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Abstract—In Information Retrieval, past searches are a source
of useful information for new searches. This paper presents an
approach for reusing past queries submitted to an information
retrieval system and their returned results to build the result list
for a new submitted query. This approach is based on a Monte
Carlo algorithm to select past search results to answer the new
query. The proposed algorithm is easy to implement and does not
require learning. First experiments were carried out to evaluate
the proposed algorithm. These experiments used a simulated
dataset (i.e., document collections, queries and judgments of
users are simulated). The proposed approach was compared with
a traditional approach of information retrieval, showing better
precision for our proposed approach.

Keywords—Reusing past queries, probabilistic algorithm, IR.

I. INTRODUCTION

A large assortment of contributions in information retrieval
(IR), which address different perspectives such as matching
functions, indexing, formal models and relevance feedback can
be found in the literature. Nonetheless, few approximations
take advantage of previously performed searches, in particular
those of other users. Past searches can be a useful source
of information for new searches. In many cases, a user may
benefit from the search experiences carried out previously by
a group of users with about the same information need.

This paper is interested in capitalizing on past queries
submitted to an information retrieval system, to improve the
result returned for a new query. What we propose in this
paper is an approach for reusing past queries to respond to
a new submitted query. The approach relies on two processes:
a storage process and a retrieval process. This retrieval is based
on a probabilistic approach.

Probabilistic methods are present in the literature of IR.
Two threads are easily identifiable, i.e., learning techniques and
optimization. Learning techniques involve Bayesian Networks
and variants, to name just a few. Nevertheless, the scope of
applicability of a learning algorithm, the achieved success in
different environments as well as the lack of formal specific
model are difficult features to address [1]. Optimization is re-
lated with Genetic Algorithms (GA), among others. However,
with GA fitness evaluations are usually costly [2]. Furthermore,
the same algorithm applied to different datasets can involve
convergence times totally different [3].

Our approach involves a Monte Carlo algorithm, which is
quite simple to implement, and does not require extra time
to learn. The algorithm selects, in response to a new query,
relevant documents from the most similar past search. The
algorithm provides highest likelihood for documents, which
appear at the top of list. This likelihood is assigned in a
decreasing way according to the positions of documents in
the result list of the past query.

In order to prove that our algorithm can improve precision
(in particular P@10 precision (in this case, precision corre-
sponds to the number of relevant documents retrieved in the
first ten positions, which is divided by ten)) for new queries
using past query results, a wide range of experiments have
been carried out with comparison with a traditional retrieval.
Experiments have been validated by applying the Student’s
Paired t-Test to support differences.

Ad-hoc collections for approaches based on similar past
queries are difficult to find, because construction of these
collections implies high cost not only in time but also in effort.
Moreover, solutions to reduce the cost have been proposed in
[4], [5]. Traditional collections of IR have been adapted to
evaluate approaches based on past queries that respond to other
issues [6]. In addition, in the context of the Web, it is possible
to find approximations relying on historical searches. In this
case, query logs are used as sources of information about users
such as user clicks. Nevertheless, user clicks cannot be used
directly as judgments of absolute relevance [7].

An alternative for the evaluation of information retrieval
approaches corresponds to simulation [8]. Thus, we defined a
method to simulate an environment allowing us to evaluate the
performances of our algorithm relying on similar past queries.

This paper is organized as follows. Section II present
the overall retrieval process capitalizing on past queries.
In section III, related works on past searches, randomized
algorithms, and simulation in IR context are presented. In
section IV, our approach using past queries relying on a Monte
Carlo algorithm is described, using mathematical definitions.
In section V, we present our approach to simulate an IR
collection, in the context of past search results. In section VI,
empirical results are described to validate our approach and
compare it with a traditional retrieval approach. Finally, the
conclusions are presented in section VII.



II. INFORMATION RETRIEVAL REUSING PAST QUERIES

Most information retrieval systems do not differentiate
users submitting queries. A given query leads to the same result
list, except when a personalization process is applied to the re-
sult list. The possible personalization relies on user preferences
explicitly given by users or deduced from the interactions of
users during their previous searches. Past queries submitted by
other users in the past constitute a useful source of information
for new searches. Nevertheless, few systems exploit this source
of information. Users may deplore the lack of memory shown
by most information retrieval systems [9]. Many cases may
benefit from past search exploitation. For example, a user can
benefit from the search experiences carried out by a group of
users and vice versa.

This paper aims to add a collaborative dimension in the in-
formation retrieval process by capitalizing on similar searches
performed by other users. The approach relies on two separated
processes: a storage process and a retrieval process.

