Haluk Ozaktas
email: ozaktas@irit.fr

Christine Rochange
email: rochange@irit.fr

Pascal Sainrat
email: sainrat@irit.fr

Minimizing the Cost of Synchronisations in the WCET of Real-Time Parallel Programs

Keywords: Real-time, WCET, parallel programming, lock

Designing time-predictable architectures to support the requirements of hard real-time systems is the goal of several research projects. In this paper we assume that such platforms exist and we focus on the timing analysis of parallel real-time applications. One of the main challenges is to determine how much the delays induced by software constructs such as synchronisations can impact the worst-case execution times (WCETs) of parallel threads. In this paper, we refine state-of-the-art analysis: first, we derive more accurate estimations of stalls at critical sections; second, we introduce new locking primitives that minimise stall times on the worst-case path. Experimental results show noticeable improvements on the WCETs of benchmarks.

INTRODUCTION

In the next years, real-time embedded systems will be built on multicore platforms which provide better energy efficiency than current single-core architectures. But such multicore platforms challenge timing analysis techniques because the sharing of hardware resources among cores generates conflicts that impair the timing predictability [START_REF] Heckmann | The influence of processor architecture on the design and the results of WCET tools[END_REF][START_REF] Rochange | An overview of approaches towards the timing analysability of parallel architecture[END_REF].

This issue is tackled by several research projects, e.g. PREDATOR [START_REF] Cullmann | Predictability considerations in the design of multi-core embedded systems[END_REF], parMERASA [START_REF] Ungerer | parMERASA -Multi-core execution of parallelised hard real-time applications supporting analysability[END_REF] and T-CREST, that aim at designing time-predictable multicore architectures. Promising solutions have already been proposed, e.g. in [START_REF] Paolieri | A hard real-time capable multi-core SMT processor[END_REF][START_REF] Panić | On-chip ring network designs for hard-real time systems[END_REF]. We assume that such time-predictable platforms are available and we look forward to the next step which will be the parallelisation of applications to improve the tasks response time and not only the task throughput. This will be needed to achieve the high performance requirements that are foreseen to get support for better safety, lower emissions and improved comfort for passengers in aircrafts or cars.

Parallel threads experience delays due to the use of synchronisation primitives, which challenges the timing analysis. For example, a thread reaching a barrier might be stalled until other threads reach the same barrier. Similarly, a thread trying to acquire a lock before a critical section might be stalled until concurrent threads get the lock themselves, execute the critical section and then release the lock.

In [START_REF] Ozaktas | Automatic WCET analysis of real-time parallel applications[END_REF], we proposed an approach to determine the WCET of a parallel application in which threads synchronise through the shared memory, using POSIX-like primitives. This approach first computes the worst-case stall times (denoted by W CST) generated by synchronisations, then integrates them in the global WCET analysis. In Section 2.1, we will review this algorithm to estimate worst-case delays due to inter-thread conflicts. We will then report, in Section 2.2, some experimental results which show that critical sections, already known to limit the average speedup of parallel software, degrade even more noticeably the worst-case performance. This is partly due to considering pessimistic assumptions (maximum contention) in order to obtain safe upper bounds. We will discuss this pessimism in Section 2.3.

Our contribution in this paper is twofold: a) We propose a refined analysis of the impact of stall times at critical sections on the WCET when considering a sequence of critical sections (either distinct critical sections executed in a row, in Section 3.1, or the same section executed in a loop, in Section 3.2). Such sequences are found in various common parallel programming patterns such as dynamic work assignment, producer-consumer scheme or iteration until convergence. Experimental results (Section 3.3) show that sensibly tighter WCET estimates can be achieved. b) We introduce new locking primitives that enforce a constant order on threads crossing repeatedly the same critical section (Section 4.1). They collectively implement our Constant-Order Lock Granting (CO-LoG) policy. Using this policy drastically reduces the impact of synchronisation stalls on the WCET of parallel programs, as shown in Section 4.2.

Related work on static WCET analysis, time-predictable synchronisations and the timing analysis of parallel real-time programs is surveyed in Section 5. We conclude the paper in Section 6.

