N
N

N

HAL

open science

Minimizing the Cost of Synchronisations in the WCET
of Real-Time Parallel Programs

Haluk Ozaktas, Christine Rochange, Pascal Sainrat

» To cite this version:

Haluk Ozaktas, Christine Rochange, Pascal Sainrat.
in the WCET of Real-Time Parallel Programs.
Compilers for Embedded Systems (SCOPES 2014), Jun 2014, Sankt Goar, Germany. pp.98-107,

10.1145/2609248.2609261 . hal-04080941

HAL Id: hal-04080941
https://hal.science/hal-04080941
Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Minimizing the Cost of Synchronisations
17th International Workshop on Software and

https://hal.science/hal-04080941
https://hal.archives-ouvertes.fr

- OATAO

Open Archive Toulouse Archive Cuverte

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13027

To link to this article : DOI :10.1145/2609248.2609261
URL : http://dx.doi.org/10.1145/2609248.2609261

To cite this version : Ozaktas, Haluk and Rochange, Christine and
Sainrat, Pascal Minimizing the Cost of Synchronisations in the WCET
of Real-Time Parallel Programs. (2014) In: International Workshop on
Software and Compilers for Embedded Systems - SCOPES 2014, 10
June 2014 - 11 June 2014 (St Goar, Germany).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13027/
http://oatao.univ-toulouse.fr/13027/
http://dx.doi.org/10.1145/2609248.2609261
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Minimizing the Cost of Synchronisations in the WCET of
Real-Time Parallel Programs

Haluk Ozaktas, Christine Rochange and Pascal Sainrat

IRIT

University of Toulouse, France
{ozaktas,rochange,sainrat}@irit.fr

ABSTRACT

Designing time-predictable architectures to support the re-
quirements of hard real-time systems is the goal of several
research projects. In this paper we assume that such plat-
forms exist and we focus on the timing analysis of parallel
real-time applications. One of the main challenges is to de-
termine how much the delays induced by software constructs
such as synchronisations can impact the worst-case execu-
tion times (WCETSs) of parallel threads. In this paper, we
refine state-of-the-art analysis: first, we derive more accu-
rate estimations of stalls at critical sections; second, we in-
troduce new locking primitives that minimise stall times on
the worst-case path. Experimental results show noticeable
improvements on the WCETSs of benchmarks.

Keywords
Real-time, WCET, parallel programming, lock

1. INTRODUCTION

In the next years, real-time embedded systems will be
built on multicore platforms which provide better energy
efficiency than current single-core architectures. But such
multicore platforms challenge timing analysis techniques be-
cause the sharing of hardware resources among cores gener-
ates conflicts that impair the timing predictability [13, 22].

This issue is tackled by several research projects, e.g.
PREDATOR [4], parMERASA [27] and T-CREST, that aim
at designing time-predictable multicore architectures. Pro-
mising solutions have already been proposed, e.g. in [19,
18]. We assume that such time-predictable platforms are
available and we look forward to the next step which will be

the parallelisation of applications to improve the tasks re-
sponse time and not only the task throughput. This will be
needed to achieve the high performance requirements that
are foreseen to get support for better safety, lower emissions
and improved comfort for passengers in aircrafts or cars.

Parallel threads experience delays due to the use of syn-
chronisation primitives, which challenges the timing anal-
ysis. For example, a thread reaching a barrier might be
stalled until other threads reach the same barrier. Similarly,
a thread trying to acquire a lock before a critical section
might be stalled until concurrent threads get the lock them-
selves, execute the critical section and then release the lock.

In [17], we proposed an approach to determine the WCET
of a parallel application in which threads synchronise through
the shared memory, using POSIX-like primitives. This ap-
proach first computes the worst-case stall times (denoted
by WCST) generated by synchronisations, then integrates
them in the global WCET analysis. In Section 2.1, we will
review this algorithm to estimate worst-case delays due to
inter-thread conflicts. We will then report, in Section 2.2,
some experimental results which show that critical sections,
already known to limit the average speedup of parallel soft-
ware, degrade even more noticeably the worst-case perfor-
mance. This is partly due to considering pessimistic assump-
tions (maximum contention) in order to obtain safe upper
bounds. We will discuss this pessimism in Section 2.3.

Our contribution in this paper is twofold:

a) We propose a refined analysis of the impact of stall
times at critical sections on the WCET when consid-
ering a sequence of critical sections (either distinct crit-
ical sections executed in a row, in Section 3.1, or the
same section executed in a loop, in Section 3.2). Such
sequences are found in various common parallel pro-
gramming patterns such as dynamic work assignment,
producer-consumer scheme or iteration until convergence.
Experimental results (Section 3.3) show that sensibly
tighter WCET estimates can be achieved.

b) We introduce new locking primitives that enforce a con-
stant order on threads crossing repeatedly the same crit-
ical section (Section 4.1). They collectively implement
our Constant- Order Lock Granting (CO-LoG) policy.
Using this policy drastically reduces the impact of syn-
chronisation stalls on the WCET of parallel programs,
as shown in Section 4.2.

Related work on static WCET analysis, time-predictable
synchronisations and the timing analysis of parallel real-time
programs is surveyed in Section 5. We conclude the paper
in Section 6.

2. MOTIVATION
2.1 Background

We have proposed an approach to the timing analysis of
real-time shared-memory parallel programs in [17]. Con-
sidering a time-predictable multicore architecture, our solu-
tion aimed at estimating the worst-case stall times (WCSTs)
of concurrent threads at synchronisation points, i.e. where
threads call a barrier_wait () or a mutex_lock() primitive.

