
HAL Id: hal-04080938
https://hal.science/hal-04080938

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Models-Based Engineering of Collaborative
Systems: Application to Collision Avoidance Operations

for Spacecrafts (2014)
Célia Martinie, Eric Barboni, David Navarre, Philippe Palanque, Racim

Fahssi, Erwann Poupart, Eliane Cubero-Castan

To cite this version:
Célia Martinie, Eric Barboni, David Navarre, Philippe Palanque, Racim Fahssi, et al.. Multi-Models-
Based Engineering of Collaborative Systems: Application to Collision Avoidance Operations for Space-
crafts (2014). ACM SIGCHI conference Engineering Interactive Computing Systems (EICS 2014),
ACM Special Interest Group on Computer-Human Interaction, Jun 2014, Rome, Italy. pp.95-94,
�10.1145/2607023.2607031�. �hal-04080938�

https://hal.science/hal-04080938
https://hal.archives-ouvertes.fr


Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 13035

To  link  to  this  article :  DOI  :10.1145/2607023.2607031
URL : http://dx.doi.org/10.1145/2607023.2607031

To cite this version : Martinie, Celia and Barboni, Eric and Navarre, 
David and Palanque, Philippe and Fahssi, Racim and Poupart, Erwann 
and Cubero-Castan, Eliane Multi-Models-Based Engineering of 
Collaborative Systems: Application to Collision Avoidance Operations 
for Spacecrafts. (2014) In: ACM SIGCHI conference Engineering 
Interactive Computing Systems - EICS 2014, 17 June 2014 - 20 June 
2014 (Roma, Italy). 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13035/
http://oatao.univ-toulouse.fr/13035/
http://oatao.univ-toulouse.fr/13035/
http://dx.doi.org/10.1145/2607023.2607031
mailto:staff-oatao@listes-diff.inp-toulouse.fr


Multi-Models-Based Engineering of Collaborative Systems: 
Application to Collision Avoidance Operations for 

Spacecraft 

Célia Martinie, Eric Barboni, David 

Navarre, Philippe Palanque, Racim Fahssi 
ICS-IRIT, University of Toulouse 

118, route de Narbonne 

F-31062, Toulouse, France 

{lastname}@irit.fr 

Erwann Poupart, Eliane Cubero-Castan 
CNES 

Centre Spatial de Toulouse 

18, avenue Edouard Belin 

F-31401 Toulouse Cedex 9, France 

{Firstname.Lastname}@cnes.fr 

ABSTRACT 

The work presented in this paper is based on a synergistic 

approach [1] integrating models of operators’ tasks 

(described using the HAMSTERS notation) with models of 

the interactive system (described using the ICO notation) 

they are using. This synergistic approach makes it possible 

to bring together two usually independent (but 

complementary) representations of the same world. Even 

though supported by modeling and simulation tools, 

previous work in this area was rather theoretic focusing on 

concepts and principles in order to articulate this synergistic 

use of the models. The current article extends this line of 

research to address groupware applications. These 

extensions are performed on HAMSTERS notation in order 

to describe activities involving multiple users dealing with 

information flow, knowledge they are required to master 

and communication protocol (synchronous or 

asynchronous). Other extensions are performed on PetShop 

tool (supporting the ICO notation) in order to model and 

execute local and distant groupware applications. These 

extensions have been brought together by a more complex 

synergistic module bringing the two views together. Lastly, 

these extensions have been used for the modelling, design, 

and construction of a groupware system dedicated to 

collision avoidance of spacecraft with space debris. This 

case study is used to assess the applicability of the 

contributions and to identify paths for future work.  

Author Keywords 

Task and interactive systems models, CSCW, groupware, 

space systems. 

INTRODUCTION 

The evolution of computer use from one computer for 

several persons to many computers for one person could 

have been the end of multi-user computing. However, the 

widespread of internet and the rise of social computing has 

demonstrated that dealing with single user applications is 

nowadays part of history. Designing interactive systems 

thus requires most of the time to need to address the needs 

of group of users involved in common tasks for which the 

communication, cooperation and production is mediated by 

computers. Despite this undeniable situation, most of the 

research contributions in the area of interactive systems 

engineering still focus on single user applications. This is 

easily understandable as multi-users application are far 

more difficult to build than single user ones. This difficulty 

comes from different sources: 

· The difficulty to gather and understand the requirements

as well as the need of the users;

· The difficulties to address the required communication

infrastructures in order to allow both synchronous and

asynchronous communication between the users;

· The difficulty to ensure usability of these applications

that are used jointly by different users (with different

characteristics and needs) and under different

environmental conditions (time zones, seasons, light,

sound, …);

· The difficulty to ensure the reliability of these computing

systems involving underlying communication

mechanisms, networks…

This paper aims at proposing a model-based approach for 

the design of usable and reliable collaborative applications.  