MOTIVATION

Background

We have proposed an approach to the timing analysis of real-time shared-memory parallel programs in [START_REF] Ozaktas | Automatic WCET analysis of real-time parallel applications[END_REF]. Considering a time-predictable multicore architecture, our solution aimed at estimating the worst-case stall times (WCSTs) of concurrent threads at synchronisation points, i.e. where threads call a barrier_wait() or a mutex_lock() primitive.

As far as critical sections (mutexes) are concerned, this approach is conservative: it assumes that a thread trying to acquire the lock is stalled, in the worst case, by any other thread that also requests the lock at some point in the program. To allow the stall time to be upper bounded, we consider time-predictable mutexes, as proposed in [START_REF] Gerdes | Time analysable synchronisation techniques for parallelised hard real-time applications[END_REF], which guarantee that threads are granted the lock on a first-come first-served basis. With this assumption, the WCST at a critical section is estimated as:

W CST ≤ (T -1) • C
where T is the total number of threads using the lock and C is the worst-case execution time spent in the critical section. If threads do not execute all the same code in the critical section, the longest path is considered.

In other words, the cost of any critical section is multiplied by the number of concurrent threads because a pessimistic situation, with full contention, is assumed. The impact on the WCET of the parallel application can be sensible if either the number of threads is large or the critical section is long or the critical section is executed several times in a loop. This is confirmed by experimental results reported in Section 2.2. In Section 2.3, we explain why this estimation of WCETs is pessimistic and can be refined.

Impact of Critical Sections on Worst-Case Execution Times

Critical sections are known to be a performance bottleneck in parallel programs: since a single thread at a time can execute in a critical section, it may happen that other threads be stalled until the critical section is free. Depending on the respective sizes of parallel parts of code and critical sections, such conflicts and sequentialisation might severely degrade performance. In this section, we report experimental results that show how much the worst-case performance is impacted by stall times at critical sections.

Methodology

All the experimental results reported in this paper have been collected considering the following architectural model and benchmark applications.

Multicore Model.

In order to isolate the effects of synchronisation stall times, we assume a 64-core1 architecture built up on very simple cores. Each core benefits from private 32-KB separate instruction and data caches, and executes any instruction that hits in the cache in a single cycle. The latency to the main memory is 649 cycles, which includes the impact of maximum possible contention among cores, assuming a timepredictable interconnection network and memory system, such as the one proposed in [START_REF] Panić | On-chip ring network designs for hard-real time systems[END_REF].

Hardware-based data coherency management is challenging for timing analysis because its behaviour is strongly related to the actual interleaving of accesses to shared data by the different threads. Some solutions towards time-predictable data-coherent caches have been proposed, e.g. the ODC 2 cache in [START_REF] Pyka | Performance evaluation of the time analysable on-demand coherent cache[END_REF], but they introduce extra memory accesses that impact the WCET. To focus on synchronisation costs, we assume that shared data are not cached and reside in the main memory only.

Benchmark Programs. We consider three parallel applications. Each of them is composed of a main thread that creates child threads. All threads (including the main one) execute the same computation code. Critical sections are implemented using timepredictable lock primitives, e.g. ticket locks, that guarantee that threads are served in a first-come first-served basis. This way, a thread competing with T -1 other threads cannot be stalled more than once by each other thread when it requests access to a critical section.