As far as critical sections (mutexes) are concerned, this
approach is conservative: it assumes that a thread trying to
acquire the lock is stalled, in the worst case, by any other
thread that also requests the lock at some point in the pro-
gram. To allow the stall time to be upper bounded, we
consider time-predictable mutexes, as proposed in [9], which
guarantee that threads are granted the lock on a first-come
first-served basis. With this assumption, the WCST at a
critical section is estimated as:

WCST < (T —1)-C

where T is the total number of threads using the lock and C'
is the worst-case execution time spent in the critical section.
If threads do not execute all the same code in the critical
section, the longest path is considered.

In other words, the cost of any critical section is multiplied
by the number of concurrent threads because a pessimistic
situation, with full contention, is assumed. The impact on
the WCET of the parallel application can be sensible if either
the number of threads is large or the critical section is long or
the critical section is executed several times in a loop. This
is confirmed by experimental results reported in Section 2.2.
In Section 2.3, we explain why this estimation of WCETs is
pessimistic and can be refined.

2.2 Impact of Critical Sections on Worst-Case
Execution Times

Critical sections are known to be a performance bottle-
neck in parallel programs: since a single thread at a time
can execute in a critical section, it may happen that other
threads be stalled until the critical section is free. Depending
on the respective sizes of parallel parts of code and critical
sections, such conflicts and sequentialisation might severely
degrade performance. In this section, we report experimen-
tal results that show how much the worst-case performance
is impacted by stall times at critical sections.

2.2.1 Methodology

All the experimental results reported in this paper have
been collected considering the following architectural model
and benchmark applications.

Multicore Model.

In order to isolate the effects of synchronisation stall times,
we assume a 64-core’ architecture built up on very simple
cores. Each core benefits from private 32-KB separate in-
struction and data caches, and executes any instruction that
hits in the cache in a single cycle. The latency to the main
memory is 649 cycles, which includes the impact of max-
imum possible contention among cores, assuming a time-
predictable interconnection network and memory system,
such as the one proposed in [18].

'n practise, so many cores in a shared-memory architecture
may raise side issues which are out of the scope of this paper.

Hardware-based data coherency management is challeng-
ing for timing analysis because its behaviour is strongly re-
lated to the actual interleaving of accesses to shared data by
the different threads. Some solutions towards time-predictable
data-coherent caches have been proposed, e.g. the ODC?
cache in [21], but they introduce extra memory accesses that
impact the WCET. To focus on synchronisation costs, we as-
sume that shared data are not cached and reside in the main
memory only.

Benchmark Programs.
We consider three parallel applications. Each of them is
composed of a main thread that creates child threads. All
threads (including the main one) execute the same compu-
tation code. Critical sections are implemented using time-
predictable lock primitives, e.g. ticket locks, that guaran-
tee that threads are served in a first-come first-served basis.
This way, a thread competing with 7" — 1 other threads can-
not be stalled more than once by each other thread when it
requests access to a critical section.

jacobi (see Figure 1) solves a system of linear equations
using the iterative Jacobi method on a 2D matrix. Each
thread computes part of the points, independently of the
other threads (as in the so-called embarrassingly parallel
computation model). The process is repeated until conver-
gence is reached, i.e. until the average variation of results
from one iteration to the other one is lower than a spec-
ified threshold. Each thread computes its local variation
(line 9) then adds it to the global variation in a critical
section (line 12). A synchronisation barrier is used to en-
sure that threads do not start their computation before the
global variation is initialised (line 5) and do no check the
convergence condition before the global variation has been
computed (line 14). The last barrier in the loop (line 18)
ensures that decision on convergence is made before global
variation is reset to zero. Since the implementation of the
barrier_wait primitive includes a critical section, the syn-
chronisation pattern of this application repeats the sequence
shown in Figure 2: between two progress synchronisations,
threads compete for two critical sections in a row.

1: function JACOBI

2 done <+ 0

3 while !done do

4: var < 0

5: BARRIER_WAIT(&bar, N)

6: local_var < 0

7 for each local point do

8: compute new value

9: add variation to local_var
10: end for

11: MUTEX_LOCK (&nutex)

12: var < var + local_var
13: MUTEX_UNLOCK (&mutex)
14: BARRIER_WAIT(&bar, N)
15: if var < threshold then
16: done «+ 1

17: end if

18: BARRIER_WAIT(&bar, N)

19: end while
20: end function

Figure 1: Pseudo-code of the jacobi benchmark

barrier barrier barrier
(i) (i 4) (I 8)

thread 0
thread 1 =="=+=

thread 2 = =

in barrier, _wait line 12 in barrier, - wait
(line §) (line 12) (line 14)

Figure 2:
benchmark

Synchronisation pattern in the jacobi

1: function DTA

2: while element pool is not empty do
3: MUTEX_LOCK (&mutex)

4 get next element to compute

5 MUTEX_UNLOCK (&mutex)

6 if got an element to compute then
7 compute element
8 end if
9 end while
10: end function

Figure 3: Pseudo-code of the dta benchmark

dta (see Figure 3) implements dynamic task allocation, a
technique that aims at balancing the load among threads.
Each thread fetches a new element from the pool (this is
done in a critical section, line 4) and computes it. Thus
threads compete repeatedly for the same critical section
within the loop.

hist (shown in Figure 4) generates the histogram of an
image. Rows of the image are equally distributed among
threads. To limit contention on the global histogram, threads
keep a local histogram for each row, which they accumulate
into the global histogram when the row has been completely
processed. This way, the global histogram is updated reg-
ularly, and this reflects the behaviour of applications that
need to share partial or temporary common results. Natu-
rally, updating the global history is protected by a critical
section (line 8). The synchronisation pattern is then similar
to that of dta, i.e. a critical section repeated in a loop.