To address the usability issue we propose a notation for 

describing collaborative task i.e. tasks having group of 

users trying to achieve common goals. This notation 

extends current models such as GTA [25] or CTT [18]. As 

for CTT, which the most mature notation in that domain, 

extensions refine further the task types (see section 3), adds 

explicit representation of information and knowledge 



required for performing the tasks and does not require the 

construction of an “artificial” task model describing the 

collaboration.  

To address reliability, we propose the use of the ICO 

formalism and its related tool PetShop extended in order to 

edit and execute models of interactive distributed 

applications. This work takes advantage of previous work 

done with ICO notation to formally specify distributed 

applications over Corba middleware [2]. Following the 

philosophy presented in [1] we propose also a synergistic 

approach integrating models of operators’ tasks (described 
using the extended HAMSTERS notation) with models of 

the interactive system (described using the ICO notation).  

These various elements are successively presented in the 

paper. This presentation is followed by the description of 

the application of the approach on a real life case study 

from the space domain. This case study consisted in 

designing and modeling a collaborative collision avoidance 

management application for the CNES (French Space 

Government Agency) Orbit Computation Center. Current 

existing and in use applications are not supported by 

dedicated tools for collaboration. They are distributed over 

many time zones, involve multi-national teams and aim at 

forecasting and avoiding collisions between spacecraft and 

space debris.  

RELATED WORK 

In the field of Computer Supported Cooperative Work 

(CSCW) and groupware, many contributions deal with 

classification and properties of groupware applications [20], 

but also with guidelines about how to design and evaluate 

the usability of such applications [6]. Another thread of 

work addresses user interfaces, interaction techniques and 

underlying computer-based tools for supporting 

collaborative activities [23].  

The engineering of groupware applications is also 

represented amongst the scientifics contributions. For 

example, Jakobsen et al. propose a collaborative 

development environment for software development [11] 

while Bates et al. propose an applicative framework for 

integrating collaborative functionalities [3]. Wu and 

Graham [26] propose an architectural design framework for 

software architectures of collaborative applications based 

on the concept of workspace while Greenberg et al. [22] 

propose a toolkit for the construction of real-time 

groupware. 

Model-based approaches for engineering groupware 

applications can be of several types. Workflow approaches 

such as YAWL [24] target at describing and simulating 

workflow activities systems and subsystems while some 

recent approaches such as BPEL4People try to take into 

account user’s activities [10]. Task-model based approaches 

target at describing collaborative activities involving group 

of users collaborating to achieve a common goal [25] [18] 

[12]. UML-based and tool supported approaches have also 

been proposed [8] to support development of collaborative 

applications. However, while the firstly mentioned 

contributions focus on user interface and interaction 

techniques and the later ones on workflows and activities of 

group of users, none of them propose a solution to bring 

those two worlds together and address in one single 

framework these two threads of work that are required to 

develop usable groupware. Indeed, while efficiency of 

interaction can be addressed through user interface design, 

the effectiveness of communication tools and interaction 

techniques can only be addressed by exhaustive 

representation of tasks to be performed by collaborating 

users.  

AN INTEGRATED ENVIRONMENT SUPPORTING THE 
CO-EXECUTION OF TASKS AND GROUPWARE 

We propose a synergistic use of task and system models for 

ensuring consistency, coherence and conformance between 

collaborative activities and their associated distributed user 

interfaces and applications. In order to reach this research 

goal, several extensions that have been made to an existing 

framework previously introduced in [1]. The presented 

framework and tool suite is composed of: 

· A modeling and software development environment for

interactive systems (Petshop).

· A modeling and simulation CASE tool for engineering

user tasks (HAMSTERS).

· A synergistic module for linking system behavioral

models and user task model, which then enables their co-

execution (Synergistic module).

Petshop extensions 

The very early versions of Petshop tool followed a Corba 

approach to handle communication between models [2]. 

Naming Service and Interface Repository were mandatory 

parts of Corba to make communication possible. But as 

Corba implies a time consuming workflow (IDL 

compilation, IDL registration), the Naming Service and 

Interface Repository were centralized and then the 

prototyping activities were complex. 

As Petshop is Java based, we naturally studied Java RMI in 

order to reduce the compilation phase (as it was embedded 

in Java). However, the centralized registration issues 

remained. In order to ease deployment and more flexibility, 

the communication layer was updated to follow a peer to 

peer approach, where each Petshop instance is serving 

models they run. The proposed implementation uses the Ivy 

bus. The Ivy protocol
1
 was initially designed for 

broadcasting text messages using regular expressions 

(regex) for prototyping Air Traffic Control applications. As 

the approach is using regex, it makes possible to deploy 

lightweight clients on separate computers. Those separate 

1
 http://www.eei.cena.fr/products/ivy/documentation/ 



computers are not able to detect some specifics messages on 

the bus, which makes it possible to log workflows without 

polluting the client computers. One of the main advantages 

of the Ivy approach is that its adoption didn’t require 
modifying the ICO notation which was originally designed 

for describing systems as a set of cooperating instances of 

classes (independent from their location).  