On one hand, the storage process aims at recording the
submitted queries and their computed results. The stored re-
sults comprise identifiers of documents with indications about
relevant documents for the user who submitted the query.
Such principle is quite similar to query logs usually handled
by search engines [10]. In the absence of explicit relevance
judgments, user clicks could be exploited, although they cannot
be used directly as judgments of absolute relevance [7]. When
the same query is submitted several times by various users,
all the relevance judgments on the documents constituting the
successive results have to be combined. This process builds
a set of query profiles. Each query profile is composed of
the query expression (i.e., terms) and the identifiers of the
documents with relevance judgments.

On the other hand, the retrieval process relies on the
following steps:

• Each new query q is compared with the past queries
of the stored set of query profiles.

• If there are past queries quite similar in the system
then the relevant documents in their profiles constitute
a set of possible candidates to compose the result for
the new query q.

• A subset of documents is selected from the set of
possible candidates to respond to the new query.
Various approaches for selecting documents can be
applied.

• If no similar query is found in the set of past query
profiles a traditional retrieval process is performed.
A systematic combination of traditional retrieval and
retrieval using past queries might be applied.

• the stored set of query profiles is then updated accord-
ing to relevance judgments on the result returned for
the new query q. If the new query is not present in the
set of past query profile then the profile of the new
query is added to the set of past queries. If the new
query is present in the set of past query profile then
its profile is updated according to the new relevance
judgments.

Section IV describes a feasible approach of such retrieval
process.

III. RELATED WORK

A. Past Searches in IR

A few contributions in IR deal with the use of past queries.
In [11], aiming to increase the average precision, two strategies
are carried out. First, the new result is obtained by combining
results of previous queries. Second, the new result is provided
by merging query models, where an estimator of a word ac-
cording to the context-based query model is used. An extension
of the previous work is presented in [12]. The authors aim to
improve the precision, specifically through models based on
implicit feedback information, which are provided by queries
and clickthrough history on an active session. This implies that
the set of queries is executed by the same user, in the same
context. The Kullback-Leibler divergence method is used to
yield a score to a document. Bayesian interpolation is used
to rerank any document that has not been seen by a user. It
should be noted that the TREC collections used here were
modified to evaluate this approximation. In [6], a distributed
approach relying on the use of past queries is presented. Like
previous work, a set of similar queries have been simulated
from a query collection. With the initial used collection, it
was not possible to evaluate schemes under similar queries.
It is crucial to emphasize that relevance judgments of past
queries were omitted. Hence, it is difficult to appreciate the
real performance of the use of similar past queries.

In a similar way, some approaches that are related with
the use of past queries can be found in the context of the
Web. In [13], the authors provide an automatic method to
produce suggestions, which are linked to previously submitted
queries. To that end, an algorithm of association rules was
applied on 95 most popular queries present in a log file.
Nevertheless, the percentage of records corresponding to those
queries over 2.3 millions of records in the log file was omitted.
As a consequence, it is difficult to calculate the impact of this
approximation. Furthermore, in [14], the authors point out that
it is not easy to estimate the real impact of approximation
based on association rules using log files. It is tricky to
determine the successive queries, which belong to the same
session (for the same user). Therefore, queries that could
be related cannot be assigned to the same user. In [15], an
architecture of collaborative search, which takes advantage of
repeated queries is proposed. Search results are customized for
different communities of users. Final results are highly related
to communities with the same background. Another approach
that relies on repeated queries is exposed in [16]. This research
aims at identifying identical queries executed in the same trace.
In [17], two contributions that benefit from repeated queries
are presented. One is focused on efficiency in execution time,
and the second relies on repetitive document access by the
search engines.

In summary, approximations relying on past queries in the
context of the Web, are focused rather on repeated queries
in log files than similar queries. Moreover, although log
collections can provide a framework to evaluate the use of past
queries, their use is complex because there are no relevance
judgments of documents for a given query. Thus, nowadays



it is difficult to find collections including documents, queries,
and relevance judgments to evaluate in an objective way the
utility about the use of similar past query results. This can
be due to different factors: the high cost of construction of
ad-hoc environments, and the time involved to evaluate not
only similarities between queries but also the relevance of
documents for similar queries.