For each benchmark, we also considered a sequential ver-
sion used as a reference. The speedup of a parallel version
is defined as the ratio between the respective WCETSs of the
sequential and parallel versions:

dup =
speedup WCETparallel

Timing Analysis.

All the results presented in the remainder of the paper are
WCET estimates obtained using OTAWA, a toolset dedi-
cated to static WCET analysis [2]. The individual WCETs
of basic blocks are augmented with the stall times at syn-
chronisations, as suggested in [17].

2.2.2 Experimental Results

Table 1 shows the speedups of 2-thread to 64-thread ver-
sions of the three benchmarks. Threads are statically mapped
and scheduled on cores, one per core. For 2- to 32-thread

1: function HIST

2 for each row do

3 initialise local histogram

4: for each pizel in the row do
5: update local histogram

6: end for

7 MUTEX_LOCK (&mutex)

8: update global histogram from local histogram
9: MUTEX_UNLOCK (&mutex)

10: end for

11: end function

Figure 4: Pseudo-code of the hist benchmark

versions, the timing analysis assumes that independent ap-
plications run concurrently on the cores that are not used
by the benchmark. Then contention on the interconnection
network and in the memory system is considered maximum
for all the experiments, which leads to safe WCET estimates.

Table 1: Speedups

of threads | jacobi | dta | hist
2 1.74 1.94 | 1.70
4 3.44 3.76 | 3.13
8 6.56 7.12 | 5.40
16 11.07 | 12.84 | 8.49
32 13.70 | 21.46 | 11.89
64 10.89 | 32.31 | 14.87

The three benchmarks, particularly jacobi and dta, ex-
hibit high speedups up to 16 threads. This is due to threads
performing independent computations, even if they have to
synchronise at some points to take common decision or to
share work. However, speedups are moderate with more
than 32 threads (having 64 threads for jacobi even achieves
a smaller speedup than having 16 threads). The per-thread
efficiency, i.e. the ratio of the speedup over the number of
threads, noticeably decreases when the number of threads
increases. This suggests that the cost of stall times at syn-
chronisations takes an important share of the WCET for
medium-scale parallel versions. This is confirmed by Ta-
ble 2 that shows the part of estimated WCETs that is due
to stall times. For the 16-thread version of hist, more than
half of the WCET is spent on waiting at critical sections. For
64-thread versions of jacobi and hist, the waiting time rep-
resents 3/4 of the total WCET. This shows how important
it is to reduce the impact of stall times at critical sections
on the WCET, either by restructuring the application or by
improving the analysis.

Table 2: Impact of critical sections on the WCET

of threads | jacobi dta hist
2 0.20% | 1.48% | 4.27%
4 1.18% | 4.31% | 11.80%
8 5.26% | 9.52% | 23.79%
16 19.05% | 18.40% | 40.08%
32 48.70% | 31.79% | 58.00%
64 78.63% | 48.66% | 73.69%

(a)

(b)

(c)

(d)

Figure 5: Possible contention among two threads
executing two critical sections in a row

2.3 Pessimism of the Existing Approach

The results presented above demonstrate the importance
of estimating the worst-case impact of stall times at syn-
chronisations as tightly as possible. In [17], the execution
time () of any piece of code breaks down into pure running
time (r) and stall time (s): ¢t = 7 +s. The WCET of this
piece of code is then computed as:

WCET =WCRT + WCST

where WCRT = maz(r) and WCST = maz(s). In con-
trast, we compute the WCET as WCET = max(r + t),
considering that the maximum stall time experienced by
one thread depends on the running times of all the con-
current threads. Now, as seen in Section 2.2, the approach
to estimate the WCET of a parallel application extends the
method used for sequential programs by adding stall times
to the individual WCETSs of sub-paths in the code. To re-
main consistent with this approach, we define the stall time
in the worst case as:

STwc = max(r + t) — max(r)

We then have WCET = WCRT + STwe.

Besides, our intuition is that consistently assuming max-
imum contention for the longest thread is overwhelmingly
pessimistic. This intuition is based on the following obser-
vations.

Sequence of Critical Sections.
Let us consider two threads, thO and thl, that execute the
same code, which contains two critical sections in a row, CS
and CS’ (protected by two different locks). Figure 5 shows
four possible situations where thO is stalled or not by thl
before entering a critical section. In this picture, s; and s}
are the effective stall times of th/ at the critical sections, ¢;
and ¢ are its execution times within the critical sections,
and e; is its execution time between the critical sections.
The worst-case execution times in the critical sections are
denoted by C and C’, respectively, the worst-case execution
time between the critical sections is denoted by E.

Let us assume that thO is the longest one, that leads the
WCET of the whole parallel program. The execution time

of the sequence for th0 is computed as
to = s0 + co + eo + 8 + co

and its WCET is determined considering the maximum value
of to.
In situations (a) and (c), thO is not stalled by thl at CS’
(s6 = 0). In addition, sg < ¢;. The maximum value of ¢y is
then:

WCET(a,cy = maz(ci +co+eo+¢p) =2-C+ E+ '
In situation (b), thO is stalled by thl and we get:
co+eo+ sy =e +ch
‘We also have sg < ¢;. Then:
WCET) = maz(c + e +h+cg)=C+E+2-C'
In situation (d) we have so = 0 and sy < ¢}. Then:
WCET 4 = max(co + eo + ct+c)=C+E+2-C'
To summarise, the WCET on this sequence for th0 is:
WCET = max((2-C+E+C"),(C+E+2-C"))
or
WCET = C + E + C' +maz(C,C")
and
STwe = maz(C,C")

which is lower than the value computed according to [17]
(c+C).

In Section 3.1, we will show how this result can be ex-
tended to a larger number of competing threads.