HAMSTERS extensions 

The HAMSTERS notation and CASE tool has been 

introduced in 2010 in order to provide support for task-

system integration at the tool level [1]. Since then, this tool 

and notation has been refined several times in order to 

provide support for: 

· Automation design. The notation has been extended to

help with the analysis of function allocation between

human and system thanks to the refinement of cognitive

tasks into analysis and decision subtypes of cognitive

tasks according to the Parasuraman model of human

information processing [13].

· Structuring a large number and complex set of tasks

introducing the mechanism of subroutines [16].

· Precise description of knowledge, information and

objects required and manipulated [15] in order to

accomplish tasks.

These elements are necessary to describe collaborative 

activities but they are not sufficient. Hereafter are the 

extensions we propose in order to deal with groupware. 

Adding notation elements to describe collaborative activities 

Collaborative work is performed by several persons, each 

one having a role in the achievement of common goals. The 

concept of role we are using is the same as the one used in 

[18] and [25]. Figure 1 illustrates the structure of a 

HAMSTERS project with several roles, each of them 

having associated task models structured according to the 

mechanism of subroutines introduced in [16]. In the same 

way, we also integrate the concept of actor [25] in the 

HAMSTERS notation and tool. 

Collaborative work can be described at different abstraction 

levels: at the group level and at the individual level. A 

group task is a set of task that a group has to carry out in 

order to achieve a common goal [17], whereas a 

cooperative task is an individual task performed by a person 

in order to contribute to the achievement of the common 

goal [21]. 

Figure 1. Structure of a HAMSTERS project 

In order to be able to describe group tasks, we introduce 

several new task types illustrated in Figure 2 (in the last 

right column). These group tasks provide support for 

describing high level activities that a group of person have 

to accomplish: 

· An abstract group task is a task that can be decomposed

into user, system, interactive and collaborative tasks.

· A group (of users) task is task that can be decomposed in

user and collaborative user tasks.

· An interactive group task can be decomposed in

interactive and collaborative interactive tasks.

Figure 2. Task types in HAMSTERS



· A system group task can be decomposed in system tasks.

The refinement of group tasks into low-level activities 

needs fine-grain task types to describe individual and 

cooperative tasks that have to be performed in order to 

contribute to the group activities. As individual task types 

were already available within HAMSTERS, we then 

introduce cooperative tasks, illustrated in Figure 2. A 

cooperative task is a task related to a role and accomplished 

in correlation with another cooperative task that relates to a 

different role. A cooperative task may be of various types 

within the user and interactive main family types. 

Cooperative tasks may be performed within various space-

time constraints (local/distant, synchronous/asynchronous) 

[7]. These constraints can be described with notation 

elements illustrated in Figure 3. 

Figure 3. Elements of notation related to space-time 

constraints 

Cooperative task may be dedicated to one or more of the 

following type of collaborative activities: production, 

coordination, communication. It is then possible to 

associate one or more properties amongst this set. For 

example, Figure 4 a) shows that one task is dedicated to 

coordination whereas Figure 4 b) shows that the task is 

dedicated to both coordination and communication. 

 a) b) 

Figure 4. Example of cooperative task properties from a 

“functional clover” [9] 

Adding edition and simulation capabilities 

Several functionalities have been added to HAMSTERS 

CASE tool
2
 in order to support the edition and simulation of 

tasks models describing collaborative activities: 

· At the edition level, a mechanism to link cooperative

tasks across task models belonging to different roles (by

mean of contextual menu appearing after a right click on

a cooperative task and proposing the list of available

cooperative tasks in the other task models belonging to

the other roles, as illustrated in Figure 5).

2
 http://www.irit.fr/recherches/ICS/softwares/hamsters/ 

· At the simulation level, a mechanism to enable the

execution of several models belonging to different roles.

HAMSTERS make it possible to structure users’ activities 

belonging to one role in several tasks models edit several 

task models. The association between cooperative tasks of 

different roles is not made across an additional task model 

(as for example the cooperative task model in CTTe [18]) 

but it is achieved via an internal correspondence table in the 

tool. 

Figure 5. Defining correspondence of cooperative tasks of 2 

task models representing different roles 

Synergistic module extensions 

The synergistic module has been improved for both design 

time editing of correspondences and runtime simulation to 

support collaborative activity modelling and simulation. 

Design time 

To support collaborative simulation, the editing of 

correspondences requires three main improvements w.r.t 

what have been previously done [1]: 

· Allowing the use of several task models instead of a

unique one.

· Allowing the use of several collaborative ICO models

instead of models concerning a local instance of the

application.

· Taking into account cooperative input and output tasks,

additionally to input and output tasks previously used.

