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ABSTRACT

Designing time-predictable architectures to support the re-
quirements of hard real-time systems is the goal of several
research projects. In this paper we assume that such plat-
forms exist and we focus on the timing analysis of parallel
real-time applications. One of the main challenges is to de-
termine how much the delays induced by software constructs
such as synchronisations can impact the worst-case execu-
tion times (WCETs) of parallel threads. In this paper, we
refine state-of-the-art analysis: first, we derive more accu-
rate estimations of stalls at critical sections; second, we in-
troduce new locking primitives that minimise stall times on
the worst-case path. Experimental results show noticeable
improvements on the WCETs of benchmarks.

Keywords

Real-time, WCET, parallel programming, lock

1. INTRODUCTION
In the next years, real-time embedded systems will be

built on multicore platforms which provide better energy
efficiency than current single-core architectures. But such
multicore platforms challenge timing analysis techniques be-
cause the sharing of hardware resources among cores gener-
ates conflicts that impair the timing predictability [13, 22].

This issue is tackled by several research projects, e.g.
PREDATOR [4], parMERASA [27] and T-CREST, that aim
at designing time-predictable multicore architectures. Pro-
mising solutions have already been proposed, e.g. in [19,
18]. We assume that such time-predictable platforms are
available and we look forward to the next step which will be

the parallelisation of applications to improve the tasks re-
sponse time and not only the task throughput. This will be
needed to achieve the high performance requirements that
are foreseen to get support for better safety, lower emissions
and improved comfort for passengers in aircrafts or cars.

Parallel threads experience delays due to the use of syn-
chronisation primitives, which challenges the timing anal-
ysis. For example, a thread reaching a barrier might be
stalled until other threads reach the same barrier. Similarly,
a thread trying to acquire a lock before a critical section
might be stalled until concurrent threads get the lock them-
selves, execute the critical section and then release the lock.

In [17], we proposed an approach to determine the WCET
of a parallel application in which threads synchronise through
the shared memory, using POSIX-like primitives. This ap-
proach first computes the worst-case stall times (denoted
by WCST ) generated by synchronisations, then integrates
them in the global WCET analysis. In Section 2.1, we will
review this algorithm to estimate worst-case delays due to
inter-thread conflicts. We will then report, in Section 2.2,
some experimental results which show that critical sections,
already known to limit the average speedup of parallel soft-
ware, degrade even more noticeably the worst-case perfor-
mance. This is partly due to considering pessimistic assump-
tions (maximum contention) in order to obtain safe upper
bounds. We will discuss this pessimism in Section 2.3.

Our contribution in this paper is twofold:

a) We propose a refined analysis of the impact of stall
times at critical sections on the WCET when consid-
ering a sequence of critical sections (either distinct crit-
ical sections executed in a row, in Section 3.1, or the
same section executed in a loop, in Section 3.2). Such
sequences are found in various common parallel pro-
gramming patterns such as dynamic work assignment,
producer-consumer scheme or iteration until convergence.
Experimental results (Section 3.3) show that sensibly
tighter WCET estimates can be achieved.

b) We introduce new locking primitives that enforce a con-
stant order on threads crossing repeatedly the same crit-
ical section (Section 4.1). They collectively implement
our Constant- Order Lock Granting (CO-LoG) policy.
Using this policy drastically reduces the impact of syn-
chronisation stalls on the WCET of parallel programs,
as shown in Section 4.2.

Related work on static WCET analysis, time-predictable
synchronisations and the timing analysis of parallel real-time
programs is surveyed in Section 5. We conclude the paper
in Section 6.



2. MOTIVATION

2.1 Background
We have proposed an approach to the timing analysis of

real-time shared-memory parallel programs in [17]. Con-
sidering a time-predictable multicore architecture, our solu-
tion aimed at estimating the worst-case stall times (WCSTs)
of concurrent threads at synchronisation points, i.e. where
threads call a barrier_wait() or a mutex_lock() primitive.