B. Simulation in IR evaluation

A wide range of approaches, which involve the use of
simulation can be found since 1980s. In [8], [18], simulation to
evaluate IR systems is presented as further avenues of research.
Simulation in IR can concern not only document collections
but also query sets with their relevance judgments, which can
be provided without user interaction [19]. In [20], an algorithm
was developed to simulate relevance judgments of users. In
this work, the real precision was compared to the simulated
precision. In [21], queries to find known-item were simulated.
The identification and generation of methods were carried out
to obtain simulated topics as similar as possible to real topics.
Other researches to simulate user interactions through click
log, queries, and preferences of users have been built [22], [19].
Moreover, nowadays with the exponential growth of the Web,
simulation gives interesting approximations of performance on
the Web [23], [24].

C. Randomized Algorithms

Regarding the usage of probabilistic algorithms in IR,
several contributions can be found in the literature. Most of
them rely on learning techniques or optimization. Among ex-
isting optimization techniques, we can find Genetic Algorithms
(GA). In [25], a new fitness function based on the formula
proposed by [26] (where the term weights for documents and
queries are the product between the term frequency multiplied
by an inverse collection frequency factor) is given. In this
work, both vectors of documents and queries are normalized
using the formula. Empirical results showed a more effective
way using this approach than a traditional retrieval (i.e., using
cosine distance). In [27], an algorithm called probfuse, whose
purpose is to mix results from several IR algorithms, is
compared to the widely used CombMNZ algorithm [28]. Final
results show a better performance of probfuse. In [29], GA
and Genetic Programming, to study the impact in three areas
such as the use of documents to improve precision, ranking
methods, and studies about the combination of the previous
two areas on MAP, were presented.

Among approximations relying on learning techniques,
Bayesian Networks and their variants can be found in the IR
context. In [30], a probabilistic version of TFIDF algorithm
called PrTFIDF is shown. PrTFIDF gives a new sight about
vector space model, where a descriptor for every document, the
theorem of total probability and the Bayes’ theorem are used.
Final results on Usenet articles provide a better performance
than TFIDF, on six classification tasks. Another approach
aiming to give an unsupervised relevance to classify documents
according to the query or topic using Poisson distribution, is
exposed in [31]. However, as we mentioned in the introduction,
these approaches are not always simple to implement, and
furthermore, require high execution times.

In contrast to GA and Bayesian Networks, Las Vegas and
Monte Carlo algorithms are applied when the problem is hard
to solve like NP problems (i.e., time is a relevant factor in order
to give the answer) or algorithm input is non-deterministic.
An example of non-deterministic problems is a card game.
In such a game, someone tries to guess a card. In every
round the probability to guess is increased. Finally, in the 51st
round, both cards have achieved the maximum percent to be
chosen. In this example, it is always possible to find a mistake
probability (except for the last card).

Las Vegas algorithms provide an answer either true or false,
and this answer is always correct. To illustrate it, an example is
provided. Given an unsorted array, one wants to find a number.
Here, the algorithm provides a random position (from 1 to
N), and the searched number is compared with the number,
which is at the random position. If both numbers are equal,
the algorithm returns true. Otherwise, the number which is in
the random position is swapped for the number at first position.
Now, the algorithm can choose a random position (from 2 to
N). Again the searched number is compared with the number,
which is at the random position. If the searched number is
different to the number at the random position, the number
at the random position is swapped for the number at second
position, and so on. Finally, the number can always be found
because it is inside the array.

On the other hand, if the searched number is not inside the
array, the algorithm should respond false. In both cases (true
or false), the answer is always correct.

Unlike Las Vegas algorithms, Monte Carlo algorithms give
an answer, which can be incorrect (it means, when algorithm
gives true, it could be false, or when algorithm gives false, it
could be true). When the algorithm gives true or false, and one
of these answers is correct, it is called true-biased. Otherwise,
both answers can be incorrect, it is called two-sided errors.
Using the previous example (i.e., given an unsorted array ).
If one wants to review only k elements of the array (k <
N ), in order to reduce the searching time and whether the
number is inside of k elements, the algorithm should return
true (it is correct). On the contrary, if the searched number
is in the other portion of elements (N − k), the algorithm
will respond false, when the number is inside the array. This
example corresponds to true-biased Monte Carlo algorithms,
because when the algorithm returns true, it is correct, but if
the answer is false, it is an incorrect answer.

In our particular case, our algorithm is two-sided errors
(it means, that both answers true or false can be incorrect).
It is because, we are not sure about judgments of users with
respect to whether a document is either relevant or not relevant
regarding the query. Nevertheless, we can suppose that whether
the position of document (in the list of documents), is at the top
(more close to the query), the document has higher probability
to be relevant than a document is at the bottom of the list.