jacobi (see Figure 1) solves a system of linear equations using the iterative Jacobi method on a 2D matrix. Each thread computes part of the points, independently of the other threads (as in the so-called embarrassingly parallel computation model). The process is repeated until convergence is reached, i.e. until the average variation of results from one iteration to the other one is lower than a specified threshold. Each thread computes its local variation (line 9) then adds it to the global variation in a critical section (line 12). A synchronisation barrier is used to ensure that threads do not start their computation before the global variation is initialised (line 5) and do no check the convergence condition before the global variation has been computed (line 14). The last barrier in the loop (line 18) ensures that decision on convergence is made before global variation is reset to zero. Since the implementation of the barrier_wait primitive includes a critical section, the synchronisation pattern of this application repeats the sequence shown in Figure 2: between two progress synchronisations, threads compete for two critical sections in a row. spinlock unlock(mutex→guard) 27: end function Figure 13: New mutex primitives implementing the CO-LoG policy threads is fixed). In mutex_get_in, a thread first gets a ticket (line 3), i.e. a unique integer which is then used to index the arrays. Then the thread is appended to the list (lines 4-7). Note that these operations must be performed within a critical section, protected by a spin lock. Naturally, the stall time at this critical section must be accounted for when estimating WCETs but (a) its value is small because the critical section is very short, and (b) the function will generally not be invoked in a loop. To get the lock, a thread executes the mutex_lock routine and waits until its ticket is selected (line 19). Once it terminates the execution of a critical section, it invokes mutex_unlock that grants the lock to the thread holding the next ticket in the list (line 25). Again, this is protected by a spin lock that must be taken into account when computing WCETs. In mutex_get_out, the ticket of the thread is removed from the list. This way, the thread will not be indefinitely waited for by other threads trying to get the lock. Figure 15 provides an example of how the new primitives can be used in an application code. Note that it is absolutely needed that the thread call mutex_get_out when it exits the loop, otherwise there would be a risk of deadlock.

The CO-LoG policy, which ensures the lock is granted always in the same order, guarantees a synchronized progress of threads in loop iterations. It makes it impossible for thread thx to execute iteration i + 2 while thread th0 is still in iteration i. This removes the cause of possible stalls described in Section 3.2 for E ≥ (T -1)•C and illustrated in Figure 8 between th1 and th0. As a result, using CO-LoG policy, a thread taking the maximum possible time to execute the computation part is only stalled in the first iteration

STW C = (T -1) • C (7)
On the other hand, if E < (T -1) • C, the longest thread is stalled for (T -1) • C -E at each iteration, except for the first one, because the lock is still being held by other threads. By considering maximum contention for the fist iteration, the maximum stall time can be formulated by:

STW C = (T -1) • C + (N -1) • ((T -1) • C -E) (8)

Experimental Results

Results for dta.

As previously said, (T -1) • C < E for dta. Then, when using the CO-LoG primitives, the longest thread only waits in the first iteration of the loop. This yields to a total stall time that is about 0.003% of the stall time found for the pessimistic analysis for 2 threads, and 0.1% for 64 threads.

In other words, the synchronisation is almost for free. Figure 16 plots the speedups obtained with CO-LoG and with the pessimistic analysis respectively. The speedup improvement achieved by CO-LoG is 10.5% for 8 threads and 94.6% for 64 threads. Unsurprisingly, this is significantly more than the increases obtained by the improved analysis since the stall times are much more drastically reduced by the CO-LoG policy. It should also be noted that even though only 9.52% of the total WCET is spent on waiting at critical sections for 8 threads (cf. Table 2), the CO-LoG policy still yields to a significant increase of the speedup.

Results for hist.

In Section 3.3, we stated that (T -1) • C < E when T ≤ 16 for hist. In that case, and when using CO-LoG, the longest thread only waits at the critical section in the first iteration example.

CONCLUSION

To reach their required level of performance, future realtime systems will be implemented on multicore architecture and their software will have to be parallelised. Even on a time-predictable multicore, parallel threads are submitted to delays due to synchronisation operations. These delays must be accounted for when computing the WCET of a parallel critical application. In a recent paper [START_REF] Ozaktas | Automatic WCET analysis of real-time parallel applications[END_REF], we proposed a solution to compute safe upper bounds on these delays. In this paper, we introduce two solutions that contribute to achieving tighter analysis of synchronisation-related delays: (a) a refined analysis of the stall times in sequences of critical sections (either different critical sections executed in a row or a single critical section embedded in a loop); and (b) a new strategy for lock granting, named CO-LoG, that is implemented in a set of primitives and helps to reduce drastically estimated stall times. Experimental results show noticeable decreases of estimated stall times and improvements on WCET estimates.

Figure 15 :

 15 Figure 15: Usage of new mutex primitives

In practise, so many cores in a shared-memory architecture may raise side issues which are out of the scope of this paper.

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no. 287519 (parMERASA).