Runtime 

The two main improvements for the runtime use of models 

concern the task driven simulation as it mainly requires the 

use of HAMSTERS: 

· We added means to select the HAMSTERS role involved

in the simulation.

· An important improvement is about the value selection

for task objects: executing an input task may requires to

select a particular set of values that may be found within

the PetShop data set or that may be provided by the user

(for instance feeding in a text box). These values are thus

used to control the PetShop execution of a transition.

Architecture of the extended environment 

As stated in [1], the integration of the tools relies on specific 

API provided by both HAMSTERS and PetShop. In this 



section we present how the whole tool suite has been 

improved to handle synergistic execution. 

As described in the previous sections, the two main 

specificities introduced by this new approach are: 

· HAMSTERS allows the editing and simulation of several

roles described using several task models.

· PetShop allows the editing and execution of several

distributed ICO models.

The goal of the tool suite is thus improved in order to allow 

the specification of a distributed user application and the 

related user activities. The whole interactive system may be 

considered as a set of pairs of single users and single user 

application with communications means supported by both 

the applications and the users. Making these two parts of a 

pair correspond requires identifying points of connection for 

both design time and runtime: 

· From each tasks specification we extract the set of

interactive tasks and cooperative interactive tasks (for

both input and output) representing a set of manipulations

that can be performed by the users on the system and

outputs from the system to the users.

· From each ICO specification we extract the activation

and rendering function that may be seen as the set of

inputs and outputs of the system model.

Design time architecture 

The principle of editing the correspondences between the 

models of one pair {role, system} is to put together 

interactive and cooperative interactive input tasks (from the 

task models) with system inputs (from the system models) 

and system outputs (from the system models) with interactive 

and cooperative interactive output tasks (from the task 

models). Setting up this correspondence may show 

inconsistencies between the task and system models such as 

interactive tasks not supported by the system or rendering 

information not useful for the task performance. The 

correspondence editing process is presented on Figure 6 

where each tool feeds the correspondence editor with 

information from the API in order to notify it with 

modifications are done both in the task model and in the 

system model. 

Correspondence 

Editor i

Tasks Adapters
HAMSTERS i

Task Model

PetShop – ICO i

System Model

A
P

IA
P

I

Correspondence i

Figure 6. Design time architecture of the tool suite. 

This process that produces a correspondence is repeated for 

each pair on the entire system. Each pair is being put into 

correspondence separately producing a set of independent 

correspondences. These dependencies totally rely on the 

connection of task tree leaves (both input and output 

cooperative tasks). These elementary tasks are performed 

on the local system (represented by a set of ICO models). 

The separation of the correspondences relies on the fact that 

each part of the distributed system is modelled by a set of 

independent ICOs, connected by communication means 

(method calls) supported at runtime by the Ivy bus. 

As the correspondence editing goal is to put together user 

activities and interactive features, this correspondence is 

only possible with the finest grain item of both descriptions.  

Runtime architecture 

Our framework allows the co-execution of task and system 

models controlled by both the execution of the system model 

and the execution of the task model as shown in Figure 7 

(where the correspondences are those produced by the 

process described by Figure 6). 

Figure 7 highlights the two ways communication within each 

pair {task, system} allowed by the services embedded within 

the two following APIs: 

· Between HAMSTERS and the Simulation Controller: On

one side HAMSTERS notifies changes in the current

scenario to the Simulation. On the other side the

Simulation Controller is able to ask to perform the

corresponding task (according to the correspondence

provided by the Correspondence editor), simulating the

user action.

· Between PetShop and the Simulation Controller: on one

side the PetShop interpreter notifies the Simulation

Controller the evolution of the current execution of the

system model (notifications come from both rendering

and activation functions). On the other side, the

Simulation Controller fires the corresponding activation

adapter (according to the correspondence provided by the

Correspondence editor) simulating the user action.

Such as in [1] such architecture allows a two ways simulation 

controlled by the system execution or controlled by the task 

simulation. The principle of the simulation is the same as in 

our previous work:  

· When driven by the tasks, building a scenario using

HAMSTERS is translated by the Simulation Controller

into user actions within PetShop (a sequence of transition

firing).

· When driven by the system execution, user actions are

directly linked to the corresponding tasks from the task

model and the user’s action on the user interface of the
application change the current state of the task model

simulation.

The task driven simulation introduces the data 

correspondence. This correspondence is built on runtime 

capabilities of the two tools HAMSTERS and PetShop: 

· HAMSTERS provides the description of objects,

information and knowledge required and manipulated in

order to accomplish tasks.



· PetShop, by describing data structure and data flow of the

system, provides the set of data manipulated at any

moment by any actions (firing of transitions).