IV. APPROACH FOR REUSING PAST QUERIES

This section presents an approach for reusing past queries
that fits into the global process introduced in section II. This
approach considers a storage process in which each computed
query is stored with its documents and their relevance judg-
ments. Second, for the retrieval process, each new query is



checked and compared with the past queries in the system,
and if there is a past query quite similar in the system then
relevant documents of this past query are recovered according
to our algorithm. In this way, relevant documents are used to
respond to the new query.

Our algorithm splits the list of retrieved documents in NG
groups (see Figure 1). The first group, which is conformed
by the first elements appearing at the top of the list, has the
greatest probability to get a hit. At the same time, each element
of this group has different likelihoods to have a hit. The first
element of the group has a higher likelihood to have a hit
than the last element of the group. On balance, each group
has different probabilities to have a hit, and at the same time,
each element of this group has different likelihoods.

A. Definitions and Notations

Definition 1. Let DB = {D∪Q | D = {di}, Q = {qj}, i, j ∈
N ∧ i > 0 ∧ j ≥ 0} be an IR dataset, composed of a set of
documents D, and a set of past queries Q

a) ∀di ∈ D ∧ ∀qj ∈ Q, both di and qj are unique.

b)
⋂|Q|

j=1qj = ∅

By this definition, we define a collection of documents DB,
and a collection of past queries Q. The point b) implies that
there are no common terms between past queries.

Definition 2. Let Q′ = {q′j | j ≥ 0 ∧ j ∈ N} be a set of new
queries

⋂|Q′|
j=1q

′
j = ∅.

This definition states that there that there are no common
terms between new queries.

Definition 3. Let VN (q) be a set of N retrieved documents
given q.

Definition 4. Let A(q) = {ds | ds is a relevant document
given the query q, ∀ds ∈ VN (q)} be the set of all the relevant
documents retrieved for the query q.

Definition 5. Let A′(q) = {dl | dl is not a relevant document,
given the query q,∀dl ∈ VN (q)} be the set of all the irrelevant
documents retrieved for the query q.

Definition 6. VN (q) = A(q) ∪A′(q).

VN (q) corresponds to the set of retrieved documents, which
gathers relevant and not relevant documents.

Definition 7. Given a query q, such as q ∈ Q, pq = (q, VN (q))
is defined as the profile of the query q, which the pair com-
posed of the query and its retrieved documents (see section II).

Definition 8. Let P =
⋃

pq be the set of all the query profiles
stored in the system (see section II).

Definition 9. Given a query q′, such as q′ ∈ Q′. Rp(q
′) =

{d | d ∈ VN (q) ∧ sim(q′, q) = max(sim(q′, qi)), ∀pqi ∈ P}
corresponds to the set of retrieved documents in the profile of
the most similar past query according to a similarity measure
(e.g., cosine distance).

Definition 10. ∂ : Rp(q
′)→ A(q′) is a function, which assigns

the most relevant documents to a new query q′, such as q′ ∈ Q′

(see Definition 7 and Definition 9).

Definition 11. ‖x‖ denotes the integer part of a real number.

Definition 12. ⌈x⌉ denotes the upper integer of x.

Definition 13. Given a binary array B[N ], such as B has N
elements, and a

b
is the proportion of values in B that are equal

to 1 (true).

This array is the baseline to provide a level of general
probability for all the documents. Nevertheless, the probability
of each document according to its position in the list VN (q),
is computed by the algorithms 1 and 2.

Definition 14. Let M(N) = min{m | m ∈ N ∧
∑m

k=0 2
k ≥

N ∧ N < 2m+1} be the upper bound set, which involves
documents of VN (q) (in power two).

Definition 15. Let N ≃ NG∗2ne be the approximate number
of documents, where NG is the number of groups containing
documents of VN (q), and 2ne corresponds to the number of
elements by group.

Definition 16. Let i be the position of a document in VN (q),
such as the first element (i = 1) represents the most similar
document, then
Gx(ne, i,NG) = min{x | x ∈ N∧x ∈ [1, NG]∧i ≤ x∗2ne},
corresponds to the assigned set for the element i.

Definition 17. Let ε(ne, i,NG,N) = 1 − [log2(2
M(N) −

〈i MOD (Gx(ne, i,NG) + 1)〉) − ‖log2(2
M(N) −

〈i MOD (Gx(ne, i,NG) + 1)〉‖] be the error assigned for
the document at the position i in VN (q).

Definition 18. Let K(ne, i,N,NG) = ⌈log2〈
1

ε(ne,i,NG,N) 〉⌉
be the number of iteration on B[N ], to assign the likelihood
for the document at the position i in VN (q).

Thus, β : F (i)→ r, is probability function.