Critical Section in a Loop.

Let us now consider two threads that execute the same code
with a loop containing a critical section. If we consider two
successive iterations of the loop for each of the threads (e.g.
iterations ¢ and 7 + 1 for thO and iterations j and j + 1 for
thl, we get the same behaviour as above (except for we have
the same critical section repeated instead of two different
critical sections). The same reasoning can be used to show
that the maximum stall time (for th0Q) over two successive
iterations of each thread is only C (WCET in the critical
section) instead of 2 - C. However, it can happen that one
thread executes the loop body faster than the other one and
that threads be in conflict in their iterations, e.g. (i and j)
and (41 and j+2). In other words, the threads cannot be
in conflict in all the loop iterations. This is illustrated with
the experiment reported below.

We have considered an example code where three threads
execute (in parallel) the same loop that has at most eight
iterations. The body of the loop breaks down into a com-
putation part (executed in at most two time units) and a
critical section (executed in at most one time unit). Fig-
ure 6 shows the worst-case scenario which we have found by
an exhaustive search. In this scenario, the maximum stall
time for the longest thread (thO) is only STwc = 15t.u.
while the formula proposed in [17] would have given:

WCST=N-(T—1)-C=8x3x1=24tu.

In next section, we will suggest and prove new formulas
that estimate the stall times accurately.

th3
th2

th1
thO

Figure 6: Worst-case scenario for an example code.

Dark-grey blocks show the time spent in the critical

section and stripped blocks show stall times. Arrows show the time spent in computation parts.

stalls th0 at CS does not stall thO

I t
thread

Figure 7: Stalling threads in a sequence of two crit-
ical sections in a row.

3. TIGHT ANALYSIS OF STALL TIMES AT
CRITICAL SECTIONS

3.1 Sequence of Critical Sections

We first focus on a sequence of two critical sections guarded
by distinct locks and executed by several concurrent threads,
running simultaneously each on a different core. Thread thO
is the one that determines the WCET of the parallel ap-
plication (the longest thread) and we want to compute the
maximum time it can spend on this sequence of code.

Figure 7 shows that the (7'—1) threads that compete with
thO can be divided into four sets: those that never stall it
(IDs from s+ 1 to T'— 1), those that stall it at both critical
sections (IDs between f + 1 and b) and those that stall it at
the first or second critical section only.

The execution time of thO on this code can be computed
as shown in Section 2.3:

to = so + co + €0 + 84 + ¢4
and its WCET is:
WCET = max(so + sy) +C + E+C’

We can write: so = so() + So(») Where so(s) (resp. so())
denotes the stall time at CS due to threads that stall thO at
CS only (resp. both at CS and CS’).

Similarly, s = s6,) + 50(s)-

We have:

f
So(f)ﬁzciéf'c

i=1

and

80(s) < Z ci <(s-b)-C
i=b+1

From Section 2.3, we know that the impact on the WCET
of a thread that stalls thO at both critical sections is limited

to maz(C,C"). Then
b
so) + 50w < Y ¢ < (b= f)-max(C,C")
i=f+1
This leads to:
STwe = maz(so+sy) = f-C+(s—b)-C'+(b—f)-maz(C,C")
and
STwe < s-max(C,C")
Since s < (T' — 1), we can write:

STwe < (T — 1) - maz(C,C") (1)

3.2 Critical Section in a Loop

In this section, we focus on the following situation that
is frequently encountered in parallel programs: 7' threads
run the same code including a loop that iterates at most
N times, and the loop body includes some computations
and a critical section (and no progress synchronisation, such
as barriers). In the following, E and C denote the worst-
case execution time of the computation part and the critical
section, respectively.

According to the formulas derived in [17], the total stall
time (over all the loop iterations) for this critical section
(which is to be taken into account when computing the
WCET of the program) would be upper bounded by:

WCST =N -(T—1)-C 2)

This amounts to considering that the longest thread is stalled
by every other thread each time it reaches the critical sec-
tion.

As suggested in Section 2.3, this is a pessimistic upper
bound. We are going to show that it can be lowered to:

STwe < gw (T-1)-C 3)

when E > (T'—1) - C, or to:

e s 0 [UEESE]

when E < (T —1)-C.

When E < (T — 1) - C, this bound is close to the pes-
simistic one (Equation 2) and no improvement is achieved.
But when the computation part increases, the bound on
STwc decreases. When E is equal to (T'—1) - C, the bound
is as low as [23 - (T — 1) - €, i.e. half of the pessimistic
bound. Proofs are provided in the remainder of this section.

th2

©]

-k

() B S

WCET

Figure 8: Critical section in a loop

Let us first consider the situation where £ > (T — 1) - C.
Let us assume that thread thx stalls thO while they are ex-
ecuting iteration i, and ig, respectively, of the loop. When
thO executes iteration ig 4 1, it cannot be stalled by thx ex-
ecuting iteration i, + 1. More precisely, the stall time over
these two iterations cannot exceed C', as shown in the previ-
ous section. However, th0 in iteration io + 1 could be stalled
by thx in iteration i, + 2 (or in a later iteration). But then
thx has (at least) one iteration less to execute than th0. This
is illustrated in Figure 8. The result is that any stall of thO
by thx removes the risk for one other possible conflict. Fi-
nally, thx can stall thO at only half of the loop iterations. [

Let us now consider the case where E < (T'—1) - C. The

execution of the longest thread can be broken down into two
phases, which can be observed in Figure 6.
In the first phase, the longest thread (thO) runs concurrently
to (T'—1) other threads that execute all their critical sections
(i.e. at most N - (T — 1) critical sections). In the same time,
the longest thread executes its first n critical sections. In
this phase, there must be one thread in the critical section at
each cycle because each thread finishes its computation part
before all the other threads could enter the critical section
(this is because we consider E < (T —1) - C'). The length of
the first phase is:

WCETy =N-(T—1)-C+n-C

In the second phase, only the longest thread (th0) has some
critical sections left to execute. The length of this phase is
given by:

WCET, =(N—-n)-C+(N—-n+1)-FE
The total WCET of the sequence (equal to the WCET of

the longest thread) is then WCET = WCET, + WCET,
or

WCET=N-T-C+(N—-n+1)-E
The stall time in the worst case is:
STwe =WCET — N - (C+ E)

where N - (C + E) is the total execution time without stalls.
Then:

STwe=N-(T—1)-C+(1—n) B (5)

This stall time is observed during the first phase and is
distributed among the n executions of the critical section by
the longest thread in that phase. Since we consider a fair
locking primitive, we can state that each stall cannot exceed
(T'—1) - C. Then we can also write :

STwe <n-(T—-1).C (6)
Combining Equations 5 and 6, we get:

N-(T-1)-C+(1-n)-E<n-(T-1)-C

. . 15.40
14 = improved analysis
L% 13.70
...... pessimistic Tt 370 ™355
12 = s
11.57 fo°
g /11,07 *10.89
3 10 7
@
g P
o 8
-
5 p
ER /
4 /
2 >
0
2 4 8 16 32 64

of threads

Figure 9: Speedup of jacobi

then
N-T-1)-C+E<n-(T-1)-C+E)
As a result,

N-(T-1)-C+E
>\
"STT-1)-C+E

By considering this lower bound on n in Equation 5, we
get Equation 4. [

3.3 Experimental Results

Sequence of Two Critical Sections.

We analysed the benefits or our improved analysis consid-
ering the jacobi benchmark (see Figures 1 and 2). This
program contains a sequence of two critical sections sur-
rounded by two barriers, and repeated in a loop, as well as
a third barrier at the end of the loop body. The second crit-
ical section is part of the barrier_wait primitive and has
a worst-case execution time (denoted by C3) that is about
9% longer than the WCET of the first critical section (C1)
used to protect the shared variable. Then, the stall time
in the worst case for each iteration of the loop is given by
STwe = (T — 1).Cs (cf. Equation 1).

The reduction on STwc¢ for these two critical sections is
then given by ﬁ = m, i.e. about 48%, regardless
of the number of threads. Now, taking into account the
other two critical sections contained in the first and the last
barrier_wait primitives, the global reduction is 22.66%.

However, since the part of stall times in the total WCET
is limited up to 8 threads (see Table 2), the improvement on
the speedup, shown in Figure 9, is only significant when 16
or more threads are used. For the 32-thread version, which is
the sweet-spot for this benchmark, the impact of the STw ¢
on the WCET is decreased from 48.70% to 42.34% and the
speedup is improved from 13.70 to 15.40, i.e. by 12.4%. It is
also worth noting that our analysis always yields to better
results than the pessimistic analysis of [17].

Critical Section in a Loop.

We evaluated our improved analysis considering the dta and
hist benchmarks introduced in Section 2.2. In both bench-
marks, threads concurrently execute a loop that contains a
single critical section (cf. Fig. 3 and Fig. 4).

Table 3: Impact of critical sections on the WCET
using improved analysis.

of threads | jacobi dta hist
2 0.15% | 0.75% | 2.18%
4 0.92% | 2.21% | 6.27%
8 4.12% | 5.00% | 13.50%
16 15.39% | 10.13% | 25.06%
32 42.34% | 18.90% | 45.47%
64 74.00% | 32.15% | 68.08%

48
...... pessimistic . 42.70

== improved analysis

w A
o N

w
o
w
N
w
=

WOCET speedup
N
-

-
00

-
N
.
N
o
hS

|

=]

of threads

Figure 10: Speedup of dta

For dta, (T'— 1) - C is always smaller than the WCET
of the computational part (E), regardless of the number of
threads. As a result, the STw¢ is halved by the improved
analysis as explained in Section 3.2.

For hist, (T — 1) - C is smaller than E for T < 16, and
the STwc is also halved by the improved analysis. But for
T > 32, the total cost of T"— 1 critical sections becomes
greater than (E). In this case, Equation 5 must be used
and it yields to a value of STwc that is about 60.4% of the
pessimistic stall time for 32 threads and about 76.2% of the
pessimistic stall time for 64 threads.

The share of the stall times computed with our improved
analysis in the final WCET is shown in Table 3.

Figure 10 plots the speedups obtained with both the pes-
simistic and improved analyses for dta. The benefit is sig-
nificant for 16 threads or more, and the speedup increases
from 32.31 to 42.70, i.e. by 32.2%, for the 64-thread ver-
sion. The reason is that the impact of stall times in critical
sections is so small for up to 8 threads (cf. Table 2) that
optimising their analysis can only slightly increase the over-
all speedup. But again, with 16 or more threads, the stall
times at critical sections start to take an important part on
the WCET (more than about 18%) and refining their esti-
mation becomes important.

Figure 11 shows the speedups for the hist benchmark.
Contrarily to jacobi and dta, hist benefits from a signifi-
cant improvement starting from 8 threads. With 64 threads,
the speedup jumps from 14.87 to 18.04.

To summarise, when the stall times represent more than
about 15% of the total WCET, our improved analysis yields
to significant enhancement on the speedup, varying from
4.5% up to 32.2%. As Table 2 shows, the part of the stall

21
...... pessimistic 18.04
18
improved analysis 15.44/
JEE / o 1487
S .
3
H 1? L1189
- ot
B o o789
g 613 .o
6 /— 5.40
3 /"
0
2 4 8 16 32 64

of threads

Figure 11: Speedup of hist

Gl —
DS

WCET

Figure 12: Critical section in a loop, with the CO-
LoG primitive

times at critical sections exponentially increases with the
number of threads. Thus, for widely parallel applications
running on future manycores, our improved analysis can be
a key strategy to increase speedups.