HAMSTERS

Simulator n

PetShop

Interpretor n

Simulation 

Controller n

A
P

I A
P

I

Notifications

FiringStart/Stop 

Tasks

Notifications

HAMSTERS

Simulator 1

PetShop

Interpretor 1

Simulation 

Controller 1

A
P

I A
P

I

Notifications

FiringStart/Stop 

Tasks

Notifications

HAMSTERS

Simulator 2

PetShop

Interpretor 2

Simulation 

Controller 2

A
P

I A
P

I

Notifications

FiringStart/Stop 

Tasks

Notifications

...
IVY

Correspondence 1

Correspondence 2

Correspondence n

Figure 7. Runtime architecture of the tool suite 

It is thus possible for any couple (task, event handler) 

within the correspondence description to match system data 

and the required objects for the task performance. An 

example of such data matching is provided by the case 

study (see next section). The originality of this work relies 

on the distribution of the system. The choice made to 

handle this distribution (as illustrated by Figure 7) is to use 

the communication means offered by PetShop (thanks to 

the Ivy software bus). The distribution is thus fully 

supported by the system side of the specification as it 

requires concrete data communication that should be out of 

the scope of task modelling. 

EXAMPLE FROM A LARGE CASE STUDY 

The proposed tool suite has been used to design and 

develop a prototype of groupware application belonging to 

the space ground segment category of applications. This 

study has been led in the context of a Research and 

Technology project funded by the French Space 

Government Agency (CNES). MARACCASS stands for 

Models and Architectures for the Resilience and 

Adaptability of Collaborative Collision Avoidance System 

for Spacecraft and aims at studying methods, techniques 

and tools to design and develop collaborative applications. 

This project is particularly targeting groupware for the 

management of collision avoidance between satellites and 

space objects. In this section, we present illustrative extracts 

from the case study which are relevant to highlight the key 

points of the contribution.  

Management of collision risks between space objects 
and satellites 

CNES and various other international agencies have to cope 

with the increasing number of space fragments, which are a 

threat to on-going satellite missions. Collision avoidance 

management is a collaborative, cross-team, and 

international activity. Amongst the national and 

international organizations, two main types of teams can be 

distinguished: the space observation teams and the satellite 

mission teams. The observation teams, thanks to various 

equipment’s and tools are gathering information about 

space objects and their trajectories (past, present, future). 

The mission teams focus on one particular space object 

(usually a satellite) and are monitoring and controlling the 

space object they are in charge of and its operations. If the 

observation team detects a collision risk between a satellite 

and a space object, it contacts and alerts the mission team in 

charge of the satellite. 

Roles and main goals to manage collision risks 

In this case study, we take the example of the collaboration 

between the CNES team in charge of monitoring space 

objects (called the Orbit Computation Center or OCC) and 

the SMOS
3
 satellite mission team. In order to 

collaboratively manage a collision risk, the teams are 

assisted with several non-integrated software tools: 

individual software tools to analyze probability of collision 

and traditional communication tools (email and telephone) 

to coordinate and communicate about the risk.  

Preliminary work before high-fidelity prototyping phase 

The first phase of the project has consisted in analyzing 

current activity with the production of corresponding task 

models. Then, we proposed several low-fidelity prototypes 

for a new groupware application to support collaborative 

activities of collision risk management. These low-fidelity 

prototypes take into consideration groupware principles [7] 

but also contributions about design considerations for 

collaborative visual analytics [9]. We then produced task 

and system models from low-fidelity prototypes that had 

been validated with operational teams. 

In the next paragraphs we present extracts from models and 

from the high-fidelity groupware prototypes that highlight 

how the proposed framework has been applied to develop a 

high-fidelity prototype of the collaborative application for 

collision risk management. In these extracts, we will focus 

on the collaborative asynchronous activities related to 

posting annotations (OCC engineer role) and consulting 

these annotations (SMOS controller role) in the 

corresponding remote applications. Figure 8 and Figure 9 

presents screenshots of the two remote applications 

dedicated to collaborative management of collision risks. 

Figure 8 presents the application dedicated to OCC 

engineers (with a larger set of functionalities such as deep 

probabilistic calculus and Conjunction Summary Messages 

creation and edition). In the presented screenshot, a popup 

window is opened in order to let the OCC engineer edit an 

annotation. Figure 9 presents the application dedicated to 

the mission controllers with a reduced set of functionalities. 

Its main purpose is to provide situation awareness about the 

collision risks related to the mission and communication 

and coordination support. In the presented screenshot, an 

3
 http://smsc.cnes.fr/SMOS/index.htm 



annotation is displayed (pined to the table) to the attention 

of the SMOS mission controller. 

Figure 8. Screenshot of the Hi-Fi prototype for collision risks 

management dedicated to OCC engineers 

Figure 9. Screenshot of the Hi-Fi prototype for collision risks 

awareness dedicated to SMOS mission engineers 

Task models 

In this section, extracts of the task models illustrate the 

HAMSTERS extensions and especially how the new 

cooperative task types have been applied to support the 

development of the groupware Hi-Fi prototype. 