F (i) =

{

1 : Pri(1) =
∑K(ne,i,N,NG)

l=1
2(M(N)−Gx(ne,i,NG))

(2M(N))l
,

0 : Pri(0) = 1− Pri(1)

where Pri(1) is the likelihood of hit (1) for the element
i, and Pri(0) represents the probability of miss (0) for the
element i.

As shown in Figure 1, it is possible to calculate the
probability for the document d1. We setting the values as
follows: N = 30, NG = 4, ne = 3, i = 1 and the value
of M(N) = 5. Thus, the probability for the first element of
VN (q) is computed as: G(3, 1, 4, 30) = 1 (the first document in
the list, is in the first group), ε(3, 1, 4, 30) = 0.005, (see Algo-
rithm 1, lines from 12 to 15). Therefore, K(ne, i,N,NG) = 5
(see Algorithm 1, lines 16 and 17). As the document d1 belongs
to the first group, which has 1

2 , then the probability for the first

document is 1
2 +

1
4 +

1
8 +

1
16 +

1
32 (see Algorithm 1, lines from

18 to 25), therefore Pr1(1) = 0.968.

In a similar way, for elements of second group, the search
to find a 1 inside the array B, is limited between the range
1 to N

2 or N
2 + 1 to N (see Algorithm 2 as well as the lines

15 and 16 of Algorithm 1). Finally, the probability for the first
element of second group d13 is 1

4 + 1
16 + 1

64 + 1
256 + 1

1024 ,
Pr9(1) = 0.333.



Fig. 1. List of retrieved documents as past search result. Our algorithm
splits the list in NG groups (NG = 4), with the same quantity of documents
(2ne = 8). The probability for each document is determined by two factors.
First, it depends on the group the document belongs to, and second to the
relative position of the document in the group. For example, for the document
d1 (group 1), the error (see Definition 17) is 0.05, which is the same for the
document d13 (group 2). Moreover, the number of iterations K (see Definition

18) with the purpose to find 1 inside the B[N ] is the same. Nevertheless, the

probability in the first group is bounded by 24

32
. Finally, the probability for the

document in the position i, considering the group (from 1 to NG) , which

it belongs, is given by
∑

K

l=1
1

(2group)l.

V. DESIGN OF INFORMATION RETRIEVAL BENCHMARK

A typical IR collection is composed of three sets: docu-
ments, queries and relevance judgments per query (i.e., indica-
tions on documents considered as relevant or not relevant) [32].
Our method consists of two steps, based on prior work [33].
The first step aims at creating terms, documents, and queries.
Both Heap’s law and Zipf’s law have been considered to build
document collections. Heaps’ law indicates that a document
with size O(n) (where n is the number of terms) has a
vocabulary with size (Oβ), where 0 < β < 1. Therefore,
a simulated document can represent a document written in
English of O(n2) terms [34], [35]. We assume that both
processes, elimination of stop words and stemming were
carried out. Furthermore, according to the terms that compose
each document, documents belong to several subjects. Zipf’s
law [36], [37] is applied to simulate the distribution of the
frequencies of words in the vocabulary (to select the terms
from topics). Like Zipf’s law, exponential distribution also
have been used as an alternative for selecting terms from
topics. Otherwise, past queries are created from documents
and new queries are built from past queries. Finally, Bradford’s
law, is used to simulate relevant judgments provided by users
about document relevance for a specific query [38].

A. Documents and queries

Each document is composed of terms. A term is made
up by letters of the English alphabet. Each letter is come up
with uniform distribution and each term is unique. The set of
terms is split in subsets that describe topics. The idea is to
represent different subjects. Aiming at building a document,

Algorithm 1 B[N ], ne,NG,APast(q), VN (q), q′

Require: B[N ] is a boolean array, ne is a number of elements
in each group, VN (q) is the list of retrieved documents for
the query q, q′ is the most similar query with respect to q

Ensure: ANew(q
′) is a list of relevant documents for the query

q′

1: ANew(q)← ∅
2: for i← 1, N do
3: B[i]← false
4: end for
5: for i← 1, N

2 do
6: j ← random(1, ..., N)
7: B[j]← true
8: end for
9: i← 1

10: for b← 1, NG do
11: for c← 1, c < 2ne do
12: u← log2(2

M(N) − c)
13: U ← ‖u‖
14: E ← u− U
15: E ← 1− E
16: K ← log2(

1
E
)

17: K ← pKq

18: for l← 1, l ≤ K do
19: index← Index(b,N)
20: indexF ← (index.Inf +

(rand(1, .., index.Sup))
21: if B[indexF ] = true then
22: if ([idDoc =

Position(i of VN (q))] is in APast(q)) then
23: ANew(q

′)← ANew(q
′) ∪ didDoc

24: i← i+ 1
25: end if
26: else
27: i← i+ 1
28: end if
29: end for
30: end for
31: end for
32: return(ANew(q

′))

either Zipf or Exponential distributions is applied to select
terms. According to term selections, each document is related
to a main topic and various other minor topics.