4. NEW LOCKING PRIMITIVES FOR TIGHT

WCST ANALYSIS
4.1 The CO-LoG Policy

We consider threads executing the same code, i.e. with
the same maximum distance E between two successive calls
to the locking primitive. The stall time STwc at a critical
section in a loop would be reduced to its minimum value if
threads were guaranteed to get the lock in the same order at
each iteration of the loop. This is illustrated in Figure 12.

Note that such a behaviour is not enforced by well-known
ticket locks. A ticket lock keeps an ordered list of requesters
and grants the lock in a fair way, i.e. in the order of the list.
However, it does not imply that this order remains identi-
cal over successive invocations. This is the reason why we
need to introduce a set of mutex lock handling primitives
that implement our so-called Constant-Order Lock Grant-
ing (CO-LoG) policy. This includes: (a) two primitives,
mutex_get_in and mutex_get_out that allow a thread to
declare that it will start (resp. stop) competing for the lock;
(b) modified mutex_lock and mutex_unlock primitives that
consider an ordered list of competing threads. The pseudo-
code of these routines is given in Figure 13, while the pseudo-
code of the original routines (ticket lock) is shown in Fig-
ure 14 for reference.

The CO-LoG policy requires maintaining a list of the
threads competing for the lock. For better performance,
the list is implemented as two statically allocated arrays,
prev and next (we assume that the maximum number of

1: function MUTEX_GET_IN(mutex_t *mutex)

2: SPINLOCK_LOCK (mutex—guard)

3: my_ticket = mutex—mnext_ticket++

4: next [prev[mutex—now_serving]] = my_ticket
5: prev[my_ticket] = prev[mutex—now_serving]
6: next [my_ticket] = mutex—now_serving

7 prev[mutex—now_serving] = my_ticket

8: SPINLOCK_UNLOCK (mutex— guard)

9: end function

10:

11: function MUTEX_GET_OUT(mutex_t *mutex)
12: SPINLOCK_LOCK (mutex—guard)
13: next [prev[my_ticket]] = next[my_ticket]
14: prev[next [my_ticket]] = prev[my_ticket]

15: SPINLOCK_UNLOCK (mutex—guard)

16: end function

17:

18: function MUTEX_LOCK(mutex_t *mutex)
19: while mutex—now_serving != my_ticket do

20: end while
21: end function

22:

23: function MUTEX_UNLOCK(mutex_t *mutex)

24: SPINLOCK_LOCK (mutex—guard)

25: mutex—now_serving = next [mutex—now_serving]
26: SPINLOCK_UNLOCK (mutex—guard)

27: end function

Figure 13: New mutex primitives implementing the
CO-LoG policy

threads is fixed). In mutex_get_in, a thread first gets a
ticket (line 3), i.e. a unique integer which is then used to
index the arrays. Then the thread is appended to the list
(lines 4-7). Note that these operations must be performed
within a critical section, protected by a spin lock. Naturally,
the stall time at this critical section must be accounted for
when estimating WCETSs but (a) its value is small because
the critical section is very short, and (b) the function will
generally not be invoked in a loop. To get the lock, a thread
executes the mutex_lock routine and waits until its ticket
is selected (line 19). Once it terminates the execution of a
critical section, it invokes mutex_unlock that grants the lock
to the thread holding the next ticket in the list (line 25).
Again, this is protected by a spin lock that must be taken
into account when computing WCETSs. In mutex_get_out,
the ticket of the thread is removed from the list. This way,
the thread will not be indefinitely waited for by other threads
trying to get the lock.

Figure 15 provides an example of how the new primitives
can be used in an application code. Note that it is absolutely
needed that the thread call mutex_get_out when it exits the
loop, otherwise there would be a risk of deadlock.

The CO-LoG policy, which ensures the lock is granted al-
ways in the same order, guarantees a synchronized progress
of threads in loop iterations. It makes it impossible for
thread thz to execute iteration ¢ + 2 while thread thO is
still in iteration ¢. This removes the cause of possible stalls
described in Section 3.2 for E > (T'—1)-C and illustrated in
Figure 8 between thl and th0. As a result, using CO-LoG
policy, a thread taking the maximum possible time to exe-
cute the computation part is only stalled in the first iteration

: function MUTEX_LOCK(mutex_t *mutex)
SPINLOCK_LOCK (mutex—guard)
my_ticket = mutex—next_ticket++
SPINLOCK_UNLOCK (mutex—rguard)
while mutex—now_serving !|= my_ticket do
end while

end function

: function MUTEX_UNLOCK(mutex_t *mutex))
mutex—now_serving++
: end function

TOLXRAD I WY

—_

Figure 14: Original mutex primitives

: function WORK

MUTEX_GET_IN(&mutex)
for ... do

MUTEX_LOCK (&mutex)
critical section
MUTEX_UNLOCK (&mutex)
end for
10: MUTEX_GET_OUT(&mutex)
11: end function

©

Figure 15: Usage of new mutex primitives

if E> (T —1)-C. This yields to:
STwe = (T —1)-C (7)

On the other hand, if E < (T — 1) - C, the longest thread
is stalled for ((T'—1) - C — E) at each iteration, except for
the first one, because the lock is still being held by other
threads. By considering maximum contention for the fist
iteration, the maximum stall time can be formulated by:

STwo=(T—-1)-C+(N—-1)-(T-1)-C—E) (8)