Figure 10. Extract of the highest level task model for the OCC 

activities (OCC engineer role) 

Orbit Computation Center (OCC) engineers 

Figure 10 presents an extract from the set of activities that 

have to be performed by the expert engineer on duty from 

the Orbit Computation Center to monitor and manage 

collision risks.  

Figure 11 presents an extract from the set of activities 

performed once a collision risk has been detected for the 

SMOS satellite mission. In particular, it shows the sequence 

of activities led when the SMOS mission controller was not 

available for a live communication. The OCC engineer first 

creates an annotation (“Create annotation” input tasks), then 
positions the annotation (iterative task “Move annotation”) 
until the position is adequate (“Fix annotation position” 
input task). The OCC engineer then edits the annotation 

(input task “Edit annotation”), decides to send the 
annotation (cognitive decision task “Decide to send 
annotation”) and then send the annotation (cooperative 
asynchronous task “Send annotation”). 

Figure 11. Extract of the task model “Handle collision risk 

between satellite and fragment” for the OCC engineer role 

SMOS command and control room controllers and 
engineers 

Figure 12 presents an extract from the set of activities that 

have to be performed by the SMOS controller when warned 

by the OCC engineer. 

Figure 12. Extract of the highest level task model for the 

SMOS mission activities 

Figure 14 presents an extract from the set of activities 

performed once a collision risk has been detected. In 

particular, this set of activities is cooperative and bound to 

the above presented set of activities for the OCC engineer 

role. Once the OCC engineer has sent an annotation, it is 

displayed in the SMOS remote application (cooperative 

output task “Display new annotation”). When the SMOS 
mission controller will be available for consulting the 

application, s/he detects and acknowledges reception of the 

annotation (cooperative input asynchronous task 

“Acknowledge lecture of annotation”). S/he then analyzes 

the reported risk and may delete the annotation (cooperative 

input task “Delete annotation”). 



IV
Y

 

co
m

m
u

n
ic

a
ti

o
n

b
u

s

2

3

55

1

4

3

Figure 13. ICO modelling of the two remote applications COO (left part) and SMOS (right part) 

ICO modelling of the collaborative application to 
manage collision risks 

Figure 13 illustrates an excerpt of the connected models of 

the two remote applications OCC (left part of the figure) 

and SMOS (right part of the figure). The two excerpt of the 

models presented here describe how the editing of an 

annotation is performed on the OCC side and how it is sent 

and acknowledged back on the SMOS side. In both case, a 

snapshot of the dedicated graphical part is provided. These 

models behave as follows: 

1. When in editing mode (a token is put in place

EditedAnnotation at the top of the left part of Figure 13),

it is possible to edit the text of the annotation using the

edition window (see left part of Figure 13). It results in a

state change (by the firing of transition changeText_,

changing the marking of place EditedAnnotation with the

new text) or it is possible to validate or cancel the editing

(where button OK fires the transition validate_ and

button CANCEL the transition cancel_).

2. When validated (cancellation producing a return to the

initial state) a token is put in place newAnnotation, the

created annotation is sent to the peer application (SMOS)

by the remote invocation peer.submitAnnotation(…).

3. The communication bus Ivy then sends this method call

to the ICO SMOS model (a token is put in the service

input port of the corresponding method, the place

SIP_SubmitAnnotation on the top of the right part of

Figure 13).

4. The firing of the following transition submitAnnotation

puts a token in place newAnnotation making the

transition ack_ available (which is translated into

activating the corresponding menu item within the popup

menu show on the right part of Figure 13).

5. Using the menu item ack results in setting a token in

place AnnotationToAck which thus allows the firing of

transition ackAnnotation. The firing of this transition

results in the remote method peer.ackAnnotation(…)

invocation (on the bottom of the left part of the figure) 

and finally makes the transition delete_ fireable (the 

corresponding menu item becoming enabled). 

Figure 14. Extract of the task model “Handle collision risk” 

for the SMOS mission controller role 

Distributed co-execution between tasks and 
applications 

Figure 15 illustrates two remotes instances of the tool suite 

presented in this paper, connected using the Ivy 

communication bus. The left part (resp. the right part) 

corresponds to the editing of the OCC (resp. SMOS) 

models. The left-hand part of the figure shows the project 

structure of the tool suite (i.e. a set of modules of the 

NetBeans IDE
4
). This tool may be divided into four parts: 

· The top part is a set of classical IDE menu bars and tool

bars buttons.

· The left part provides means to navigate amongst the

project files (java sources, ICO, HAMSTERS and

correspondence models).

· The right part shows properties of the sources or models

(bottom part) and tools to modify the currently selected

model (on the top part a specific toolbox appears

4
 https://netbeans.org/features/index.html 



COO SMOS

Input 

Correspondence

Editing of 

parameter

Current 

scenario

Available 

tasks
Feedback on 

task 

performance

Current 

scenario

Available 

tasks

Output 

CorrespondenceIV
Y

 

co
m

m
u

n
ic

a
ti

o
n

b
u

s

1

2

3

4

5

5

6

7

8

8

Figure 15. Illustration of the collaborative co-execution using two instances of the tool suite 

depending on the king of the selected model 

(HAMSTERS or PetShop). 

