, 58, 70]
or marginally positive results [19, 67] with regard to the their
efficiency.

• The Endowment effect [65] consists of generating a sense
of ownership, identification with learning material suppos-
edly improving the degree of engagement, for instance by

providing the learners with opportunities to personalize
their materials. This again relies on loss-aversion [36], as
the learner will be attached to their material and less in-
clined to neglect it. This type of nudge has, to the best of our
knowledge, never been proved to be efficient, but could easily
be implemented in educational platform with personalized
avatars or features.

On the other hand, non-educational nudges can also be less
hidden and encourage people to use them in specific failure-risk
situations. In this sense, they provide either changes or additions
to the decision environment and as a result may change behaviour
through better active or passive decision-making.

We identified 3 such nudges useful for technology-mediated
education:

• Deadlines consist of proposing a deadline, which can be op-
tional or rewarded. Some studies have shown the efficiency
of deadline nudges [4] while others have found negative
effects [17]. It would therefore be very valuable to test how
such deadlines are efficient in a virtual environment.

• Goal setting consists of setting a goal for a particular activ-
ity. Results on its efficacy are mixed [23, 56]: To work, goals
must be self-set and not too high [32, 33, 76]. Again, it would
be interesting to test such a nudge on a learning platform.

• Reminders consist of sending regular reminders, i.e., re-
mind of already known information, but also of sending
regular notifications, i.e., transmit novel information, to im-
plicate the students. Studies on this subject have found either
positive [21, 22], mixed [13, 52] or no effect [66, 68]. Since
push notifications are a core aspect of most phone apps, it
would be interesting to see whether such notifications can
really implicate learners more, and in what limits.

It is notable that these three nudges result in helping learners
plan how to complete their assignment, which has been shown as
the most useful type of nudges in a study dedicated to nudges in
self-directed learning [38].

2.2 Educational nudges
Nudges that are specifically educational are defined as such because
they aim for persistent behavioral change [81], in our case, infor-
mation retention, through active decision making via additions
to the choice environment, in our case, the learning environment.
They are often conscious but may also work subconsciously, e.g.,
by making certain information more salient. These nudges rely
on memory of past utility [3], self-perception [10], and repetition
[9, 45].

Two educational nudges can be listed here:
• Informational nudges consist of adding small pieces of
information to underline the importance of a topic. These
nudges have proven efficient [8, 15, 29, 59, 69] and should
therefore be tested on educational platforms, for instance
by implementing pop-up windows with relevant pieces of
information.

• Assistance consists of providing regular and easy assistance.
Its efficiency was never tested for learning. It would be inter-
esting to test whether accessible how-to pages or assistance
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bots can improve the learning experience on an educational
platform.

2.3 Motivational nudges
What we call here "motivational nudges" actually regroups what
Damgaard and Nielsen [26] call "boost interventions", "motivational
nudges", and "brief psychological interventions". They are detailed
below:

• Boost interventions deliberately aim at improving active
decision-making by teaching individuals about cognitive bi-
ases hindering their experience and providing counsel to
tackle these hindrances. In the context of education, teach-
ing students about particular skills (motivation, grit, etc.)
generally has a positive effect [1, 12, 28, 64, 72] vs [31]. Such
boost interventions could easily be implemented as notifica-
tions or as pop-up windows in educational platforms, and
their efficiency should thus be tested.

• Motivational nudges per se consist of adding information
or rewards that consciously or sub-consciously motivate in-
dividuals to change their behaviour. This category of nudges
includes:

Social comparison nudges, a particular kind of informa-
tional nudges since it consists of providing the learner with
information that facilitates comparisons with other learners
and bring them to wish for adherence to what they believe
is the social norm. Among these nudges, several have been
found to be effective, such as classical social information
nudge [24], relative grading, especially for boys [46] vs [25],
relative performance feedback [7, 27, 59, 74] provided there
is time [35] but which can sometimes backfires [6]. Others,
such as relative performance feedback, have proven to have
a negative effect [18, 78]. In any case, it would be interesting
to test whether such nudges can influence a learner’s experi-
ence or performance on an educational platform, for instance
by measuring the effect of ranking users of the platform, ei-
ther anonymously (learners only know their own rank) or
non-anonymously (learners also know the other learners’
ranks, or the rank of the learners from their network).
Nudges using extrinsic motivation, which explicitly

link rewards to the desired behaviour. Positive effects have
been found for non-monetary rewards [43, 46, 55], espe-
cially for children [43, 55]. However, these nudges seem to
have mixed effects on student performance [37, 42, 48, 78].
It would be interesting to test whether educational platform
can take advantage of devices already used in video games
such as in-game currency.