As far as critical sections (mutexes) are concerned, this
approach is conservative: it assumes that a thread trying to
acquire the lock is stalled, in the worst case, by any other
thread that also requests the lock at some point in the pro-
gram. To allow the stall time to be upper bounded, we
consider time-predictable mutexes, as proposed in [9], which
guarantee that threads are granted the lock on a first-come
first-served basis. With this assumption, the WCST at a
critical section is estimated as:

WCST ≤ (T − 1) · C

where T is the total number of threads using the lock and C

is the worst-case execution time spent in the critical section.
If threads do not execute all the same code in the critical
section, the longest path is considered.

In other words, the cost of any critical section is multiplied
by the number of concurrent threads because a pessimistic
situation, with full contention, is assumed. The impact on
theWCET of the parallel application can be sensible if either
the number of threads is large or the critical section is long or
the critical section is executed several times in a loop. This
is confirmed by experimental results reported in Section 2.2.
In Section 2.3, we explain why this estimation of WCETs is
pessimistic and can be refined.

2.2 Impact of Critical Sections on Worst-Case
Execution Times

Critical sections are known to be a performance bottle-
neck in parallel programs: since a single thread at a time
can execute in a critical section, it may happen that other
threads be stalled until the critical section is free. Depending
on the respective sizes of parallel parts of code and critical
sections, such conflicts and sequentialisation might severely
degrade performance. In this section, we report experimen-
tal results that show how much the worst-case performance
is impacted by stall times at critical sections.

2.2.1 Methodology

All the experimental results reported in this paper have
been collected considering the following architectural model
and benchmark applications.

Multicore Model.

In order to isolate the effects of synchronisation stall times,
we assume a 64-core1 architecture built up on very simple
cores. Each core benefits from private 32-KB separate in-
struction and data caches, and executes any instruction that
hits in the cache in a single cycle. The latency to the main
memory is 649 cycles, which includes the impact of max-
imum possible contention among cores, assuming a time-
predictable interconnection network and memory system,
such as the one proposed in [18].
1In practise, so many cores in a shared-memory architecture
may raise side issues which are out of the scope of this paper.

Hardware-based data coherency management is challeng-
ing for timing analysis because its behaviour is strongly re-
lated to the actual interleaving of accesses to shared data by
the different threads. Some solutions towards time-predictable
data-coherent caches have been proposed, e.g. the ODC
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cache in [21], but they introduce extra memory accesses that
impact the WCET. To focus on synchronisation costs, we as-
sume that shared data are not cached and reside in the main
memory only.

Benchmark Programs.

We consider three parallel applications. Each of them is
composed of a main thread that creates child threads. All
threads (including the main one) execute the same compu-
tation code. Critical sections are implemented using time-
predictable lock primitives, e.g. ticket locks, that guaran-
tee that threads are served in a first-come first-served basis.
This way, a thread competing with T − 1 other threads can-
not be stalled more than once by each other thread when it
requests access to a critical section.
jacobi (see Figure 1) solves a system of linear equations

using the iterative Jacobi method on a 2D matrix. Each
thread computes part of the points, independently of the
other threads (as in the so-called embarrassingly parallel

computation model). The process is repeated until conver-

gence is reached, i.e. until the average variation of results
from one iteration to the other one is lower than a spec-
ified threshold. Each thread computes its local variation
(line 9 ) then adds it to the global variation in a critical
section (line 12 ). A synchronisation barrier is used to en-
sure that threads do not start their computation before the
global variation is initialised (line 5 ) and do no check the
convergence condition before the global variation has been
computed (line 14 ). The last barrier in the loop (line 18 )
ensures that decision on convergence is made before global
variation is reset to zero. Since the implementation of the
barrier_wait primitive includes a critical section, the syn-
chronisation pattern of this application repeats the sequence
shown in Figure 2: between two progress synchronisations,
threads compete for two critical sections in a row.