4.2 Experimental Results

Results for dta.
As previously said, (I' — 1) - C < E for dta. Then, when
using the CO-LoG primitives, the longest thread only waits
in the first iteration of the loop. This yields to a total stall
time that is about 0.003% of the stall time found for the
pessimistic analysis for 2 threads, and 0.1% for 64 threads.
In other words, the synchronisation is almost for free.
Figure 16 plots the speedups obtained with CO-LoG and
with the pessimistic analysis respectively. The speedup im-
provement achieved by CO-LoG is 10.5% for 8 threads and
94.6% for 64 threads. Unsurprisingly, this is significantly
more than the increases obtained by the improved analy-
sis since the stall times are much more drastically reduced
by the CO-LoG policy. It should also be noted that even
though only 9.52% of the total WCET is spent on waiting
at critical sections for 8 threads (cf. Table 2), the CO-LoG
policy still yields to a significant increase of the speedup.

Results for hist.

In Section 3.3, we stated that (T'—1)-C < E when T' < 16
for hist. In that case, and when using CO-LoG, the longest
thread only waits at the critical section in the first iteration

~
o

...... imisti 62.87
pessimistic 2,

CO-LoG

N

N

WCET speedup
w B
o o
\ .
]
S
. R

3231
’ y 21.46
,,,,,, 12.84
N /
0
2 4 8 16 32 64
of threads
Figure 16: Speedup of dta
21
19.46
...... pessimistic — 19.46

18

== CO-LoG

15 14.V Lt 1487

Qo
=]
3 1 .
g / 11.89
g o -"';49

6 :

3 313

0

2 4 8 16 32 64

of threads

Figure 17: Speedup of hist

of the loop. The stall time in the worst case decreases to
0.2% of the value computed with the pessimistic analysis
for 2 threads, and to 0.78% for 16 threads. This results in
negligible stall times compared to the total WCET. Now, for
more than 32 threads, (T'— 1) - C > E and STwc must be
estimated with Equation 8. This yields to a total stall time
that is about 33% of pessimistic stall time for 32 threads
and about 68% of pessimistic stall time for 64 threads.

Figure 17 shows that CO-LoG achieves very high speedups
up to 32 threads. For the 64-thread version, (T'— 1) - C
becomes so high that the reduction in stall times degrades
to 32% and the improvement of the speedup becomes less
significant than for the 32-thread version. Nevertheless, CO-
LoG achieves a 30.9% increase in speedup for 64 threads.
This shows that even though the relative decrease in the
stall times can be hurt when the number of threads increases
our CO-LoG policy still yields to strong enhancements in
speedups. The sweet-spot for hist benchmark using CO-
LoG policy is the 32-thread version where the speedup is
almost equal to that of the 64-thread version. In that case,
the improvement on the speedup is 63.7%.

5. RELATED WORK

Impact of critical sections. Amdahl’s law [1] says that
the speedup of parallel applications is limited by the amount
of time spent in sequential parts. Critical sections are, by

definition, executed sequentially (by at most one thread at
a time) and then contribute to limiting the performance
of parallel programs [7]. For this reason, optimising crit-
ical sections has been the target of many research works.
Some aimed at applying compiler optimisations to reduce
the size of critical sections (e.g. strength reduction and code
motion [3]), others introduced joint hardware/software ap-
proaches to accelerate critical section [26]. These techniques,
designed for high-performance parallel programs would also
improve the performance of real-time parallel application.

Time-predictable synchronisations. In a real-time sys-
tem, the execution time of every piece of software must be
analysable, i.e. an upper bound must be computable. This
also concerns routines in the operating system code, and
in particular synchronisation primitives. So-called strong
semaphores, i.e. semaphores with linear waiting and bounded
resource usage are introduced in [16] and several hardware
and software implementations are proposed. In [9], time-
predictable solutions for mutex locks and barriers are inves-
tigated and analysed. A hardware mechanism, called split-
phase synchronisation is proposed in [8] to reduce the exe-
cution time of atomic instructions used to implement syn-
chronisation primitives.

Static WCET analysis. Static WCET analysis approaches
aim at deriving safe upper bounds on the execution times
of tasks, considering any feasible input data set. They work
on a Control-Flow Graph representation of the program and
they break down into three steps. The first one, flow analy-
sts, determines loop bounds [6, 5] and (in-)feasible paths [25,
14]. The second step, low-level analysis, computes the worst-
case execution cost of every basic block considering a model
of the target hardware [24, 12, 23]. Finally, the third step
generates an integer linear program to determine the task
WCET, as in the IPET method [15].

WCET analysis of parallel programs. In [20], parallel
applications where threads communicate through message
passing are considered. A joint analysis is proposed, where
the analysis of worst-case communication times is integrated
into the analysis of the global worst-case execution time.
The approach consists in merging the control flow graphs of
parallel threads, then adding edges to model the synchroni-
sations related to sending/receiving messages. Such edges
introduce dependencies among code parts of each thread
(they are oriented). This approach does not seem to sup-
port shared memory synchronisations like mutual exclusion
mechanisms, since such mechanisms do not allow making
any assumption on the order in which concurrent threads
may enter a critical section.

In [10], timed automata and model checking techniques
are used to estimate the behaviour of shared-memory par-
allel programs running on multicore architectures. This ap-
proach considers any possible interleavings among threads
at critical sections. The WCET of a parallel program is
computed through a binary search, where model checking
shows wether the WCET can be proved lower than a given
value.

In [11], a shared-memory parallel programming language
is introduced and abstract interpretation techniques are used
to determine the behaviour of programs written with this
language. The steps of the analysis are shown on a toy

example.