• Brief psychological interventions target students’ mind-
sets and beliefs with the aim of creating a self-reinforcing but
subconscious improvement in motivation and achievement.
Unlike ‘pure’ nudges, the goal of motivational nudges is to
influence behaviour not only at a given moment during the
learning experience but, like educational nudges, to result
in long-term information retention or skill acquisition. They
include:
Social belonging, which is supposed to strengthen the

learner’s sense of belonging to the community of learners

and to address their insecurities about their own abilities
[38, 51, 79, 82, 85]. Walton et al. [80] found positive effects
but Broda et al. [16] found no effect. It would therefore be
interesting to test whether such communities can be created
in online educational platforms, and to what extent they
improve the learner’s experience and performance.

Identity activation, which provides information on per-
sonal or academic struggles of regarded personalities to cre-
ate a sense of identification and motivate the learner to over-
come their own struggles. This type of nudges has proven
efficient [39, 57, 84] and could easily be tested in a virtual
environment, for instance by measuring whether such in-
formation in a pop-up window actually increases learners’
motivation (that could be measured by the duration and reg-
ularity of learning sessions on the platform) and subsequent
performance (that could be measured by tests).
Mindset nudges, which consist of shifting the learners’

opinion on learning and personal limitations, e.g., by teach-
ing learners that intelligence is malleable rather than fixed.
This type of nudges has showed positive effects on academic
behaviour [5, 14, 40, 83] and could therefore, again, be tested
in pop-up informational windows.

2.4 Intermediary conclusion
In this section, we have shown that several nudges can actually
apply to knowledge transfer via digital educational platforms. Their
efficiency was only tested in offline experiments, in particular in
the framework of school or university students. In this framework,
it has been shown that the efficiency can vary from nudge to nudge.

On the one hand, some non-educational nudges such as framing
and peer-group manipulation, have been tested for their effect on
learning, but have shown little efficiency in offline learning, and
there is little hope that they would improve significantly online
learning. They should still be tested, but probably not in priority.

On the other hand, default nudges, informational nudges, boost
interventions, most social comparison nudges, identity activation
nudges, and mindset nudges have all proven rather unequivocally
efficient. As such, they should definitely be tested in virtual learn-
ing environments. Other nudges, such as deadlines, goal setting,
reminders, nudges using extrinsic motivation and social belonging
have shown mixed results regarding their efficiency. These mixed
results may be dependent on the environment itself, and it would
therefore be important to test them in a virtual learning environ-
ment as well. Moreover, some nudges such as the endowment effect
and assistance have not been tested for learning specifically, and
should therefore be investigated in both non-virtual and virtual
learning experiments.

One interesting point is that most of the nudges that show
promise regarding the improvement of online learning are imple-
mented in other online platforms. Default settings (and the pos-
sibility to change them) are a core characteristics of most, if not
all, virtual platforms and devices, and reminders (or notifications)
are dispensed by a large number of phone apps. The endowment
effect is taken advantage of in video-games allowing the players to
personalize their avatar or customize their virtual board. Social com-
parison nudges are used in video games allowing online rankings
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with other players, or in commercial websites informing the users
how many people have seen or bought the item. Websites also
already use pop-up informational windows to display commercial
adds. There is therefore no doubt that we have the technological
means to implement such devices in educational environments to
test their efficiency on the success on the learning process. In this
paper, we specifically focus on two projects with nudging strategies.

3 TWO EXPERIMENTAL DESIGNS
In the present section, we present two ongoing projects that try
and fill the void in current research on using nudges in the specific
domain of educational technologies.

3.1 LeCycl
LeCycl is a trilateral research project between France (interdisci-
plinary laboratory of digital sciences (LISN)), Japan (Metropolitan
University of Osaka) and Germany (German research center for
artificial intelligence (DFKI)). The goal of the project is to acceler-
ate and strengthen the learning cycle along three main stages: (i)
identifying lacking knowledge (via text, audio and eye tracking), (ii)
acquiring the identified missing knowledge or mastering new skills
(via training and exercises) and (iii) transfer of the new knowledge
to others (via discussions and presentations). For the perception and
mastery stages, LeCycl teams gather measures of speech and text
processing, as well as measures of a variety of behavioral features
(attention, hesitations, voice tone, etc.) from different sensors (eye-
tracker, camera, microphone, etc.) in order to analyze the students’
emotional and cognitive states and understand their knowledge
acquisition process. For the transfer stage, they use nudging strate-
gies to guide the learning process and ensure effective knowledge
transfer [7, 41]. For the time being, the project focuses mostly on
the domains of second language learning and programming.

We are presenting here the research dedicated to learning Eng-
lish as a second language and how it can be enhanced with nudge
strategies. Our team investigates cross-cultural and cross-linguistic
features in English learning by native speakers of French and Japan-
ese. The participants perform language tasks calling upon their
knowledge of English, such as reading texts of different levels (in
France) or both reading texts and deciphering images through a
manga-type document (in Japan) [49]. The participants’ perfor-
mance is measured through verbal and non-verbal measures, such
as the comparison of the participants’ non-native realizations with
canonical native pronunciation, or eye movements.