Past queries are created from documents. Like documents,
terms are chosen under uniform distribution in order to build
the past queries. It is important to emphasize that the intersec-
tion among past queries is empty. New queries are built from
past queries. For each past query a new query is built, either by
changing a term or adding another term. Thus, the most similar
and unique query for the new query is its corresponding past
query. In summary, when a number of queries is given, at
the beginning the past queries are built from documents, and
afterwards the new queries are created from past queries.

B. Relevance judgments

To represent relevant judgments provided by users about
document relevance for a specific query we base on the
Bradford’s law. The Bradford’s law states that most relevant



Algorithm 2 Index(b,N)

Require: b is the number of the group, N is the limit
Ensure: Index Upper and Lower bound

1: Index.Inf ← 0
2: Index.Sup← 0
3: valor ← 0
4: if b = 1 then
5: Index.Inf ← 1
6: Index.Sup← N
7: else
8: valor ← random(0, 1)
9: if valor = 0 then

10: Index.Inf ← 1
11: Index.Sup← N

2b

12: else
13: Index.Inf ← N

2
14: Index.Sup← N

2 + N
2b

15: end if
16: end if
17: return(Index)

papers are in few journals while other relevant papers are
spread on a high quantity of other journals [38], [39]. By
analogy, we assume that in the list of documents returned in
response to a submitted query most relevant documents should
be at the top of the list while other relevant documents are
spread in the remaining of the list.

In our context of reusing past searches, one of our hy-
potheses concerns similarities between queries and between
information needs. Two very similar queries refer to the same
information need as usually supposed in information retrieval.
Consequently, there is a subset of relevant documents for both
queries. However, both queries may have additional distinct
relevant documents. For example, in the Figure 2, documents
d3 and d5 are relevant for both queries while d1 is relevant for
the query q only, and d7 is a relevant document for q′ only.

Fig. 2. Relevant documents for each query have 1, irrelevant documents have
0. First, both list of documents are retrieved, from the intersection (d3, d5,
and d6), relevant documents common to both queries are computed by using
Bradford’s law. Afterwards, relevant documents are calculated again for each
query by preserving the relevant documents of the intersection (d3 and d5).

Our method is based on Zeta distribution which provides
a discrete approximation of the Bradford’s law. First, Zeta
distribution is applied to on a common sublist of documents
extracted from he document lists of both queries aiming to
determine the common relevant documents for both queries.

Second, Zeta distirubtion is applied to each document list of
each query, maintaining the relevant documents in common
previously determined. Therefore, the two queries have two
different lists of relevant documents.

Thus, precision measures, such as P@10 in our case, may
be different for the two queries when returning the same result
list. Notice that this method does not favor any of the two
queries (i.e., the new query and its corresponding past query)
according to precision. A result list may lead to better precision
either for the past query or the new one.

VI. EMPIRICAL RESULTS

A. Experimental Environment

Experimental environment is setting like follows, the length
of a term | t |, was between 3 and 7. Uniform distribution
was used to establish the length. The number of terms | T |
is 700 in each experiment. The number of terms for each
document can be between 15 and 30. According to Heaps’s
law [40], it is possible to represent documents between 300
to 900 words in our case. The number of topics used in each
experiment is 7. Each topic is formed by 100 terms. When a
document is built, terms of other topics are chosen using either
Exponential distribution or Zipf distribution. Whereby, most
words, which compose a document are chosen form a specific
topic. Document numbers used in each experiment were 700,
1400, 2100, 2800 and 3500.

On the other hand, terms for a query were between 3 and 8.
Terms of a query are chosen from a particular document. Both
terms and documents are chosen using uniform distribution to
build the past queries. We have built 15 past queries. From
the set of past queries, 15 new queries were built. Finally, the
number of queries in each experiment was 30.

Simulations of user judgments were carried out under Zeta
Distribution. Zeta distribution with parameters 2, 3 and 4 have
been applied on 30 most similar documents with respect to the
queries.

Simulations were implemented on C language and run
on Linux Ubuntu 3.2.9, with Centrino 1350, 1.8 Ghz Intel
processor, 1GB RAM, and gcc 4.6.3 compiler.