6. CONCLUSION

To reach their required level of performance, future real-
time systems will be implemented on multicore architecture
and their software will have to be parallelised. Even on a
time-predictable multicore, parallel threads are submitted
to delays due to synchronisation operations. These delays
must be accounted for when computing the WCET of a par-
allel critical application. In a recent paper [17], we proposed
a solution to compute safe upper bounds on these delays.
In this paper, we introduce two solutions that contribute to
achieving tighter analysis of synchronisation-related delays:
(a) a refined analysis of the stall times in sequences of crit-
ical sections (either different critical sections executed in a
row or a single critical section embedded in a loop); and
(b) a new strategy for lock granting, named CO-LoG, that
is implemented in a set of primitives and helps to reduce
drastically estimated stall times. Experimental results show
noticeable decreases of estimated stall times and improve-
ments on WCET estimates.

Acknowledgments

The research leading to these results has received funding
from the European Union Seventh Framework Programme
under grant agreement no. 287519 (parMERASA).

7. REFERENCES

(1] G. M. Amdahl. Validity of the single processor
approach to achieving large scale computing
capabilities. In AFIPS Spring Conference, 1967.

C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.

OTAWA: an open toolbox for adaptive WCET

analysis. In SEUS, 2011.

[3] R. Barik, J. Zhao, and V. Sarkar. Interprocedural
strength reduction of critical sections in
explicitly-parallel programs. In PACT, 2013.

[4] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund,
C. Maiza, J. Reineke, B. Triquet, and R. Wilhelm.
Predictability considerations in the design of
multi-core embedded systems. In ERT'S2, 2010.

[5] M. De Michiel, A. Bonenfant, H. Cassé, and
P. Sainrat. Static loop bound analysis of C programs
based on flow analysis and abstract interpretation. In
RTCSA, 2008.

[6] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde,
and B. Lisper. Loop bound analysis based on a
combination of program slicing, abstract
interpretation, and invariant analysis. In Workshop on
WCET Analysis, 2007.

[7] S. Eyerman and L. Eeckhout. Modeling critical
sections in Amdahl’s law and its implications for
multicore design. In Comp. Architecture News, 2010.

[8] M. Gerdes, F. Kluge, T. Ungerer, and C. Rochange.
The split-phase synchronisation technique: Reducing
the pessimism in the WCET analysis of parallelised
hard real-time programs. In RTCSA, 2012.

[9] M. Gerdes, F. Kluge, T. Ungerer, C. Rochange, and
P. Sainrat. Time analysable synchronisation
techniques for parallelised hard real-time applications.
In DATE, 2012.

=

[10] A. Gustavsson, A. Ermedahl, B. Lisper, and
P. Pettersson. Towards WCET analysis of multicore
architectures using UPPAAL. In Workshop on WCET
Analysis, 2010.

[11] A. Gustavsson, J. Gustafsson, and B. Lisper. Toward
static timing analysis of parallel software. In
Workshop on WCET Analysis, 2012.

[12] C. A. Healy, R. D. Arnold, F. Mueller, D. B. Whalley,
and M. G. Harmon. Bounding pipeline and instruction
cache performance. IEEE Trans. on Comp., 48(1),
1999.

[13] R. Heckmann, M. Langenbach, S. Thesing, and
R. Wilhelm. The influence of processor architecture on
the design and the results of WCET tools. Proc. of the
IEEE, 91(7), 2003.

[14] N. Holsti. Analysing switch-case tables by partial
evaluation. In Workshop on WCET Analysis, 2007.

[15] Y.-T. S. Li and S. Malik. Performance analysis of
embedded software using implicit path enumeration.
In DAC, 1995.

[16] L. Molesky, C. Shen, and G. Zlokapa. Predictable
synchronization mechanisms for multiprocessor
real-time systems. Real-Time Systems, (2), 1990.

[17] H. Ozaktas, C. Rochange, and P. Sainrat. Automatic
WCET analysis of real-time parallel applications. In
Workshop on WCET Analysis, 2013.

[18] M. Panié¢, G. Rodriguez, E. Quinones, J. Abella, and
F. J. Cazorla. On-chip ring network designs for
hard-real time systems. In RT'NS, 2013.

[19] M. Paolieri, J. Mische, S. Metzlaff, M. Gerdes,

E. Quinones, S. Uhrig, T. Ungerer, and F. J. Cazorla.
A hard real-time capable multi-core SMT processor.
ACM Trans. Emb. Comput. Syst., 12(3), 2013.

[20] D. Potop-Butucaru and I. Puaut. Integrated
Worst-Case Execution Time Estimation of Multicore
Applications. In Workshop on WCET Analysis, 2013.

[21] A. Pyka, M. Rohde, and S. Uhrig. Performance
evaluation of the time analysable on-demand coherent
cache. In TrustCom, 2013.

[22] C. Rochange. An overview of approaches towards the
timing analysability of parallel architecture. In
Bringing Theory to Practice: Predictability and
Performance in Embedded Systems, 2011.

[23] C. Rochange and P. Sainrat. A context-parameterized
model for static analysis of execution times. Trans. on
HiPEAC, 2, 2009.

[24] J. Schneider and C. Ferdinand. Pipeline behavior
prediction for superscalar processors by abstract
interpretation. In LCTES, 1999.

[25] V. Suhendra, T. Mitra, A. Roychoudhury, and
T. Chen. Efficient detection and exploitation of
infeasible paths for software timing analysis. In DAC,
2006.

[26] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N.
Patt. Accelerating critical section execution with
asymmetric multi-core architectures. In ACM Sigplan
Notices, volume 44, 2009.

[27] T. Ungerer, et al. parMERASA — Multi-core execution
of parallelised hard real-time applications supporting
analysability. In DSD, 2013.