· The center part allows the editing and execution control

of both the sources and models. The layout of this part is

fully reconfigurable as illustrated by the layout difference

of the left and right part of the figure.

To illustrate the synergistic exploitation of both the system 

and task models, we use the models presented in the 

previous sections, following the same scenario as used for 

the ICO models presentation (editing of an annotation). As 

the correspondence editing between system and task models 

are a simple table editing and was already presented in [1], 

we only focus here on the task driven simulation with a 

special focus on the cooperative activities.  

Currently used 
task information

Selection of the 
object to set

Set the object value 
using a substitution 
value from the ICO 
model execution

Freely set value for 
the object

When object is set, 
the task may be 

performed

Notification of a 
rendering occured 

within the ICO 
model, related to 
the current task

Check if a 
rendering 

occured and was 
perceived

Perform the task

Edition of the task 
object value

Approval of the ICO 
rendering

Figure 16. Detailed view on task-system related data. 

Following the eight numbered steps presented on the figure, 

the behavior of the task driven simulation is the following 

one: 

1. A set of available tasks is provided by the HAMSTERS

environment that is selectable within the associated list 

box. 

2. The selected task is connected to a transition by the

correspondence editing.

3. As the tasks requires an object (see task Edit Annotation

in Figure 11 in Task models section of the case study), a

dedicated panel is available (see the left part of Figure 16

for a zoomed snapshot of this part of the tool), providing

means to select values built from the data (system side)

of the running ICO model, related to the transition

connected to the task. It is also possible to manually

provide a value using the bottom text field of this panel

(see bottom right part of Figure 16).

4. When set, the selected value is sent to the ICO model by

sending an event (such as graphical part would have done

it).

5. Such as in the step 3 of Figure 13 (the scenario described

in the ICO models section), an invocation is performed

on the remote application.

6. When a token enters a place within the ICO model, a

rendering may occur and this rendering may be related to

an output HAMSTERS task, using the output

correspondence edition.

7. When an output task is selected, a dedicated panel

appears at the bottom of the tool, showing whether a

rendering occurs and if it corresponds to an output

correspondence (Figure 16 shows a detailed view of this

panel). In this panel it is possible to indicate if the

rendering was effectively correct and perceive (for log

purpose).

8. Finally, such as in step 5 of Figure 13 (the scenario

described in the ICO models section), an invocation is

performed back on the remote application.

CONCLUSIONS AND FUTURE WORK 

This paper has proposed a tool supported approach for 

bridging the gap between tasks and system views in the 

design of multi-user interactive systems. To this end we 

have briefly introduced extensions to the notation called 

HAMSTERS for the description of multi-users tasks 



models. These extensions allow the production of very 

detailed description of collaborative tasks beyond the 

expressive power of other task notations. This expressive 

power has allowed us to embed this notation within a 

synergistic framework where collaborative task models are 

connected to the interactive parts of a distributed system.  

Through the application of the approach on a real life case 

study (that was carried out over the 3 years lifespan of the 

project) we have demonstrated the validity of the approach 

in the context of space critical systems. However, this 

validation has only demonstrated that the notations are able 

to describe multi-user activities and interactive systems and 

that they were able to scale enough to describe a real life 

application. We have not presented in this paper all the 

work that has been carried out around the definition of the 

user interfaces, the interaction techniques and the 

communication and collaboration functionalities. This work 

has been performed using a User Centered Design approach 

based on low-fidelity and high-fidelity prototypes.  

The work presented here belongs to a longer term research 

program targeting at the design of resilient interactive 

systems using model-based approaches. Future work targets 

at exploiting this approach, to propose model-based 

usability evaluation of multi-user interactive systems 

extending the approach proposed for mono-user ones in [4]. 

We will also build on this model-based work to identify 

function allocations between operators and interactive 

systems to design more usable and reliable automation for 

critical systems.  

ACKNOWLEDGMENTS 

This work was partly sponsored by CNES R&T 

MARACCASS. We would like to thank the OCC team and 

in particular Jean-Claude Agnèse and François Laporte. 

REFERENCES 
1. Barboni E., Ladry J-F., Navarre D., Palanque P. and Winckler M.

Beyond modeling: an integrated environment supporting co-

execution of tasks and systems models. EICS'10, 165-174. 

2. Bastide, R., Palanque, P., Sy, O., Navarre, D. Formal specification

of CORBA services: experience and lessons learned. In Proc. of

OOPSLA 2000, 105-117. 

3. Bates, J.; Spiteri, M.D.; Halls, D.; Bacon, J. Integrating real-world

and computer-supported collaboration in the presence of mobility.

In Proc. 7th IEEE Int. Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises, 1998, 256-261. 