B. Experimental Results

In this section, three experiments are studied. Both, first
and second experiment, Exponential distribution have been
used to build the collection of documents D. Like previous,
in the third experiment, Zipf distribution has been applied to
build D. Additionally, we have used the Student’s Paired t-Test
(paired samples) over each average P@10 (our approach with
respect to traditional retrieval) for each set of documents (700,
1400, 2100, 2800 and 3500). Preliminary results are shown as
average P@10 over all the queries.

1) Experiment 1: a) Exponential distribution (with param-
eter θ = 1.0) was used to build D. Zeta distribution (with
parameter S = 2) was applied in order to determine the
list of relevant documents for each query. Average results for
P@10 can be seen in Table I (see S = 2). An average of
3.8 queries were not improved applying our approach (with
respect to the past query). An average of 25.8 queries led to



TABLE I. EVALUATION RESULTS OF THE TWO APPROACHES (I.E., Past

Results AND Cosine) ACCORDING TO AVERAGE P@10 (OVER 30 QUERIES)
WITH A COLLECTION D BASED ON EXPONENTIAL DISTRIBUTION USING

θ = 1.0

Approach

Zeta Distribution D Size Past Results Cosine

700 0.758 0.589

1400 0.738 0.615

S = 2 2100 0.756 0.607

2800 0.769 0.672

3200 0.754 0.639

700 0.642 0.499

1400 0.649 0.547

S = 3 2100 0.608 0.529

2800 0.652 0.581

3200 0.611 0.559

700 0.555 0.429

1400 0.516 0.429

S = 4 2100 0.534 0.428

2800 0.547 0.486

3200 0.541 0.468

result improvements with our approach. The highest p-value
was 4.234 E-25 applying the Paired t-test.

b) Here, Exponential distribution (θ = 1.0) was applied to
build D. Zeta distribution (S = 3) was used to determine the
list of relevant documents for each query. Average results for
P@10 are displayed in Table I (see S = 3). An average of 7.4
queries were not improved with our approach. An average of
21 queries led to result improvements with our approach. The
highest p-value was 1.291 E-14 applying the Paired t-test.

c) In this scenario, Exponential distribution (with parameter
θ = 1.0) was used to build D. Zeta distribution (with parameter
S = 4) was applied to determine the list of relevant documents
for each query. In Table I (see S = 4), average results
for P@10 can be seen. An average of 5.8 queries were not
improved with our approach. Our approach improved, on
average, 21.1 queries. The highest p-value was 2.245 E-14
applying the Paired t-test.

2) Experiment 2: a) In this scenario, Exponential distri-
bution (with parameter θ = 1.5) was applied to build the
collection D. Zeta distribution (with parameter S = 2) was
used to determine the list of relevant documents for each
query. Average results for P@10 are displayed in Table II
(see S = 2). An average of 4 queries were not improved
applying our approach while an average of 25.6 queries led
to result improvements with our approach. When calculating
the Student’s paired t-test, the highest p-value was 5.140 E-20.

b) Exponential distribution (with parameter θ = 1.5)
was used to build the collection D. Zeta distribution (with
parameter S = 3) was used to determine the list of relevant
documents for each query. From Table II(see S = 3), average
results for P@10 can be seen. An average of 5.4 queries were
not improved applying our approach. Our approach improved,
on average, 24 queries. The highest p-value was 1.063 E-17
for the Paired t-test.

c) In this scenario, Exponential distribution (with parameter

TABLE II. EVALUATION RESULTS OF THE TWO APPROACHES (I.E., Past

Results AND Cosine) ACCORDING TO AVERAGE P@10 (OVER 30 QUERIES)
WITH A COLLECTION D BASED ON EXPONENTIAL DISTRIBUTION USING

θ = 1.5

Approach

Zeta Distribution D Size Past Results Cosine

700 0.764 0.638

1400 0.787 0.675

S = 2 2100 0.716 0.595

2800 0.784 0.683

3200 0.736 0.634

700 0.637 0.556

1400 0.680 0.597

S = 3 2100 0.654 0.511

2800 0.684 0.590

3200 0.646 0.558

700 0.564 0.499

1400 0.564 0.499

S = 4 2100 0.570 0.469

2800 0.578 0.506

3200 0.531 0.451

θ = 1.5) was applied in order to build the collection D. Zeta
distribution (with parameter S = 4) was used to determine
the list of relevant documents for each query. Average results
for P@10 are shown in Table II (see S = 4). Our approach
did not improve, on average, 8 queries. An average of 19.4
queries were improved with our approach. The highest p-value
applying the Paired t-test was 7.104 E-13.