1: function jacobi

2: done ← 0
3: while !done do

4: var ← 0
5: barrier wait(&bar, N)
6: local_var ← 0
7: for each local point do
8: compute new value

9: add variation to local_var

10: end for

11: mutex lock(&mutex)
12: var ← var + local_var

13: mutex unlock(&mutex)
14: barrier wait(&bar, N)
15: if var ≤ threshold then

16: done ← 1
17: end if

18: barrier wait(&bar, N)
19: end while

20: end function

Figure 1: Pseudo-code of the jacobi benchmark













1: function mutex get in(mutex_t *mutex)
2: spinlock lock(mutex→guard)
3: my_ticket = mutex→next_ticket++
4: next[prev[mutex→now_serving]] = my_ticket

5: prev[my_ticket] = prev[mutex→now_serving]

6: next[my_ticket] = mutex→now_serving

7: prev[mutex→now_serving] = my_ticket

8: spinlock unlock(mutex→guard)
9: end function

10:
11: function mutex get out(mutex_t *mutex)
12: spinlock lock(mutex→guard)
13: next[prev[my_ticket]] = next[my_ticket]

14: prev[next[my_ticket]] = prev[my_ticket]

15: spinlock unlock(mutex→guard)
16: end function

17:
18: function mutex lock(mutex_t *mutex)
19: while mutex→now_serving != my_ticket do

20: end while

21: end function

22:
23: function mutex unlock(mutex_t *mutex)
24: spinlock lock(mutex→guard)
25: mutex→now_serving = next[mutex→now_serving]

26: spinlock unlock(mutex→guard)
27: end function

Figure 13: New mutex primitives implementing the

CO-LoG policy

threads is fixed). In mutex_get_in, a thread first gets a
ticket (line 3 ), i.e. a unique integer which is then used to
index the arrays. Then the thread is appended to the list
(lines 4-7 ). Note that these operations must be performed
within a critical section, protected by a spin lock. Naturally,
the stall time at this critical section must be accounted for
when estimating WCETs but (a) its value is small because
the critical section is very short, and (b) the function will
generally not be invoked in a loop. To get the lock, a thread
executes the mutex_lock routine and waits until its ticket
is selected (line 19 ). Once it terminates the execution of a
critical section, it invokes mutex_unlock that grants the lock
to the thread holding the next ticket in the list (line 25 ).
Again, this is protected by a spin lock that must be taken
into account when computing WCETs. In mutex_get_out,
the ticket of the thread is removed from the list. This way,
the thread will not be indefinitely waited for by other threads
trying to get the lock.

Figure 15 provides an example of how the new primitives
can be used in an application code. Note that it is absolutely
needed that the thread call mutex_get_out when it exits the
loop, otherwise there would be a risk of deadlock.

The CO-LoG policy, which ensures the lock is granted al-
ways in the same order, guarantees a synchronized progress
of threads in loop iterations. It makes it impossible for
thread thx to execute iteration i + 2 while thread th0 is
still in iteration i. This removes the cause of possible stalls
described in Section 3.2 for E ≥ (T −1) ·C and illustrated in
Figure 8 between th1 and th0. As a result, using CO-LoG
policy, a thread taking the maximum possible time to exe-
cute the computation part is only stalled in the first iteration

1: function mutex lock(mutex_t *mutex)
2: spinlock lock(mutex→guard)
3: my_ticket = mutex→next_ticket++
4: spinlock unlock(mutex→guard)
5: while mutex→now_serving != my_ticket do

6: end while

7: end function

8:
9: function mutex unlock(mutex_t *mutex))
10: mutex→now_serving++
11: end function

Figure 14: Original mutex primitives

1: function work

2: . . .

3: mutex get in(&mutex)
4: for . . . do

5: . . .