4. Bernhaupt R., Navarre D., Palanque P., Winckler M. Model-Based

Evaluation: A New Way to Support Usability Evaluation of

Multimodal Interactive Applications. Maturing Usability: Quality 

in Software, Interaction and Quality. Springer Verlag, April 2007.

5. Calvary, G., Coutaz, J., Nigay, L. From single-user architectural

design to PAC*: a generic software architecture model for CSCW.

In Proc. of CHI '97. ACM, NY, USA, 242-249. 

6. Cockburn, A., Jones, S. Four principles for groupware design.

Interacting with Computers. IJHCI, 7(2), 1995, 195-210. 

7. Ellis C. A., Gibbs S. J., Rein G., Groupware: some issues and

experiences, Comm. of the ACM, v.34 n.1, p.39-58, Jan. 1991.

8. Giraldo, W.J., Molina, A.I., Collazos, C.A., Ortega, M., Redondo,

M. A Model Based Approach for GUI Development in Groupware

Systems. In Groupware: Design, Implementation, and Use, LNCS,

Vol. 5411. Springer-Verlag, Berlin, Heidelberg, 324-339. 

9. Heer; J., Agrawala, M. 2007. Design Considerations for

Collaborative Visual Analytics. Proc. of IEEE Symp. on Visual

Analytics Science and Technology (VAST '07). IEEE Computer

Society, 171-178. 

10. Holanda, J. Merseguer, G. Cordeiro, and A. Serra. Performance

evaluation of web services orchestrated with ws-bpel4people. Int.

Journal of Computer Networks Communications, 2:18, 11/2010

11. Jakobsen M.R., Fernandez R., Czerwinski M., Inkpen K., Kulyk

O.A., Robertson G.G. WIPDash: Work Item and People

Dashboard for Software Development Teams. INTERACT 2009,

pp.791-804. 

12. Jourde F., Laurillau Y. & Nigay L. 2010. COMM notation for 

specifying collaborative and multimodal interactive systems. In

Proc. of EICS '10. ACM, New York, NY, USA, 125-134. 

13. Martinie C., Palanque P., Barboni E., Ragosta M. Task-Model

Based Assessment of Automation Levels: Application to Space

Ground Segments. Proc. of the IEEE SMC, Anchorage, 2011. 

14. Martinie C., Palanque P., Navarre D., Winckler M. and Poupart E.

Model-Based Training: An Approach Supporting Operability of

Critical Interactive Systems: Application to Satellite Ground

Segments, Proc. of EICS 2011, pp. 141-151, ACM DL. 

15. Martinie, C., Palanque, P., Ragosta, M and Fahssi, R. Extending

Procedural Task Models by Explicit and Systematic Integration of

Objects, Knowledge and Information, ECCE 2013, 23-33. 

16. Martinie, C.; Palanque, P. A. and Winckler, M. (2011):

Structuring and Composition Mechanisms to Address Scalability 

Issues in Task Models. Proc. INTERACT (3) p. 589-609. 

17. McGrath J. E. Groups: Interaction and Performance. Prentice Hall,

Inc., Englewood Cliffs, 1984.

18. Mori, G., Paternò, F., Santoro C. 2002. CTTE: support for 

developing and analyzing task models for interactive system 

design. IEEE Trans. Softw. Eng. 28, 8 (August 2002), 797-813. 

19. Paternò F., Ballardin G.: RemUSINE: a bridge between empirical 

and model-based evaluation when evaluators and users are distant.

Interacting with Computers 13(2): 229-251 (2000)

20. Rama, J., Bishop, J. A survey and comparison of CSCW

groupware applications. In Proc. of SAICSIT '06, 2006, Republic

of South Africa, 198-205. 

21. Roschelle, J., & Teasley, S. D. (1995). The construction of shared

knowledge in collaborative problem solving. In C. E. O'Malley 

(Ed.), Computer-supported collaborative learning (pp. 69-197).

22. Roseman M, Greenberg S: Building Real-Time Groupware with

GroupKit, a Groupware Toolkit. ACM Trans. Comput.-Hum.

Interact. 3(1): 66-106 (1996). 

23. Sun, A., Sun, C. Xpointer: an x-ray telepointer for relaxed-space-

time wysiwis and unconstrained collaborative 3d design systems.

In Proc. of CSCW '13. ACM, NY, USA, 729-740. 

24. Van der Aalst, W.M.P, ter Hofstede, A.H.M. YAWL: Yet

Another Workflow Language. Information Systems, 30(4):245-

275, 2005.

25. Van der Veer, G. C., Lenting, V. F., Bergevoet, B. A. GTA:

Groupware Task Analysis - modeling complexity. Acta

Psychologica, 91, (1996), 297-322. 

26. Wu, J., Graham, N. T. C: Toward Quality-Centered Design of

Groupware Architectures. EHCI/DS-VIS 2007, 339-355. 