3) Experiment 3: a) In this scenario, Zipf distribution (with
parameter λ = 1.6) was applied to build D. Zeta distribution
(with parameter S = 2) was used to determine the list of
relevant documents for each query. Average results for P@10
are shown in Table III (see S = 2). The average number of
queries, where our approach did not improve regarding past
queries, was 4. The average number of queries where our
approach was improved, corresponds to 24.8. The highest p-
value was 9.717 E-24 applying the Paired t-test.

b) Here, Zipf distribution (with parameter λ = 1.6) was
used to build D. Zeta distribution (with parameter S = 3)
was applied to determine the list of relevant documents for
each query. As can be seen in Table III (see S = 3), average
results for P@10 are displayed. The average number of queries
where our approach lost with respect to the past query, was
6.8. The average number of queries where our approach was
better, corresponds to 22.4. The highest p-value was 1.956 E-
17 applying the Paired t-test.

c) Zipf Distribution (with parameter λ = 1.6) was used to
build D. Zeta distribution (with parameter S = 4) was applied
to determine the list of relevant documents for each query.
Average results for P@10 are shown in Table III (see S = 4).
The average number of queries, where our approach did not
improve, corresponds to 3.6. The average number of queries
where our approach was better, was 25.2. The highest p-value
was 2.316 E-23 applying the Paired t-test.



TABLE III. EVALUATION RESULTS OF THE TWO APPROACHES (I.E.,
Past Results AND Cosine) ACCORDING TO AVERAGE P@10 (OVER 30

QUERIES) WITH A COLLECTION D BASED ON ZIPF DISTRIBUTION USING

λ = 1.6

Approach

Zeta Distribution D Size Past Results Cosine

700 0.748 0.660

1400 0.758 0.607

S = 2 2100 0.736 0.622

2800 0.767 0.599

3200 0.727 0.604

700 0.599 0.523

1400 0.659 0.570

S = 3 2100 0.625 0.550

2800 0.673 0.531

3200 0.650 0.549

700 0.526 0.450

1400 0.547 0.454

S = 4 2100 0.543 0.454

2800 0.573 0.449

3200 0.561 0.434

C. Discussion

Our main argument by which both Zipf and Exponential
distributions were used, is because in documents, it is feasible
to find terms not only about a particular subject but also other
subjects. In our experimental environment, Zipf distribution
was used with value 1.6 since accepted ranges are usually be-
tween 1.4 and 1.8. In the case of Exponential distribution, the
distribution with value 0.5 was omitted because we considered
that it would not provide relevant results, after of obtaining the
results whene using the values 1.5 and 1.0.

In addition, to analyze if the function simulating relevance
judgments has implications on results according to P@10, Zeta
distribution with different parameter values (i.e., S = 2, 3
and 4) were applied. According to Tables I, II, and III. Every
time that the parameter S was incremented, both averages of
P@10, using decreased for both approaches, i.e., Past Result
(our approach) and Cosine (using traditional IR). This can
be noticed in every configuration used to build the document
collections.

It should be noted that if the number of queries was
increased in these experiments, final results should not be
different. This is because for every past query, it exists only
one and unique query for which the intersection is not empty.

In addition, it should be noticed that our algorithm provided
the best average P@10 in every experiment, with p-values
always supporting statistically significant results.

VII. CONCLUSION AND FUTURE WORK

We proposed in this paper an approach for reusing past
queries to respond to a new submitted query. The approach
relies on two processes: a storage process and a retrieval
process. This retrieval is based on a probabilistic approach.
A new Monte Carlo algorithm have been proposed to select
relevant documents for a new query from its most similar past
query. This algorithm is easy to implement, does not require

time of learning, and provides acceptable results improving
precision. Furthermore, this algorithm can be implemented not
only inside some IRS but also as external interface outside
search engines. This algorithm aims at reusing relevant docu-
ments retrieved from the most similar past query. In addition,
different evaluation scenarios have been simulated. Simulation
provided an appropriate environment to evaluate our algorithm.
Documents, queries, and relevance judgments on documents
given a query were simulated. Different experiments have been
carried out on several probability distributions to cover various
types of collections. Empirical results showed better precision
(P@10) of our algorithm compared to a traditional retrieval
approach (i.e., cosine).

Future work will be devoted to define more real evaluations
relying on past queries by adapting TREC collections for
instance. We will also develop other approaches to construct
retrieved documents for a new query by combining various
results of past queries.
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