6: mutex lock(&mutex)
7: critical section

8: mutex unlock(&mutex)
9: end for

10: mutex get out(&mutex)
11: end function

Figure 15: Usage of new mutex primitives

if E ≥ (T − 1) · C. This yields to:

STWC = (T − 1) · C (7)

On the other hand, if E < (T − 1) ·C, the longest thread
is stalled for

(

(T − 1) · C − E
)

at each iteration, except for
the first one, because the lock is still being held by other
threads. By considering maximum contention for the fist
iteration, the maximum stall time can be formulated by:

STWC = (T − 1) · C + (N − 1) · ((T − 1) · C − E) (8)

4.2 Experimental Results

Results for dta.

As previously said, (T − 1) · C < E for dta. Then, when
using the CO-LoG primitives, the longest thread only waits
in the first iteration of the loop. This yields to a total stall
time that is about 0.003% of the stall time found for the
pessimistic analysis for 2 threads, and 0.1% for 64 threads.
In other words, the synchronisation is almost for free.

Figure 16 plots the speedups obtained with CO-LoG and
with the pessimistic analysis respectively. The speedup im-
provement achieved by CO-LoG is 10.5% for 8 threads and
94.6% for 64 threads. Unsurprisingly, this is significantly
more than the increases obtained by the improved analy-
sis since the stall times are much more drastically reduced
by the CO-LoG policy. It should also be noted that even
though only 9.52% of the total WCET is spent on waiting
at critical sections for 8 threads (cf. Table 2), the CO-LoG
policy still yields to a significant increase of the speedup.

Results for hist.

In Section 3.3, we stated that (T − 1) ·C < E when T ≤ 16
for hist. In that case, and when using CO-LoG, the longest
thread only waits at the critical section in the first iteration





example.

6. CONCLUSION
To reach their required level of performance, future real-

time systems will be implemented on multicore architecture
and their software will have to be parallelised. Even on a
time-predictable multicore, parallel threads are submitted
to delays due to synchronisation operations. These delays
must be accounted for when computing the WCET of a par-
allel critical application. In a recent paper [17], we proposed
a solution to compute safe upper bounds on these delays.
In this paper, we introduce two solutions that contribute to
achieving tighter analysis of synchronisation-related delays:
(a) a refined analysis of the stall times in sequences of crit-
ical sections (either different critical sections executed in a
row or a single critical section embedded in a loop); and
(b) a new strategy for lock granting, named CO-LoG, that
is implemented in a set of primitives and helps to reduce
drastically estimated stall times. Experimental results show
noticeable decreases of estimated stall times and improve-
ments on WCET estimates.
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E. Quiñones, S. Uhrig, T. Ungerer, and F. J. Cazorla.
A hard real-time capable multi-core SMT processor.
ACM Trans. Emb. Comput. Syst., 12(3), 2013.

[20] D. Potop-Butucaru and I. Puaut. Integrated
Worst-Case Execution Time Estimation of Multicore
Applications. In Workshop on WCET Analysis, 2013.

[21] A. Pyka, M. Rohde, and S. Uhrig. Performance
evaluation of the time analysable on-demand coherent
cache. In TrustCom, 2013.

[22] C. Rochange. An overview of approaches towards the
timing analysability of parallel architecture. In
Bringing Theory to Practice: Predictability and

Performance in Embedded Systems, 2011.

[23] C. Rochange and P. Sainrat. A context-parameterized
model for static analysis of execution times. Trans. on
HiPEAC, 2, 2009.

[24] J. Schneider and C. Ferdinand. Pipeline behavior
prediction for superscalar processors by abstract
interpretation. In LCTES, 1999.

[25] V. Suhendra, T. Mitra, A. Roychoudhury, and
T. Chen. Efficient detection and exploitation of
infeasible paths for software timing analysis. In DAC,
2006.

[26] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N.
Patt. Accelerating critical section execution with
asymmetric multi-core architectures. In ACM Sigplan

Notices, volume 44, 2009.

[27] T. Ungerer, et al. parMERASA – Multi-core execution
of parallelised hard real-time applications supporting
analysability. In DSD, 2013.