More precisely, Kobylyanskaya [53] has built an experimental
protocol for language learning involving 50 French speakers of
English whose voice and eye movements have been recorded using
the Eye Got It tool [34]. A joint analysis of eye-tracking and acous-
tic features will allow us to understand the participants’ level of
stress, comprehension, reading and learning strategies as well as
pronunciation difficulties.

This information will then be used to implement nudging tech-
niques adjusted on individual and cultural learners’ characteristics
during performance. Concretely, we will use machine learning tech-
niques to create an experimental design where the detection of
reading difficulties is countered with nudges. This will allow us
to investigate how and how much various types of nudges help

participants improve their performance on the task. Jointly, we
will evaluate the way the implementation of nudging strategies
influences the learners’ performance at all three stages cited above.

3.2 EduWinky
EduWinky is a project involving the French interdisciplinary labo-
ratory of digital sciences (LISN) and two industrial partners, among
which a company commercializing a small robot called Winky. This
project also highlights the necessity to evaluate the ethical implica-
tions of nudge strategies, including in learning environments, so as
to avoid addiction phenomena to a digital device, or discrimination
due to nudges working better on one population than on another.

The project has two goals: (i) record French children speaking
English in order to train an automatic speech recognition (ASR)
software, and (ii) test the influence of robot-induced nudges in the
children’s performance while speaking in a foreign language. To
that extent, we designed the following experiment. The participants
are asked to complete a series of oral exercises in English: reading
aloud, repeating and answering short questions. They rely on the
content displayed on the screen of a computer and follow one of
the experimenters’ instructions (in French) and their replies are
recorded on an ambient microphone. They are asked to repeat each
exercise three times, and between each repetition, the Winky robot
emits a reaction that is actually controlled by another experimenter
in a Wizard-of-Oz setting. The nudges are designed so as to test
the effect of both nudges and sludges on three axes: the partici-
pant’s success or failure to complete the exercise in a satisfactory
manner, the participant’s attention or distraction, and finally the
participant’s well- or ill-being.

The reactions of theWinkywere built beforehand by the research
team by using the building blocks available in the Winky app. We
created, for each axis, a "sludge" expression, a "nudge" expression
and a reward expression, that are detailed below:

• Success / Failure
Sludge: the Winky is disappointed.
Nudge: the Winky is encouraging.
Reward: the Winky is in love.

• Attention / distraction
Sludge: the Winky seems bored or asleep.
Nudge: the Winky draws attention to the task.
Reward: the Winky is interested.

• Well-being / Ill-being
Sludge: the Winky is depressed.
Nudge: the Winky is reassuring.
Reward: the Winky displays complicity.

Once the data is collected, we hope to align it automatically
using the open access alignment tool WebMAUS, the web inter-
face of the Munich Automatic Segmentation System [50, 71]. We
expect many alignment errors due mainly to two reasons: First,
the speech is produced by children’s voices, which may prove dif-
ficult to align with a tool trained on adult voices; Second, it will
be accented speech, which means that the phones produced by the
participant may be quite different from the canonical phones in the
target language (English) and thus difficult to align for a system
trained on typical native speech only. These errors will provide
rich information on two levels. First, the error-rates should help

270



Nudges in Technology-Mediated Knowledge Transfer UbiComp/ISWC ’22 Adjunct, September 11–15, 2022, Cambridge, United Kingdom

us categorize which productions were more successful, which in
turn should help us measure the impact of the nudges and sludges.
Second, they should help us design a more accurate ASR system,
i.e., the first ASR system specifically designed to align child French-
tainted English speech. This we hope will be implemented in future
versions of the Winky robot so that it can automatically assess the
success of the participant and react accordingly.

4 CONCLUSION
In this paper, we provide an overview of digital nudging strategies
in educationwith a detailed account of their efficiency in knowledge
acquisition by the learner and of their general, technical, and ethical
limitations. We also present our methodologies for measuring the
effects of nudging in learning for 2 ongoing projects (LeCycl and
EduWinky).

All digital nudges using AI mechanisms as statistical inferences
from users’ behavior, are raising new ethical concerns [30]. In fact,
these nudges augmented by AI reinforce the ability to achieve the
designer goals using cognitive biases, emotional impulses and other
human behavioural mechanisms both intentionally or unintention-
ally.

The article 5 of the proposal for a Regulation of the European
Parliament and of the Council laying down harmonised rules on
artificial intelligence (AI Act) states that putting into service or
use an AI system that deploys subliminal techniques beyond a per-
son’s consciousness with the objective to or the effect of materially
distorting a person’s behavior shall be prohibited. Yet applying
this rule to real cases is not straightforward. It is necessary to am-
plify the real-life tests with nudging systems in several application
domains such as education to find how to mitigate the risks.
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